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My graduate study originally focused on low-dimensional topology and knot theory. Supervised
by topologist Xiao-Song Lin, I obtained some results about invariants of 3-manifolds and knots
derived from Hopf algebras and representations of braid groups. However, it was at that time
that I decided to use mathematical knowledge to solve biological problems. On my road to
applied mathematics, particularly, mathematical modeling of biology medicine, I had made an
extensive exploration. And my research turned out to cover a diversity of areas. In order to
study coalescent theory in molecular evolutionary biology, I studied stochastic processes, and did
some work on Markov processes and coalescent theory. My Ph.D thesis was on a new type of
algebra, evolution algebra, which I defined inspired by genetics. After graduation, I conducted a
postdoctoral fellowship supported by the National Science Foundation (NSF) at the Mathematical
Biosciences Institute (MBI). At the MBI, in collaboration with applied mathematician Avner
Friedman and physician E. Antonio Chiocca, I started to use partial differential equations to model
brain tumor growth and virotherapy. Since then, understanding the mechanisms of establishment
and destruction of cancers has become one of my major professional interests, and it initiated
my studies including dynamics of infectious diseases and stem cell modeling. Upon finishing
the three-year postdoctoral research, I moved to the Department of Mathematics in the College
of William and Mary (WM). At WM, I established a stem cell research project with biologists
Ting Xie at the Stowers Institute for Medical Research and Angelique Bordey at Yale University
and applied mathematician Philip Maini in the Centre for Mathematical Biology (CMB) at the
University of Oxford; I expanded my research group through a joint graduate education project
with my collaborator in the Department of Mathematics and Statistics at the Old Dominion
University (ODU); I also formed a undergraduate interdisciplinary teaching group with three
biology faculty members on WM campus. About eleven years ago, I realized guiding and working
with graduate students is a very important part of academic life, and then I decided to move
to a research department where I can have my own graduate students. In 2014, I moved to the
Department of Mathematical Sciences at New Mexico State University (NMSU). At NMSU, I have
developed projects with Physician Eric Holland in the Fred Hutchinson Cancer Research Center
(FHCRC) in Seattle, established my research group which has graduate students, visiting scholars,
and undergraduate research students, and have been holding the weekly Math Biol Seminar which
is open to the whole university since 2016. Recently, Physician Eric Bartee from the Medical
School at University of New Mexico (UNM) contacted me to initiate projects on oncolytic crash
and potassium function in viral therapy. The last January, I started a project on optimization of
CAR T cell therapy with Physician Cameron Turtle in Fred Hutch now in University of Sydney.

Since 2004, I have published one research monograph in the series of Lecture Notes in
Mathematics of Springer, 53 research papers, edited one journal issue, and 10 manuscripts under
review or in progress, 1 book project in preparation, and 6 preprints. Some of my work are widely
cited worldwide and some has become a sub-field of mathematics. Currently I have seven research
projects, (1) collective dynamics of solid tumors and their microenvironment: collaborating with
Eric Holland in Fred Hutch and Philip Maini at the CMB Oxford, one sub-project was funded by the
National Institute of Health (NIH), we are currently working on two sub-projects: OPN functions
and abscopal effects; (2) Brain tumor growth with therapies and virotherapy: collaborating with E.
Antonio Chiocca at the Harvard Medical School and Avner Friedman at OSU, one sub-project was
funded by NSF, we are currently working on the project of oncolytic crash initiated by Eric Bartee
at the Medical School UNM since July 2021; (3) potassium in tumor growth and viral infection:
this is a new project also initiated by Eric Bartee at UNM since September 2020, we finished one
sub-project; (4) optimization of CAR T cell therapy: in January 2022, I started to develop this
project with Cameron Turtle and work on a grant proposal; (5) stem cell biology: collaborating



with Ting Xie at Stowers Institute, Angelique Bordey at Yale, Philip Maini at the CMB Oxford,
and Jie Zheng in Shanghai Tech University; (6) disease ecology: collaborating with Jingan Cui
in Beijing University of Architecture and Civil Engineering, a part of which was supported by
National Nature Science Foundation of China; (7) developing analysis methods for the qualitative
study of Ito stochastic differential equations.

