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The cognitive organization of a set of abstract programming concepts was investig-
ated in subjects who varied in degree of computer programming experience.
Relatedness ratings on pairs of the concepts were collected from naive, novice,
intermediate, and advanced programmers. Both individual and group network
representations of memory structure were derived using the Pathfinder network
scaling algorithm. Not only did the four group networks differ, but they varied
systematically with experience, providing support for the psychological meaningful-
ness of the structures. Additionally, an analysis at the conceptual level revealed that
the four groups differed in the way concepts were represented. Furthermore, this
analysis was used to classify concepts in the naive, novice, and intermediate

o networks as well-defined or misdefined. The identification of semantic relations
corresponding to some of the links in the networks provided further information
concerning differences in programmer knowledge at different levels of experience.
Applications of this work to programmer education and knowledge engineering are
discussed.

Introduction

The investigation of cognitive differences between experts and novices is important

to those interested in education or training programs that attempt to make experts

out of novices or select individuals for their potential expertise (e.g. Schvaneveldt,

Durso, Goldsmith, Breen, Cooke, Tucker & DeMaio, 1985) and those concerned

with the development of expert knowledge-based systems that rely heavily on expert

knowledge (Cooke, 1985; Dreyfus & Dreyfus, 1987). By definition, experts’

performance on tasks within their domain of expertise is superior to that of novices.

Specific differences between experts and novices have been investigated in tasks

4 requiring recall, categorization, relatedness judgements, and problem solving. In

: general, the results of these studies have indicated that not only do experts possess

more knowledge than novices, but any knowledge that is shared by the two groups is
i organized differently in memory.

Researchers who have investigated expertise in the domains of chess, bridge, and

Go, found that experts were able to recall more information than novices when the

to-be-recalled material was presented in a meaningful fashion. On the other hand,
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there was no advantage of expertise when the material was randomly arranged
(Chase & Simon, 1973; Engle & Bukstel, 1978; Reitman, 1976). Because the experts
in these studies did not have a greater memory capacity than the novices, their recall
advantage was attributed to superior pattern recognition skills and chunking. In
other words, experts, by virtue of domain-specific information stored in memory,
were able to recognize quickly chunks of related items and hold the chunks as single
units in short-term memory.

Several studies have been directed at uncovering the basis of experts’ chunks.
That is, given that a characteristic of expertise is chunking of domain-related stimuli
and that the chunking process is driven by information stored in memory, then it is
of interest to study the organization of this information in memory. In general, this
issue has been addressed by contrasting the judgements (or memory representations
derived from judgements) of experts and novices. Differences in the way experts
and novices categorize their domain have been found in studies requiring subjects to
sort physics problems (Chi, Feltovich & Glaser, 1981), math problems (Schoenfeld &
Herrmann, 1982), and childhood disorders (Murphy & Wright, 1984). These effects
of expertise on categorical judgements have supported the view that experts and
novices differ in the way information is organized in memory. Further support has
been provided by a study on fighter pilot expertise in which network and spatial
memory representations of instructor and undergraduate trainee pilots were
generated from relatedness ratings of pairs of flight-related concepts (Schvaneveldt
et al., 1985b). Results indicated that the representations of the two groups of pilots
were distinct. In fact, individual pilots could be accurately classified as instructors or
trainees based on their cognitive representations.

Increased interest in human—computer interaction has led to research on the
differences between expert and novice computer users. Much of this research has
focused on computer programmers, a specific class of computer users. In general,
results have indicated that, like experts and novices in other domains, programming
experts and novices organize programming knowledge differently.

The recall results of Chase & Simon (1973) and others have been replicated in the
domain of programming using coherent and shuffled FORTRAN (Shneiderman,
1976) or ALGOL (McKeithen, Reitman, Rueter & Hirtle, 1981) programs as
stimuli. Increased experience resulted in superior recall performance for the
coherent programs, but there was no effect of experience for the shuffled programs.
Therefore, programming experts appeared to benefit from the ability to organize
and chunk lines of code in coherent programs.

Several studies have addressed expert and novice differences in the organization
of programming knowledge. In a second experiment, McKeithen et al. (1981) had
subjects recall ALGOL reserved words in a multi-trial cued recall task and derived
tree structures from the recall protocols to represent the underlying cognitive
organization of the reserved words. Experts organized the words based on their
meaning in the ALGOL program, whereas novices organized the words according to
mnemonics or surface features. McKeithen et al. (1981) also noted that experts’ tree
structures were quite similar to each other, whereas novices’ structures were more
variable, suggesting that programming expertise was not completely idiosyncratic to
individual experts.

In a similar study, Adelson (1981) had expert and novice programmers recall lines
of a PPL program. Multidimensional scaling representations of conceptual structures
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were generated from the recall order. Results indicated that, in comparison to
novices, experts recall more, chunked more information together into a single unit,
and agreed more with each other on recall order. In addition, experts organized the
code according to programs or routines, whereas novices organized the code
according to syntax or surface features. In another study, Adelson (1984) found that
experts represented programs in memory at an abstract level of operations, whereas
novices’ representations focused on concrete aspects of the program such as the
methods used to accomplish the operations. Adelson (1985) later investigated
experts’ categorization of abstract programming concepts and found evidence for a
basic level category and prototypicality differences within the category.

Soloway, Ehrlich & Bonar (1982) employed a cloze test technique to investigate
programming knowledge in the form of high level plans. Subjects were required to
fill in the blank of a Pascal program with a line of Pascal code. Differences between
experts and novices were evident in the line of code that was generated. Also,
experts’ answers were less variable than those of novices.

