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I. Introduction

Proximity data are commonplace in the social and behavioral sciences. 

Judgments of similarity, relatedness, or association between entities are 

frequently used in the study of human cognition. 1 Investigations of social 

processes often make use of proximity measures such as liking between 

pairs of individuals and frequency of communication between individuals 

or groups of individuals. Proximities can also be obtained from measures 

of co-occurrence, sequential dependency, correlation, and distance. 

This ubiquity of proximity data has encouraged the development of 

many methods for characterizing the underlying structure in sets of prox

imities. Some methods, such as multidimensional scaling (Shepard, 

1962a, 1962b; Kruskal, 1964, 1977), assume a continuous, low-dimen

sional space as the underlying model. Spatial models generally represent 

1Similarity, relatedness, and psychological distance are closely related concepts indicat
ing the degree to which things belong together psychologically. Proximity is a general term 

that represents these concepts as well as other measurements, both subjective and objec

tive, of the relationship between pairs of entities. In this chapter, we use the term proximity 

to refer to such measurements. In the techniques we propose, the measurements have the 

direction of distances (or distance estimates) so that small values represent similarity, relat

edness, or nearness, and large values represent dissimilarity, lack of relatedness, or dis

tance. 
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entities as points in space and relations between entities are captured in 
distances between entities in that space. The dimensions of the space of
ten reflect important dimensions of variation in the proximity data. Other 
methods derive from discrete models that yield hierarchical clusters 

(Johnson, 1967), overlapping dusters (Shepard & Arabie, 1979), tree 
structures (Butler & Corter, I 986; Cunningham, 1978; Sattath & Tversky, 
1977), or networks (Hutchinson, 1981; Feger & Bien, 1982; Schvaneveldt 
& Durso, 1981; Schvaneveldt, Dearholt, & Durso, 1988). Discrete models 
generally represent entities as nodes in networks and relations between 
entities as links connecting nodes. The patterns of connections among 
nodes in networks often reflect clustering and other structures in the 
proximity data. Whereas spatial models have mathematical foundations 
in geometry, discrete models often derive from graph theory. 

The foundations of multidimensional scaling (MDS) have been ex
plored in some depth (Beals, Krantz, & Tversky, 1968), leading to formal 
specifications of the assumptions underlying MDS as a model of the psy
chological representation of stimuli. Considerable work has gone into the 
development of discrete models, and the connections between discrete 
models and graph theory are becoming more apparent (Shepard & Ara
bie, 1979; Schvaneveldt et al., 1988). As representations of mental struc
ture, discrete models offer alternatives to spatial models that are often 
more closely identified with psychological theory, particularly network
based models. 

In this chapter, we discuss network representations and their relation
ship to proximity data. Pathfinder, a definition of a class of networks de
rived from proximity data, is tied to some fundamental concepts in graph 
theory, and illustrations of the application of Pathfinder networks to a 
variety of data are presented. Since much of the discussion revolves 
around graphs and networks, we briefly review some basic concepts. 

A. GRAPH THEORY

Graph theory is the mathematical study of structures cons1stmg of 
nodes with links connecting some pairs of nodes (Carre, 1979; Christof
ides, 1975; Harary, 1969). Terminology in graph theory varies somewhat 
from one source to another. Our terms represent a distillation of various 
sources with adaptations to our purposes. 

A graph G consists of nodes and links. The nodes are a finite set, such 
as {l , 2, ... , n}, and the links are a subset of the set of all node pairs. 
For example, the node pairs (I, 2), (4, 3), (7, I) designate links between 
the first and the second node in each pair. The nodes connected by a link 
are known as endpoints of the link. A link is incident to a node if the node 
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is an endpoint of the link. The degree of a node is the number of links 
incident to the node. A graph can be displayed by a diagram in which 

nodes are shown as points and links are indicated by lines or arrows con
necting appropriate pairs of points. 

A graph may be either directed or undirected. A directed graph (some
times referred to as a digraph) has directed links (or arcs). The order of 
the nodes in a pair designating an arc specifies a direction for the arc, 
which is regarded as going from the first ( or initial) node to the second 
(or terminal) node. In diagrams of directed graphs, arcs are represented 

as arrows extending from the initial node to the terminal node. An undi

rected graph has undirected links (or edges). The nodes in a pair designat
ing an edge are regarded as unordered. In diagrams of undirected graphs, 
edges are represented as lines connecting appropriate nodes. In our us

age, the terms graph and link refer to the general case, which includes 
both directed and undirected graphs. 

A walk is an alternating sequence of nodes and links such that each 
link in the sequence connects the nodes that precede and follow it in the 
sequence. For example, given nodes {1, 2, 3, 4}, the sequence, 3, (3,2), 
2, (2, 1), 1, (1,4), 4, specifies a walk, whereas the sequence, 3, (3,2), 2, 
(1,4), 4, (2, I), I does not. A walk can be specified by the sequence of 
nodes that it visits, in which case the existence of the appropriate links 
is assumed. For the exemplary walk specified above, the node sequence 
is 3,2, I ,4. The length of a walk corresponds to the number of links in the 
walk. A walk is a path if all the nodes in the walk are distinct. A link is 
a path of length I. A cycle is a walk with all nodes distinct except the first 
and last nodes, which are identical. 

A connected graph contains a path between any two nodes. A tree is 

a connected graph with no cycles. An undirected tree with n nodes has 
exactly n - I edges, and it contains exactly one path between any two 
nodes. A complete graph has all possible links. 

Links may have positive real numbers (weights, distances, or costs) 
associated with them in which case the graph is known as a network. The 
graph corresponding to a network is obtained by deleting the weights. 
The graph represents the structure of a network, and the weights associ
ated with links in a network provide quantitative information to accom
pany that structure. The weight of link (ij) is designated by W

u
. A graph 

may be regarded as a network with all link weights equal to one (I). In a 

network, the weight of a path is the sum of the weights associated with 
the links in the path. A geodesic is a minimum weight path connecting 
two nodes. The distance between two nodes is the weight of a geodesic 
connecting the nodes. The minimal spanning tree (Kruskal, 1956) of an 
undirected network consists of a subset of the edges in the network such 
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that the subgraph is a tree and the sum of the link weights is minimal over 
the set of all possible trees. 

Various characteristics of graphs are conveniently represented by ma
trices. A graph G can be represented by the adjacency matrix A, the n x 
n matrix with au = 1 if G contains the link (ij) and au = 0 otherwise. A 
network is similarly represented by the network adjacency matrix A with 
a;; = 0, au = Wu, i =le j if the network contains the link (i, j), otherwise au 
= oo. The reachability matrix of G is the n x n matrix in which the i}th 

entry is 1 if there is a path in G from node i to node j and is O otherwise. 
The distance matrix D of a network is the n x n matrix in which d

u 
is the 

(minimum) distance from node i to node} in a network. If there is no path 
from node i to node j (a disconnected network), du = oo. The distance 
matrix of a graph contains the (minimum) number of links between pairs 
of nodes. The distance matrix is not necessarily symmetric, but it will be 
symmetric if the network consists of undirected links. A link in a network 
is redundant if the network obtained by removing the link yields the same 
distance matrix as the original network. 

B. NETWORKS AS MODELS

As psychological models, networks entail the assumption that concepts 
and their relations can be represented by a structure consisting of nodes 
(concepts) and links (relations). Strengths of relations are reflected by 
link weights, and the intensional meaning of a concept is determined by 
its connections to other concepts. As discussed in the later section on 
applications, networks can be used to model heterogeneous sets of rela
tions on concepts, in which case we assume that the links have a semantic 
interpretation such as those found in semantic networks (e.g., Quillian, 
1969; Collins & Loftus, 1975; Meyer & Schvaneveldt, 1976). The use of 
network models without interpretation of the links entails the assumption 
that the structure in the network corresponds to psychologically meaning
ful relations. Alternatively, we might assume that the network identifies 
salient associations between concepts. 

We conjecture that explicit network representations offer the potential 
of identifying structural aspects of conceptual representation that relate 
to memory organization, category structure, and other knowledge-based 
phenomena. We have begun to explore this conjecture and review some 
of our work in this area in the applications section. 

