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Abstract 

The primary objective of this research project was to investigate models for monitoring and 
predicting subjective workload in the control of complex systems.  Such models would enable 
systems to use workload levels to distribute tasks optimally in addition to identifying levels of 
workload which could lead to a serious breakdown in performance.  In the aircraft-pilot system, 
for example, such capabilities could provide warnings to the pilot of high workload levels and 
could also assess ways of reducing the pilot’s workload by offering to assume control of some 
ongoing tasks.  In this initial project, we tried to determine how well a model can assess 
workload using information about task requirements and task performance.   

Participants rated subjective workload levels after each block of trials.  The blocks consisted of  
various combinations of three tasks with varying levels of difficulty.  The workload ratings and 
the performance data were used to create a database for developing models.  The tasks were: (a) 
a continuous tracking task with a random forcing function and three different updating speeds; 
(b) a discrete tracking task in which response keys were pressed to indicate the position of a 
target in one of four different locations; and (c) a tone-counting task which required counting the 
number of higher pitched tones in a series of tones of 800 or 1200 Hz.  Neural net models 
applied to group data consisting of eight individuals were able to achieve 85-95% accuracy in 
predicting a “redline” workload level in training data.  On completely new data, accuracy was in 
the 70-75% range.  The redline value was adopted from earlier work (Reid & Colle, 1988) 
showing that at that value of workload, performance measures begin to show effects of 
workload.   

Prediction in the 70-75% range is of interest theoretically, but for practical utility, values in the 
range of 90-95% are desirable.  When we developed models from the data of individual subjects, 
such levels were reached for two of eight subjects, but the other six were lower.  The average 
accuracy from individual subject models was better than that obtained with group data 
suggesting that individual models are a more promising direction to pursue.  We conclude with a 
recommendation to add physiological measures collected during the performance of the tasks to 
assist in predicting workload.  Given the levels of accuracy achieved with performance measures 
alone, the addition of physiological measures may well achieve the desired range of accuracy in 
predicting workload. 
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Mental workload is a multi-faceted phenomenon, and the literature reflects these many facets.  
Mental workload can be related to physiological states of stress and effort, to subjective 
experiences of stress, mental effort, and time pressure, and to objective measures of performance 
levels and to breakdown in performance. These various aspects of workload have led to distinct 
means for assessing workload including physiological criteria (e.g., heart rate, evoked 
potentials), performance criteria (e.g., quantity and quality of performance), and subjective 
criteria (e.g., ratings of level of effort).   

According to performance criteria, a given task will not necessarily lead to a particular level of 
performance or workload because factors such as S-R compatibility, practice, fatigue, talent or 
skill, etc. will affect task workload.  For example, a task which may seem overwhelming when 
first attempted may end up requiring only a small amount of mental capacity after sufficient 
practice.  People learning to fly commonly experience a dramatic reduction in the workload 
imposed in landing after extended practice.  Several aspects of the environment and the aircraft 
must be monitored and controlled in executing the approach and landing.  Particularly at low 
levels of practice and familiarity, these many aspects of monitoring and control can easily 
exceed a person’s information processing capacity (but see Schneider & Detweiler, 1988 and 
Schvaneveldt & Gomez, 1998 for data suggesting that practice on single tasks leads to rather 
poor transfer to dual task situations).   

Rogers and Monsell (1995) have shown persistent costs associated with switching between tasks 
even when the switches are predictable and regular.  Schvaneveldt (1969) showed that 
performance on relatively simple tasks can be degraded when they are coupled with complex, 
independent tasks.  Moray, Dessouky, Kijowski, & Adapathya (1991) showed clear limits to 
performance in the context of scheduling multiple tasks.  Thus, there is reason to believe that the 
requirement to perform multiple tasks is a major contributor to performance levels and, as a 
result, to workload (Wickens & Yeh, 1982).  

The literature on mental workload was extensively reviewed in two chapters in the 1986 
Handbook of Perception and Human Performance.  On the theoretical side of the problem, 
understanding workload relates primarily to research in attention, processing capacity, dual-task 
performance, and allocation of mental resources (Gopher & Donchin, 1986).  Assessing 
workload has involved measurement of performance, subjective impressions of workload, and 
physiological indicators of work and stress (O’Donnell & Eggemeier; 1986).  Because subjective 
measures of workload have proven useful in a variety of circumstances, we decided to 
concentrate on these measures in the present investigation. 

In regard to subjective measures, it is likely that people do not have conscious access to all 
aspects of mental workload which may cause particular difficulty with subjective measures.  
Despite this limitation, several studies attest to the value of subjective measures (Bortolussi, 
Kantowitz, & Hart, 1986; Corwin, 1992; Haskell & Reid, 1987; Reid & Colle, 1988; Tsang & 
Vidulich, 1994; Vidulich, Ward, & Schueren, 1991; Wierwille & Eggemeier, 1993).  It is also 
important to consider that subjective workload represents the degree to which an individual 
experiences workload demands, and this experience itself has potential consequences for 
performance and stress levels.  Thus for both theoretical and practical reasons, it is of value to 
characterize how much mental effort is experienced in performing various tasks and to predict 
when performance will deteriorate seriously due to overload.   
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Subjective Measures of Mental Workload 

Subjective measures of mental workload are obtained from subjects’ direct estimates of  task 
difficulty.  Various techniques can be used to measure subjective workload, but the basis of any 
subjective workload technique is having subjects report the “difficulty” of the task.  The main 
difference between subjective workload and other workload measures (such as dual-task or 
physiological measures of workload) is that the former rely on the subjects’ conscious, perceived 
experience with regard to the interaction between the operator and the system.   

Techniques for assessing subjective workload fall either in the category of ratings scales 
procedures or psychometric techniques involving such procedures as magnitude estimation (e.g. 
Borg, 1978), paired comparisons (e.g. Wolfe, 1978), or conjoint measurement and scaling (e.g. 
Reid, Shingledecker, & Eggemeier, 1981).  Ratings procedures such as those derived from the 
Cooper-Harper Aircraft-Handling Characteristics Scale (Cooper & Harper, 1969) require 
subjects to rate the difficulty of tasks with the use of a decision tree.  Ratings scales appear to be 
sensitive to different levels and varieties of load (including perceptual, central processing, and 
communications load).  An advantage of psychometric, as compared to ratings techniques, is that 
psychometric techniques are capable of providing interval information regarding task difficulty.  
Such information can be useful for measuring the magnitude of workload differences between 
tasks.   

