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This report reviews work on defining and measuring conceptual structures of expert
and novice fighter pilots. Individuals with widely varying expertise were tested. Cogni-
tive structures were derived using multidimensional scaling (MDS) and link-weighted
networks (Pathfinder). Experience differences among pilots were reflected in the concep-
tual structures. Detailed analyses of individual differences point to factors that distin-
guish experts and novices. Analysis of individual concepts identified areas of agreement
and disagreement in the knowledge structures of experts and novices. Applications in
selection, training and knowledge engineering are discussed.

1. Introduction

The term ‘“‘expertise” refers to performance in a particular domain, such as chess,
physics or medical diagnosis, that is superior to the performance of a number of other
people within that same domain. Expert performance can consist of skilled motor
behaviour, skill at rapidly recognizing complex patterns in the environment, skilled
problem solving, decision-making skills, or a combination of these characteristics.
Whereas the definition of expertise is quite straightforward, the explanation of expertise
in terms of the cognitive factors that underly expert performance is not. For instance,
what makes the chess master better at chess than the novice? Is it a superior short-term
memory capacity, skill at perceptually analysing the chess board, or the use of different
strategies? Researchers in cognitive psychology have attempted to address some of
these issues concerning expertise (e.g. Chase & Simon, 1973).

The study of the cognitive factors underlying expertise has several applications.
Those interested in education or training programs can benefit from this research. For
instance, if it is determined that an expert organizes information in memory in a specific
manner, then that organization could be explicitly conveyed to novices. Thus, an
understanding of expertise can guide training programs.
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Another timely application of expertise research is in the development of expert
systems. Expert systems are knowledge-based computer systems that perform a variety
of complex problem solving and decision making skills in very specific areas of
expertise. The expertise embodied in an expert system consists of numerous facts and
rules that are obtained from a human expert, typically through interviews with a
knowledge engineer. This process of knowledge acquisition is one of the major bottle-
necks in the development of an expert system (Hayes-Roth, Waterman & Lenat, 1983).
Not only is the explicit listing of rules and facts by the expert tedious and time-
consuming, but the verbal expression of knowledge is often very difficult. Cognitive
research on human expertise provides methods for measuring knowledge structures.
These methods could aid in the development of expert systems. Our goal in this project
was to investigate expertise in fighter pilots using techniques from cognitive psychology.

In the past decade, cognitive psychologists have generated a considerable body of
theory and data concerning the organization and retrieval of knowledge. Researchers
have begun to gain an understanding of the representation of knowledge by investigating
the exceptionally rich data bases of natural language and natural categories. This
research has demonstrated that the organization of memory exerts important influences
on the encoding and retrieval of information.

Much of the research in semantic memory has focused on the influence of semantic
relatedness on the speed and accuracy with which task-relevant information can be
retrieved from memory. Various terms, such as semantic similarity, semantic relatedness
and semantic distance, have been used to refer to the degree to which concepts are
related in meaning. The distance metaphor comes from an analogy to a multi-
dimensional space where concepts are located according to values on various
dimensions of meaning. Presumably, concepts near one another in multidimensional
space are more closely related to one another than are concepts that are further apart
in the space.

There have been several proposals concerning memory structures, but each one
makes use of the idea that concepts in memory differ in their relatedness or psychological
proximity. In network models, concepts are represented as nodes linked by labelled
relations. Two concepts that are directly linked are viewed as more similar than are
two concepts that are not linked or are indirectly linked (Collins & Quillian, 1969;
Meyer & Schvaneveldt, 1976; Quillian, 1969). Similarly, in other network models, two
concepts that share a number of links are viewed as more related than are two concepts
that share fewer links (Collins & Loftus, 1975). In feature models (Rips, Shoben &
Smith, 1973), where concepts are represented by vectors of features, two concepts that

share a number of features are viewed as more similar than are two concepts that share
few, if any, features. Both network and feature theories rely on psychological proximity
to predict performance in a variety of tasks.

How theorists have determined the proximity of a particular set of concepts has
varied widely. Most models applied to particular domains have relied solely, or
primarily, on the intuitions of the theorists. There are, however, a number of notable
exceptions. Smith, Shoben and Rips (1974) employed multidimensional scaling (MDS)
procedures for a set of animal names to reveal important structural information.
Similarly, Shepard (1963) and Kruskal (1977) have investigated the applicability of
multidimensional spatial representations for a number of conceptual domains with
some encouraging results. Often, theorists assuming a general network as an underlying
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model have used intuition or logical analysis to define network structures. There are
techniques, however, that allow researchers to derive networks from the same proximity
data employed by MDS (e.g. Durso, Schvaneveldt & Goldsmith, 1983; Friendly, 1977,
Hutchinson, 1981; Schvaneveldt & Durso, 1981; Schvaneveldt, Durso & Dearholt,
1985). The present report makes extensive use of both MDS and network scaling
techniques.

This project investigated the conceptual structures of Air Force fighter pilots for
combat situations. The central goal was to demonstrate the existence and utility of a
systematic structure of flight-related concepts in the memory systems of fighter pilots.
Meeting this goal required applying structural analyses to data and developing methods
for assessing the validity of the structural representations. The domain of fighter-pilot
knowledge has, in principle, a rich cognitive component that should reflect important
facets of conceptual structure in general. The domain is relatively self-contained and
not merely an arbitrary subset of natural language. The domain allows identification
of individuals that vary in their mastery of the domain and, presumably, in the nature
of their conceptual structures. These variations in expertise provide one approach to
validating measures of conceptual structure. Presumably, the conceptual structures of
experts should differ systematically from the conceptual structures of novices.

Several studies in the cognitive psychology literature have investigated memory
structures of experts and novices. Such studies have been concerned not only with
expert-novice differences in memory structure but also with the development of this
structure as a novice gains skill or experience and approaches the expert level. This
latter issue has important applications in training and education. Other issues in this
area focus on how experts organize information in memory, expert-novice differences
in performance on recall and perceptual tasks, and methods for measuring, representing
and validating structures of memory. Expert and novice studies have been conducted
in domains such as chess, bridge, Go, physics and computer programming (Adelson,
1981; Chase & Simon, 1973; Chi, Feltovich & Glaser, 1981; Engle & Bukstel, 1978;
McKeithen, Reitman, Rueter & Hirtle, 1981; Reitman, 1976).

A number of conclusions has emerged from expert-novice research. By definition,
the performance of experts on the actual task in which they excel is superior to the
performance of novices. Experts, however, show superior performance on recall tasks
in ‘which meaningful material is used, but are no better than novices when asked to
recall the same material in a random arrangement. For instance, chess masters are able
to recall positions of pieces on a chess board much more readily if the pieces are
arranged as they would be in a game situation, rather than a random arrangement
(Chase & Simon, 1973). However, meaningful arrangement of the pieces does not aid
chess novices in recalling positions. Furthermore, as experience increases, there tends
to be a greater degree of intragroup agreement, in relation to memory structure and
organization. Other common findings include a larger chunk size and more chunks for
the experts as compared with the novices. Chunks are units of information in which
the items within a chunk are related to each other in a meaningful fashion.

Various explanations have been offered for these findings. Typically, it has been
suggested that the expert is able to perceive a more global picture and, therefore, is
able to encode or chunk items into larger units than is the novice. The novice has a
mehory structure that is not as highly organized as that of the expert and, therefore,
is not able to encode as quickly or in as large units. It has also been suggested that
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experts have a memory structure that is hierarchically organized and, therefore, can
recall a larger number of chunks. Thus, a high-level chunk may consist of a set of
lower-level chunks, each containing additional chunks at a more detailed level. This
hierarchical organization can structure large amounts of information effectively.