Less restrictive assumptions are required for using networks as a de
scriptive tool for analyzing proximity data. Networks offer one way 
among many for extracting and representing structure in proximities. The 
primary requirement for description is that network representations re
veal patterns in data that lead to fruitful interpretations. 
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Network models have been used on sociometric data f9r some time 
(Harary, Norman, & Cartwright, 1965; Knoke & Kuklinski, 1982). These 
models characterize relationships among social actors in such social rela
tionships as authority, liking, and kinship. Hage and Harary (1983) give 
graph-theoretic analyses of several social relations of interest to anthro
pology. Although these applications of graph theory have not been partic
ularly concerned with proximity data, they have used various kinds of 
data to determine network structures. The structural analyses available 
from sociometric network models may prove to be of use in the study of 
the structure of human knowledge in particular domains. The Pathfinder 
method of defining networks corresponding to proximity data may also 
be of use in applications of networks to the analysis of sociometric data. 

C. NETWORK REPRESENTATIONS

In applications of networks, the nodes usually represent entities, and 
the links represent pairwise relations between the entities. Because a set 
of nodes can be connected by links in many possible ways, a wide variety 
of structures can be represented by graphs. 

Trees are the basis of such psychometric methods as hierarchical clus
ter analysis (Johnson, 1967), weighted free trees (Cunningham, 1978), and 
additive similarity trees (Sattath & Tversky, 1977). All of these methods 
require estimates of pairwise proximities and yield some form of tree 
structure corresponding to the data. 

Hierarchical cluster analysis provides a set of nested (hierarchical) 
groupings of the entities intended to correspond to meaningful categories. 
Different hierarchical clustering methods use different definitions of the 
proximity between a category (once formed) and the other entities and 
categories. The single link method uses the minimum of the proximities 
between the entities in a category and the entities in other categories. The 
complete link method uses the maximum proximity. Another variation 
uses the average proximity between entities in different categories. The 
value of hierarchical cluster analysis lies in its potential for revealing the 
underlying categorical structure for a set of entities. One problem often 
encountered in uses of cluster analysis stems from the necessity for clus
ters to be nested, which means that an entity can only belong to certain 
clusters. 

Additive clustering (Shepard & Arabie, 1979) is a method for producing 
overlapping clusters so that an entity may belong to more than one clus
ter. The clusters are not necessarily nested, so that nonhierarchical struc
tures can be revealed. Such a representation violates the constraints on 
a tree structure and thus corresponds to a general graph. The theory un
derlying additive clustering assumes that the entities have associated sets 
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of features, and the clusters correspond to shared features among the en
tities. The value in the method lies in its ability to suggest these underly
ing features. 

Networks have also played an important role in theoretical work on 
memory structure and knowledge representation (e.g., Anderson, 1983; 
CoJlins & Loftus, 1975; Meyer & Schvaneveldt, 1976; Quillian, 1969). In 
practice, the actual networks employed have been based largely on logi
cal analysis or the intuitions of theorists. There are some notable excep
tions, however. Fillenbaum and Rapoport (1971) asked people to con
struct networks by indicating which pairs of items should be connected. 
This method assumes that people have introspective access to the infor
mation required to characterize the network structure. This is a rather 
strong assumption, and more indirect methods for identifying networks 
would be desirable. 

Friendly ( l 977, 1979) produced networks representing associative 
memory structures by using a threshold on the proximities between items 
(nodes) in free recall to determine which nodes to connect. Those pairs 
of items that were "closer" than the threshold were connected in the 
resulting network. Friendly's method does not require people to have ex
plicit knowledge of network structures, but the use of a threshold can be 
problematic in that it does not take the relative relations between nodes 
into account. In contrast, Pathfinder networks, as we shall show, deter
mine link membership by the relations between the possible paths con
necting nodes. 

Hutchinson (1981) proposed NETSCAL, an algorithm for constructing 
networks from proximity data. NETSCAL attempts to identify the links 
that are ordinally necessary given the set of proximities. Also in I 98 I, 
we (Schvaneveldt & Durso, 1981) reported some exploratory work on 
Pathfinder networks. As it turns out, Pathfinder defines a family of net
works for a given set of proximity data. One of the networks in this family 
is identical to the one generated by NETSCAL. 

Feger and his colleagues (Droge & Feger, 1983; Feger & Bien, 1982) 
have proposed another method known as Ordinal Network Scaling 
(ONS), which represents rank orders of proximities by a network. All of 
these techniques hold the promise of providing a firmer theoretical and 
empirical foundation for network representations. 

II. Pathfinder Networks

In an earlier paper (Schvaneveldt et al., 1988), we presented a formal 
account of the graph-theoretic foundations of Pathfinder networks (PF
NETs). Here we summarize these results along with a discussion of some 
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of the properties of PFNETs. It is helpful to conceptualize proximity data 
as a complete network with the weight on each link equal to the proximity 
between the entities connected by link. 2 Call this network the DAT A
NET. The DAT ANET is a direct representation of the proximities, but 
because of the density of links in the network, it is not very informative. 
An example of a DAT ANET is shown in Fig. IA. The essential idea un
derlying Pathfinder networks is that a link in a DAT ANET is a link (with 
the same weight) in a PFNET if and only if the link is a minimum weight 
path in the DAT ANET. Equivalently, we can say that the PFNET has 
the same distance matrix as the DAT ANET, but the PFNET has the mini
mum number of links needed to yield that distance matrix. 

A variety of different PFNETs can be derived from a given set of prox
imity data. A particular PFNET is determined by the values of two pa
rameters, rand q. These two parameters represent generalizations of the 
usual definition of distances in networks. The r parameter determines 
how the weight of a path is computed from the weights on links in the 
path. The q parameter limits the number of links allowed in paths. 

A. THE r PARAMETER 

U suaHy, in graph theory, the distance between nodes i andj is the mini
mum weight of all possible paths from i to j, i =/:: j where the weight of a 
path is the sum of the weights of the links in the path. When link weights 
are obtained from empirical data, it may not be justifiable to compute 
path weight in this way because that computation assumes ratio scale 
measurement (Stevens, 1951). For computing distances in DATANETs, 
we need a distance function that will permit computations of distances 
in networks with different assumptions about the level of measurement 
associated with the proximities. From the perspective of deriving net
works from proximities, such a distance function should preserve ordinal 
relationships between link weights and path weights for all permissible 
transformations of the proximities with different assumptions about the 
level of measurement associated with the proximities. Then, ordinal com
parisons of path weights and link weights could be used to determine link 
membership in PFNETs. 

A distance function with the required qualities can be defined by adapt
ing the Minkowski distance measure to computing distances over paths 

�he proximity estimates will define a complete network when the set of proximities is 

complete. Missing data can be handled by using infinity for missing values. Pairs of entities 

with infinite proximities will never be linked in any PFNET. This fact can also be used to 
prevent the linking of any two nodes simply by using infinite proximities for the appropriate 

pairs. PFNETs are not necessarily connected when some of the proximities are infinite. 
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A Proximity Data (Adjacency Matrix) 

A B C D E 
A O 1 3 2 3 
B 1 0 1 4 6 

A= C 3 1 O 5 5 
D 2 4 5 O 4 
E 3 6 5 4 0 

B Distance Matrix, r = oo, q = 4 

A B C D E 
A O 1 1 2 3 
B 1 O 1 2 3 

0"'·4 = C 1 1 O 2 3
D 2 2 2 0 3 
E 3 3 3 3 O 

C Distance Matrix, r = 1, q = 4 

01,4 =

A B C D E 
A O 1 2 2 3 
B 1 0 1 3 4 
C21045 
D 2 3 4 0 4 
E 3 4 5 4 0 

DATANET 

PFNET(r = 00, q = 4) 

PFNET(r = 1, q = 4) 

Fig. 1. Sample data and some networks derived by Pathfinder. A, A proximity matrix 
with (symmetrical) proximity estimates from the entity in the row to the entity in the column 
and the corresponding complete network. B, The r distance matrix using r = 00 and q = 4 
and the PFNET(r = oo, q = 4) for the data in Fig. IA (also the minimal spanning tree for 
the complete network in Fig. IA). C, The r distance matrix using r = I and q = 4 and the 
PFNET(r = I, q = 4) for the data in Fig. IA. 

in networks. It can easily be shown that the Minkowski r distance satis

fies the requirements of a path algebra for networks as defined by Carre 

(1979). The r distance function replaces the normal sum with the r dis

tance so that x + y is replaced by (x,. + y,.)11
\ x � 0, y � 0, r � I. Given 

a path P consisting of k links with weights w1, w2, • • • , wk, the weight of 

path P, w(P) becomes: 
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w(P) = [t W; r where r � 1, w, � 0 

Note that with r = 1, the function corresponds to simple addition (the 
usual definition of distances in networks). With r = 00, the function is the
maximum function. In fact, 

lim [w; + wS] 11r = maximum (wi, w) 
r � oo 

Thus with r = 00, computing network distances with the Minkowski r
distance only requires maximum (as above) and minimum (for identifying 
geodesics or minimum weight paths) operations, which are order-preserv
ing and, therefore, appropriate for ordinal scale measurement. In particu
lar, the ordinal relationships of path weights will be preserved for any 
nondecreasing transformation of the link weights (proximities). 