The findings from these studies are similar and can be summarized as follows: (1)
expert programmers recall more of a coherent program than novices, and this effect
has been attributed to the experts’ ability to chunk lines of code; (2) experts
organize programming information according to deep structure (i.e. routines,
meaning, or operations), whereas novices organize programming information
according to surface structure (i.e. syntax, mnemonics, or methods); and (3)
judgements or cognitive representations of a group of experts are less variable than
those of a group of novices.

Studies on programming experience have also had several methodological features
in common. More specifically, there has been a tendency to use individuals with
some programming experience as the least experienced programmers, consequently
ignoring naive programmers with no programming experience whatsoever (but see
Shneiderman, 1976). The cognitive structures of individuals prior to exposure to
domain-related material might reveal various preconceived notions, misconceptions,
or prior knowledge that would be of interest to those interested in education.
Consequently, naive programmers were included as subjects in this study, along
with novice, intermediate, and advanced programmers.

In addition, stimuli used in research on programming expertise have been either
lines of programming code or reserved programming words and consequently are
highly specific to a programming language (but see Adelson, 1985). Thus some of
the cognitive structures that have been observed might be specific to the particular
programming language that was used in the study. For instance, although Adelson
(1984) found that experts represented PPL programs at an abstract level of
operations, the basis of the organization might be quite different for a language such
as APL which contains many high-level constructs or operations. The use of abstract
programming concepts that are not related to particular programming languages,
but that are basic to an understanding of programming, might aid in tapping into
what Shneiderman (1980) refers to as “semantic knowledge”. According to
Shneiderman’s (1980) syntactic/semantic model, syntactic knowledge is specific to
each programming language, is precise, and easily forgotten. On the other hand,
semantic knowledge is not language-specific, but has to do with general program-
ming concepts. In order to address this issue, a set of abstract programming
concepts was used as stimuli in this study.

sl
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In addition to the use of naive programmers and a set of abstract programming
concepts, empirically derived cognitive networks were employed in this study to
investigate cognitive differences with variations in programming experience. Re-
cently, an algorithm (Pathfinder) has been developed that generates network
representations (PFNETSs) of a set of items (Dearholt, Schvaneveldt & Durso, 1985;
Schvaneveldt, Durso & Dearholt, 1985). The items represented in the network can
take the form of abstract concepts, events, conditions, actions, or individuals. The
PFNETs are generated from proximity estimates of pairs of these items. For
instance, proximity estimates for a set of concepts can be obtained by having
subjects judge the pairwise relatedness of the concepts. It is assumed that the
relatedness ratings provide an estimate of distance between concepts in memory.
Given the proximity estimates, the Pathfinder algorithm produces a network in
which items are represented as nodes and relations between items are represented as
links between the nodes. A weight corresponding to the strength of the relationship
between two nodes is associated with each link and reflects the distance between the
nodes (see Schvaneveldt et al., 1985a, for additional details).

The Pathfinder network scaling technique was chosen for this research
because it provides information about cognitive structure that seems particularly
applicable to the investigation of programming expertise. That is, the PFNETSs
generated by Pathfinder are not limited to hierarchical relations, as are structures
generated by hierarchical cluster analysis. Also, whereas the dimensions of
multidimensional scaling representations reveal global relations among concepts,
PFNETs provide information about local relations among the concepts and,
consequently, suggest specific relations or misconceptions.

Additionally, although Pathfinder is a relatively new scaling technique, it has been
applied to numerous domains with promising results. For instance, Pathfinder has
been used to elicit and represent knowledge from users of computer systems in
order to improve the UNIX help facility (McDonald, Dearholt, Paap & Schvane-
veldt, 1986) and to organize a menu system in a cockpit (Roske-Hofstrand & Paap,
1986). In such applications, Pathfinder can be used to organize a menu system so
that for each node (menu panel), all linked nodes (other related panels) can be
accessed in one step. Pathfinder also has several advantages as a knowledge
elicitation tool for expert systems (Cooke & McDonald, 1986; 1987). The
methodology requires experts to make simple relatedness judgements as opposed to
traditional knowledge engineering interviews in which the expert has to introspect
and verbally report on details of his knowledge.

Finally, results from several studies have shown that Pathfinder representations
are psychologically meaningful and in some cases are superior to multidimensional
scaling representations. More specifically, Cooke, Durso & Schvaneveldt (1986)
compared Pathfinder representations to multidimensional scaling representations in
terms of their ability to account for recall performance. Results indicated that
PFNETs were more predictive of free recall order than multidimensional scaling
representations and that lists organized according to the PFNET structure were
easier to learn than those organized according to the multidimensional scaling
structure.

In general, the Pathfinder scaling technique seems to be a useful aiternative to
hierarchical clustering and multidimensional scaling, and results of empirical studies
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have supported its psychological validity. Therefore, the purpose of this study was to
investigate differences in cognitive organization, as represented by PFNETs, with
variations in programming experience and to extend previous findings to deal with
naive programmers and stimuli that are not specific to a programming language.

Study 1

METHOD

Subjects

A total of 40 subjects (10 in each of four groups) participated in this study. The
four groups were defined as follows: (1) advanced—3 or more years of
programming experience; (2) intermediate—1 to 3 years of programming
experience; (3) novice—up to 1 year of programming experience; and (4)
naive—no programming experience. Programming experience was defined for the
purposes of this study as continuous programming experience which could include
class work, job experience, and programming done at home. The majority of the
subjects were introductory psychology students at New Mexico State University who
participated in the study in order to partially fulfill a research requirement. Some of
the intermediate and advanced subjects were volunteer graduate sutdents and
faculty from the computer science and psychology departments.