In magnitude estimation, subjects provide direct estimates of the difficulty of one task relative to 
another.  For example, subjects are exposed to a task and then are told to choose a numerical 
value reflecting the difficulty associated with the task.  The perception of difficulty associated 
with the first task is called the modulus.  Subjects are then asked to provide numerical estimates 
of tasks of varying difficulty relative to the modulus.  Magnitude estimation has proven to be a 
sensitive measure of differences in load but its major drawback is that real-world tasks often do 
not occur in close proximity, thus making it difficult for subjects to retain an accurate 
representation of the modulus over time.  In paired-comparisons, subjects are presented with all 
possible pairs of stimuli (e.g., difficulty levels of a task) and are asked to judge which of the two 
stimuli are more difficult.  After comparisons are obtained from a number of subjects the relative 
difficulty of stimuli can be represented in an n x n matrix showing the proportion of times each 
stimulus was judged to be more difficult than every other stimulus.  Although this technique has 
also produced successful results, the number of comparisons required is a limiting factor.  For 
example, with 6 stimuli, 15 judgments are required.   

An approach which has proven useful is the technique of conjoint measurement and scaling.  
Most of the techniques used for measuring subjective workload treat perceived workload as a 
unitary dimension.  In  some cases subjects are asked to consider multiple factors in making a 
rating, but subjects still assign one number based on these factors.  However, subjective 
workload entails a number of dimensions, such as time load, mental effort load, and 
psychological stress load (Reid et al., 1981).  Conjoint measurement and scaling approaches are 
multidimensional techniques with the advantage of reflecting a number of factors in one measure 
of subjective workload.  This approach involves obtaining separate ordinal ratings for each of 
several dimension of subjective workload and then combining the separate ratings into a scale 
with interval properties.  These techniques require two phases:  a scale development phase and 
an event scoring phase.  During the scale development phase levels of dimensions are described 
to subjects.  Then subjects are given all combinations of descriptions of each of the levels for the 
dimensions and are asked to rank order the combinations according to workload.  If there are 
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three dimensions and three levels of difficulty, then subjects would rate 27 combinations.  The 
rankings are then submitted to a series of axiom tests which are part of the conjoint measurement 
procedure.  These axioms are used to test logical consistencies in the data and identify the 
subject’s combination rule (e.g., additive, distributive, dual distributive) that fits the data.  The 
rule is then used to assign numerical values to each level of the separate dimensions and then 
combine the values into one integrated scale.  During the event-scoring phase, subjects 
participate in a task and then rate the task difficulty on each of the dimensions.  The ratings are 
then used to find the corresponding value on the subject’s interval scale.  Conjoint measures 
appear to be sensitive to levels of task difficulty.  Additional advantages of this approach are that 
measures are easy to obtain and can be scaled individually to subjects. 

Subjects are very consistent in their ratings with subjective measures of workload.  Reliability 
coefficients for subjective workload over multiple ratings instances have been as high or higher 
than .90 (Gopher & Browne, 1984).  However, the relationship between subjective and objective 
measures of workload is variable.  In some instances researchers report an association between 
subjective and objective measures of workload, in other instances dissociations are reported.  
One explanation for these inconsistencies has to do with the relationship between processes 
which are and are not available to consciousness.  On this view, subjective workload measures 
will be more sensitive to processes which require awareness (or attention) and less sensitive to 
processes which do not require attention.  According to Gopher and Donchin (1986) the 
retrospective nature of subjective workload may also be a contributor to the dissociations 
between subjective and objective measures.  Regardless of the limits of subjective measures, the 
subjective experience of performing a task cannot be ignored.  Often, subjective experiences of 
overload take precedence when an operator is performing a task, even when objective measures 
are not indicating an overload (Moray, Johanssen, Pew, Rasmussen, Sangers, & Wickens, 1979). 

The Present Study 

We used empirical, analytical, and computer modeling methods to investigate mental workload 
in the performance of system control tasks.  Our specific objectives were: (1) to collect 
performance measures and subjective judgments of workload using pursuit tracking, tone 
counting, and sequential reaction-time tasks under conditions which varied the number and 
complexity of tasks to be performed; and (2) to develop models for predicting subjective 
workload judgments from performance measures and task conditions.  Such models can be used 
to monitor levels of workload for the purpose of predicting when performance will seriously 
deteriorate due to overload and to analyze the impact of allocating various tasks to an automated 
system.  The following sections discuss the tasks we used in our study and relevant literature is 
reviewed. 

Tracking Tasks 

We used a pursuit tracking task as one component of our workload study.  Tracking is represent-
ative of a central task involved in flying aircraft.  Such tasks also have the advantage of 
providing continuous measures of performance, and the difficulty of the task can be easily 
manipulated by variations in forcing functions (Wickens, 1986).  We conducted some 
preliminary studies to select appropriate parameters of the tracking task in order to tune the 
difficulty of our tasks to the subject populations we studied.  We found that reliable changes in 
workload could be achieved by varying the rate at which a random forcing function updated the 
position of the target.  In the tracking tasks, we recorded tracking error and stick movement 
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variance measures over blocks of trials.  We assessed control activity by variability of stick 
movement. 

Continuing our analogy with flight control.  Flying also involves numerous other tasks (e.g., 
navigation, communication, engine control).  It has been argued that a major contributor to 
workload is the number of tasks that must be performed simultaneously (Moray, Dessouky, 
Kijowski, & Adapathya, 1991; Rogers and Monsell, 1995; Schvaneveldt, 1969; Wickens & Yeh, 
1982).  Thus we selected additional tasks with particular qualities as described in the next 
section. 

Sequential Reaction-Time Tasks 

The sequential reaction time (SRT) task provided an interesting dual task with tracking because 
the SRT task can be manipulated in structural complexity (by varying constraints in the sequence 
of events).  It has been known for some time that people are sensitive to the sequential order of 
events in reaction-time tasks (Schvaneveldt & Chase, 1969).  With first order constraints, an 
event is predictable knowing only the most recent event.  Second order constraints require 
knowledge of the preceding two events to predict the next event.  Hyman (1953) showed that 
reaction time varies with the probability of events when either overall or sequential probability is 
manipulated. 

The approach most often taken to dual-task manipulations of workload is to assess the effect of a 
secondary task such as Sternberg memory-scanning tasks (Wickens, Hyman, Dellinger, Taylor, 
& Meador, 1986) or scheduling tasks (Moray, et al., 1991) on a continuous primary task (such as 
tracking).  One difficulty with this approach is that there is no way of ensuring that subjects will 
treat the primary task as primary and the secondary task as secondary.  Therefore, a more 
realistic approach, and the one we chose to follow, was to interpret the contributions multiple 
tasks made to the complexity and hence subjective workload involved in controlling the system.   

The SRT task we used required subjects to respond to the position of “blots” on the screen by 
pressing one of four response keys indicating which of four positions contained the blot on each 
of a series of trials.  Figure 1 shows the display we used with the blot on the third bar from the 
left.  The correct response would be to press the third key from the left. 