Another attractive property of the Minkowski r distance is that a single 
weight can be associated with a path regardless of segmentation. Given 
a set of path segments, S, which are mutually exclusive and exhaustive 
segments of path P (i.e., Sis any decomposition of path Pinto subpaths.): [ J I� 

w(P) = �s w(s)' 

The use of the r parameter to compute path weights requires the as
sumption that the links in a path represent independent contributions to 
the total weight of the path. Increasing the value of r increases the relative 
contribution of the larger weights in a path. Following a suggestion by 
Cross (1965, cited in Coombs, Dawes, & Tversky, 1970), r may be inter
preted as a parameter of component weight. With r = l, all components 
(links in a path) have equal weight in determining the weight of a path. 
As r increases, the components with greater magnitude receive greater 
weight until, in the limit, only the largest component (link) determines the 
weight of a path. The psychological interpretation of larger values of r

is that the perceived dissimilarity between entities is determined by the 
dissimilarity of the most dissimilar relations connecting the entities. 

In summary, the r parameter for PFNETs is the value of r in the Min
kowski r distance computation for the weight of a path as a function of 
the weights of links in the path. Variation of the r parameter can lead to 
different PFNETs, to which we return shortly. 
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B. THE q PARAMETER 

The distance matrix of a network is usually determined by finding the 

minimum weight paths regardless of the number of links in those paths. 

The q parameter is another generalization of this definition of network 
distance. This parameter places an upper limit on the number of links 

in paths used to determine the minimum distance between nodes in the 

DAT ANET. There are two reasons for using the q parameter, one psy

chological and the other representational. From a psychological perspec

tive, there may be some limit on the number of links that could meaning

fully connect nodes in a particular domain. This amounts to a limit in the 

chain of relations that can be constructed relating any two concepts in 

the domain. This limit can be incorporated into the network generation 

procedure with the q parameter. The representational motivation for the 

q parameter is that it provides a method for systematically controlling the 

density of links in PFNETs. Users of PFNETs may have various reasons 

for preferring networks of varying density. We examine this property in 

a following section. Thus, the q parameter further extends the family of 

PFNETs defined by Pathfinder. With n entities, possible values of q range 

over the integers from 1 to n - 1. With q = 1, the PFNET is the same 

as the DAT ANET, with q = n - 1, there is essentially no limit on the 

length (number of links) of paths because the longest possible path has 

fl - 1 links.

C. DEFINITION OF PATHFINDER NETWORKS

With the two parameters rand q, a particular PFNET can be identified 

as PFNET(r,q). We can now state the definition of Pathfinder networks 

precisely. Given a DAT ANET (proximities) with adjacency matrix A =

[a
ij
] and a distance matrix Dr.q = [ d

ij
] computed with parameters rand q:

A link (i,j) in the DAT ANET is a link in the PFNET(r,q) if and only if 

and 

Because different values of rand q result in different weights of paths, 

Pathfinder can produce several different PFNETs. We now turn to an 

examination of some of the PFNETs and their relations to one another. 

D. SOME PROPERTIES OF PATHFINDER NETWORKS

The minimal PFNET is PFNET(r = 00, q = fl - 1). This PFNET has 

the fewest links of any PFNET for a particular set of data. With symmet-
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rical proximity data (yielding undirected PFNETs), the edges in the mini
mal PFNET are the edges in the union of the edges in all minimal span
ning trees (Kruskal, 1956; Dearholt, Schvaneveldt, & Durso, 1985) of 
the DATANET. The minimal PFNET wiB be the unique minimal span
ning tree when there is such a unique tree. Certain patterns of ties in the 
proximity data may result in there being more than one tree, in 
which case the minimal PFNET wiH include aH edges that are in any 
minimal spanning tree. Figure 1B shows the minimal PFNET for the 
proximity data in Fig. IA. This PFNET is a tree (no cycles), and it is 
the minimal spanning tree for the complete network shown in Fig. IA. 
There is also a close connection between minimal spanning trees and the 
single-link hierarchical clustering analysis (Johnson, 1967). The sin
gle-link clusters can be directly derived from the minimal PFNET us
ing the link weights. However, it is not possible to recover the PFNET 

from the clustering solution because the details about which nodes are 
directly linked are not fully represented in the hierarchical clustering 
solution. 

Using different r values to compute path weight will usually produce 
different PFNETs. For example, PFNET(r = I, q = n - 1) is the result 

of using the usual sum of the link weights in a path to define the path 
weight function. Figure IC shows this PFNET for the proximity data in 
Fig. la. This PFNET has two additional links over the minimal PFNET, 
and the additional links necessarily introduce cycles. 

The NETSCAL (Hutchinson, 1981) network generation method yields 
the same network as the PFNET(r = 00, q = 2). These PFNET parame

ters mean that only paths consisting of one or two links are examined in 
the DAT ANET when determining the minimum weight paths and, conse

quently, which links are to be included in the resulting network. 
Decreasing either the r parameter or the q parameter leads to mono

tonic decreases in path weights and network distances. Because link 
membership in PFNETs is determined by the ordinal relationship of link 
weights and distances, decreasing either parameter can increase the num
ber of links in a PFNET. 

A network G' is included in in a network G if G and G' have the same 
nodes and the links in G' are a subset of the links in G. We also say that 
network G includes network G'. PFNET (r 1 , q) is included in PFNET(r

2
, 

q) if and only if r 1 �,2• Similarly, PFNET(r, q 1 ) is included in PFNET(r,

Q2
) if and only if q 1 �q2. The inclusion relationship means that the links

in less dense networks are a subset of the links in more dense ones when
the networks differ only in the value of one of the parameters. The links
in PFNET(r = 

00, q = n - I) are found in all PFNETs.
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E. LEVELS OF MEASUREMENT 

Although variation in the r parameter has the value of allowing control 
over the number of links in the PFNET, assumptions about the proximity 

estimates should influence the choice of values for r. In particular, the 
measurement scale underlying the proximity estimates places constraints 

on values of r because different PFNET structures can result from apply

ing Pathfinder to transformed data. It would be desirable to select values 
of r so that the same links would be present in the PFNETs derived from 

all permissible transformations of a given set of proximities. 
With measurement on a ratio scale (Stevens, 1951), the only allowable 

transformations that preserve the information in the scale values involve 
multiplication by a positive constant (i.e., a change of unit). Pathfinder 

networks will have the same structure (i.e., have exactly the same links) 
under multiplication of the proximity estimates by a positive constant for 

all values of r. Thus, with ratio-level measurement, any value of r can be 
used, and the selection of r can be determined by the desired number of 

links in the PFNET or other criteria. 

With psychological measurement, we are often only willing to assume 
that scale values represent ordinal information, and, as a result, the 

''true'' scale values may be any nondecreasing function of the actual val
ues in the data. With such ordinal level measurement (Stevens, 1951), 
Pathfinder will provide a unique PFNET structure only for r = 00• That 
is, the same links will be present in the PFNET(00, q) derived from any 

nondecreasing transformation of a particular set of proximities. Thus, the 
PFNET (oo, q) is a unique structure for levels of measurement ranging 
from ordinal through interval to ratio. It is the only unique structure with 

ordinal measurement. 