The central hypothesis underlying our work is that the organization of information
in memory has a critical impact on flying performance. Understanding how critical
information is organized in memory can be extremely useful in designing training
programs and in increasing the effectiveness of the pilot-aircraft system. Knowledge
of the systems individuals develop for organizing critical information can be used to
tailor training systems to provide students the conceptual framework that will lead to
expertise. It may also provide a useful evaluation and selection tool by allowing
instructors to determine which individuals have mastered the prerequisite concepts for
success in a particular training program. Finally, using scaling techniques to extract
knowledge may provide a favorable alternative to the interview method in knowledge
engineering.

2. General methodology

2.1. SUBJECTS

Three populations of fighter pilots were sampled for these studies. Ten instructor pilots
(IPs) stationed at Holloman Air Force Base (AFB) and nine Air National guard pilots
(GPs) from Buckley Air National Guard base served as the two groups of expert pilots.
The IPs averaged 2583 h flying time and served as instructors for lead-in fighter training.
The GPs averaged 6064 h flying time but were not classroom instructors. The third
sample consisted of 17 undergraduate pilot trainees (UPs) stationed at Williams AFB.
The UPs averaged 200 h of flying time and had recently completed Undergraduate
Pilot Training which precedes advanced training with specialty aircraft. Thus, none of
the UPs had undergone fighter lead-in training. This choice of subjects seemed to be
appropriate because they were expected to exhibit some, but certainly not all, of the
features characteristic of expert fighter pilots. In particular, the UPs should have a
good command of general flying procedures (e.g. formation flying) but little or no
command of air-to-air or air-to-ground combat situations.

2.2. MATERIALS

The development of the stimulus materials began with a task analysis of tactical flight
maneuvers (Meyer, Laveson, Pape & Edwards, 1978). Based on the Meyer report and
through interviews with four pilots from the 449TTW, two scenarios together with lists
of assumptions, basic concepts, and related concepts were selected. One scenario
involved split-plane maneuvers in air-to-air combat, and the other scenario focused
on the low-angle strafe maneuver in air-to-ground combat. These two scenarios were
chosen, in part, because they differ in inherent complexity. The split-plane scenario is
considerably more complex, involving several possible configurations of aircraft, instru-
ments, and possible actions. In contrast, the strafe scenario is inherently simple,
involving a single aircraft and a limited number of actions. In addition, each of these
scenarios involves some concepts that should be well understood by the UPs and some
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that should be relatively foreign to the UPs who have not received fighter lead-in
training.

Each scenario consisted of a set of assumptions and 30 basic concepts. The two
scenarios appear in Table 1. The basic concepts served as the critical stimuli for the

Two scenarios with assumptions and basic terms

TABLE 1

Assumptions

Basic concepts

(a) Split-plane maneuvers

OFFENSIVE LOW YO YO HIGH YO YO
KILL LAG ROLL BARREL ROLL
SINGLE BANDIT GUNS AIRSPEED
AGGRESSIVE G LOADING CUTOFF
COMMIT 6 O’CLOCK SMASH

IR MISSILE PARAMETERS SWITCHOLOGY RADIAL G
TALLY HO HEAT SNAPSHOT
ENGAGED EXTENSION ANGLE OFF
SIMILAR AIRCRAFT QUARTER PLANE ASPECT ANGLE
DEFENSIVE TURN OVERTAKE PURE PURSUIT

CORNER VELOCITY
RELATIVE ENERGY

LEAD PURSUIT
LAG PURSUIT

POWER SETTING LIFT VECTOR
ACCELERATION 3-9 LINE
VERTICAL MANEUVERING
WEAPONS PARAMETERS
(b) Strafe maneuver
CLEARED BULLET IMPACT DIVE ANGLE
PANEL-TARGET AIM OFF POINT CLOSURE
SWITCHOLOGY AIRSPEED ALTITUDE
TARGET ACQUISITION BANK WALKING
CONTROLLED RANGE PIPPER PLACEMENT TRACKING
RICOCHET FINAL
BURST BUNT
STABILIZE FOUL
GLIDEPATH DRIFT
FOUL LINE GUNS
RUN-IN LINE AIM POINT
PIPPER FIXATION RANGE
TRIGGER PULL-UP
YAW FIRE
RECOVERY
TRIM

study. Thus, 30 concepts important to air-to-air combat and 30 concepts important to

air-to-ground combat were examined in these studies.

i 23. PROCEDURE
i

Most scaling procedures for producing structural descriptions of a set of concepts
require some measure of psychological distance between the concepts. Although two
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general methods have been used in the literature, inter-item distance in recall protocols
(e.g. Adelson, 1981) and direct judgments of pairwise similarity or dissimilarity (e.g
Rips et al., 1973), recent work by Cooke (1983) suggests that the latter measure provides
a more sensitive and valid database for the delineation of conceptual structures. Ir
the present project, measures of proximity were based on pairwise similarity o
relatedness judgments.

Ratings
The subjects were told about similarity or relatedness ratings and the mechanical details
of entering ratings on a TERAK microcomputer. The scenario was then described tc
provide a context for rating the basic terms, and the complete set of terms to be rated
was shown to allow subjects to establish some criteria for rating the pairs of concepts.
The rating task itself consisted of presenting all possible pairs of the 30 basic concepts.
Subjects rated the similarity or relatedness of 435 pairs of terms (i.e. 30 taken two at
a time) during the session. For each pair of terms, the TERAK displayed the pair, a
rating scale with the digits 0-9, and a bar marker to indicate the rating. Subjects were
instructed that a number of factors might enterintoa decision about similarity, including
relatedness, co-occurrence, dependency and contingency. They were told that the
purpose was to obtain their general impressions of the relatedness of the items and
that they should not ponder their judgments. Subjects entered their rating by pressing
a number key on the TERAK keyboard. The bar marker in the display was moved to
the position corresponding to the number entered by the subject to indicate the rating
given. The subject could change the rating by pressing another number key. When the
subject was satisfied with the rating, pressing the space bar on the keyboard changed
the display to show the next pair of items and reset the marker to the bottom of the
scale. This procedure was followed until all 435 pairs had been presented. The order
of the pairs was randomized for each subject, and the position of the two items in a
pair was counterbalanced across subjects. A rating session required from 30 to 45
minutes to complete. ’

Familiarity ratings

In addition to the rating task, the UP subjects were asked to rate their familiarity with
each of the terms. UPs rated each concept on a scale of 1-3, where 1 indicated no
familiarity, 2 indicated familiarity, and 3 indicated the concept had been used in flying.

Data sets

Seven of the 10 IPs, each of the GPs, and each of the UPs supplied data in the
split-plane scenario. For the strafe scenario, data were collected from six of the IPs
and 16 of the UPs; no data were obtained from the GPs for the strafe scenario.

The obtained similarity measures were transformed into measures of psychological
distance by subtracting the ratings from the maximum possible rating. The resulting
numbers reflect distance, with the larger numbers representing greater psychological
distance between concepts. For each scenario, for each subject, the data were placed
in a 30 X 30 symmetrical matrix where all entries, other than the diagonal, represented
the empirical judgment for a pair of concepts. Similar matrices of means were computed
for each scenario and each group of subjects.
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3. Measurement of conceptual structure

The goal of scaling procedures is to uncover latent structure in data. The structure is
masked by the noise found in any set of empirical data. The scaling procedures assume
that the latent structure obeys the assumptions of metric data, regardless of whether
the empirical judgments meet these assumptions. For example, the latent structure is
assumed to obey the triangle inequality assumption even though the empirical data
contain violations of this assumption. In fact, the scaling procedures either manipulate
the data to meet these assumptions, or they extract the parts of the data that meet
these assumptions. Underlying these approaches is the belief that violations of the
assumptions are due to noise and not to any meaningful psychological property (but
see Tversky, 1977).