------------------------------------------------------- 
Insert Figure 1 about here 

------------------------------------------------------- 

During the SRT task, subjects are exposed to event sequences with a repeatable pattern.  In most 
variants of the SRT task, a target occurs in one of three to six locations as dictated by a pattern 
sequence.  The complexity of the stimulus pattern can be varied by manipulating the order of 
sequential constraint.  That is, the stimulus pattern is designed so that predicting the next event 
depends on one, two, or more preceding events.  Learning of the sequence structure is measured 
by the disparity in reaction-times for responding in the structured sequence in comparison to 
some change in the sequence.   For example, practice with a structured sequence results in a 
dramatic decrease in reaction time as compared to the reaction time for responding to randomly 
generated sequence locations (Cohen, Ivry, & Keele, 1990; Nissen & Bullemer, 1987). 

A number of researchers have investigated the relationship between workload and performance 
on the SRT task (Cohen et al., 1990; Curran & Keele, 1993; Frensch, Buchner & Lin, 1994; 
Nissen & Bullemer, 1987; Perruchet & Amorim, 1992; Reed & Johnson, 1994; Schvaneveldt & 
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Gomez, 1996).  Nissen and Bullemer (1987) exposed subjects repeatedly to a 10-trial pattern in a 
SRT task.  Asterisks appeared in one of four horizontal locations on the screen and subjects 
pressed a corresponding response button.  Nissen and Bullemer measured performance  under 
normal, dual-task, and random conditions.  Subjects in the normal sequence condition 
demonstrated sensitivity to the structure of the sequence as evidenced by improved reaction 
times relative to subjects receiving random sequences.  In the dual-task condition high and low 
tones accompanied the sequence learning task.  Subjects in this condition counted the number of 
low tones.  Sensitivity to the structure of the sequence was severely impeded under dual-task 
conditions.  Specifically, performance was no better than was responding to the random 
sequence, suggesting that sensitivity to structure in the environment is dependent on attentional 
processing. 

In another important study of the relationship between sequential reaction-time and workload, 
Curran and Keele (1993) investigated the hypothesis that humans have two independent 
mechanisms for exhibiting sensitivity to sequential structure.  One mechanism requires attention 
to the relationship between successive stimulus events whereas the other mechanism requires no 
such attention.  The relationship between these two mechanisms was explored by assessing 
transfer of sensitivity to structured sequences under varying conditions of workload.  When 
subjects participated in an SRT task under single task conditions both attentional and 
nonattentional mechanisms operated in parallel.  However under conditions of increased 
workload, the attentional mechanism was disabled, while leaving the nonattentional mechanism 
intact.  Furthermore, the nonattentional mechanism shows sensitivity to simple first-order 
conditional structure and hybrid structure (combinations of first-order and second-order 
relations), but does not appear to be sensitive to more complex structure (such as that made up 
entirely of second-order conditionals).  Such a finding is important because it suggests that 
certain tasks may be impervious to conditions of excessive workload, namely those which are 
processed by the nonattentional mechanism.  It would be of potential use to identify tasks which 
are processed by the nonattentional mechanism because, presumably, these tasks would not 
deteriorate during system overload. 

In summary, the tasks we used in our research reported here included the presence or absence of 
each of three tasks, pursuit tracking, sequential reaction time (SRT), and tone counting.  The 
difficulty of tracking was varied by manipulating the speed of the cursor to be tracked, the SRT 
task difficulty was varied by using structured sequences vs. random sequences of blot positions.  
The tone task always accompanied the SRT task when the tone task was performed, but its 
presence was manipulated.  In all there were 22 different conditions which were administered on 
each of 10 days to each of eight subjects.  The conditions varied in the combinations of tasks and 
the difficulty of the tasks. 

In our studies, following each block of trials, subjects gave three ratings of workload for that 
block of trials.  The ratings used the SWAT scaling methodology (Reid, Potter, & Bressler, 
1989).  This method required subjects to give 3-point ratings of each of three scales, time 
pressure, mental effort extended, and stress levels.  These ratings in turn were scaled to produce 
workload values on a 0-100 scale.  We converted these to a 0-1 scale to conform to our 
conventions for NN model development.  Next, we discuss our approach to modeling and 
predicting mental workload, namely neural network models. 
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Neural Network Models of Workload 

We trained neural network models (NNs) to predict subjective workload measures using both 
condition and performance measures as input variables.  Essentially the models attempted to 
learn how condition and performance factors relate to differences in subjective workload 
measures. 

There are several possible approaches to developing a neural net model of mental workload.  
Because of the extensive development and frequent application of the multi-layer feed-forward 
network architecture (or multi-layered perceptron, MLP), it is a reasonable place to start.  With 
that architecture, it is possible to compare the performance of a linear system (a perceptron 
which has no hidden layers and can only represent linear solutions; see Rosenblatt, 1962) with 
the nonlinear systems that can be realized by including one or more layers of hidden units.  If 
there is no performance gain with the inclusion of hidden units, the problem has a linear solution 
(or the best solution to the problem is linear).  In such cases, the nonlinear solution with the 
hidden layer(s), tends to be unstable, and it generalizes to new cases poorly.  In our modeling 
work, we routinely compared more complex models to the linear ones.  To give the linear 
models a reasonable chance of performing well, it is important to code inputs such that the 
expected output has a monotonic relation with the input code.  For example, in coding different 
conditions, the difficulty of the conditions should be represented by the order of values in the 
variable coding the conditions so, for example, coding the tracking task conditions might use 0, 
0.33, 0.67, and 1.0 to code no tracking, and slow, medium, and fast cursor movement, 
respectively. 

In contrast to rule-based models,  NNs compute by using interconnected networks of simple 
processing units.  These simple units, called nodes, receive information from external sources 
(i.e., from input to the network or from other nodes), sum this information, and then propagate an 
activation level to all connected nodes.  The advocates of NNs frequently mention the ability of 
such systems to learn the appropriate mapping of inputs to outputs from examples and to 
successfully generalize that learning to new examples.  Perhaps the crux of neural network 
modeling is the application of appropriate learning algorithms to appropriate processing network 
topologies such that a set of connection weights is found that lead to desired performance.  One 
of the most basic learning algorithms found in NN models is the Hebbian contiguity, or 
associative rule (Hebb, 1949).  This simple learning rule states that if two simple processors are 
simultaneously active and are connected, then the relationship between them should be 
strengthened.  This type of learning rule is associated with networks that rely on external 
teachers for feedback.  In such networks, learning occurs in an iterative feedback loop composed 
of four parts (Lippmann, 1987).  First, a pattern is presented and activation is propagated through 
the layers of the network.  Second, the output activation is compared against the correct output 
(i.e., the true output information associated with a given input pattern), and an error term is 
computed.  Third, interconnections (i.e., weights) are modified using some scheme that reduces 
the error measure computed in part two.  Finally, go back to step one and repeat this process.  
This iterative learning scheme continues until all training patterns produce the correct output. 