It should be noted that transformations on proximities involving addi

tive constants can lead to dramatic changes in the structure of PFNETs 

except for r = oo. 3 Consequently, when using other values of r, it is partic

ularly important for the proximity estimates to be measured on a scale 

with a "true" zero. 

F. DISTANCES IN PATHFINDER NETWORKS 

Once a PFNET has been obtained, it is often of interest to derive mea

sures of distance between nodes in the network. For example, these dis-

'An additive constant has this effect because it is included in the weight on each link in 
a path. When these weights are summed, the constant is included as many times as there 
are links in a path. Because paths have varying numbers of links, the constant has a variable 
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tances can be used to predict pe1formance on tasks involving the con
cepts corresponding to the nodes or to determine the fit between the 
network distances and the proximities. However, the scale of measure

ment underlying link weights places constraints on computing distances 
in PFNETs just as it does for computing distances in DAT ANETs. With 
ratio scale measurement, there are several options for determining dis

tances in PFNETs including using the usual sum of the link weights. With 

ordinal scale measurement, the options are more limited. Here we focus 

on the more difficult ordinal measurement case. Methods of computing 
distance when the proximities are measured on an ordinal scale should 

yield invariant measures of distances with any monotonic transformation 
of the proximities. As discussed above, only PFNETs computed with r

= oo are appropriate with ordinal data. 
One method we have found useful involves concentrating on the struc

ture of the PFNET by treating the network as a graph. This approach 
requires ignoring link weights, or, equivalently, giving each link a weight 

of one (1). With this method, the distance between two nodes is the (mini

mum) number of links connecting the nodes. Importantly, these distances 
will be the same whenever the same links are present in the PFNET. 

Another approach to using only ordinal information is to rank-order the 

link weights and compute distances using ranks. These ranks would be 

preserved for any monotonic transformation of the proximity data and, 
consequently, so would distances computed with ranks. 

Once we have distances from PFNETs, we can determine the fit be
tween these distances and the original proximities by computing the cor

relation between them. If ordinal measurement is involved, rank-order 
correlations should be used. The fit between PFNET distances and the 

proximity data provides one method for selecting one of the possible PF
NETs. By simultaneously considering the fit of the PFNET to the data 
and the density (number of links) of the PFNET, it is possible to choose 

a PFNET that is optimal in the sense of maximizing fit while minimizing 
density. This is similar to the elbow criterion used in MDS to pick the 

appropriate dimensionality. In both cases, the goal is to account for a 

maximum of variability in the data with a minimum number of parame

ters. Such statistical determination of the correct solution should be only 
one criterion used by the researcher. With Pathfinder, as well as other 

methods, it is the intcrpretability of the solution that is, after all, the pri-

effect. Of course this problem does not occur when the path weight is determined by taking 

the maximum of the weights of links in the path, that is, when r = 00• 
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mary goal. In some of our own work, we have found that the network 

that best fits the proximity data is not always the one that produces the 

best results using some other criterion external to the proximity data. 

G. PATHFINDER ALGORITHMS

We have implemented various algorithms for deriving PFNETs in sev

eral computer languages running on several different computers.
4 The 

derivation of Pathfinder networks requires computing the distance matrix 

of a complete (or nearly complete) network (see Aho, Hopcroft, & Ull

man, 1974). With n nodes (or entities), the best general algorithm we have 
implemented to date has time complexity of O(n

3 log q). The best special 

case algorithm has time complexity of O(nl Although complexity at 

these levels is prohibitive for rapid computation on large networks, it is 

quite manageable for occasional derivations of networks with hundreds 

of nodes. On a few occasions, we have derived networks with over 2000 
nodes. Several potential applications of Pathfinder require analysis of 

problems of this size or smaller. Many of our studies have been con

ducted with networks consisting of 30 or fewer nodes. 

III. Applications of Pathfinder Networks

We have investigated Pathfinder network structures in a variety of do

mains. The examples presented here were selected to illustrate the results 

we have obtained using Pathfinder and to highlight some of the unique 

properties of the networks. The examples include demonstrations, confir

mations of theoretical analyses, and validation tests of predictions made 

using the network structures. 

The methods used to obtain the proximity data used in the Pathfinder 

analyses are straightforward and analogous to methods employed to ob

tain data for MOS or cluster analysis. Except in examples using data bor
rowed from the literature, each proximity matrix submitted to Pathfinder 

represented the mean judgments of a number of subjects asked to judge 

the similarity or relatedness of all pairwise combinations of stimuli using 

a scale ranging from O to 9. Stimulus presentation was randomized and 

controlled by a microcomputer, which also recorded the subjects' judg

ments. 

4Programs have been written in Pascal, C, LISP, and APL. Various versions of the pro

grams run on IBM PC, Apple Macintosh, and SUN Microsystems. Information on obtaining 

programs is available from Interlink, Inc., P.O. Box 4086 UPB, Las Cruces, NM 88003-

4086. 
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A. NATURAL CONCEPTS

AH pairwise combinations of 25 natural concepts were rated for degree 

of relatedness by 24 students in introductory psychology courses. The 
concepts and the average (multiplied by I 0) pairwise proximities are 
shown in Fig. 2. Note that the proximities are symmetric, that is, the 
proximity of concept i and concept j is the same as the proximity of j and 
i for all i and j. With symmetric data, Pathfinder produces undirected 

networks. The concepts were chosen to represent a variety of relation
ships including categories, properties, habitats, and similarities. 

There is a family of Pathfinder networks for any set of data. The partic
ular network selected from this family will depend on assumptions about 

the empirical data and on _decisions about the number of links ( q) permit
ted in paths considered in the DAT ANET in finding minimum distances. 

A. living thing F. robin
B. animal G. chicken
C. blood H. mammal
D. bird I. hair 
E. feathers J. dog

Concepts 

K. deer
L. bat
M. antlers
N. hooves
0. frog

Proximities 

P. plant
Q. leaves
R. tree

S . cottonwood
T. flower

U. rose
V. daisy

W. color
X. green

Y. red

A B C D E F G H I JK LMN O PQR S TU VWX Y 
A O 13 29 18 51 23 17 18 45 15 15 22 41 48 23 20 33 18 28 22 30 31 45 35 62 
B 13 0 26 25 44 34 23 15 33 13 11 28 31 35 28 47 65 49 58 49 64 55 53 69 63 
C 29 26 0 47 54 43 43 27 55 39 37 35 48 54 51 73 64 74 76 70 47 78 35 76 15 
D 18 25 47 0 8 12 18 36 65 35 41 22 73 72 48 48 53 26 46 50 48 54 45 65 49 
E 51 44 54 8 0 17 15 62 36 73 73 70 56 56 72 73 53 67 62 62 73 68 45 59 43 
F 23 34 43 12 17 0 27 47 67 44 42 32 65 74 48 55 55 26 37 47 49 53 39 74 27 
G 17 23 43 18 15 27 0 47 67 41 41 45 68 76 47 63 72 58 57 60 63 67 55 78 56 
H 18 15 27 36 62 47 47 0 33 20 24 24 35 35 49 54 59 54 60 60 63 63 56 72 62 
I 45 33 55 65 36 67 67 33 0 20 44 47 49 53 80 64 55 71 69 73 75 72 49 75 58 
J 15 13 39 35 73 44 41 20 20 0 35 43 66 61 42 57 68 46 57 63 64 57 51 77 62 

K 15 11 37 41 73 42 41 24 44 35 0 46 11 21 44 53 59 50 52 55 58 64 50 73 69 
L 22 28 35 22 70 32 45 24 47 43 46 0 63 69 43 64 66 43 58 62 70 66 66 75 70 

M 41 31 48 73 56 65 68 35 49 66 11 63 0 27 71 67 67 58 61 64 71 75 64 74 69 
N 48 35 54 72 56 74 76 35 53 61 21 69 27 0 73 73 66 75 74 75 74 74 64 78 73 
0 23 28 51 48 72 48 47 49 80 42 44 43 71 73 0 52 64 51 58 62 63 63 50 24 78 
P 20 47 73 48 73 55 63 54 64 57 53 64 67 73 52 0 16 13 26 9 17 18 40 11 47 