In fall 2018, I was leading a 10 million dollar proposal to establish “Southwest Institute for
Mathematical Biology” which was submitted to NSF-Simons Foundations with three institutions:
NMSU, University of Texas at El Paso, and New Mexico Institute of Mining and Technology.
Although it was not funded, we developed some research and education projects among 11 faculty
members in the southwest area. In August 2020, we submitted a three million dollar proposal
Modeling “Public Health Disinformation Evolution and Intervention Impacts in a Mid-Size
Southwestern City”to DOD with colleagues from Computer Science, Sociology, and Mathematical
Sciences departments in NMSU, where we were able to apply mathematical analysis to discrete
space although it was not funded. I was awarded the “Outstanding Faculty Award in Creative
Activity /Scholarship”of the College of Arts and Sciences in NMSU 2017. In what follows I will
briefly summarize my accomplishments in two groups, current research and past research.

1 Current research:

1.1 Brain tumor growth with therapies and virotherapy

1.2 Collective dynamics of solid tumors and their microenvironment
1.3 Disease ecology and infectious diseases

1.4 Stem cell regulation

1.5 Function of potassium in tumor growth and viral infection

1.6 Optimization of CAR T cell therapy

1.7 Stochastic differential equations
2 Past research:

2.1 Research in low-dimensional topology and knot theory
2.2 Algebraic structures from genetics

2.3 Colored coalescent theory and stochastic processes

1.1 Brain tumor growth with therapies and virotherapy

When I was a postdoctoral fellow at MBI, I started to model brain tumor growth and oncolytic
viral therapy with Avner Friedman and E. Antonio Chiocca. Recently, medical professor Eric
Bartee contacted me to study the oncolytic crash phenomenon observed in his experiments.
With collaborators and students, I have published 20 articles [17-23, 25-26, 29-30, 32, 38-41,
46, 51, 54-55], and one manuscript [59] in preparation ([x] indicating papers listed in my CV,
and they are available on my homepage https://web.nmsu.edu/ jtian/). Some of our work have
been widely cited by both medical researchers and mathematicians from many institutions such
as Northwestern University, Harvard University, New York University, Cornell University, Vrije
Universiteit Amsterdam, University of Cambridge, Cancer Research UK Clinical Center, etc.

Glioma is the most serious of malignant brain tumors. In order to improve the efficacy of
therapies, it is important to understand tumor progression. We first studied glioma progression
under virotherapy. Virotherapy is a promising treatment. However, most experiments of
virotherapy conducted on mice show a lack of efficacy in eradicating tumors. This failure has
mostly been attributed to interference by the immune system. An immunosuppressive agent
cyclophosphamide (CPA) can reduce the percentage of immune cells. To determine how different



protocols of CPA treatment and the burst size of the virus affect tumor growth, we introduced a
mathematical model in collaboration with physician Chiocca’s group. Mathematically, our model
is a free boundary problem with five nonlinear partial differential equations. A detailed numerical
analysis of this type of problem was done in [20]. Biologically, we showed that the diameter of the
glioma will decrease to 1 mm if the burst size of the virus is three times the size seen in experiments,
and that the effect of repeated CPA treatment is to maintain a low density of uninfected cells in the
tumor, thus reducing the probability of migration of tumor cells to other locations in the brain.
These predictions were further confirmed by new experiments further conducted by Chiocca’s
group. The research was published in the journal Cancer Research [19]. We have also finished
a study of an ODE version of this model with emphasizing periodic behaviors of solutions [25].