NNs are able to generalize from previously learned responses to incomplete or novel instances of 
stimuli.  To the extent that a new stimulus is similar to a stimulus pattern that has already been 
trained into the network, a similar pattern of processing will occur across the network resulting 
in a similar response (Arbib, 1986).   
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The multi-layer perceptron (MLP) model has one or more layers of processing nodes between 
input information and the output layer.  A layer is a set of processing nodes connected to 
successive layer nodes via a matrix of weights.  That is, a weight matrix represents the 
connectivity in a layer where the row dimension of the matrix corresponds inputs for a given 
layer and the column dimension represents outputs for that layer.  The computational power of 
the multi-layer perceptron stems from the application of non-linear activation functions, as well 
as the associated family of non-linear learning algorithms such as the back propagation gradient 
descent (Rumelhart, Hinton, & Williams, 1986; Rumelhart, & Zipser, 1986). 

The operation of a feed-forward network operates by passing activation from the inputs for each 
layer to the outputs in the layer via the weights on the connections between the inputs and the 
outputs.  The net input to a given node is passed through a non-linear quashing function which 
keeps the activation of a unit between zero and one.  This passing of activation through the 
layers is repeated until the final outputs are computed in this way.  Learning in such networks is 
a matter of finding a set of weights which will compute a desired input-output mapping.  If the 
mapping is linear, a single layer is sufficient.  With nonlinear mappings, “hidden nodes” are 
required resulting in at least two layers in the system. 

Learning with hidden layers requires using back propagation to modify the weights in the 
network.  Back propagation is termed a gradient-descent method in that a measure of error for 
every weight in the network is being reduced by the learning algorithm.  One way of thinking of 
this is that there is some n-dimensional space where the weights that define a network at a given 
time reside.  The weights can be thought of as representing a surface in this space.  To the extent 
that input patterns are incorrectly classified (i.e., produce inappropriate output activation) then 
there is error associated with the weights that define the surface in the n-dimensional space.  The 
back propagation algorithm attempts to minimize this error by modifying the weight space 
(Plaut, Nowlan, & Hinton, 1986).  When a network has been trained to classify a set of stimulus 
patterns the weight space that provides the solution is said to be at a minimum in the sense that 
the error associated with the weight surface is minimized.  That is, the error found in all the 
weights has been minimized such that all training set input patterns are transformed by the 
weight layers resulting in correct classifications.  Just as with any gradient-descent method, the 
back propagation procedure is subject to becoming trapped in a “local minimum” and, 
consequently, failing to find the best solution for a problem.  With some problems, the local 
minima may be numerous causing great difficulty with the learning of the input-output mapping. 

This completes our background discussion of research and methods related to our work.  The 
remainder of the paper discusses the specifics of the work we performed. 

Research objectives.  

The long-range objective of this research was to develop a model for monitoring workload in 
complex systems.  Such a model would enable systems to use workload levels to distribute tasks 
optimally.  In the aircraft-pilot system, for example, such capabilities could provide warnings to 
the pilot of high workload levels and could also  assess ways of reducing the pilot’s workload by 
offering to assume control of some ongoing tasks.  Our goal was to determine how well a model 
can assess workload using data from performance and task situations. Our specific objectives 
were: (1) to collect performance measures and subjective judgments of workload from pursuit 
tracking and sequential reaction-time tasks under conditions which varied the number and 
complexity of tasks to be performed; and (2) to develop models for predicting subjective 
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workload judgments from performance measures and task conditions.  

Methods 

Subjects.  Eight subjects participated in one session per day over a period of 10 days. 

Apparatus.  The data were collected using a Gateway 2000 486 50mhz computer with interfaces 
for a joy stick and push buttons. 

Description of Tasks, Procedure and Materials.  Subjects participated in four tasks:  subjective 
workload assessment, a pursuit tracking task, a tone-counting task, and a sequential reaction-
time task.  The latter three tasks were performed under multiple task conditions. 

Subjective Workload Assessment Task 

SWAT, the subjective workload assessment technique (Reid, Potter, & Bressler, 1989) was used 
to measure subjective workload during the processing of multiple tasks.  This technique 
measures three components of perceived mental workload:  time-load, mental effort load, and 
psychological stress load.  Each of the three components is further described in terms of three 
levels of load.  The SWAT  involves a two stage  procedure.  The purpose of the first stage is to 
develop individual scales reflecting each subject’s internal model of workload.  The purpose of 
the second stage  is to score events in terms of subjective mental workload.  During the scale 
assessment phase subjects ordered a deck of 27 cards, where each card represented a 
combination of one of the three levels of the three factors contributing to subjective workload.  
Subjects ordered the cards from the lowest imaginable combination of workload to the highest 
imaginable combination.  Conjoint analysis was used to convert the card sorting data to a scale 
where zero represented the combination of factors with the lowest perceived mental workload 
and 100 represented the combination with the highest perceived mental workload.  This scale 
was used to assign individualized, subjective workload ratings to tasks in the event-scoring 
phase. 

During the event scoring phase, subjects were periodically asked to rate the workload associated 
with a series of trials.  Subjects were instructed to use the same three level descriptors as they 
used in the first phase of the SWAT procedure to describe each of the three factors.  The ratings 
combinations obtained in the event scoring phase were then mapped back onto the individualized 
scale values in order to assign a particular SWAT value to the event.   

The first phase of the SWAT took approximately one-hour.  The second phase occurred between 
blocks of the performance tasks and took no more than a few seconds for of the three ratings. 

Pursuit Tracking Task 

In the pursuit tracking task, the subject attempted to keep a moving target (e.g., a cross) on a 
computer screen within the boundaries of a pursuit cursor (e.g., an open circle) by controlling the 
cursor with a one-axis joystick. The target moved to the right and left according to a random 
forcing function.  The speed of the movement of the target was varied over three levels: slow, 
medium, and fast corresponding to update intervals of 400, 200, and 100 msec respectively. 
Preliminary studies showed that these intervals led to the desired variation in tracking difficulty.  
In the tracking tasks, we recorded sufficiently detailed data to allow RMS error (and other 
measures of performance) to be computed over varying time segments. 

Sequential Reaction-time (SRT) Task 
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During the SRT task, a “blot” appeared in one of four horizontal positions in the center of the 
screen.  Four vertical line segments demarcated the four spatial positions.  The blot appearing in 
one of these locations essentially increased the size of the line at on of the locations.  Subjects 
made responses by pressing one of four response keys corresponding to the spatial location of 
the blot. The blot remained on the screen until subjects made the correct response. 