The differences among scaling procedures usually lie in the products of the pro-
cedures. There are procedures for generating hierarchical clusters, additive clusters,
weighted free trees, multidimensional spaces, and link-weighted networks. Here we
focus on the latter two procedures. MDS is a procedure that produces spatial configur-
ations and has undergone conceptual, mathematical, and empirical scrutiny in a number
of studies. Networks complement spatial representations in a number of ways and
have distinct advantages over other non-spatial scaling procedures.

3.1. METHODS

Multidimensional scaling
MDS is a powerful technique for extracting the latent structure within the empirical

similarity judgments. This is accomplished by arranging the concepts in n-dimensional
space where the distances between points reflect the psychological proximity of the
concepts.

The first step in obtaining such representations involves submitting the empirical
ratings, along with the desired dimensionality, to an MDS ‘algorithm. Optimal
dimensionality was determined by a number of factors: stress and R” tended to elbow
at three dimensions; the addition of a third dimension clarified the prior ones and was
itself interpretable (Shepard, 1974); and the Isaac and Poor (1974) procedure suggested
three dimensions. Once the data and desired dimensionality have been entered, the
MDS algorithm returns a set of co-ordinates corresponding to the location of each
concept in the space. The final step involves interpreting the resultant space along with
the accompanying dimensions.

MDS supplies several useful pieces of information. First, it summarizes the data
into a spatial configuration, which is complex at times, but is considerably more
informative than are the numerous empirical judgments. Second, MDS captures the
global relations among the concepts. That is, MDS considers the relationship of each
concept to all other concepts and places the concepts along the dimensions of the
space in a way that reflects these relations. Although such a procedure can distort local
relationships (that is, the distance between any particular pair), the procedure is

unsurpassed at revealing global structure. In particular, successful identification of the
dimensions of the space supplies information about conceptual structure that cannot
be gleaned from the original ratings nor from other scaling techniques. Finally, MDS
supplies a metric (distance between concepts in multidimensional space) that has some

useful applications.
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Although a concept can be located in multidimensional space by a series of co-ordin- (a)
ates (one for each dimension), the co-ordinates are not as useful as are distances in
comparing representations. The distance between a pair in MDS may be based on the
Euclidean distance between the two points located by the co-ordinates corresponding
to each concept. Euclidean distances in MDS preserve the structure of the representa-
tion, are independent of dimensional rotation, and meet the three standard metric
assumptions: identity, non-negativity and triangle inequality.
To illustrate MDS, consider the two-dimensional spatial configuration in Fig. 1(a).
The solution was based on the pairwise similarity judgments of undergraduate psychol-
ogy majors for 16 naturally occurring objects. MDS has summarized the 16 X 16 matrix
of distances into a representation that allows consideration of the global relations
among concepts. In particular, the horizontal dimension reflects a non-living-living ,
dimension; the vertical dimension is more difficult to label but seems to have captured 5
a difference between plants and animals, although this applies to only the living @
members of the space. In order to fix the concepts in space, MDS has introduced some
local distortions. Maple is closer in space to rose than it is to tree. These local distortions
are due to the adjusting of the data that occurs in order to produce distances that obey
the metric assumptions. It will be seen that network structures complement MDS nicely
by supplying information about local relations among the concepts.

A

Link-weighted networks

A link-weighted network is a configuration in which concepts are depicted by nodes,

and relationships are depicted by links connecting the nodes. The links are assigned

a value or weight that reflects the strength of the relationship between the nodes. The

value reflects the distance from one node to another along that link; the shorter the (b)

link, the closer the nodes. The network is general in that constraints are not placed

on the possible relations that can be represented. For example, the hierarchical

constraint found in cluster analysis is not placed on networks. Without this constraint,

the representation is free to contain local relations other than hierarchical ones, although

hierarchical relations may still be present (Christofides, 1975; Fillenbaum & Rapaport,
‘ 1971).
| As has been noted, networks have formed the basis of research in a number of areas
- of cognitive science. Several psychological and artificial intelligence models of concep- F
tual structure are based on such networks. The area of mathematics called graph theory
is centrally concerned with properties of general networks. Although important theoreti-
cal and formal work has been conducted on these structures, scaling methods that
yield general network structures have only recently appeared. Pathfinder (see
Schvaneveldt, Durso & Dearholt, 1985), an algorithm that produces general weighted
networks, was applied to the rating data. '

Pathfinder produces a network with concepts represented as nodes and relations -
between concepts represented as links connecting some of the nodes. Links may be ( Ruby
either directed (allowing traversal in only one direction) or undirected (allowing
traversal in either direction). Thus, distances between concepts may be either sym-
metrical or asymmetrical. Of course, with symmetrical distance estimates, only undirec-
ted links can be included in the network representation.
The definition of Pathfinder networks is quite simple. We begin with a network in FiG. 1. (2

which each node is connected by a link to each other node for which we have distance

* Rose
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(a)

5

(b)

Sparrow

{ M

ineral

. F1G. 1. (a) Two-dimensional MDS solution for 16 natural concepts. (b) Pathfinder network representation
. of the same concepts. Link weights have been omitted.
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estimates. The distance estimate is associated with each link giving a weight or cost
for the link. With a complete set of distance estimates, this network will correspond
to a complete graph. After applying the Pathfinder algorithm, a link remains in the
network if and only if that link is a minimum-length path between the two concepts.
The length of a path is a function of the weights associated with the links in the path.
Different functions for computing path length yield difterent networks. In particular,
the number of links in the resulting network will decrease systematically with decreases
in the computed lengths of multi-link paths in the network. Two methods have been
used to define path length. One method, which subsumes several special cases, uses
the Minkowski r-metric to compute path length. Although the r-metric was originally
developed as a generalized distance measure in multidimensional space, it can also
provide a general definition of the length of a path in a network. Let /; be the weight
associated with link i in a path. The set of all weights in a path with n links is given
by I,i=1,2,..., n The length of the path, L(P), is given by:

n 1/r
L(P)=(Z l{) , l=r=oo,
i=1

As the value of r varies over the allowable range, the number of links in the resulting
networks varies systematically. In particular, as r decreases, additional links are added,
but all links in networks with larger values of r are still included. With r = co, Pathfinder
will produce a network which is the union of the minimal spanning trees for the
network defined by the data (a complete graph if all pairwise distance estimates are
available). The minimal spanning tree will be unique unless certain patterns of ties
occur in the data. With r= 1, Pathfinder will simply use the sum of the link weights
to determine the length of a path in the network. Intermediate values of r produce
networks with intermediate numbers of links.

A second method for computing path lengths follows from the theory of spreading
activation in network structures. This method computes the length of a path by summing
the link weights in both directions, starting from the nodes at each end of the path.
The path length is taken as the maximum sum to the node where the two summations
intersect. This method is analogous to measuring the maximum distance to the intersect-
ing node when the path is traversed simultaneously from both ends. This node would
be the point where spreading activation from the two end nodes would meet, and the
length would be the maximum distance travelled by the activation. This method for
computing distance is called the parallel method because the distances are traversed
in parallel from both ends of the path. The parallel method yields networks with an
intermediate number of links compared to the Minkowski method with r =0 andr=1.