Q 33 65 64 53 53 55 72 59 55 68 59 66 67 66 64 16 0 12 27 23 32 34 38 16 44 
R 18 49 74 26 67 26 58 54 71 46 50 43 58 75 51 13 12 0 11 29 35 34 52 17 61 

S 28 58 76 46 62 37 57 60 69 57 52 58 61 74 58 26 27 11 0 32 40 39 56 45 65 
T 22 49 70 50 62 47 60 60 73 63 55 62 64 75 62 9 23 29 32 0 8 9 27 33 30 
U 30 64 47 48 73 49 63 63 75 64 58 70 71 74 63 17 32 35 40 8 0 19 23 60 14 
V 31 55 78 54 68 53 67 63 72 57 64 66 75 74 63 18 34 34 39 9 19 0 43 49 58 

W 45 53 35 45 45 39 55 56 49 51 50 66 64 64 50 40 38 52 56 27 23 43 0 IO 11 
X 35 69 76 65 59 74 78 72 75 77 73 75 74 78 24 11 16 17 45 33 60 49 10 0 32 

Y 62 63 15 49 43 27 56 62 58 62 69 70 69 73 78 47 44 61 65 30 14 58 II 32 0 

Fig. 2. A verage pairwise proximity estimates for 25 natural concepts. 
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TABLE I 

NUMBER OF LINKS IN PATHFINDER 
NETWORKS OF NATURAL CONCEPTS AS A 

FUNCTION OF r AND q

q 

r 2 3 4 24 

119 104 103 103 

I.OJ 102 89 87 87 

1.05 95 83 81 81 

I.I 86 75 70 70 

1.15 76 66 62 61 

1.2 72 65 60 59 

1.4 63 53 53 52 

1.6 56 51 51 50 

1.8 50 47 45 45 

2 47 44 42 42 

3 39 37 36 34 

4 35 31 31 29 

5 32 30 29 27 

6 32 30 28 26 

32 28 27 25 

These factors have a direct and predictable influence on the density of 
the network. Table I presents the number of links in each network as a 
function of the values of the rand q parameters.5 

The maximum density occurs when path weights are computed by sum
ming link weights and only paths of two links or less arc considered in 
finding minimum-length paths, that is, PFNET(r = I, q = 2). The mini
mum density results from using the maximum link weight in a path to 

determine the weight of a path and paths of any number of links are exam
ined, that is, PFNET(r = 00, q = 24). Table I shows a clear relationship 
between these two parameters and the resulting density of the network; 
density is weakly monotonic with rand q. In addition, the family main

tains qualitative relations among its members. Links in the less dense 
members will also be found in the more dense ones. 

'The proximity data collected for the natural concepts would only justify the use of r = 
x in deriving PFNETs. Other values of rare used only to illustrate the systematic variation 
in density with a particular set of data. For detailed analyses of these networks, we shall 
confine our discussion to PFNETs with r = 00• 



Pathfinder Networks 265 

Fig. 3. Networks derived by Pathfinder from the data shown in Fig. 2 using r = 00• The 

heavy links are from PFNET(r = oo, q = n - I). The thin links are added in the PFNET 

(r = oo, q = 2) solution. 

Figure 3 displays two networks computed with r = CYJ. The least dense 

network shows a number of interesting connections. The PFNET(r = oo, 

q = 24) for these data yielded 25 links compared to the minimum n - 1 

= 24 links (a tree). The additional link assures the presence of one cycle 

and hence the network is not a tree. The cycle is living 
thing-bat-bird-feathers-chicken-living thing. The cycle occurs because 

of the tie in the data for living thing-bat and bat-bird. Both of these links 

are included to insure that the resulting structure is unique. A minimal 

spanning tree would result from removing either of these links. 6 Several 

types of relationships appear to be represented in this network. Bird, for 

example, connects to both the concept robin and the property feathers, 

suggesting the links might be labeled isa and has, respectively. The most 

general concept, living thing, is involved in several connections: in graph

theoretic terms it has a degree of 4. The closest node pairs are bird-feath

ers and flower-rose. The longest link is living thing-frog. 
Category members that one might view as typical of a superordinate 

6Link weights are omitted from most of our figures to enhance their appearance. In this 

case, the link weights can be obtained from Fig. 2 by using the proximities for the appro

priate pairs of concepts. 
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category tend to be linked to that category directly, whereas atypical 

members tend to be connected via a path of concepts. For example, robin 

links directly to bird, whereas the path chicken-feathers-bird connects 

chicken with bird. Similarly, the typical animals (i.e., dog and deer) have 

direct links to animal while the less typical ones have multiple-link paths, 

usually through living thing. Along the same lines, the scientific category 

mammal and its members are always connected through a path and not 
directly linked. Even in networks of higher density, only bat links to 

mammal. Perhaps this link represents a connection established in school 

to prevent the inference that a bat is a bird. 

As we increase the density of the networks by decreasing q, we see that 

the links added to the network continue to suggest readily interpretable 

relations. PFNET(r = oo, q = 2) adds green-frog, green-leaves, 

red-rose, red-robin, animal-blood, and feathers-hair. 

By way of comparison, the best MDS solution was a three-dimensional 

space. Optimal dimensionality was determined by a number of factors: 

stress and R2 tended to elbow at two or three dimensions; the addition 

of a third dimension clarified the prior ones and was itself interpretable 

(Shepard, 1974); and the Isaac and Poor (1974) procedure suggested three 

dimensions. The dimensions appear to be plant-animal, entities-proper

ties, and hueless-colorful. This type of global information could not be 

extracted easily from the network solutions. However, comparison of 
MDS and Pathfinder at a more local level suggests that Pathfinder has 
more accurately captured the pairwise relations. 

For example, in attempting to satisfy all of the constraints in the prox

imities, MDS positioned the concept chicken far from the property feath

ers, but the two are linked in even the least dense network. In contrast, 
the concept chicken is close to the concept bat although they are not 

linked in even the most dense network. The network appears to agree 

better with intuition and with the mean proximities from our subjects: 

The chicken-feathers pair was very close ( 15) compared with chicken-bat 

(45). 

8. EXPERTS AND NOVICES

Several studies attest to differences in knowledge organization in ex

perts and novices (Chase & Simon, 1973; Chi, Feltovich, & Glaser, 1981; 

McKeithen, Reitman, Rueter, & Hirtle, 1981; Reitman, 1976; Schvanev
eldt et al., 1985). Can Pathfinder capture these expert-novice differences 

in conceptual structure? As a first step in answering this question, we 

obtained judgments of relatedness for all pairs of the concepts in Fig. 2 

from 12 graduate students in biology at New Mexico State University. 
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From the average judgments, we derived Pathfinder networks. These net
works can be compared with the undergraduate psychology student net
works for the same concepts. 

To compare the two groups, a PFNET was selected for each group 
using the fit (rank-order correlation of the proximities and the minimum 
number of links between nodes in a PFNET) for a number of PFNETs 
generated with r = oc. These correlations are shown in Fig. 4 as a function 
of the density (number of links) of the PFNETs. 

There arc apparent elbows in the functions. Below the elbows, in
creases in fit can be obtained with small increases in density. Above the 
elbows, much larger increases in density are required for comparable in
creases in fit. The elbows occur with the PFNET(r = oo, q = 3) for the 
students and PFNET(r = oc, q = 5) for the biologists. The selected net
works are shown in Fig. 5. 

There are several similarities and differences in the networks for the 
undergraduate psychology students and the graduate biology students. 
The undergraduate network has 28 links, and the graduate network has 

• Biologists 0 Students 

0.8 

C 
0 0 

0 0.7 

r 

r 
0 

e 
• 

• 

0.6 • 

0 

a 

t 
I 

• 
0 0.5 

n 

0.4 

24 25 26 27 28 29 30 31 32 33 34 35 36 

Density (Number of Edges) 

Fig. 4. Fit (rank-order correlation) between the student and biologist proximity data 

and distances (number of links between nodes) derived from various Pathfinder networks 

(varying values of q with r = oo) as a function of network density. 
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tree 

�rumw� 
Students' PFNET(r=oo, q=3) 

robin 

Biologists' PFNET(r=oo, q=5) 

Fig. 5. The "best fitting with minimum density" or "elbow" networks from Fig. 4 for 
students fPFNET(r = 00, q = 3)1 and biologists [PFNET(r = oo, q = 5)] for the natural kind
concepts shown in Fig. 2. 