Two second-order conditional sequences were taken from Reed and Johnson (1994).  Sequence 
A, a 12-item sequence was 1-2-1-3-4-2-3-1-4-3-2-4.  Sequence B was 1-2-3-4-1-3-2-1-4-2-4-3.  
The sequences were equated with respect to frequency of location (each location occurred three 
times), number of reversals (e.g. 1-2-1, one for each sequence), first-order transitions (each 
location was preceded once by the other three locations), and repetitions (no repetitions in either 
sequence).  The only difference between sequences was in second-order conditional structure.  
Structure of the sequence was manipulated so that in some blocks the sequence was random and 
in other blocks the sequence was structured.  In random blocks both sequences occurred with a .5 
probability.  In structured sequences Sequence A occurred with a probability of 0.90 and 
Sequence B occurred with a probability of 0.10.  The probabilistic sequences were implemented 
by using the last two events to select the next event.  Thus with probability 0.90, the next event 
would be the event in the probable sequence following the two just preceding events, and with 
probability 0.10, the next event would come from the improbable sequence. The discrepancy in 
RT to respond to probable vs. improbable sequence location reflected sensitivity to the structure 
of the sequence.  Each block of trials was started by randomly selecting two of the four events 
for the first two trials in the block.  There were 50 trials in each block. 

Tone-Counting Task 

In the tone-counting task, which only occurred in the context of the SRT task (e.g. subjects never 
participated in tone counting when tracking was the only task), a high- or low-pitched tone 
occurred 17 ms after the response in the SRT task.  The pitch of the tone was 800 or 1200 Hz.  
For each block of trials, the probability of a high-pitched tone was randomly set in the range of 
0.40 to 0.60.  The subject’s task was to count the number of high-pitched tones in the block of 
trials and report the number at the end of the block. 

Combining Tasks 

The open circle subjects followed in the tracking task moved in a horizontal line approximately 
1/4 inch above the horizontal bars displayed in the center of the screen for the SRT task.  In this 
way it was possible to keep information for both tasks in the subject’s field of vision.  Both the 
tracking task and the SRT task were performed alone in some blocks of trials.  The tracking task 
was performed with the SRT task and with both the SRT and tone-counting tasks.  In another 
combination, the SRT task was performed with just the tone-counting task.  In all these cases, 
the difficulty of the tracking task and of the SRT task were also manipulated.  The tracking task 
was slow, medium, or fast.  The SRT task involved structured or random sequences of stimuli. 

Subjective Workload Ratings 

After a subject completed a block of 50 trials in the SRT task and/or approximately 35 seconds 
of tracking, the program prompted subjects for three ratings of subjective workload each on a 
three point scale.  Subjects entered three numbers between 1 and 3.  The first rating was for time 
load, the second for mental effort load, and the third rating was for psychological stress load. 

Feedback 
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Feedback was displayed at the end of each block.  Feedback for the tracking task consisted of the 
distance between the target and the cursor sampled every 100 msec and averaged over 
approximately 35 seconds; feedback for the SRT task consisted of mean reaction time and 
accuracy; and feedback for the tone-counting task consisted of displaying the number of high-
pitched tones reported by the subject and the actual number of high-pitched tones.  Subjects were 
allowed to rest as long as desired between blocks. 

Procedure 

In the first session, subjects received instructions regarding the number of sessions and the tasks 
involved in each session.  Subjects were told that the purpose of the experiment was to learn 
more about the effect of practice on motor performance.  Subjects also participated in  the 22 
blocks of trials representing the various combinations of conditions.  Then subjects participated 
in constructing the SWAT rating scale.  Subjects used initial exposure to the various conditions 
as a reference in establishing their SWAT scales.  A schedule for the remaining 9 sessions was 
then  arranged.  Subjects were encouraged to participate in one session per day on a daily basis.  
Each session consisted of 22 blocks representing the various combinations of conditions.  The 
computer program prompted subjects for subjective workload ratings following each block of 
trials. 

Subjects were paid $100 each for their assistance in the project.  In addition, incentives for good 
performance were offered in the form of a $100 bonus for the individual with the best overall 
performance taking all of the performance variables into account using standardized scores.  A 
$50 bonus was paid to the individual with the second best overall performance. 

Neural Networks 

The system we used for training and testing NN models was implemented by New Mexico State 
University (NMSU) and University of New Mexico (UNM) under earlier contracts with 
AL/HRA (Benson, Schvaneveldt, & Waag, 1994; Schvaneveldt, Benson, Goldsmith, & Waag, 
1992). The model is a multi-layer perceptron (MLP) that may have one or more layers of 
processing nodes between input information and the output layer.  The linear (perceptron) case is 
also handled by the software by simply not including any hidden layers.  The model uses the 
back-propagation rule to learn the training patterns, and the trained model can be tested on new 
patterns not used in training.  The NN models were trained using the performance data, the 
condition information, and the subjective judgments of workload previously described.  

Results and Discussion 

For a general source of information about all of the variables in the study, we present Table 1 
which shows pairwise correlations of all of the variables.  This table is primarily included for 
completeness because we discuss many of the relations among the variables in the following 
sections.  Table 2 gives description of the variables shown in Table 1.  These variables were the 
basis for the analyses we report and also the basis of the neural net analyses discussed later. 

------------------------------------------------------- 
Insert Tables 1 & 2 about here 

------------------------------------------------------- 

In reporting the results of our investigations, we first discuss the performance of the tracking, 
SRT, and tone counting tasks.  Next we examine the effects of the tasks on workload.  Finally, 
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we discuss the neural network models designed to predict workload from information about 
conditions and/or task performance. 

Task Performance 

The manipulations of task difficulty both by varying the difficulty of a task itself and by adding 
additional tasks generally systematically affected task performance.  The exception was tone 
counting performance which was not affected by the difficulty of the tracking task or the 
difficulty of the SRT task.  The analyses presented here cover all of the performance data over 
days 3 through 10.  Days 1 and 2 were assumed to reflect practice and start-up variability so they 
were not included.  Tables 3 and 4 show mean performance measures for tracking error and SRT 
reaction time, respectively.  In these tables, performance is shown on a relative (0-1) scale as the 
data were used in modeling.  An “x” in the table indicates that a particular condition was not 
included or that the task in question was not performed in that condition.  In Table 3, the last 
column shows that tracking error was clearly affected by the tracking condition 
(F(2,1149)=353.92, p<.001).  It was also affected by adding the SRT task (F(1,1150)=126.02, 
p<.001).  Adding tone counting to the SRT task also significantly increased track error 
(F(1,766)=3.94, p=.047).  Thus, performance on tracking was affected by all of the task 
manipulations. 

------------------------------------------------------- 
Insert Table 3 about here 

------------------------------------------------------- 

In Table 4, the difference in reaction time between structured and random sequences is 
significant (F(1,1022)=4.21, p=.040).  The tracking task also affects reaction time in the SRT 
task both when the analysis includes the absence of the tracking task (F(3,1020)=210.21, p<.001) 
and when only variation in difficulty of the tracking task is analyzed.(F(2,765)=14.20, p<.001).  
Adding tone counting also significantly increase SRT reaction time (F(1,1022)=10.60, p<.001).  
Thus, the SRT task also showed significant influences from variations in the presence and 
difficulty of the other tasks. 