To have a clear dynamical picture of tumor virotherapy, I did a mathematical analysis of the
basic common model for virotherapy in [26]. The analysis shows the replicability of oncolytic
virus is a critical parameter. However, the timing of the intracellular process of viral infection
plays an important role as shown in some experiments. We have to incorporate this process in
the mathematical model as the lytic cycle parameter. In [29], we found such a rich dynamical
behaviors involved in virotherapy. The lytic cycle can induce backward Hopf bifurcations, and
we extended these studies in [32] and [41]. We obtained a functional relation between viral burst
size and lytic cycle. Because two different immune systems, innate and adaptive, have different
effects in virotherapy, we proposed PDE systems to study them in [38-39], and obtained some
balance conditions. Combining timing and spatial distributions, we recently formulated a model of
functional PDEs for oncolytic virotherapy which incorporates virus diffusivity, tumor cell diffusion,
and the viral lytic cycle. Our analysis shows that the model has similar qualitative behaviors
as ODE models but the conditions have medical implications [40]. The complexity of oncolytic
virotherapy arises from many factors. In a recent study, we incorporate environmental noise and
stochastic effects into our basic deterministic model and propose a stochastic model for viral therapy
in terms of Ito SDEs [51]. We show that there are three ergodic invariant probability measures
which correspond to equilibrium states of the deterministic model, and the extra possibility to
eradicate tumors due to strong variance of tumor growth rate and medium viral burst size. To
obtain deep insights to both innate and adaptive immune systems with noise effects, we proposed
a 4-dimensional Ito SDE model and obtained very interesting new phenomena, namely, stochastic
Hopf bifurcations without parameters [54-55] which is the first time this has been observed in Ito
stochastic differential equations.

Traditional treatments of tumor are resection, then radiotherapy and chemotherapy. In order
to find an optimal combination of these treatments for patients who have glioma, we developed
a mathematical model for glioma prognosis, which incorporates radiotherapy and chemotherapy
(treatments of temozolomide) after resection (published in Journal of Neuro-Oncology [21)).
This is a free boundary problem with three nonlinear partial differential equations. With my
undergraduate research student Dian Yang, we have done some mathematical analysis on this
model in [30]. With two undergraduate students Kendall Stone and Tomas Wallin, we finished
a study of the ODE version of this model. We found a weak solution for different treatments,
and made some suggestions for treatments based on our study [23]. Recently, we proposed and
analyzed a functional reaction-diffusion system for tumor radiotherapy [46].

The effect of medical treatments of tumors only lasts for a period of finite time. Thus,
when dynamical systems that describe the tumor dynamics are disturbed by therapies, these
perturbations are actually finite-time perturbations. In paper [22], we did a general study
of finite-time perturbations of dynamical systems. Under certain conditions, we showed that
finite-time perturbed dynamical systems are asymptotically equivalent to unperturbed dynamical
systems. This means the tumor eventually comes back and grows if the treatment cannot cure it
within a period of finite time.

Recently, Eric Bartee’s lab showed that the induction of anti-tumor immune responses during



myxoma virus therapy for skin cancer melanomas is dependent on the initial dose of virus used
in the treatment and that this dependence is mediated by some event that occurred early after
treatment. Their subsequent studies show that immediately after treatment (16-24 hours) tumors
display large numbers of discrete viral infections. However, rapidly thereafter (48-72 hours) a large
majority of these infections are lost (the ones which remain do expand out). We have termed this
phenomenon oncolytic crash. We hypothesize that the dose dependence of oncolytic therapy is due
to the fact that the vast majority of viral infections are rapidly lost after treatment which forces
to use a huge amount of virus initially to establish a very few actually progressive infections. To
understand oncolytic crash, we are trying to build this hypothesis into a two-stage model where
the first stage has 6 variables and the second has 8 variables, a two-stage free boundary problem.
We are working on this project currently [63].

The recognition of data patterns of gene expression relating to tumorgenesis is very important.
Working with other colleagues, we used computational statistics to study these patterns in [17-18].

1.2 Collective dynamics of solid tumors and their microenvironment

Tumor initiation and growth have strong interactions with the microenvironment. Several
years ago, I started to work with Holland’s lab in Fred Hutch on tumor modeling in a variety of
environmental factors. We published 7 articles [42-43],[45], [48-49], and [52-53], submitted 1 paper
[56], and have 2 manuscripts [61-62] in preparation.