27. The two networks share 14 links. We have found in several informal

tests that people can quite easily associate these networks with the appro

priate groups. Perhaps the most diagnostic difference can be found in the

role played by mammal in the two networks. For the undergraduates,

mammal is only connected to animal while the graduate biology students

have mammal connected to deer, dog, hair, bat, and blood. Not surpris-
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ingly, mammal is a much richer concept for the biologists. The Pathfinder 

networks help to highlight these conceptual differences between experts 

and novices. 

C. BASIC LEVEL CATEGORIES 

Rosch' s work on basic level categories represents an important contri
bution to our understanding of category structure. Rather than assuming 

that category structure follows a strictly hierarchical superordinate

subordinate structure, Rosch has postulated that there exists a psycholog
ically special level of categorization. She has supplied a wealth of empiri
cal evidence supporting this view of basic level categories. 

Rosch (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976) has ar

gued that ''the basic level of abstraction in a taxonomy is the level at 
which categories carry the most information, possess the highest cue va

lidity and are thus, the most differentiated from one another." At the 
basic level, objects share a maximum number of attributes while sharing 

a minimum number of attributes with objects in contrasting categories. 

One characteristic of basic level categories, which is apparent without 

recourse to the empirical work, is that the basic level term tends to be 

applied in identifying an object. For example, unless a request to identify 
an object implies the desire for detailed information, a person will call a 

chair a chair and not furniture or wicker chair. 

In particular, Rosch showed that the categories bird, fish, and tree ex

hibited the properties of basic level categories, whereas musical instru

ments, clothing, and fruit (among others) had the properties of superordi
nate categories. In this section we discuss the application of Pathfinder 

to these six categories and four additional ones. 

In addition, this section highlights the ability of Pathfinder to accommo

date asymmetrical proximities. Several of the criticisms of various scaling 
procedures stem from their inability to represent asymmetrical relations. 

Tversky (1977), for example, contends that such asymmetries arc not sim

ply perturbations in data but that they have meaningful psychological in
terpretations. Certainly, the logical relationships between a category and 

its members are asymmetric. Such asymmetries are also apparent in asso
ciation norms. 

We began with the Marshall and Cofer (1970) report of the Connecticut 
norms (Cohen, Bousfield, & Whitmarsh, 1957). These norms are con

trolled four-response associates to category labels from 400 individuals. 
Responses of nonzero frequency for our 10 categories were noted. We 

then searched the Marshall and Cofer ( 1970) single-response free associa
tion norms of 100 people for word associations to these responses. Any 
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response to the Connecticut norms that appeared in the Marshall and 
Cofer norms was retained. In this way we obtained n stimuli that included 
the category name and any category members that occurred as responses 
to the category name and were also used as stimuli in free association.· 
We then created n x n matrices for each category where the cell was the 
proportion of people giving a response for a stimulus subtracted from 1.0. 

The resulting matrices are c1ear1y asymmetrical. For example, thrush 

was given as a response to bird on only 3 of 1600 opportunities, whereas 
bird represented 31% of the responses to thrush. In addition, some re
sponses were never given to some stimuli, yielding infinite proximities 
for these celJs. Pathfinder handles an infinite proximity between two con
cepts by not permitting a link between the concepts. In principle then, 
Pathfinder is ab]e to construct disconnected networks. We discovered in 
our attempts to app]y ordinal MDS to these data that the algorithm had a 
number of difficulties, perhaps because of the infinite values which were 
treated as missing data. Thus, two-dimensional MDS solutions were as 
appropriate as higher-dimensional solutions, but none of the solutions 
were very good. Although we compare the MDS and Pathfinder solu
tions, one may choose instead to assume that MDS cannot supply a rea
sonable fit for these data. 

The PFNETs for the six categories investigated by Rosch appear in 
Fig. 6. These networks are directed PFNET(r = oo, q = n - 1) networks. 

The MDS solutions (not shown) did capture some of the category struc
ture. These solutions placed the category label in the center of the space 
and surrounded the label with the instances. However, it tended to do 
this for both the superordinate and the basic level categories. Pathfinder, 
on the other hand, tends to show a star-shaped network for the basic level 
categories. This star-shaped network is less apparent in the superordinate 

cases. 
We can quantify the starness in each pattern by calculating the relative 

degree of the category node. Because the network is directed, each node 
has both an in-degree and an out-degree. The in-degree is the number of 
directed links terminating on the node, and the out-degree is the number 
of directed links initiating from the node. The sum of these two is the 
total degree of the node. Dividing the total degree of the category node 
by the total number of links in the network gives us the percentage of 

links that connect with the category node (relative degree), which we 
used as an index of the starness. 

The starness indices are presented in Table II for the six categories 
used by Rosch and for four additional categories she did not consider. 
The basic level categories show greater involvement of the category label 
in the network. Based on the starness indices derived in the same way 
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Fig. 6. Directed Pathfinder networks for various categories and category members. 

for the categories flower, profession, and body (parts), we would classify 
them as basic level, superordinate, and superordinate terms, respec

tively. With a starness index of. 70, the appropriate classification for the 
category metal is uncertain. Its starness falls squarely in the middle of 

the values for basic level and superordinate categories. 
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TABLE II 

STARNESS OF VARIOUS CATEGORY NETWORKS 

Category Type Starness" 

Fish Basic level1'·c .90 

Bird Basic levelb ,, .89 

Tree Basic Ievelb ,c 
1.00 

Musical instrument Superordinateh ,c .56 

Fruit Superordinate,,·" .50 

Clothes Superordinateb .c .31 

Flower Basic lever 1.00 

Profession Superordinate' .50 

Body (parts) Superordinatec .37 
Metal ?d .70 

"Starness is the proportion of links in the network directly 
connecting with the category name node. 

,,Rosch' s classification. 
"Starness classification. 
du ncertain classification. 

The Pathfinder networks revealed structural differences among catego

ries that have been shown to have different characteristic properties and 

that yield different results in a variety of psychological experiments. Al

though MDS captured some of the category information by placing the 

category concept in the center of the space, it did not uncover differences 

between superordinate and basic level concepts. Pathfinder yielded net

works for basic level categories in which the category concept had a high 

total degree, in some cases accounting for 100% of the links in the net

work. Networks of superordinate categories, on the other hand, yielded 

category concepts with relatively lower total degree. 

D. THE COLOR CIRCLE AND THE COLOR CYCLE

The classes of concepts considered thus far clearly refer to discrete 

entities. They are also complex in the sense that one would have expected 

Pathfinder networks with a number of connections if in fact it did capture 

part of the latent structure in subjects' similarity ratings or word associa

tions. 

The next set of data was collected by Ekman (1954) in a study of color 

perception. The data were borrowed by Shepard (1962b) in his develop

ment of nonmetric MDS, in which case the data yielded a two-dimen

sional color circle. Figure 7 presents the PFNET resulting from Path

finder superimposed on the two-dimensional Shepard solution. 
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green 

blue 

Fig. 7. Pathfinder network and a two-dimensional MOS for judgments of similarity of 

colors. Wavelengths ranging from 434 to 674 mµ were judged. The PFNET(r = oo, q = 

n - I) is shown with solid lines. The dotted line is added in the PFNET(r = CXl, q = 2)

solution. 

The solid lines represent the PFNET(r = 00, q = n - I) network (the 

minimal spanning tree) for the data, and the dotted line is the only link 
added to create the network, PFNET(r = 

00, q = 2). The tree captures 
the psychological judgments that have a monotonic relation to physical 
wavelength; the PFNET(r = 

00, q = 2) adds a single link that highlights 
the psychological similarity of two physically very different wavelengths. 

Shepard added exactly these lines to his MDS solution in order to high
light the circular nature of his solution. Pathfinder produces, algorithmi
cally, the same lines as Shepard added to his MDS solution. In this case, 
a single cycle in the PFNET corresponds to a circle in space. 