------------------------------------------------------- 
Insert Table 4 about here 

------------------------------------------------------- 

Effects of Tasks on Workload 

Now we turn our attention to the effects of the task manipulations on measures of subjective 
workload.  As we had expected, the manipulation of the number of tasks and the difficulty of 
task components generally had a significant effect on workload ratings.  Table 5 shows the 
average SWAT scale values in the various conditions of the experiment across all of the data 
from days 3 through 10.  The variation in workload with tracking conditions is statistically 
significant whether all conditions are compared (F(3,1404)=120.70, p < .001) or just comparing 
the variations in tracking difficulty without the No Tracking condition (F(2,1149)=99.47, 
p<.001).  The effect of the SRT task condition is significant when No SRT task is included 
(F(2,1405)=99.67, p<.001), but although the difference between structured and random SRT 
sequences is in the expected direction, it is not significant.  The difference in workload with and 
without tones is significant (F(1,1406)=270.11, p<.001).  Thus, the manipulation of the number 
of tasks and the difficulty of the tasks do generally affect workload levels.  An examination of 
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the means in Table 5 shows very orderly increases in workload as tasks are added and/or the 
difficulty of tasks is increased. 

------------------------------------------------------- 
Insert Table 5 about here 

------------------------------------------------------- 

Table 6 shows the analysis of workload using “redline” measures.  The redline value was 
adopted from earlier work (Reid & Colle, 1988) showing that at values of workload around 40 
on the SWAT scale (0.4 on our rescaled values), performance measures begin to show effects of 
workload.  Thus it is useful to determine the extent to which various conditions lead to workload 
levels in excess of this redline value.  In our neural network modeling, we came to focus on 
predicting whether workload exceeded redline or not because this discrete decision leads to clear 
interpretations of the outcome of modeling, viz. how accurately can we predict workload levels 
over redline?  We coded each trial block in terms of whether workload equalled or exceeded 
redline (value = 1) or not (value = 0).  In our data set, the identical redline coding results from 
using either the Group SWAT Scale or the Individual SWAT Scales.  When the 0 and 1values 
are averaged over subjects and days, the values show the proportion of trial blocks on which 
workload exceeded redline.  These means are shown in Table 6.  The statistical significance of 
these data matches that for the data in Table 5.  Variations in the tracking task leads to 
significant differences whether the comparison includes the no tracking condition 
(F(3,1404)=66.81, p < .001) or not (F(2,1149)=44.37, p<.001).  Adding the SRT task increases 
workload (F(2,1405)=55.16, p<.001), but variation in the structure of the SRT sequence does not 
significantly affect workload.  Adding tones significantly increases workload 
(F(1,1406)=158.19, p<.001).  Inspection of Table 6 shows, as with Table 5, that workload 
increases systematically as tasks are added and/or the difficulty of tasks is increased. 
 

------------------------------------------------------- 
Insert Table 6 about here 

------------------------------------------------------- 

As was required for the success of our project, we managed to produce a wide range of variation 
in workload.  The proportion of trial blocks with workload over redline increases from 1% in the 
lowest condition to 81% when all tasks at their maximum difficulty are included.  With this 
knowledge that workload was indeed manipulated in our study, we can now turn to the major 
objective of the study, developing neural network models for predicting workload levels. 

Neural Network Models 

Our basic modeling approach was to compare a linear (one layer) perceptron to multi-layer 
perceptron (MLP) models that have one or more layers of processing nodes between input nodes 
and the output nodes.  The approach to learning in this model was to use the back-propagation 
rule.  The NN model was trained using the performance data, the condition information, and the 
subjective judgments of workload previously described.   We followed three steps involved in 
defining, training, and testing such models:  (1) An appropriate architecture was selected.  The 
inputs of the models were determined by the task conditions and performance data.  The number 
of hidden nodes, however, required some experimentation with alternatives.  This is because too 
many hidden nodes leads to exact learning of the training patterns with little success at 
generalizing to new patterns.  Too few hidden nodes can lead to failure to learn.  However, it is 
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useful to determine how models with no or few hidden nodes compare to more complex models, 
therefore, we examined linear models (no hidden nodes) for comparison, and we experimented 
with variations in the number of hidden nodes to develop some idea of the complexity of the 
problem space.  (2) Next, the rate of learning and the number of training epochs was selected for 
each model.  Some common values for learning rate found in the literature which were used as a 
starting point, but we also varied the number of training epochs because models sometimes 
generalize to new cases better with less training even though the learning performance tends to 
improve monotonically with the number of training epochs.  A subset of the data patterns were 
used to train the model. More specifically, data from days 3, 5, 7, and 9 were used to train the 
model.  (3)  Finally, the models were tested for generalization by presenting new patterns of the 
same type as the training patterns but ones that were not used in training (test patterns came from 
days 4, 6, 8, and 10).  Performance of the models on new patterns reflects the extent to which 
general properties have been learned in contrast to learning the specifics of the training patterns. 

As mentioned in the previous section, our modeling efforts came to focus on models with a 
single output variable, i.e., the redline variable.  This variable takes on two discrete values 
corresponding to whether workload is below redline (40 or .4 on our modified scale) or not.  
With this output variable, our models are essentially trying to learn to predict whether workload 
is at or above redline in a given situation.  We will present models with different inputs, some 
characterizing which conditions were in effect in a particular block of trials, and some 
characterizing performance in the tasks being performed.   

Table 7 summarizes the results with several models when the training and testing data includes 
data from all subjects.  Table 8 shows the result of developing different models for different 
subjects.  In these tables, the Model Column show how many input, hidden(if any), and output 
units are in each model.  All models have only one output corresponding to the redline variable. 
Also shown are the total number of epochs the model was trained, the number of epochs 
corresponding to the best Percent Correct in Training, and the best correlation between the actual 
and model produced outputs.  For the test data, the number of epochs of training to produce the 
best percent correct for the test data, and the best correlation between the actual and the model 
produced outputs for the test data.  Recall that training data were taken from Days 3, 5, 7, and 9 
while the test data come from Days 4, 6, 8, and 10. 