Each subject completed a questionnaire concerning the specifics of his or her
programming experience. Advanced programmers averaged 7-7 years (range = 3-5
to 15-0) of programming experience and had used an average of 6-7 (range =4-0 to
15-0) different programming languages. Intermediate subjects averaged 1-7 years
(range = 1-0 to 3-0) experience and 2-7 (range = 2-0 to 5-0) programming languages.
All of the advanced and intermediate subjects were familiar with one or more of the
programming languages, Basic, Pascal, and FORTRAN. Other languages that had
been used included APL, Cobol, Assembly, C, Prolog, and ALGOL. Novices
averaged 0-25 years (range=0-04 to 0-33) experience and an average of 1-4
(range = 1-0 to 3-0) languages. Novice subjects had used one or both of the
languages, Pascal and Basic. Some novices had also used FORTRAN.

Materials

The set of 16 programming concepts presented in Table 1 served as stimuli.
Originally, a larger set of 25 concepts was selected from chapter headings in Graham
(1979), an introductory computer science textbook. Care was taken to select
concepts that were not specific to a programming language, but that were basic to an

TasBLE 1
Set of programming concepts

Repetition Output Subroutine  Function
Parameter Sort Search Operator
Algorithm Program Assignment  Array

Global variable  Character data  Debug Numerical data

il ﬂwm "
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understanding of programming. Results of pilot studies indicated that the subset of
16 items in Table 1 discriminated the most among programmers of varying degrees
of experience. Although these 16 concepts clearly do not exhaust the domain of
computer programming concepts, it was assumed that the set was sufficient to reveal
some cognitive differences due to programming experience.

Procedure

Subjects were seated in front of a TERAK 8510 microcomputer upon which
instructions were displayed. The instructions described a preliminary familiarity
rating task in which subjects were to assign ratings on a scale from zero to nine to
each of the 16 programming stimuli on the basis of their familiarity with the concept
(zero = unfamiliar, nine = very familiar). The familiarity ratings were used mainly as
a check to ensure that the concepts were familiar to at least the more experienced
subjects, and that familiarity was not the sole basis for discrimination among groups.

After the familiarity ratings were completed, subjects were presented with
additional instructions concerning a relatedness rating task. They were informed
that there were generally several dimensions along which concepts could be related
(e.g. similarity, frequency of co-occurrence, importance, generality). However, the
instructions stressed that the subjects should base their rating on their first
impression of relatedness. The scale ranged from zero to nine; zero indicated that
the pair was highly unrelated and nine indicated that the pair was highly related.
During the rating task, the scale with a movable bar marker was displayed along the
top of the screen. The marker could be moved by pressing one of the keys marked
zero through to nine on the keyboard.

After the instructions were read, subjects were presented with the complete list of
16 stimuli arranged in a random order so that they would be aware of the scope of
the concepts that they would be rating. Following this presentation, the relatedness
rating task began. All possible pairs of the 16 items (120 pairs) were presented one
at a time and in a random order. The position of the items in each pair was
counterbalanced across subjects. Each pair remained on the screen until the subject
entered a rating. Subjects could change their rating during the presentation of a pair
and indicated their final judgement by pressing the SPACE BAR which initiated the
next trial.

RESULTS AND DISCUSSION

Relatedness ratings

In order to determine whether the general effect of experience on intragroup
agreement was replicated in this study, relatedness ratings among subjects were
correlated. The average Spearman correlations among individuals within the same
group and in different groups are presented in Table 2.

Planned comparisons were performed to test for differences among these
correlations using the Wilcoxin—-Mann—Whitney test (Steele & Torrie, 1980). As
anticipated, correlations among individuals within the same group were significantly
greater than correlations among individuals in different groups (z ranged from 2-17
intermediate—advanced comparison to 10-73 for the naive—advanced comparison,
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TABLE 2
Mean Spearman correlations of relatedness ratings
among subjects

Naive Novice Intermediate Advanced

Naive 0-4651 0-187 0-178 0-119

Novice 0-207% 0-159 0-134

Intermediate 0-235+ 0-268+

Advanced 0-387%
+ P <0-05.

P<0-05 in all cases). Consistent with previous results (e.g. Adelson, 1981;
McKeithen et al., 1981; Soloway et al., 1982), correlations among subjects in the
advanced group were greater than those in the intermediate group (z =5-54,
P<0-001) and novice groups (z = 6-23, P <0-001). However, the addition of the
naive group resulted in a U-shaped relationship between experience and agreement.
Naive subjects agreed slightly more than advanced subjects (z = 2-48, P <0-05) and
also more than novices (z=7-09, P<0-001) and intermediates (z =655, P<
0-001). These results suggest that the naive programmers were using a common
cognitive structure to assign the ratings. The low correlations between advanced
programmers and naives, however, suggested that this naive structure was not the
same structure that the advanced subjects used. Possibly, the naive structure was
based on existing natural language relations for the concepts or common misconcep-
tions about programming. The underlying basis for the naive agreement is further
addressed in some analyses to follow.

In general, correlations indicated that the ratings of individuals in the four groups
differed. It should be noted that mean familiarity ratings for the naive, novice,
intermediate, and advanced groups were 4-9, 5-6, 7-6, and 7-5, respectively. Planned
comparisons between pairs of groups revealed that familiarity ratings did not differ
significantly between advanced programmers and intermediates or between naives
and novices. Thus, it is unlikely that familiarity was the sole basis for differences in
relatedness ratings.