E. UNIDIMENSIONAL NETWORK 

We turn next to a coherent set of concepts that seemed neither complex 
nor discrete. We wondered what Pathfinder networks would reveal for a 
set of concepts that had a clear underlying dimension. We chose a set of 

.. ·······. ·· ··········:, ,,:,,,,,.,,, ,ia,111 ·111111llliiiiliiliiiijiiliillld li:iii:!ii I ii ii i!iii 
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PFNET(r = oo, q = n - 1) for judged similarity of temporal concepts. 

words that varied on a dimension signifying time, or more accurately 
length of time. The set of 11 concepts ranging from instant to eon appears 
in Fig. 8. The data were obtained by averaging the pairwise relatedness 

judgments of 24 subjects. The network is a PFNET(r = oo, q = 10) so

lution. 
Pathfinder produced a pattern at the opposite extreme from the star 

pattern we observed for basic level categories. Rather, a single path 

(instant-second-minute-hour-day-week-month-year-decade-century

eon) that perfectly mirrors the logical relations among the concepts was 

obtained. In more dense graphs, such long paths may suggest some un

derlying dimension, which may lead the researcher to more spatial algo
rithms in order to ascertain the nature of the dimension. However, as we 
argued earlier, the spatial algorithms will tend to distort some relations in 
order to find the best fit to the data. For the time concepts, a one-dimen

sional MDS solution did not reproduce the logical string of concepts that 
Pathfinder produced. The MDS solution placed the concept eon before 
the concept century and after the concept decade. Apparently, the con

straints from all of the pairs that influence the MDS solution were suffi

cient to alter the order of two of the items. Pathfinder, with its emphasis 

on the smaller proximities, preserved this ordering, which was inherent 
in the pairwise data. 

F. NETWORK OF A SCRIPT 

Among the knowledge representations of current interest in cognitive 
science are schema or frame structures (Minsky, 1975; Rumelhart & Or

tony, I 977). Scripts (Schank & Abelson, 1977) are one type of schemata 

that pertain to knowledge about recurring activities. It is of theoretical 

interest to examine how scripts and network structures relate. Scripts are 
also of interest here because of their property of having a number of com
plex relations in addition to an assumed underlying temporal dimension. 

The concepts composing the restaurant script were taken from a disser-
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Fig. 9. Network for the judged relatedness of activities in restaurants (restaurant script). 
The solid links are from PFNET(r = oo, q = n - 1). The dotted links are added in the 
PFNET(r = oo, q = 2) solution. 

tation by Maxwell (1983). Maxwell had undergraduate psychology majors 

generate a sequence of ordered actions that describe what people usually 
do when they go to a restaurant. We selected the 16 most frequent actions 
and had subjects judge the relatedness of the members of all possible pairs 

of these actions. We then obtained a PFNET(r = 00, q = 15) solution 
from Pathfinder. Figure 9 shows the network; the solid lines are links 
from the PFNET(r = oo, q = 15) solution. 

The temporal dimension seems to have been revealed by the PFNET(r 

= oo, q = 15) solution. The events in going to a restaurant proceed in a

reasonably linear fashion from enter restaurant to leave restaurant. There 
is one cycle in the PFNET(r = oo, q = 15) network that may be interpre
ted as cotemporal behaviors, alternate paths, or a point in going to restau
rants at which possibilities vary. 

Additional variations were found in the more dense PFNET(r = oo, q

= 2) solution. The dotted lines in Fig. 9 are the links added by PFNET(r
= oo, q = 2). The PFNET(r = oo, q = 2) solution added a link between
the two actions, order food and get food, creating another cycle. It also 

added another cycle by connecting finish eating and pay bill. 

The added density with variation in the q parameter raises the general 
problem of selecting among several network solutions. As a descriptive 
tool, Pathfinder can provide several ways of looking at the data and, of 
course, such exploration is entirely consistent with the goals of descrip
tion. In our experience, it has often been helpful to begin with the least 
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dense network and to consider additional links after the core links have 

been analyzed. The rules on when to stop, however, are not easy to de

fine for all cases. One can use criteria determined by (1) the nature of 

measurement in the data (ordinal data requirer = oo); (2) the interpretabil

ity of the links; and (3) the function relating fit to density. Each of these 
criteria may have its place in the selection of particular networks. 

The networks for the restaurant script revealed a strong underlying 
temporal dimension for the concepts. The more dense network also pro

duced various cycles within the script. Using the network as a guide for 

going to a restaurant would not lead one far astray. The network provides 

some relatively invariant sequences of behavior and three points at which 

more than one behavior is appropriate. 

G. CLASSIFYING INDIVIDUALS 

In this section we review work showing that Pathfinder supplies infor

mation about the cognitive structure of individuals that is useful in classi

fying them into their appropriate groups. In particular, this work showed 

that expert and novice fighter pilots could be classified on the basis of 

individuals' networks of flight-related concepts. 

Schvaneveldt et al. (1985) asked expert (USAF instructor pilots and 

Air National Guard pilots) and novice (USAF undergraduate pilot train

ees) fighter pilots to judge the relatedness of concepts taken from two 

domains: an air-air combat scenario (split-plane maneuvers) and an 

air-ground combat scenario (strafe run). Schvaneveldt et al. reported a 

number of uses of Pathfinder networks, but what is of interest here is 

their use of Pathfinder to classify an individual as an expert or novice. 

A PFNET(r = oo, q = n - I) was computed for each individual for 
each scenario. A vector was then created for each of these networks. This 

vector consisted of a series of zeros and ones for all possible pairs of 

concepts. A zero signified that the pair was not linked in the network, 

and a one signified that there was a link for that concept pair for that 

subject. These vectors were then used in a pattern classification proce

dure (Nilsson, 1965) of the type used by artificial intelligence devices to 

segment patterns. 

A pattern classification system was defined using all but one expert and 

all but one novice. The classification system then attempted to classify 

the remaining two unknown individuals. This procedure was repeated a 

number of times by making certain that classification was attempted for 

each possible pair of unknown individuals. The percentage of correct 

classifications can then be computed and used as an index of the success 

of the vectors at capturing differences among the groups. 
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Network vectors were created as described above and vectors were 
also created based on the original ratings of the subjects and on the dis
tances between concepts in MDS solutions. The ratings vectors simply 
consisted of the rating given by each individual to each pair of the 30 
concepts. The MDS vector consisted of the Euclidean distances between 
concepts for all pairs in the MDS solution for each subject. Figure I 0 
shows the percentage correct classification for each type of vector for 
various pairs of groups and type of maneuver. Classification based on the 
network or on MDS was superior to classification based on the original 
ratings in each case, suggesting that both Pathfinder and MDS were suc
cessful at revealing the latent structure in the relatedness ratings that 
allows for a distinction among groups. In addition, MDS was better than 
Pathfinder in two of the four comparisons, equal in one, and inferior in 
one. Thus, MOS and Pathfinder both captured important structural differ
ences, but the MDS distances led to somewhat more success. 

These classification experiments show that the Pathfinder and MDS 
scaling techniques both extract information characteristic of expertise 
that is not directly available in the original ratings. We take this as a form 
of validation for both of these procedures. 
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H. RECALL STUDIES 

The value of the information extracted by Pathfinder has proven useful 
in some psychologically meaningful ways. One such investigation of Path

finder made use of the fact that recall benefits from organization (e.g., 
Bousfield, 1953; Bower, 1972). In one study, we (Cooke, Durso, & Sch

vaneveldt, 1986) created organized and unorganized lists from the set of 
natural concepts discussed earlier (see Fig. 2). Organized lists were de

fined either as lists containing pairs of adjacent words linked in the net

work but not close in MDS space (network list) or as lists containing pairs 
of adjacent words close in MDS space but not linked in the network (MDS 

list). Control lists were created from these by scrambling the respective 

lists so that adjacent pairs were neither linked nor close. 