A family of Pathfinder networks can be generated by varying both the function
defining path length and the maximum number of links in paths. The numbers of links
in a particular network varies systematically as a function of the values of these two
parameters. Schvaneveldt et al. (1985) provide additional details. The networks pre-
sented here were all generated using the parallel definition of path length.

The Pathfinder algorithm can be illustrated by the natural concepts used to illustrate
the results of MDS. The Pathfinder solution is shown in Fig. 1(b). Note that maple and
daisy are not linked. A path existed in the complete graph (distance estimates) that
was shorted than the direct distance between maple and daisy so the direct link was
not included. Notice that maple and daisy were close according to MDS but were not
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linked by Pathfinder. Because Pathfinder extracts the latent structure rather than
transforming the data, it is better able to reflect psychological proximity on a pairwise
basis. On the other hand, Pathfinder does not produce global information of the kind
supplied by MDS.

The use of general networks and the Pathfinder algorithm holds substantial promise
in attempts to specify the local relations and structure present in a conceptual organiz-
ation. In addition, it allows a detailed, concept-by-concept comparison across groups
that differ in expertise.

3.2. RESULTS AND DISCUSSION

MDS
In this section, the properties of the specific MDS solutions for the pilot ratings are

discussed. These solutions were based on the ordinal option in the ALSCAL collection
of algorithms. Three dimensions supplied the optimal dimensionality for both the
split-plane concepts and low-angle strafe concepts for all groups of pilots. The strafe
scenario, because it is inherently less complex, had been expected to yield a smaller
dimensionality. Perhaps when subjects are required to consider a single maneuver,
nuances in the maneuver receive more attention than would be the case from a more
global point of view. In addition, it was somewhat surprising that the novices (UPs)
and experts (IPs and GPs) each resulted in a solution of equivalent dimensionality.
In the discussion of Pathfinder, it will be suggested that this may be a limitation of
the MDS scaling procedure used here, rather than a suggestion of equally complex
solutions for novices and experts.

For illustration, the three-dimensional scaling solution of split-plane maneuvers
for IPs is shown in Fig. 2. Figure 2(a) presents the position of each concept along the
first two dimensions, Figure 2(b) presents the position of each concept along the first
and third dimensions, and Fig. 2(c) presents the position of each concept along the
second and third dimensions.

In order to identify the dimensions, assistance was obtained from experts at Holloman
AFB and Williams AFB. Each of the dimensions has been identified for the split-plane
solution, and one of the dimensions has been identified for the strafe solution. The
split-plane concepts have one dimension associated with a temporal factor, one
dimension which distinguishes particular maneuvers, and one dimension associated
with factors distinguishing concepts that are related to distance from concepts related
to orientation. The temporal dimension identifies the general time dimension within
a scenario leading to split-plane maneuvers. In Figs 2(a) and (b), this dimension is the
horizontal dimension ordered from left to right. The concepts on the extreme left
(SWITCHOLOGY, HEAT and ANGLE-OFF) refer to events or considerations that
occur early in the temporal sequence. To the right, the concepts refer to events and
considerations occurring later in the sequence. Concepts occurring later in the sequence
are actually consequences of actions performed early in the sequence. The second
dimension is a contrast between lead pursuit and lag pursuit with LAG PURSUIT and
the associated maneuvers near the top and LEAD PURSUIT and LOW YO YO near
the bottom in Fig. 2(a). This dimension is again represented along the horizontal
dimension in Fig. 2(c). The third dimension is the vertical dimension in Figs 2(b) and
(c). This dimension has been tentatively identified as separating concepts that refer to
actions and considerations related to the range or distance between aircraft from
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concepts related to the relative positions of the aircraft. This dimension separates
concepts that concern distance from concepts that concern orientation.

The low-angle strafe maneuver also yielded a temporal order dimension in the
solution. Again, this dimension occurred as the first dimension in the solution, and it
reflects the order in which the concepts would occur to pilots in executing the low-angle
strafe. Interestingly, these temporal dimensions appear to reflect the psychological
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FIG. 2 (cont.)

ordering of the concepts rather than the order in which the events occur in physical
time. Apparently, pilots must consider several factors early in time, before they actually
occur, in order to be able to concentrate on critical factors such as aiming and firing.
The temporal order dimension is a powerful one in the organization of these concepts
for pilots.

The dimensional organization of the concepts is interesting, and it lends some
tentative support to the validity of the analytic procedures underlying the MDS
solutions. More fine-grained analyses of the structures are required to lead to con-
clusions that may be usefully applied. The metric-based analyses considered in the
section of this report on validation represent a step in that direction.

Pathfinder
An analysis was performed on the data from UPs, IPs and GPs for split-plane
maneuvers and the low-angle strafe maneuver using Pathfinder. To illustrate the
networks, solutions for IPs and UPs appear in Figs 3 and 4. Since the location of
nodes is arbitrary (the information in the network is contained in the links), the layout
of the positions of nodes is the same for the two networks. Incidentally, the two-
dimensional MDS solution for the IPs was used to locate the nodes on the page.
Consistent with the MDS analyses, Pathfinder supplied networks of comparable

- complexity (i.e. number of links) for the split-plane and the strafe scenarios, dis-

confirming the expectation that the strafe maneuver would be viewed as less complex.
However, Pathfinder does suggest that conceptual structures of experts and novices
do differ in complexity. The most striking difference between the IP and UP networks
is that the network derived from the student data is considerably more complex than
the IP network. The UP network has 51 links compared with 40 for the instructor
network. This pattern is even more extreme for the strafe concepts, with IPs producing
a structure of 39 links compared with 65 links for the UPs. This result can be contrasted
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with MDS which yielded three-dimensional solutions for all pilot groups. Apparently
a characteristic of expertise is not a more complex structure, but rather, experts tend
to identify the important, critical information and associations, yielding a simpler
network.

Pathfinder reveals interesting structural facets of the conceptual structure of the IPs.
For example, there are several concepts that link to multiple concepts (GUNS, HEAT,
ASPECT ANGLE, VERTICAL MANEUVERING, ACCELERATION, SMASH,
AIRSPEED), and the presence of cycles suggests that the representation is not strictly
hierarchical. In addition, the network of split-plane concepts for the IPs highlights a
number of local relationships (to be discussed later) that are not apparent in the MDS
scaling techniques that were used here.

3.3. SUMMARY

Both MDS and Pathfinder reduce a large amount of data in the form of a dissimilarity
matrix to a much smaller set of data, but they tend to highlight different aspects of
the underlying structure. Pathfinder focuses on the local relationships among concepts,
whereas MDS provides more global information about the concept space. In the effort
to find the best Euclidean fit to the data, MDS sacrificed some of the pairwise distance
information. MDS placed concepts near each other in space that were not viewed as
related and separated related concepts. Because the network extracts information from
the rating data that follows the metric assumptions rather than altering the rating data
to meet the metric assumptions, the links present in the network highlight pairwise
distance information. On the other hand, Pathfinder does not supply the global
information that led to the identification of underlying dimensions of the conceptual

space, as did MDS.