Pathfinder networks

Relatedness ratings were converted to distances by subtraction from nine. The
distances obtained from each subject were then submitted to the Pathfinder
algorithm. The 40 sets of distance estimates that were submitted separately
ultimately resulted in 40 different PFNETs. The Pathfinder algorithm can generate
a family of PFNETs for each set of distance estimates. The PFNETs differ in
density (i.e. number of links) depending on the values taken by parameters r and q.
The r parameter is based on the Minkowski r-metric and defines the length of a path
(one or more links) between two nodes. As r decreases, links are usually added to
the PFNET. The parameter g defines the maximum number of links in a path and
also affects PFNET density. Schvaneveldt et al. (1985a) provide additional details.
The parameters r = infinity and g =n —1 (15 in this case) were chosen for the
PFNETS constructed in this study. These parameters generate the simplest PENET
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(a tree unless there are ties) and require only ordinal assumptions to be made about
the distance estimates.

The number of links in the 40 PFNETs ranged from 18 in an advanced PFNET to
58 in one of the naive PFNETs. It should be noted that each of the PFNETs
contained one or more cycles (i.e. more than 15 links) and therefore could not be
represented as a hierarchical tree structure. The average number of links was 36-9,
25-2, 25-7, and 25-1 for the naive, novice, intermediate, and advanced groups,
respectively. These differences were significant, F (3,36) =4-46, MSe =75-21,
P <0-01. Paired comparisons indicated that this effect was due to the greater number
of links present in the naive PFNETs than in the other PFNETs (Naive versus
novice: t(18) =2-76, SE =423, P <0-05; naive versus intermediate: #(18) =2-51,
SE = 4-46, P <0-05; naive versus advanced: #(18) = 2-45, SE =4-81, P <0-05). The
large number of links in the naive PFNETs is indicative of a larger number of ties in
the distance estimates. Examination of the frequency distributions of ratings
indicated that the naive subjects tended to use the two end points of the rating scale
more than other subjects. It is not surprising that naive programmers viewed the
concept pairs as either related or unrelated. Lacking knowledge about the domain,
they were unable to make any finer discriminations. Thus, this tendency to use a
reduced scale resulted in more ties in the data and consequently more links in the
PFNETs.

In order to simplify the examination of specific structural differences among the
PFNETSs of the four groups of subjects, distance estimates were averaged across
subjects within each group and submitted to the Pathfinder algorithm. Averaging
tends to reduce noise caused by spurious judgements and generates combined
weightings in cases in which subjects judged relatedness along multiple dimensions.
However, the averaging of distance estimates is problematic, particularly in cases in
which intragroup correlations are low (e.g. the novice and intermediate groups).
Therefore, the group PFNETs are supplemented with information about the
individual PFNETs.

The four PFNETs that were generated using the average distance estimates are
presented in Figs 1-4. The naive, novice, intermediate, and advanced PFNETSs
contained 19, 16, 15, and 16 links, respectively. Nodes were physically located on
the page so as to minimize crossing of links. Each of the links is labelled with a link
weight (indicating the strength or the weight of that link in the average structure). In
addition, a ‘“‘consensus” value is attached to each link. This value indicates the
number of individual PFNETSs out of the ten in the relevant group that contained
that link. Thus, the consensus value provides a check on the averaging procedure.
Links that have low consensus values should be interpreted with caution. On the
other hand, every link in the four group PFNETs was present in at least two of the
PFNETs for that particular group of subjects. Further, two-thirds or more of the
links in each group PFNET were contained in the PFNETs of five or more
individuals in that group.

Inspection of the group PFNET for the naive subjects revealed that many of the
linked concept pairs had associations in natural language. For example, the concept
search was linked to sort, debug, and global variable. Relations exist in natural
language between search and each of these concepts (e.g., search and sort are two
similar activities, eliminating bugs involves searching for them, a widespread search




NETWORK REPRESENTATIONS OF PROGRAMMING CONCEPTS 415
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FiG. 1. Pathfinder network representation of the average naive cognitive structure. (Consensus values are
in parentheses next to link weights.)

is a global search). As previously discussed, a possible explanation for the the
relatively high naive intragroup correlations was that naive subjects based their
ratings on a shared conceptual structure that had to do with the meanings of the
terms in natural language. Thus, even though the subjects were told that the
concepts were programming concepts, it is likely that they lacked a conceptual
representation for many of the items in a programming context, and therefore,

operator

FiG. 2. Pathfinder network representation of the average novice cognitive structure. (Consensus values
are in parentheses next to link weights.)
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FIG. 3. Pathfinder network representation of the average intermediate cognitive structure. (Consensus
values are in parentheses next to link weights.)

parameter

variable

FiG. 4. Pathfinder network representation of the average advanced cognitive structure. (Consensus
values are in parentheses next to link weights.)
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made judgements on these items in terms of the associated concept outside of the
programming domain. Whereas it is important to distinguish between concepts and
words, it is also of interest to identify naive misconceptions that might be caused by
associations of a programming concept to another for which prior knowledge exists.

It should be noted that the presence of a link in a PFNET implies that a relation
exists; however, the Pathfinder output provides no explicit information concerning
the nature of that relation (i.e. semantic link labels such as is-a or has-a).
Consequently, although the links in the navie PFNET lend themselves to natural
language associations, the present analysis provides no information relevant to this
claim. Alternatively, naive subjects could have based their relatedness judgements
on a naive model of computer programming which could have resulted in relations
that were quite different from those based on the natural language meanings of the
words. This issue is addressed in the second study in which subjects were asked to
identify relations associated with links in the PFNETs.