Subjects were asked to learn the lists, and the number of trials to one 
perfect serial recall was recorded. As expected from other work, the orga

nized lists were learned more quickly than the controls. However, there 
was also an effect of representation: The network lists were learned more 

rapidly than the MDS lists. The network advantage was present for the 
organized lists, but not the control lists, suggesting that it was not the 

words that facilitated learning but rather the organization of the words in 

the lists. In a replication, Cooke et al. created an MDS list and a network 
list for the same set of words, and, again, the network-organized list 
yielded more rapid learning. 

Finally, 13 of the words were presented to 60 subjects for free recall. 

The order of the words was randomized for each trial for each subject, 
and trials were continued until all of the words were correctly recalled 
on one trial. All of the pairwise distances (number of intervening words) 

between words in the final recall order were determined for each subject, 

and these distances were averaged across subjects. These distances were 

then correlated with the earlier ratings of all of the concept pairs (also in 
Fig. 2). The recall distances were also correlated with the distances ex

tracted from various MDS representations of the items and with the dis
tances extracted from various Pathfinder networks. These scaling solu

tions were derived from the original rating data. 

The average correlations between recall distances and the other mea

sures were .56, .44, and .55, for ratings, MDS distances, and network 

distances, respectively. Perhaps of more interest were the partial correla
tions. The average correlation between recall distances and network dis

tances was .34 with the ratings partialed out. The correlation between 

recall distances and MDS distances was - .004 with the ratings partialed 
out. 

The partial correlations are particularly revealing because the network 
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structure and the associated distances are derived from the ratings. The 
correlation of recall distances and network distances independently of the 
original rating data suggests that Pathfinder extracts important structural 
information from the rating data. We suspect that the gain from the Path
finder method is due to the emphasis on closely related items in determin
ing the network structure. The distances between more remotely related 
items are then derived from combinations of distances between linked 
items. People may be better at estimating the psychological distance of 
closely related items than they are with more distantly related items. 

Results of the Cooke et al. study demonstrate that the information ex
tracted by Pathfinder is useful in predicting recall orders and in generating 
easy-to-learn lists. Apparently the types of relations utilized by individu
als when they attempt to remember a series of events is part of the infor
mation revealed by Pathfinder networks. 

IV. Discussion and Future Lines of Investigation

Networks have several properties that should be of value in represent
ing the structure in proximity data. Networks reduce a large number of 
pairwise proximities to a smaller set of links. Understanding of the data 
is simplified by this reduction. Networks highlight the local relationships 
among the entities represented. They are also capable of revealing several 
particular structures such as trees (including hierarchical structures, 
stars, and linear paths), cliques (a completely connected subgraph), and 
cycles. 

Compared to spatial scaling methods, networks focus on the closely 
related (low dissimilarity or high similarity) entities. As a result, the pair
wise information may be better represented than it is in spatial methods 
such as MOS. In contrast, spatial methods are probably superior in ex
tracting global properties of a set of entities in the form of dimensions of 
the space. In some cases, the pairwise relations are distorted by MOS as 
all constraints in the pairwise data contribute to the location of entities in 
the space. Based as it is on finding minimum weight paths connecting 
entities, Pathfinder tends to give greater weight to the smaller values in 
the proximities. 

Other nonspatial scaling methods such as hierarchical cluster analysis 
(Johnson, 1967), weighted free trees (Cunningham, 1978), and additive 
similarity trees (Sattath & Tversky, 1977) yield network structures, but 
the resulting structures must be hierarchical (tree structures). Often this 
constraint is not appropriate, and the resulting solutions may distort cer-
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tain relations in the data. The additive clustering method (Shepard & Ara

bie, 1979) allows for overlapping clusters of entities, which helps avoid 

the distortions that result from imposing a hierarchical structure on the 

data. Pathfinder can reveal tree structures in data, but it can also reveal 

other, more complex, structures that do not obey the hierarchical restric

tion. Pathfinder can also suggest clusters of entities in the form of inter
connected subsets of the entities or cycles in the network (Schvaneveldt 

et al., 1985). 
Another problem of some concern in selecting among scaling methods 

arises when the proximities are asymmetric, such that the proximity be

tween entities depends on their order. Tversky (1977) has made the case 
for the psychological reality of asymmetric similarity relations in concep

tual organization, and he proposed a set-theoretic feature model that pre
serves such asymmetries. Similarly, in recognition of the importance of 

representing asymmetric data, there have been several proposals for scal
ing asymmetric data in the MDS framework (e.g., Constantine & Gower, 
1978; Harshman, Green, Wind, & Lundy, 1982; Krumhansl, 1978). These 

methods involve separating symmetric and asymmetric components in 
the data or using spatial density in the resulting MDS configurations in 

the computation of distance in space. 

Given that links in networks can be directed, Pathfinder can naturally 

represent asymmetric relations between entities. Networks with directed 
links allow for zero, one, or two links between any two nodes. With two 

links, the weights may be different. Thus, asymmetry can be represented 
by having a link in only one direction or by having links in both directions 

with different weights. 

Each of the several methods available for scaling proximity data cap

tures certain aspects of the data, often at the sacrifice of other aspects. 
Many of these methods may be usefully employed together. For example, 

MDS and Pathfinder used together can simultaneously reveal an underly

ing dimensional structure in a set of entities as well as the most salient 
pairwise relations among them. The appropriate choice for a given set of 

data will depend on a number of factors such as assumptions about the 

data, the theoretical motivations behind the work, the kind of information 

needed, and the interpretability of the resulting solutions. Often meeting 
these criteria will require more than a single scaling method. 

Our work in applying Pathfinder to empirical data has made use of sev
eral concepts from graph theory such as minimal spanning trees, cycles, 

and Hamiltonian cycles. Several other concepts from graph theory could 
prove useful in characterizing the structure of networks. Some examples 

of these concepts are ( l) median: the node with minimum distance from 
itself to all other nodes in the network; (2) center: the node with minimum 
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distance from itself to the most distant node in the network; (3) basis: the 
smallest set of nodes from which every node in the network can be 
reached; and (4) minimal dominating node set: the smallest set of nodes 
such that every node in the network is connected to a node in the set with 
one link. 

These properties of networks have proven useful in various applica
tions of graph theory, and it would be worthwhile to explore their applica
bility in the scaling and interpretation of proximity data. We intend to 
pursue such investigations in further work. Once a network has been de
termined for a set of data, many quantitative and qualitative properties of 
the network can be derived. Empirical investigations should help deter
mine which of these properties have value for characterizing the structure 
of data. 

Finally, we should mention some of the work performed by ourselves 
and others in the general area of knowledge engineering. Pathfinder has 
proven to be a cornerstone of this work, and future developments of our 
work in network analysis will be influenced by the needs of these applica
tions. 

Roske-Hofstrand and Paap (1986) have used Pathfinder to design a sys
tem of menu panels in an information retrieval system used by pilots. The 
Pathfinder-based system led to superior performance in using the re
trieval system by the target users of the system. A similar application of 
Pathfinder to a menu-based version of the MS-DOS operating system was 
reported by Snyder et al. (1985). Snyder et al. reported significantly faster 
learning of operating system commands with a menu organized according 
to a Pathfinder network. McDonald and his colleagues (McDonald, Dear
holt, Paap, & Schvaneveldt, 1986; McDonald & Schvaneveldt, 1988) have 
used Pathfinder in conjunction with other scaling methods to design vari
ous aspects of the user interface. A major theme in that work is the use 
of empirical techniques to define users' models of systems. These models 
are then incorporated into the user interface. Cooke and McDonald (1986) 
and Schvaneveldt et al. (1985) discuss the use of Pathfinder and other 
scaling techniques in eliciting and representing expert knowledge for use 
in expert systems. These papers argue that empirically based measure
ment and scaling procedures have much to offer in the process of defining 
and codifying the knowledge of experts. 

In conclusion, we have been encouraged by the results obtained using 
Pathfinder networks to identify structure in proximity data. There are 
also several new avenues to explore in the realm of graph theory that 
should provide useful structural descriptions. Some of the initial applica
tions of Pathfinder have met with sufficient success to encourage further 
application and development of the technique. We hope that other re-



282 Roger W. Schvaneveldt et al.

searchers will also find Pathfinder a useful addition to the analytic tools 

available for uncovering latent structure in proximity data. 
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