4, Validation

The previous sections have described techniques for representing conceptual structures.
MDS and Pathfinder both produce relational and organizational information about
concepts within a particular domain of knowledge. One means of validating and
comparing MDS and Pathfinder is to use these conceptual structures to discriminate
among groups and to predict group membership. It is reasonable to assume that
difference in experience among the pilots should be mirrored in differences among
their conceptual structures. It is also reasonable to assume that members of a group
of pilots share certain characteristics in their conceptual structures. Given an IP’s
conceptual structure for the split-plane maneuvers, can this individual be correctly
identified as an IP? Accurate classification based on conceptual structures would
support the validity of the structure. Classification also provides one means for compar-
ing different ways of defining conceptual structures. Furthermore, classification pro-
cedures provide a means for assessing the nature of group and individual differences.
Thus, the interest in this phase of the project is in evaluating the validity of conceptual
structures and in assessing similarities and differences of structures both across and
within groups of pilots.

4.1. DISCRIMINATION

In addition to arranging a set of concepts in multidimensional space, scaling techniques
are available for placing individuals or groups of individuals in multidimensional
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space. Carroll and Chang’s (1970) individual differences MDS can be used to locate
individuals along the same dimensions in which concepts are placed. Thus, the output
of this procedure illustrates which dimensions are most highly weighted for specific
groups or individuals. For instance, a point located close to the zero co-ordinate for
a particular dimension indicates this dimension was not critical for that particular
group. The ALSCAL version of Carroll and Chang’s INDSCAL program is used here.

The location of groups of pilots along the three dimensions used previously in this
work is not only useful in further distinguishing groups from each other, but is also
a valuable technique for validating the dimensions. If the resulting three dimensions
are meaningful, it is expected that these dimensions would be more critical to expert

pilots than to the novices who lack the understanding and organization of the concepts
found in more experienced pilots.

Method and results

In order to plot the three groups of pilots in multidimensional space, the distance
matrices for each of the IPs and each of the GPs for each scenario were submitted to
an individual differences scaling procedure. This yielded an expert space. The
dimensions found earlier with classical MDS were mirrored in the INDSCAL solution.
The distance matrix from each UP, one at a time, was added to the distance matrices
of the experts, and then the space was recomputed. The dimension weights for each
UP were recorded and compared with the dimension weights for the experts as derived
from the expert space. Results shown in Table 2 indicated that UPs weight each

TABLE 2
Weighting of dimensions for each group of pilots for split-plane and strafe
scenarios
Dimension 1Ps GPs UPs Mean
(a) Split-plane manoeuvres
1. Temporal 0-3475 0-3023 0-1923 0-2807
2. Distance-orientation 0-3142 0-2856 0-1779 0-2592
3. Lead-lag 0-3270 0-2717 0-1761 0-2583
Mean 0-3296 0-2865 0-1821
(b) Strafe manoeuvre
1. Temporal 0-3819 0-1844 0-2832
2. Unknown 0-3327 0-1833 0-2580
3. Unknown 0-3020 0-1687 0-2354
Mean 0-3389 0-1788

dimension less than do experts. Planned comparisons setting experiment-wise alpha
to 0-05 (test-wise alpha=0-006) confirmed these conclusions in each case. For the
split-plane scenario, experts relied more heavily on the temporal dimension, t(32) =
7-84, the orientation-distance dimension, #(32)=7-73, and the lead-lag dimension,
t(32)=6-98, than did the novices. Similarly, in the strafe scenario, the temporal
dimension was weighted more by experts, 1(21) = 10-33, as were the two unidentified
dimensions, #(21) = 6-32 and 1(21) =8-52, for dimensions 2 and 3, respectively.

— STRUCTURE OF EXPE
E As mentioned prev:
f expected if the dimen
= of the dimensions an
= appears that none of
= experienced groups.

[

Secondly, results of
discriminable: IPs ten
than did GPs. This tenc
1(14)=2-25, p<0:-05. £
that the groups have ¢
these dimensions recei
tendency for IPs to use
experience.

4.2. CLASSIFICATION

In the previous section,
of their conceptual struct
as a member of a partict
then pattern classificatio
Classification procedu
object to one of two or n
variables. The groups ar
Objects are represented b
of classification involves
in order to locate the clos
There are many differe:
on discriminant analysis. 1
be met including: (a) mea
functions are computed w
objects must exceed the m
linear combination of otht
group are equal; and (e) &
Because these assumptio
cedure based simply on dis
discussion of this technique
and correlations do not ent
objects to be categorized ar
pattern vector. The ith elen
Because feature values are in
as points in a multidimensi
of the object. The goal is t
pattern space into regions

« particular class of patterns.

Linear discriminant func
= linear combination of the fi
- function has the form:

8



ILDT ET AL.

ed to locate
& the output
. for specific
prdinate for
It particular
1s used here.
pusly in this
: but is also
[dimensions
7al to expert
lhe concepts

“he distance
ubmitted to
space. The
ELL solution.
ice matrices
its for each
| as derived
reight each

istrafe

lan

807

592
183

132
180
54

wise alpha
e. For the
n, t(32)=
{imension,

temporal
ridentified
vely.

. e v e e

P

g g e, )
Rt

STRUCTURE OF EXPERTISE 715

As mentioned previously, heavier weighting of the dimensions by experts would be
expected if the dimensions had a psychological validity; UPs lack the understanding
of the dimensions and organizational structure of the more experienced pilots. It
appears that none of the dimensions are as salient for the UPs as for the more
experienced groups.

Secondly, results of this scaling indicated that the two groups of experts are also
discriminable: IPs tended to weight each dimension in the split-plane solution more
than did GPs. This tendency was, however, only significant for the lead-lag dimension,
t(14)=2-25, p <0-05. Some differences between IPs and GPs would be expected given
that the groups have dissimilar backgrounds. The initial qualified interpretation of
these dimensions receives some support from the INDSCAL findings. The overall
tendency for IPs to use the dimensions more than do GPs may reflect their classroom

experience.

4.2. CLASSIFICATION

In the previous section, it was shown that the groups were discriminable on the basis
of their conceptual structures. Here, methods are developed for classifying an individual
as a member of a particular group based on the individual’s conceptual structure and
then pattern classification techniques are used to analyse conceptual structures.

Classification procedures are generally concerned with the problem of assigning an
object to one of two or more groups. The groups may vary along several attributes or
variables. The groups are defined such that each object belongs to only one group.
Objects are represented by a list of numerically described attributes. The general notion
of classification involves comparing each object’s position to each group’s prototype
in order to locate the closest group.

There are many different classification techniques. One common method is based
on discriminant analysis. Discriminant analysis requires that a number of assumptions
be met including: (a) measurement at the interval or ratio level because discriminant
functions are computed with means, variances and correlations; (b) the number of
objects must exceed the number of attributes defining an object; (c) no attribute is a
linear combination of other attributes; (d) population covariance matrices for each
group are equal; and (e) group populations have multivariate normal distributions.

Because these assumptions are excessively restrictive, we used a classification pro-
cedure based simply on distances in feature space. Nilsson (1965) provides a general
discussion of this technique which differs from discriminant analysis in that variances
and correlations do not enter into the classification procedure. With this technique,
objects to be categorized are represented by a list of feature values in the form of a
pattern vector. The ith element of the vector represents the value of the ith feature.
Because feature values are in the form of real numbers, pattern vectors can be considered
as points in a multidimensional space where each dimension represents an attribute
of the object. The goal is to develop discriminant functions that will partition the

' pattern space into regions containing only those points or patterns belonging to a

! particular class of patterns.

Linear discriminant functions (the only type used here) assume that a weighted

" linear combination of the feature values can classify patterns. A linear discriminant
" function has the form:
[

g(x)=Wy+ W, X+ -+ W, X,
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where W, represent the weights and the X, represent the feature values of the d features.
Classes that can be properly separated with linear discriminant functions are known
as linearly separable. The first analysis consisted of determining a discriminant function
to classify all but one person from each of two groups. We then attempted to classify
the remaining two individuals. This procedure was repeated for all possible combina-
tions of n—1 people from one group and n—1 people from a second group.