The advanced PFNET revealed some interesting characteristics of programming
experience. The cycle (subroutine, function, and program) present in the PFNET
made sense at an intuitive level. Also, some concepts (e.g. program, sort) were
connected to more concepts than others. These highly connected nodes might
represent pivotal concepts in the memory organization of advanced programmers.
Visual inspection of PFNETSs is useful in the identification of specific structural
features of each of the representations, but in order to summarize the similarities
and differences of several PFNETs a more systematic, quantitative analysis is
required. In the next section the PFNET structures are compared quantitatively in
order to investigate structural differences across the four levels of experience.

Quantitative comparison of PFNETs

An examination of Figs 1-4 suggests that the four group PFNETs differ, although
the extent of the differences is difficult to determine by visual inspection. One would
expect, for instance, the advanced structure to be more like the intermediate
structure than the naive structure because the former group is more similar in terms
of programming experience. However, such information is not immediately ap-
parent in the PFNETs. Therefore, in order to determine how the group PFNETSs
resemble each other, correlations were performed on the structures.

Each of the four group PFNETs was represented as a vector of 120 values (one
for each pair of concepts). The values were the sum of the link weights along the
shortest path in the PFNET connecting each pair of nodes. Consequently, for linked
pairs the value was simply the link weight. Spearman correlations were performed
on pairs of these vectors and are presented in Table 3. In general, the correlations
were higher for groups that were adjacent to each other, such as advanced and
intermediates (mean r = 0-261), than for groups that were separated by one (mean
r =0-176) or by two (mean r =0-063) other groups. These results lend support to
the psychological validity of the Pathfinder representations in that, as one would
expect, the PFNETSs of groups with similar levels of experience were more alike
than those of groups with different amounts of experience.

Results thus far have indicated that the subjects in the different experience groups
rated pairs of programming concepts differently and that the PFNETs that were
generated from the ratings were also structurally different. Furthermore, the
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TABLE 3
Spearman correlations of group PFNETs

Naive Novice Intermediate Advanced

Naive 1-000  0-150 0-076 0-063

Novice 1-000 0-213% 0-279%

Intermediate 1-000 0-419%

Advanced 1-000
+ P <0-05.

differences between group PFNETSs tended to be smaller for groups of subjects with
similar amounts of programming experience. However, these analyses only quan-
tified the overall similarities (or differences) of the PFNETs. It is also important to
identify specific features of the representations that underly the overall similarities
and differences. For instance, what features of the intermediate representation make
it more like the advanced representation than the naive representation? One specific
way that the group PFNETs differ is in the way that specific concepts are
represented in each structure. In this paper the representation of a particular
concept is defined as consisting of the set of all other concepts to which it is directly
linked in the PFNET. For any two PFNETs, the representation for some concepts
may be quite similar, whereas for other concepts they may differ. For example,
function is linked to the concepts output, program, and assignment in the naive
PFNET, to program in the novice PENET, to parameter, operator, and subroutine in
the intermediate PENET, and to program, operator, and subroutine in the advanced
PFNET.

Such differences in conceptual representation were systematically analysed using a
strategy similar to one employed by Schvaneveldt et al. (1985b) in order to identify
concepts that were understood (or misunderstood) by undergraduate pilot trainees.
Degree of concept understanding by undergraduate pilots was defined in terms of a
comparison of the undergraduate conceptual representation to the representation of
the same concept in the expert (instructor pilot) PFNET. A concept in an
undergraduate PFNET could be linked to the same concepts as in the instructor
PFNET, indicating an understanding of the concept at the instructor level, or linked
to different concepts indicating a lack of advanced understanding of that particular
concept. Thus, in the following analyses, advanced conceptual representations were
used as standards against which to evaluate concept understanding of the less
experienced programmers.

Before conceptual differences in PFNETs were analysed, it was important to
demonstrate that they existed. That is, were individual concepts represented
differently (i.e. linked to different sets of concepts) in the PFNETs of the advanced
programmers from what they were in the intermediate PFNETs? This idea was
quantified by representing each concept (the target concept) for each of the four
groups as a vector of 15 values corresponding to the 15 other concepts. Each value
took the number of individual PFNETs in that group in which a link occurred
between that concept and the target concept. Thus, values ranged from O in cases in
which the concept and the target were not linked in any of the PFNETs to 10 in
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cases in which they were linked in all of the PFNETs for that group. For each
concept, a difference value for any two groups can be computed by summing the
absolute differences of the two vectors for those groups. The larger the difference
value, the more disparate the two conceptual representations.

Difference values were computed for each concept and for each of three
comparisons, advanced versus naive, advanced versus novice, and advanced versus
intermediate. Mean differences were 35-50, 27-28, and 20-00 for the naive, novice,
and intermediate comparisons, respectively. These differences were significant,
F(2, 30) = 22-084, MSe = 43-55, P <0-001. All three paired comparisons were also
significant: naive/advanced versus novice/advanced, ¢(30)=2-756, SE =2-948,
P <0-01; naive/advanced versus intermediate/advanced #(30) = 5-268, SE =2-943,
P <0-001; and novice/advanced versus intermediate/advanced #(30) =4-178, SE =
1-765, P <0-001. The effect of concepts, however, was not significant. These results
indicated that there were differences in the way that concepts were represented in
the advanced PFNETs and the PFNETSs of less experience programmers and that
these differences decreased with increasing experience.

The above results indicated that, in general, naive, novice, and intermediate
PFNETs have conceptual representations that differ from the advanced conceptual
representations. Next, a fine grained analysis was performed to discriminate
between concepts on the basis of degree of understanding. In order to identify
concepts that were poorly understood, a median split was performed on the
difference values for the 16 concepts and three comparisons. Concepts that were
associated with low difference values based on this split were classified as
well-defined and those that had high difference values were classified as misdefined.
The resulting classifications of concepts for naive, novice, and intermediate groups
is presented in Table 4.