Although the models vary from 66.9 to 96.0% correct for the training data, the variation is much 
smaller for the test data (60.2 to 75.7%).  In general there seems to be little advantage for adding 
hidden units to the models for the percent correct in the test data.  Hidden units often lead to 
substantial increases in performance on the training data, but only lead to 1 to 2% improvement 
for the test data.  This result suggests that linear models do as well as more complex ones with 
these data.  Of course, it was necessary to ensure that the coding of variables would potentially 
map onto a monotonic relation between the magnitude of the variable and the degree of 
workload.  This was all done on an a priori basis, however.   As the last few lines in the table 
show, models based on only 2 or three inputs from performance data do about as well as models 
with many more inputs.  About the best the models can do with the test data is to predict the 
redline variable about 75% of the time, a value which is of interest theoretically, but it is rather 
far from values needed for application of these models.  Perhaps the performance of models 
tuned to individual subject data will show more promise (see Table 8). 

For some individuals, a much more impressive level of performance can be achieved, reaching 
94.3% correct for one particular individual.  For other individuals, performance is not nearly as 
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impressive.  Still, the average performance of individually trained and tested models exceeds that 
of the group trained models.  Again, we find that not much is gained in performance on the test 
data by adding hidden units to the models.  Simple linear models appear to capture the bulk of 
information in the data. 

------------------------------------------------------- 
Insert Tables 7 & 8 about here 

------------------------------------------------------- 

Conclusions 

On the positive side, our experimental tasks did produce reasonably wide variations in workload, 
and the models show that it is possible to predict subjective workload to a significant degree 
using measures of task performance.  For some individuals, the level of prediction was 
impressive indeed, approaching 95% success in predicting when workload would exceed a 
critical redline value.  That being said, it is clear that overall, the level of prediction achieved is 
rather far from what would be required to use such models in an operational setting.  If a system 
is to be able to detect workload levels, it must be more accurate than our models for it to be of 
real value.  Clearly, more work is required to achieve acceptable levels of accuracy. 

Our work with the models showed quite clearly that separate models for different individuals 
will probably be required to reach high levels of accuracy in prediction.  Of course, it would 
simplify application greatly if a general model could be developed that would predict for 
different individuals.  It is possible, however, to develop a system that could adapt to each 
individual in a period of training which would produce a model that could be applied to 
performance following the training.  For that matter, it is not all that unreasonable to periodically 
retrain a system to take into account changes in individuals across time.  The catch, of course, is 
to have an appropriate architecture for such a model to begin with.  Where might we look to 
increase the accuracy of prediction? 

One promising direction is to turn to physiological measure to assist in predicting workload 
levels. Various physiological measures have been used in previous research on the workload of 
pilots in various stages of flight.  Heart rate is one of the most common measures used (e.g., 
Kakimoto, Nakamura, Tarui, Nagasawa, & Yagura, 1988; Ruffel-Smith, 1967; Wilson & Fisher, 
1991), but respiration, electroencephalography (EEG), and eye blinks have also been 
investigated (e.g., Harding, 1987; Sterman, Schummer, Dushenko, & Smith, 1987).  It would be 
of value to assess the utility of several physiological measures including heart rate, respiration 
rate, blink rate, and EEG recorded at several sites.  Models could then be developed that made 
use of various combinations of performance and physiological measures in an attempt to find a 
combination of variables that would predict workload levels with the necessary level of 
accuracy. 
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Table 1 

Pairwise Correlations for the Variables in the Study 
 track seq tone trker trkvr seqrt seqer tner numov anyov tmwl efwl stwl wlsm wlg wli rl

TRACK 1 -.16 -.08 .76 .37 -.01 .07 .01 .39 .35 .40 .35 .36 .47 .47 .45 .38
SEQ -.16 1 .42 .08 -.05 .85 .42 .08 .39 .26 .34 .35 .18 .36 .32 .31 .24
TONE -.08 .42 1 .08 .00 .48 .22 .23 .33 .23 .38 .43 .26 .45 .42 .41 .32
TRKER .76 .08 .08 1 .44 .27 .29 .04 .60 .44 .54 .34 .42 .55 .55 .52 .51
TRKVR .37 -.05 .00 .44 1 .14 .12 .04 .56 .44 .24 .26 .16 .28 .26 .33 .29
SEQRT -.01 .85 .48 .27 .14 1 .49 .13 .62 .41 .45 .44 .27 .49 .44 .45 .38
SEQER .07 .42 .22 .29 .12 .49 1 .09 .60 .37 .31 .24 .28 .35 .35 .36 .32
TNER .01 .08 .23 .04 .04 .13 .09 1 .22 .11 .08 .11 .05 .10 .09 .12 .08
NUMOV .39 .39 .33 .60 .56 .62 .60 .22 1 .70 .49 .42 .42 .56 .56 .61 .55
ANYOV .35 .26 .23 .44 .44 .41 .37 .11 .70 1 .40 .40 .30 .46 .44 .46 .39
TMWL .40 .34 .38 .54 .24 .45 .31 .08 .49 .40 1 .64 .35 .85 .74 .63 .47
EFWL .35 .35 .43 .34 .26 .44 .24 .11 .42 .40 .64 1 .35 .84 .72 .68 .47
STWL .36 .18 .26 .42 .16 .27 .28 .05 .42 .30 .35 .35 1 .70 .85 .81 .78
WLSM .47 .36 .45 .55 .28 .49 .35 .10 .56 .46 .85 .84 .70 1 .97 .89 .71
WLG .47 .32 .42 .55 .26 .44 .35 .09 .56 .44 .74 .72 .85 .97 1 .92 .79
WLI .45 .31 .41 .52 .33 .45 .36 .12 .61 .46 .63 .68 .81 .89 .92 1 .84
RL .38 .24 .32 .51 .29 .38 .32 .08 .55 .39 .47 .47 .78 .71 .79 .84 1 
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Table 2 

Description of the Variables in Table 1 

Variable  Description 

TRACK  Presence and level of Tracking Task 

SEQ  Presence and level of SRT Task 

TONE  Presence of Tone Counting Task 

TRKER  Tracking Error 

TRKVR  Tracking Variance 

SEQRT  SRT Reaction Time 

SEQER  SRT Error Rate 

TNER  Tone Counting Error 

NUMOV  Number of Performance Measures over Mean 

ANYOV  Are any Performance Measures over Mean? 