The method for generating linear discriminant functions began with minimum
distance classification. In this case, a prototype point representing the central tendency
of a class of patterns is constructed for each group of n—1 individuals. The prototype
is simply the average of the feature values of all patterns belonging to a group. The
initial linear discriminant function, or the decision surface separating the patterns, was
the perpendicular bisector of a line connecting the two prototype points.

If this initial function successfully classifies all the n,—1 and n,—1 “known”
individuals, it then attempts to classify the two “unknown” individuals. If, however,
the starting function fails to classify correctly the training set of known individuals, a
training procedure alters the function by successive adjustments to the weight vector
W by adding a fraction of the pattern vector (X)) that was incorrectly classified to the
weight vector. This produces a new weight vector W’'= W+ cX| where ¢ is a positive
number that controls the extent of the adjustment. The procedure i$ terminated as
soon as the weight vector correctly classifies all patterns in the training set. The
remaining two individuals are then classified.

These pattern classification techniques can provide one measure against which to
test the validity of representations of conceptual structure. For example, assuming that
there are differences in the way novices and experts organize knowledge about the
area in question, empirical methods of representing memory organization should reflect
this difference in expertise. Pattern classification techniques can then be used on
information derived from empirically generated representations of conceptual structure,
in an effort to classify individuals as novices or experts.

Method

Pattern classification analysis was performed on data obtained from GPs, IPs and UPs
for split-plane maneuvers, and on IPs and UPs for low-angle strafe maneuvers.
Three types of patterns were generated for each individual, based on MDS, networks
and raw ratings. Network patterns were formed for each individual by taking the
presence or absence of links in the network for each pair of concepts. The network
pattern for each subject consisted of a vector of ones and zeros representing the
presence or absence of a link, respectively, between each pair of concepts. An MDS
pattern consisted of a vector of the distances between the members of each pair of
concepts in multidimensional space. Patterns based upon the original ratings were
formed by considering the similarity rating for each pair of concepts as a feature of a
pattern. All three methods resulted in patterns with 435 features corresponding to all
the possible pairs of 30 concepts.

If Pathfinder and MDS successfully capture the latent structure within the ratings,
classification based on these techniques should be superior to classification based on
the ratings. Further, classification of the experts (i.e. IPs vs GPs) should be more difficult
than any classification involving UPs, if these techniques have produced psychologically
valid measures of conceptual structure.
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Results and discussion

The results of the pattern classification analysis are shown in Fig. 5. These percentages
are based on different numbers of classifications, depending on the number of members
of each group. In general, there are 2 Xn; Xn, individual classifications for each
comparison. Thus, the number of possible correct classifications ranged from 306 for
UP-GP down to 126 for IP-GP. Overall, classification of individuals into groups was
better than chance for patterns derived using all three methods, especially in dis-
criminating novices (UPs) from experts (IPs and GPs).

100~

75+

50

Classification of individuals (% correct)

Split —plane Strafe

[ Ratings Networks BB MDS distances

FI1G. 5. Results of pattern classification procedure applied to each pair of pilot groups for concepts from
both scenarios.

Classification was least successful using the original ratings and most successful
using distances derived from MDS solutions. For each pair of groups, classification
based on MDS distances was superior to classification based on the original ratings.
MDS was very successful at revealing the underlying structure in the rating data.
Classification accuracy using patterns derived from networks was also better than the
original ratings in each case. Thus, networks also reveal structure that is not directly
available in the original ratings.

Several conclusions follow from these results. First, pattern classification techniques

! can discriminate novices from experts with a high degree of success based upon both

. structural descriptions of their conceptual structure, and raw similarity ratings. Second,
. both MDS and Pathfinder showed superior classification compared to the empirical
 ratings, with MDS outperforming Pathfinder by 4% on expert-novice classifications
and 16% on expert-expert classifications. Finally, all procedures found it more difficult
to make expert-expert classifications based on conceptual structure than expert-novice
classifications.

]
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These classification results suggest that the structures imposed by MDS and networks
on raw data capture some valid structural information about the differences in the way
distinct groups of pilots organize conceptual information. In comparing MDS with
network representations, it would appear that MDS captures somewhat more of the
structural information that is useful in discriminating between groups of individuals.
The MDS superiority was especially noticeable in discriminating between the groups

of experts.

43. SUMMARY

In this section, an attempt was made to validate the conceptual structures represented
by networks and MDS. Validation took two forms. First, differences among the pilots,
especially between novices and experts, are revealed by these structures. Second,
conceptual structures based on MDS or Pathfinder contained more useful information
for classifying individuals than did the original ratings.

5. Applications

5.1. PREDICTION AND SELECTION

Prediction of pilot performance and selection of pilot trainees for job placement are
two potential applications of this work. Knowledge concerning the difterences between
each individual pilot trainee and a group of expert pilots enables one to select the
single trainee who most resembles the experts. Several techniques provide information
about individual differences. The methods described in this section have each been
used previously in this work to achieve other goals. For instance, pattern classification
has been used as a means of validating various types of cognitive representations
(networks, MDS). However, this technique can also be used to examine the similarities
or differences of an individual in relation to his group or to other groups. The assumption
that individuals and groups differ in their cognitive organization underlies each of
these techniques.

The individual difference analysis is exemplifizd with the split-plane scenario. In
each case, an attempt was made to rank the UPs in relation to the experts. Following
a discussion of each technique, the different rankings of the UPs generated from the
three techniques are compared.

Pattern classification
Pattern classification techniques are useful in reflecting how similar an individual is
to his group and how similar an individual is to some other group. Two measures are
of particular interest, the distance from an individual to the other group’s prototype
(how like the other group is the individual) and the distance from an individual to
the belonging group prototype point (how like the group is the individual). The
prototype point is that point representing the central tendency of a class of patterns.
The distance between an individual and a class prototype reveals how strongly that
individual represents the average features of that class. Identical ranks for individual
UPs were obtained using MDS and network patterns.

Table 3 gives the distances from an individual to the group prototype for experts
(IPs and GPs) and the distance from each UP to the group prototype for novices
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UP closest to the expert prototype (rank of 1). This suggests that the conceptual
structure of UP16 is most similar to that of the experts. Thus, one might predict that
UP16 would perform more like an expert on a particular flight-related task than would
other UPs. On the other hand, UP4 is furthest from the expert prototype, suggesting
a larger distinction between this individual and experts than between UP16 and experts.
Thus, these measures provide a means of detecting within and between group differences
and, consequently, are prediction and selection aids.

UP9 is the closest to the prototype of the undergraduates. In fact, if pattern
classification is conducted beween experts and UPs, using only UP9 as a single “known”
UP, classification is successful for 91% of the cases. Having this information about
members of a class could have pedagogical value. Instructors are often concerned
about the level at which to aim a lecture. One possibility is to make certain the
prototypical student has understood the material.

Individual differences scaling

Another method of ordering individuals is the INDSCAL MDS procedure. Earlier,
this technique was discussed to show that the pilot groups were separable based on
their cognitive structures. It is also possible to determine how each individual pilot
weights the dimensions and then to compare individuals in the resultant space.
INDSCAL locates individuals along the same dimensions on which concepts are
located. Thus, this scaling procedure reveals how much a particular individual relies
on a particular dimension. Earlier in this report, it was shown that UPs as a group
tended to weight the dimensions less than did experts. Here, the extent to which each
individual UP considers the dimensions can be determined. Individuals can be ranked
by their distance from the origin (0, 0, 0). For example, a UP that does not weight any
of the dimensions would be 0 units from the origin and quite unlike any expert (who
relies on the dimensions). A UP that weights the dimensions heavily has in some sense
a conceptual structure more like that of an expert.