TaBLE 4
Misdefined concepts based on comparison of
representations of concepts to advanced repre-
sentations of concepts

Intermediate Novice Naive
repetition repetition repetition
sort sort sort
array array

function function
search search
algorithm algorithm
program program
assignment assignment
parameter
debug
output
subroutine
operator

character data
numerical data
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The number of misdefined concepts decreased with increasing expertise.
However, the differences were only marginally significant, x*(2) = 5-362, P <0-10.
Also, most of the concepts progressed systematically from misdefined to well-
defined. For instance, the concept function was misdefined at the naive and novice
level, but became well-defined at the intermediate level. However, there were
exceptions to this general rule. Specifically, the concepts array, program, parameter,
and debug were well-defined at the naive level and became misdefined at the novice
level. There are several plausible explanations for this result, including noise and
lack of sensitivity of the techniques. Another possible explanation for this
“regression in learning” is that the naive programmers coincidentally had the correct
links for these concepts because their understanding of them (in natural language,
for instance) happened to involve the advanced links. In other words, all links are
not created equal. Two individuals may both view a pair of concepts as related, but
along completely different dimensions. Again, a detailed examination of link
differences requires the presence of semantic relations. These issues will be
addressed further in the second study. Of course, it is also possible, although
unfortunately so, that the regression in concept understanding was real in that
concepts that were once clearly understood became confused and unclear with
learning.

In summary, one way to view the overall differences among the four repre-
sentations is in terms of differences in the way that individual concepts are
represented. For instance, the advanced PFNET is more like the intermediate
PFNET than the novice or naive PFNETSs, and this similarity can be attributed to
the fact that only four of the 16 concepts that are in the intermediate PFNET
are represented differently in the advanced PFNET (misdefined), whereas 10 and 11
are misdefined in the novice and naive PFNETs, respectively. Thus, the conceptual
analysis provides a means of specifying overall differences in terms of particular
concepts. In addition, the finding that the intermediate programmers had very few
misdefined concepts and that the majority of the concepts progressed with
experience from misdefined to well-defined lends support to the psychological
validity of the PFNET representations.

Study 2

The analyses in the previous study were limited in the sense that only presence or
absence of links was considered and not the meaning of the links (i.e. specific type
of semantic relation). The fact that a concept pair is linked in two different PFNETs
merely indicates that the two groups of subjects both viewed this pair as related;
however, the two groups could differ on the specific type of relation. Therefore, the
purpose of this study was to attempt to identify the meaning of the links in the four
PFNETs.

METHOD

Subjects
Twenty subjects (five in each of the four groups defined in Study 1) participated in
this study. Subjects consisted of introductory psychology students at New Mexico

"
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State University, who participated in order to fulfill a research requirement, and
volunteer graduate students from the computer science department at New Mexico
State University.

Materials

Materials consisted of the four sets of linked concept pairs from each of the four
group PFNETs generated in Study 1. Individual PFNETSs were not used in this study
because it did not seem appropriate to ask subjects to label the linked pairs that
another individual viewed as related. There were 19, 16, 15, and 16 pairs of concepts
in the set for the naive, novice, intermediate, and advanced groups, respectively.

Procedure

Each subject was presented with the set of linked concept pairs derived from the
PFNET corresponding to that subject’s level of programming experience. Pairs were
listed (one per row) on a sheet of paper. The order of the pairs and the position of
each concept within a pair were randomized over subjects within each skill group. In
the first phase of the study subjects were told to write beside each pair a sentence or
phrase in the form “concept—relation—concept”. They were also told that they could
reverse the order of the two concepts if they desired. In the second part of the study
subjects were presented with a second copy of the same list of pairs and performed
the same task except that they were to select the relation for each pair from a list of
29 relations. The list of relations was the same for all subjects and included such
phrases as “is part of”’, “occurs with”, “precedes”, and “is done to”. The list of
relations was based on the results of a pilot study that was identical to the first task
in this study.

RESULTS AND DISCUSSION

The semantic relation associated with a link was considered to be identified if three
or more out of the five subjects in each group agreed on a label in at least one of the
two tasks. In the multiple choice task, two relations were judged as the same only if
they were identical. In the sentence formation task, two relations were judged as the
same if they were identical except for the following conditions: (1) reversals which
preserved meaning (e.g. a function is part of a program, a program confains a
function); (2) additions or deletions of words not affecting the meaning (e.g. search
for an array, search can be for an array); and (3) the use of synonyms (e.g. is a type
of, is a kind of). In cases in which there was more than one version of the same
relation, the version that was used by the majority of the subjects was selected as
the semantic relation for that link. For each pair in which three or more subjects
agreed on a relation, the semantic relation as well as the direction of the relation
were noted.

A total of 13 of the 16 advanced links (81%) were identified (according to the
above criteria) by the five advanced subjects in this study. Five of the links were
identified in the sentence formation task, five in the multiple choice task, and three
in both tasks. For the intermediate group, nine of the 15 links were identified (60%)
and of these, five were identified in the sentence formation task, three in the
multiple choice task, and one in both. Of the five (31%) of the novice links
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TABLE 5

B 1
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Semantic labels for linked concept pairs that were identified by one or more groups