TMWL  Time Workload Rating 

EFWL  Effort Workload Rating 

STWL  Stress Workload Rating 

WLSM  Sum of tmwl, efwl, stwl 

WLG  Group Scaled Workload 

WLI  Individual Scaled Workload 

RL  Redline: Does Group Workload exceed 40? 
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Table 3 

Tracking Error as a Function of Tracking, SRT, and Tone-Counting Conditions 

 No  
SRT Task 

Structured  
SRT Task 

Random  
SRT Task 

 No Tones Tones No Tones Tones No Tones Tones Means

No Tracking x x x x x x x

Slow Tracking 0.05 x 0.09 0.10 0.09 0.10 0.09

Medium Tracking 0.09 x 0.14 0.15 0.14 0.15 0.13

Fast Tracking 0.16 x 0.21 0.22 0.22 0.24 0.21

Means 0.10 x 0.15 0.16 0.15 0.16 
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Table 4 

Reaction Time in the SRT Task as a function of Tracking, SRT, and Tone-Counting Conditions 

 No  
SRT Task 

Structured  
SRT Task 

Random  
SRT Task 

 No Tones Tones No Tones Tones No Tones Tones Means

No Tracking x x 0.27 0.29 0.28 0.30 0.29

Slow Tracking x x 0.35 0.37 0.37 0.38 0.37

Medium Tracking x x 0.37 0.38 0.38 0.39 0.38

Fast Tracking x x 0.39 0.39 0.39 0.40 0.39

Means x x 0.35 0.36 0.36 0.37 

   Note.  Reaction times are standardized so that 1200 msec = 1.0 

 



Models of Mental Workload 

 

 22 

 

Table 5 

Group SWAT Scale Values as a function of Tracking, SRT, and Tone-Counting Conditions 

 No  
SRT Task 

Structured  
SRT Task 

Random  
SRT Task 

 No Tones Tones No Tones Tones No Tones Tones Means

No Tracking x x 0.12 0.24 0.11 0.27 0.19

Slow Tracking 0.06 x 0.27 0.45 0.29 0.48 0.31

Medium Tracking 0.16 x 0.35 0.54 0.38 0.56 0.40

Fast Tracking 0.36 x 0.49 0.65 0.54 0.67 0.54

Means 0.19 x 0.31 0.47 0.33 0.50 

    Note.  The SWAT values from 0 to 100 are converted to a 0 to 1 scale. 
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Table 6 

Proportion of Workload Levels exceeding “Redline” 
 as a function of Tracking, SRT, and Tone-Counting Conditions 

 No  
SRT Task 

Structured  
SRT Task 

Random  
SRT Task 

 No Tones Tones No Tones Tones No Tones Tones Means

No Tracking x x 0.05 0.23 0.02 0.27 0.14

Slow Tracking 0.01 x 0.22 0.64 0.31 0.67 0.37

Medium Tracking 0.12 x 0.45 0.73 0.48 0.77 0.51

Fast Tracking 0.45 x 0.64 0.77 0.70 0.81 0.67

Means 0.19 x 0.34 0.59 0.38 0.63 
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Table 7 

Neural Network Models Predicting Redline for All Subjects Combined 
   Training Test 
  

Model 
 

Inputs 
 

Epochs
Best 

Epochs
Percent 
Correct

Best 
Corr 

Best 
Epochs 

Percent 
Correct 

Best 
Corr 

 8-1 all 20,000 359 83.2 .689 17 74.0 .528 
 10-1 all 1,820 190 82.8 .696 11 74.2 .541 
 8-32-1 all 20,000 20,000 90.1 .812 11,140 75.7 .552 
 10-40-1 all 110,706 85,341 96.0 .919 46 75.0 .545 
 3-1 conditions 5,025 4 80.1 .648 4 71.9 .497 
 3-12-1 conditions 3,020 1,890 81.8 .672 23 72.7 .508 
 1-1 tracking task 771 2 74.1 .498 1 66.5 .314 
 1-1 srt task 99 2 69.0 .382 1 60.2 .266 
 1-1 tone task 105 2 70.7 .436 1 67.9 .321 
 5-1 performance 3,375 708 80.1 .643 11 73.6 .481 
 5-20-1 performance 10,357 1,464 82.0 .683 1,327 75.4 .549 
 1-1 track error 548 110 77.1 .578 25 70.6 .427 
 1-1 track variance 163 1 71.2 .429 1 63.6 .255 
 1-1 srt rt 98 3 70.5 .475 98 71.6 .373 
 1-1 srt error 2,893 796 71.0 .415 95 64.5 .284 
 1-1 tone error 4,302 2,458 66.9 .369 163 66.2 .258 
 1-1 numover 1,435 2 78.1 .602 1,000 73.0 .491 
 1-1 anyover 106 106 74.7 .495 1 60.2 .366 
 2-1 trk err + srt rt 1,705 21 80.3 .632 1,000 72.2 .499 
 2-8-1 trk err + srt rt 14,020 14 80.5 .648 11,000 72.9 .510 
 3-1 trk err + srt rt 

+ numover 
723 29 79.6 .649 3 73.9 .521 

 3-12-1 trk err + srt rt 
+ numover 

20,000 77 81.3 .675 1,000 75.6 .540 
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Table 8 

Neural Network Models Predicting Redline for Individual Subjects Separately 
   Training Test 
 

S 
 

Model 
 

Inputs 
 

Epochs
Best 

Epochs
Percent 
Correct

Best 
Corr 

Best 
Epochs 

Percent 
Correct 

Best 
Corr 

1 1-1 numover 500 25 80.7 .399 25 73.9 .383 
2 1-1 numover 500 36 86.4 .674 4 90.1 .659 
3 1-1 numover 500 2 90.1 .241 50 94.3 .384 
4 1-1 numover 500 4 76.1 .624 2 73.9 .616 
5 1-1 numover 500 6 78.4 .590 5 81.8 .669 
6 1-1 numover 500 6 81.8 .667 5 79.6 .668 
7 1-1 numover 500 7 81.8 .642 3 75.0 .502 
8 1-1 numover 500 39 79.6 .595 1 70.4 .452 
 Average 81.9 .554  79.9 .542 
        
1 10-1 all 2,000 203 80.7 .456 400 72.7 .335 
2 10-1 all 2,000 1,285 96.6 .874 800 92.0 .738 
3 10-1 all 2,000 2 90.9 .396 1 94.3 .271 
4 10-1 all 2,000 1,004 88.6 .839 400 83.0 .677 
5 10-1 all 2,000 219 85.2 .773 108 85.2 .763 
6 10-1 all 2,000 15 89.8 .822 400 84.1 .724 
7 10-1 all 2,000 1,775 92.1 .834 25 85.2 .759 
8 10-1 all 2,000 15 85.2 .719 6 72.7 .510 
 Average 88.6 .714  83.7 .597 
        

1 10-10-1 all 5,000 2,674 94.3 .914 168 73.9 .405 
2 10-10-1 all 5,000 3,134 100.0 .990 5 92.1 .720 
3 10-10-1 all 5,000 4,129 96.6 .765 1 94.3 .292 
4 10-10-1 all 5,000 1,745 92.1 .906 1,964 78.4 .576 
5 10-10-1 all 5,000 4,687 93.2 .915 2,299 86.4 .749 
6 10-10-1 all 5,000 3,316 96.6 .939 89 83.0 .723 
7 10-10-1 all 5,000 1,789 94.3 .912 2 89.8 .769 
8 10-10-1 all 5,000 1,394 97.7 .931 1,500 73.9 .473 
 Average 95.6 .909  84.0 .588 
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Figure 1.  The stimulus display with the blot on the third position from the left. 

 