Table 3 (column 2) gives, for each individual, the distance from the origin of the
three-dimensional MDS solution reported earlier. UP3 is the furthest from the origin
of all the UPs, suggesting that this individual relied heavily on the same dimensions
as did the experts, in making similarity judgments. In contrast, UP5 is very near the
origin, suggesting that this UP made very little use of the expert dimensions. As with
the pattern classification discussed previously, the INDSCAL procedure allows com-
parisons of UPs with experts. It has the advantage of restricting comparison to the
same conceptual space for experts and novices, but does not supply the information
about the prototypical student that the pattern classification technique yields.

Person space
The final individual difference analysis to be considered is a hybrid of the previous
two techniques. It is an attempt to represent the individuals in a multidimensional
space, but within a space that has dimensions relevant to the subjects, not to the
concepts. Thus, the plan is to position subjects in a space where the dimensions reflect
differences among the subjects. If this is successful, one of the dimensions should
reflect expertise.

To represent individuals in multidimensional space, an intersubject distance matrix
was derived, similar to the interitem distance matrix derived for the concepts. Distances
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for this matrix were derived from distances from each individual three-dimensional
- MDS solution. In this case, the individual can be thought of as a point in “n-
dimensional” space (n =435 dimensions based on the 435 distances for all pairs of 30
terms). The distance between two individuals would take into account the difference
in distance for each of the 435 pairs of points for the two individuals. These distances
resulted in a matrix of distances with individuals as rows and columns. The entries in
this matrix were simply the distance from one individual to another. These distance
values were then scaled in multidimensional space using one and two dimensions.
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FIG. 6. Two dimensional person space showing the location of each IP (I), each GP (G), and each UP (U).

Figure 6 shows the two-dimensional MDS solution. The experts and UPs are clearly
linearly separable. One of the dimensions can be readily identified as a dimension of
expertise, suggesting the technique has been successful at establishing a multi-
dimensional space with dimensions that characterize the subjects, rather than the
concepts. The second dimension is suggestive of a pedagogical-operational dimension,
with the IPs and GPs tending to occupy different ends of that dimension.

A one-dimensional MDS solution should extract the single dimension that accounts
for the most variance. The values along that dimension were transformed to set the
first pilot at a co-ordinate of 0; these values appear in Table 3. Comparison of these
values indicates the relative distance from one individual to another. Thus, it seems
that the one-dimensional solution ordered individuals along an expertise dimension.
The creation of the “person space” clearly helps to define the separate groups of
subjects and the locations of individuals in relation to the groups.

Again, UPs that are close to the expert end of the continuum should have organiz-
ations of flight-related information similar to those of experts. For this technique, UP6

| appears closest to the experts, with UP4 being most distant. In general, representation
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of individual pilots in multidimensional space provides a measure of distance that can
be used in prediction and selection.

Comparison of techniques

Each of the three techniques just discussed provides information that orders UPs in
relation to the experts. The techniques point to a different “best” student. However,
inspection of Table 3 also suggests that there is substantial agreement among the three
techniques in their ordering of the UPs. All agree, for example, that UP3 is superior
to UP4. Spearman correlations were performed on the ranks of the UPs in order to
more rigorously compare the techniques. The intercorrelation matrix appears in Table
4. All correlations were significant. As can be seen, there is a good deal of agreement

TABLE 4
Matrix of Spearman correlations for three individual difference measures

Person space INDSCAL Pattern classification
Person space 1-00 0-63 0-92
INDSCAL 0-63 1-00 0-74
Pattern classification 0-92 0-74 1-00

among the techniques. Pattern classification, INDSCAL, and the person space
developed here supply converging validation that may be useful in the selection of
students. Further, the techniques supply additional, different details about the popula-
tions that may further facilitate selection or aid in training.

5.2. TRAINING

In addition to implications for personnel and selection, an understanding of the
cognitive structures of experts and novices should have implications for training.
Although the underlying structures of some students are closer than are others to those
of experts, it should be possible to facilitate acquisition of the expert structure for the
students in general. Accomplishing this requires that it first be determined which
concepts are not well understood by the UPs relative to expert fighter pilots. This
requires that the information critical to expertise be determined. This is not a trivial
problem because any individual expert will tend to have associations that, while perhaps
useful, are not necessary for expertise. Thus, the problem is to determine which
associations in an expert knowledge base are necessary or essential for expertise and
which are not. The scaling procedures considered in this report may help to select the
critical associations.

We defined critical information as those components of the cognitive structures that
tend to be present in all experts. Any information in the knowledge structure of one
group of experts, but not another, cannot be prerequisite component of expertise. After
the information critical to expertise is established, one can compare the UPs to the
experts, and isolate the concepts that have been mastered by the students. In addition,
those concepts which are the most disparate from those of the experts can be determined
and thus provide some information concerning which deficits should be addressed first

in any pedagogical intervention.
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The right stuff
The split-plane data of the two groups of experts, IPs and GPs, were considered first.

Defining expertise based on these two groups has several advantages. Most importantly,
comparing two relatively different groups that are both expert reduces the likelihood
that idiosyncratic components of the cognitive structures will manifest themselves as
critical components of expertise. As we showed earlier, IPs could be distinguished
from GPs; although, of course, the distinction was not as great as between UPs and
either of our expert groups. The information common to IPs and GPs should be the
minimal structure necessary for expertise.

The Pathfinder analyses were used to determine those features of networks that
tended to be characteristic of expertise. The networks for IPs and for GPs considered
earlier were compared and any common links were extracted. The resulting network
consisted of one major network, three isolated concept pairs, and five isolated single
concepts. Thus, IPs and GPs agreed on a way to interconnect 19 of the split-plane
concepts and agreed on an additional three pairwise associations; IPs and GPs did
not agree on any particular link for five concepts. Then the isolated pairs were linked
to the main network by allowing either member of the pair to connect to a particular
concept in the main network. For example, IPs and GPs agreed that AIRSPEED is
related to the pair ACCELERATION-EXTENSION; however, IPs had AIRSPEED
and ACCELERATION linked, whereas GPs linked AIRSPEED with EXTENSION.
A similar procedure linked the isolated single concepts to the main network. The
resulting structure of ‘“‘expertise” is shown in Fig. 7.
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F1G. 7. Network overlap for IPs and GPs. Bold links are also found in the UP network.

3-9
line

Novices and experts
Next, the network for UPs was compared with the expert structure. A bold line in Fig.

7 represents a link present in the UP network. As can be seen, a number of critical
links are also held by UPs. These links centre around the concept of airspeed and, to
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a lesser extent, the concept of guns. Several links are not present in the UP network.
For example, the links near the concept lag roll are almost totally absent from the UP
network.

In order to quantify UPs’ understanding of the concepts, each of the 30 split-plane
concepts was considered individually. For each concept, students might differ from
experts in two general ways. Students may not have some of the critical associations
that experts have (as illustrated in Fig. 7). Alternatively, students may have associations
between concepts that neither group of experts has (e.g. the network of UPs has a link
between HIGH YO YO and LOW YO YO, although for any expert these concepts
are relatively unrelated). These two general dimensions can combine to produce four
different types of concepts: (a) a concept can be well-defined in that the critical links
are present and the student does not see many spurious additional relations; (b) a
concept can be overdefined in that the critical links are present, but the student also
has a number of inappropriate links; (c) a concept can be underdefined in that the
critical links are absent as are idiosyncratic links; and (d) a concept can be misdefined
in that the critical links are absent and the student has many idiosyncratic, nonexpert
connections.