Semantic relation

Linked pair Advanced Intermediate Novice Naive
subroutine—program is part of is part of is part of XXX .
character data—output is a type of XXX XXX XXX
parameter—subroutine is used with XXX XXX XXX
program-output produces produces — —
sort-search involves — — is before ;
function—operator isa — XXX XXX
function—program is a part of XXX — —
debug-program is done to is done to isdoneto XXX
function-subroutine isa (is a) XXX XXX
repetition-sort is part of XXX XXX XXX
program-algorithm is the implementation of (is part of) (is part of) XXX
sort—algorithm isa XXX XXX XXX
sort—array is done to XXX XXX XXX
array—numerical data XXX can consist of XXX XXX
operator—assignment XXX does XXX XXX
search—subroutine XXX for a XXX XXX
program-global variable XXX contains XXX XXX
character data—assignment XXX — is part of XXX
assignment-repetition XXX XXX can be XXX
sort—operator XXX XXX XXX is done by
sort—numerical data XXX XXX XXX is done to
search—global variable XXX XXX XXX is done for a

Note: XXX indicates that the link is not present in the PFNET for that group; — indicates that the link
is present in the PFNET for that group, but the label was not identified; () indicates that the position of
concepts is reversed for this relation.

identified, three were identified in the sentence completion task and two in the
multiple choice task. Finally, each of the four (21%) identified naive links was
identified in the sentence formation task. The semantic relations that were identified
for each of the four PFNETs are presented in Table 5.

Consistent with previous findings on agreement and expertise, agreement on
labels among subjects increased with increasing experience. The absence of the
U-shaped agreement function seen previously suggests that although naive subjects
agreed that certain pairs were more related than others, they did not agree on the
specific nature of the relation. This could be due to the fact that the naive
programmers know very little about these concepts, so that although their hunches
or guesses agreed with each other, they were unable to identify and verbally report a
relation. On the other hand, these concepts could be related in several ways
(particularly outside of the programming domain) and naive subjects might have
differed on the specific relation that they viewed as salient for a pair of concepts.

Throughout this paper it has been suggested that many of the naive misconcep-
tions about programming might originate from pre-existing “naive” knowledge
about the programming concepts or pre-existing knowledge about natural language
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concepts corresponding to the programming terms. The labels that were generated
by the naive subjects supported this latter view. For example, naive programmers
labelled the sort—search link with the relation is before, whereas advanced
programmers assigned the relation involves to this link. In everyday usage of these
terms, sorting could be considered an independent process that typically precedes
searching; however, in terms of computer programming a searching procedure is
usually called within a sort program. In this example it appears that the relational
discrepancy was due to subtle differences between the meaning of the concepts in
the programming domain and their meaning in everyday natural language. Similarly,
the other naive links that were identified could also be interpreted as natural
language relations. 7

It is interesting to compare the discrepancies and consistencies present in the link
labels of different groups. There were 22 links that were labelled by at least one
group, and of these there were nine links that occurred in more than one of the
PFNETs. Thus, of all the labelled links, there were nine links that two or more
groups were asked to label. In three of these nine cases, the link label was identified
by only one group, whereas the other group or groups were unable to agree on a
label. Of the remaining six links, there were three for which the labels were the
same across groups and three for which the labels were different across groups. The
concept pair program—algorithm is an example of a linked pair that was labelled
differently by different groups. The advanced programmers’ label for this pair
suggested that a program is an implementation of an algorithm, whereas the label
that novices and intermediates assigned to this pair indicated that an algorithm is
part of a program. Such relational discrepancies provide clues concerning possible
misconceptions of less experienced programmers.

In the previous analysis of concept understanding, the meaning of the link was
not considered. However, it is now possible to compare the labels of the links that
the less experienced programmers shared with the advanced programmers. The
greater the proportion of conflicting labels among the shared, labelled links, the
more likely it would be that some concepts that were classified as well-defined in the
first analysis were actually misdefined.

Of the four links that were labelled in the naive PFNET, only one of them
(sort—search) was also in the advanced PFNET, and, as mentioned previously, the
naive label conflicted with the advanced label. The novice PFNET shared three of
the five labelled links with the advanced PFNET, and one of them (program-
algorithm) was labelled differently by the two groups. However, in both the naive
and novice cases the concepts that make up the conflicting pair. were already
classified as misdefined, so the results would not be altered by this difference. Five
of the nine labelled intermediate links were also contained in the advanced PFNET,
and two of these (function—subroutine, program-algorithm) were assigned labels
that conflicted with the advanced label. Each concept in these two pairs was
classified as well-defined in the concept understanding analysis. Thus, the concept
understanding analysis was performed again, ignoring these two conflicting links in
the intermediate network. Results indicated that out of the four concepts, the
concepts function and algorithm would be classified as misdefined because of the
conflicting link labels. In general, there were very few conflicting link labels and the
ones that did exist has little effect on the previous analysis.
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The semantic relations also augmented the analysis of structural similarity
between groups with similar amounts of experience. As mentioned above, there
were three links for which the labels given by two or more groups were identical. In
all of these cases the groups that agreed on the link label were next to each other in
terms of the four point experience scale used in this study. That is, it was never the
case that the novices and advanced programmers agreed with each other, but not
with the intermediates on a link label. Alternatively, if the advanced programmers '
agreed with any group on a link label it was the intermediates. This type of
systematic consistency among groups not only supports the structural similarities
seen earlier but it also increases confidence in these paricular link labels. y

Finally, it was quite difficult to identify any semantic relation for many of the
links, especially for the less experienced subjects. Not only was intersubject
u agreement on a particular label a problem, but in several cases individuals had

trouble attaching any label to a link (e.g. numerical data—character data). Anderson
i (1983) has suggested that general relatedness decisions are much easier to make
! than decisions concerning the specific nature of the relation. It could be that this
: type of information is automatic (Shiffrin & Schneider, 1977) or compiled
(Anderson, 1982) and, therefore, unavailable to conscious awareness. In fact,
research by Nisbett and Wilson (1977) has suggested that verbal reports are often
incomplete and inaccurate. Consequently, more work is needed on the development
of methodologies which facilitate this link labelling process.

General discussion

In this study, programming knowledge was represented in empirically derived
networks for naive, novice, intermediate, and advanced programmers. The PFNETs
not only made sense at an intuitive level, but quantitative information extracted
i from the PFNETSs supported the psychological meaningfulness of this form of
: representation. Correlations of the PFNET structures indicated that the PFNETSs
varied systematically with expertise, with correlations being highest for PFNETs of
those groups closest in level of experience. In addition, concept understanding, as
defined by the set of other concepts linked to the concept in question, increased with
experience. Finally, the identification of semantic relations corresponding to links in
the PFNETs added some necessary information to the structures.

It should be emphasized that the PFNETs are representations of cognitive
structure. Without additional control processes or inference rules, the PFNETs
cannot behave intelligently (e.g. answer questions or make decisions). Research is
being conducted to investigate various strategies for implementing activation '
processes in PFNETs (Schvaneveldt, 1987). However, the purpose of this research
was to investigate differences in cognitive structures. Thus, implicit in this research
is the assumption that cognitive structure can be studied apart from the control
processes that operate on it.

Secondly, it is important to point out that these studies dealt with knowledge
about abstract programming concepts. Even with complex inference rules, this
structure alone would not be sufficient to implement a system that wrote computer
programs. However, it is clear that programmers must need to know what a global
variable is and what a function is in order to do programming. The structures in this
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paper could be viewed as representations of declarative knowledge (Anderson,
1982). With a suitable set of inference rules, these structures could be used to
answer questions about the meanings of programming terms. On the other hand,
whereas the PFNETSs in these studies were derived from relatedness ratings, they
could also be derived from protocols taken from programmers as they actually write
code. Programming steps or actions could be represented as nodes and distance
estimates could be derived from the distance between two actions in the protocol.
The resulting structure would represent procedural knowledge needed to actually
write programs. It seems likely that knowledge about writing programs interacts
with knowledge about the meaning of programming concepts.

The results of this research revealed some interesting characteristics of program-
mer knowledge. In particular, the relatedness rating correlations indicated that
intragroup agreement did not increase linearly with expertise, but instead decreased
initially from the naive to novice level and then gradually increased from the novice
to advanced level. It is interesting to speculate on the meaning of this U-shaped
function. Generally, the higher correlations indicated that individuals within each
group (i.e. naive and advanced programmers) shared a common cognitive structure,
although the structures were not the same for the two groups.

The naive structure appeared to be based on the meaning of the terms in natural
language, whereas the advanced organization was apparently based on the meaning
of the concepts in the programming domain. Although the links that were
successfully identified supported these hypotheses, there were many links (especially
in the naive PFNET) that subjects were unable to label. In order to interpret the
various representations adequately, this type of information is needed. Recently,
techniques have been developed that aid in indirectly eliciting information about
links in PFNETs from subjects (Cooke, 1987). The application of such techniques to
the data in these studies might add information to the PFNETs that would enable
stronger claims to be made concerning the basis for the representations.

The fact that naive programmers shared some programming knowledge, whether
right or wrong, should be of interest to those who teach programming. The naive
cognitive structure could be thought of as a naive mental model of programming,
just as the “person on the street’ has a naive mental model of physics (McCloskey,
1983). Misconceptions in the model could be immediately corrected and appropriate
conceptualizations encouraged. The concept understanding analysis in Study 1
provides one means of identifying possible misconceptions in naive mental models.
Additional work is needed to demonstrate that the misconceptions that are
predicted by conceptual representations in PFNETs are indeed concepts with which
beginaing programmers have difficulty. For instance, a vocabulary test could be
administered to students taking their first programming course at various points
throughout the semester to determine whether the concepts classified as misconcep-
tions on the basis of the PFNETSs corresponded to the concepts that were missed the
most on the test.

Interestingly, subjects who were exposed to some programming experience no
longer shared a cognitive structure. This decline in agreement could be due to
variations in teaching strategies, text books, teachers, or programming languages
learned at the novice and intermediate levels. At some point (i.e. advanced), these
basic concepts became well-learned, so that these variations in type of programming
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experience no longer mattered. Thus, the decline in intragroup agreement does not
necessarily imply a “confused cognitive structure”, but rather the existence of
several different structures within the group. Variations in cognitive structure with
different types of experience in the same domain is an issue for further research.

This research has specific applications to programmer education or training. The
advanced PFNET representation can be considered an explicit goal state in the
learning process. The naive representations can provide clues to the state of naive
knowledge prior to learning, and can serve as a means of periodically evaluating
the cognitive development of students. In teaching situations it may be useful to
draw attention to the difference between the experts’ and nonexperts’ views of
particular relations. For example, based on this work, one might point out the
difference between a program being the implementation of an algorithm and an
algorithm being part of a program. Furthermore, various teaching or training
strategies could be evaluated by comparing students’ progress in concept under-
standing for each strategy.

The PFNET representations of cognitive structure can also be useful in the design
of expert systems. The acquisition of knowledge from a human expert is one of the
most time-consuming phases of expert system development. Furthermore, humans,
especially experts in a domain, often have difficulty introspecting about their
knowledge and expressing their knowledge verbally. Pathfinder networks could
provide a representation of tacit expert knowledge as well as a means of organizing
facts and rules in the knowledge base. Thus, the advanced programmer PFNET
might provide useful information to those developing expert systems in the
programming domain.

The authors would like to thank the faculty and students of the psychology and computer
science departments who participated in this study. Thanks also to Karen Preuss and Mel
Tempel who assisted in the data collection for the first study.
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