The following values were computed for each concept: (a) the proportion of critical
links found in the UP network, and (b) the proportion of the UP links that were found
only in the UP networks (i.e. the “extra” links that occurred in neither the IP nor the
GP network). A median split along each variable led to the classification of concepts
appearing in Table 5. The well-defined concepts tend to be those involved in flying
the aircraft, with some consideration of the aircraft’s tactical functions, but no terms
showing an understanding of split-plane maneuvers or an understanding of air-to-air
combat scenarios. Interestingly, these well-defined concepts probably evoke a reason-
ably accurate meaning from a reader naive of tactical flight procedures.

Students’ judgments of familiarity are reasonably consistent with the classification
in Table 5. Well-defined concepts are the most familiar with misdefined concepts
the least familiar. However, familiarity does not always agree with the Pathfinder
analyses. For example, some underdefined concepts (CUTOFF and VERTICAL
MANEUVERING) and some misdefined concepts (ACCELERATION, 6
O’CLOCK, RELATIVE ENERGY) are judged as very familiar. For each of these
“familiar” concepts, it seems the student is not aware of the true scope of the concept.
The student seems to have an understanding of the concept in a narrower sense than
does the expert. Inspection of Fig. 7 reveals that each of these concepts has a critical
connection in the expert structure to a concept that the students have not experienced.
For example, whereas students are familiar with ACCELERATION and, in fact, have
a global understanding of it, they are missing the critical connection with EXTENSION,
a concept with which they have had little or no experience. Thus, UPs have an
understanding of ACCELERATION in the same sense that a psychology undergradu-
ate, who knows nothing of analysis of variance, might have an understanding of
Student’s ¢.

If UPs do have much of the cognitive structure of the experts for the well-defined
concepts, and little of the expert structure for the misdefined concepts, then
classification based on these subsets of concepts should reflect the difference in
understanding. Classification of UPs and experts based only on the well-defined
concepts should be relatively poor because there would be little information in these
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TABLE 5
Thirty split-plane concepts grouped by UP understanding

Familiarity

Well-defined concepts

AIRSPEED 3-00
OVERTAKE 3-00
G-LOADING 2-94
SMASH 2-81
LIFT VECTOR 2-75
CORNER VELOCITY 2-38
GUNS 2-00
SWITCHOLOGY 1-81
Mean 2-59
Underdefined concepts

CUTOFF 3-00
VERTICAL MANEUVERING 2-88
ANGLE-OFF 2:00
WEAPONS PARAMETERS 1-75
PURE PURSUIT 1-56
LEAD PURSUIT 1-50
ASPECT ANGLE 1-19
QUARTER PLANE 1-13
Mean 1-88
Over-defined concepts

POWER SETTING i 3-00
BARREL ROLL 2-94
HI YO YO 1-50
RADIAL G 1-31
Mean 2-19
Misdefined concepts

ACCELERATION 2:94
6 O'CLOCK 2-81
RELATIVE ENERGY 2-75
LAG PURSUIT 1-50
LOW YO YO 1-38
3-9 LINE 1-25
SNAPSHOT 1-19
LAG ROLL 1-19
HEAT 1-19
EXTENSION 1-19
Mean 1-74

concepts that would allow classification. On the other hand, classification based on
the misdefined concepts should be relatively successful because the UPs differ a great
deal from the experts.

Pattern classification of UPs and experts was performed using each of the four
subsets of concepts. Correct classifications were 82%, 85%, 85% and 100% for
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well-defined, overdefined, underdefined and misdefined sets of concepts, respectively.
. Again this classification is particularly easy, even when using only the minimum distance
classification (i.e. the initial step in classification) and only a subset of the concepts.
However, consistent with expectations, there were differences at this high level of
success: the well-defined concepts yielded poorest classification and misdefined con-
cepts yielded the best classification. In fact, with only the subset of misdefined concepts
the classification was perfect. In addition to supporting Table 5, these results have the
practical advantage of allowing classification with only a small portion of the total
data set, thus reducing the amount of data that needs to be collected and the run time
of the algorithm.

The information provided by our analysis of individual concepts could be of use in
organizing a training curriculum. The analysis shows which concepts should be stressed
and which seem to be well understood. In short, these methods give detailed information
about the the structure of knowledge in addition to an indication of what students
need to learn.

5.3. EXTRACTING EXPERTISE

With the advent of expert systems-technology, the problem of obtaining expert knowl-
edge in a form appropriate for coding into assertions and rules has become a primary
concern (Hayes-Roth, Waterman & Lenat, 1983). The techniques we have discussed
in this paper may prove to be useful in the effort to develop more formal procedures
for obtaining and representing expert knowledge. Gammack and Young (1985) have
discussed possible uses of multidimensional scaling in defining the relations among
key concepts. The networks produced by Pathfinder may also be of use to the knowledge
engineer in determining which pairs of concepts need further analysis to determine
specific relations.

As an illustration, we presented the links obtained in the IP networks for both the
split-plane and strafe concept sets to an expert fighter pilot. The expert identified seven
types of links in each set of concepts. For the split-plane concepts, the types of links
were: AFFECTS (15 links), IS A (11 links), LEADS TO (five links), DESIRABLE
(four links), ACCEPTABLE (two links), SELECTS (two links), and INSTRUMENT
OF (one link). The link types in the strafe concepts were: AFFECTS (12 links),
DETERMINES (11 links), IS POINT OF REFERENCE FOR (five links), DESIR-
ABLE (five links), IS (three links), AVOIDS (two links), and INSTRUMENT OF
(one link).

The network solution reduced the 870 pairs (435 in each set) to 79 links (40 in
split-plane and 39 in strafe) for detailed analysis by our expert. Evaluating the 79
linked pairs was relatively simple compared with working with all of the original pairs.
The use of the network scaling technique along with the identification of the type of
each link results in seven types of relations for each set of concepts or a total of about
ten distinct relations. This reduction could be a useful step in the process of organizing
and codifying a large number of potential relations. The Pathfinder scaling algorithm
can help pinpoint the important pairs of concepts for additional analysis.

5.4. SUMMARY

Possible applications of the scaling procedures to selection and training have been
suggested. Information about conceptual structure might be profitably applied to aid
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T in decisions about assignments to fighter aircraft. Three techniques developed to assess

individual differences showed considerable agreement in their suggestions of which
undergraduate pilots should be directed to lead-in fighter training. In addition, the
attempts here to apply information about conceptual structure to training suggested
particular points in the UPs’ understanding that could benefit from intervention. The
particular weak points in the knowledge structure were suggested by Pathfinder and
MDS, sometimes in the face of the students’ self-perception of their familiarity with
the concepts. The subset of misdefined concepts contained enough information about
the pilots to classify them perfectly.

The success of the methods at discriminating among pilots of varying expertise based
on measures of conceptual structure suggests that scaling methods may provide some
empirical techniques for measuring the structure of expertise. These techniques should
have application in training and selection as well as in artificial intelligence systems
that attempt to represent knowledge structures. The application of these techniques in
obtaining and representing expert knowledge is a promising direction for future work.

This research was supported by contract F33615-80-C-0004 from the Air Force Human
Resources Laboratory awarded to R.W.S. while F.T.D. was a visiting professor.
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