Tumor-infiltrated immune cells compose a significant component of many cancers. They have
been observed to have contradictory impacts on tumor growth. Although the primary reasons for
these observations remain elusive, it is important to understand how immune cells infiltrating into
tumors is regulated. Based on our experimental results, we proposed a model of PDE free boundary
type where immune cells migrate into the tumor. Combining experiments with computations, we
concluded that the chemoattractant gradient field produced by tumor cells may facilitate immune
cell migration to the tumor site, the chemoattractant production rate may be utilized to classify
wtIDH1 and mulDHI1 tumors, and the dynamics of immune cells infiltrating into tumors is largely
determined by tumor cell chemoattractant production rate and chemotactic coefficient. Our major
results were published in Neoplasia [43], and our numerical analysis of the model was published in
[42]. To gain deep understanding of tumor cell chemoattractant production rate and chemotactic
coefficient, we varied these two parameters with noises and proposed a system of Ito stochastic
differential equations (SDEs). This analysis confirms our numerical studies [52]. Immune cell
migration to tumor site was modeled as chemotaxis. To learn such mechanics, we conducted a
study about stochastic PDE system of chemotaxis in [48]. Ostepontin (OPN) has been a topic in
Holland’s lab, and we are currently numerically studying a free boundary problem with 6 PDEs
describing OPN dynamics [62].

Glioblastomas are highly malignant brain tumors. Knowledge of growth rates and growth
patterns is useful for understanding tumor biology and planning treatment logistics. Based on
untreated human glioblastoma data collected in Norway, we first fitted the average growth to a
Gompertz curve, then found a best fitted white noise term for the growth rate variance. Combining
these two fits, we obtained a new type of Gompertz diffusion dynamics, which is a stochastic
differential equation. Newly collected untreated human glioblastoma data in US re-verified our
model. Instead of growth curves predicted by deterministic models, our SDE model predicts a
band with a center curve as the tumor size average and its width as the tumor size variance over
time. Given the glioblastoma size in a patient, our model can predict the patient survival time with
a prescribed probability. The survival time is approximately a normal random variable with simple
formulas for its mean and variance in terms of tumor size. Our model can be applied to studies of
tumor treatments. As a demonstration, we numerically investigated different protocols of surgical
resection using our model and provide possible theoretical strategies. Our work was published in
Scientific Reports [49]. We also conducted detailed analysis of this SDE [53]. Tumor shape has



great impact on its growth dynamics. We study this aspect in [45], and incorporate clinical data
in [61].

Cervical cancer is the second most common form of cancer worldwide. Human papilloma virus
(HPV) can be sexually transmitted. Genital HPV is the major etiologic factor in cervical cancer.
But most women infected with HPV, even those infected with the types that are most closely
associated with cervical dysplasia, will not develop invasive cervical cancer. Unlike normal cells,
HPV-infected cells undergo differentiation and remain active in the cell cycle. The presence and
persistence of viral DNA in lesion sites is a necessary condition to establish an epidemiologically
evident tumor. Malignant progression is slow; it may take decades to develop a visible cancer. To
understand how HPV infection leads to cervical cancers under environmental factors, we proposed
a system of Ito stochastic differential equations based on a deterministic model in [56].

1.3 Disease ecology and infectious diseases

Mathematical ecology is a classical field. However, there are still many new problems
that require further study. Disease ecology merges key ideas from ecology, medicine, genetics,
immunology and epidemiology to explore interactions that lead to the occurrence and evolution
of disease within entire ecosystems. It is of global importance. In this aspect, I have published 8
papers, [24], [27], [33], [35-37], [44], and [50], and 1 manuscript submitted [57].

Cholera is an ancient disease that continues to cause epidemics and pandemics despite ongoing
efforts to limit its spread. The present pandemic started in Indonesia in 1961. It spread into
Furope, South Pacific and Japan in the late 1970s. In the 1990s, the cholera spread in South
America. Recently, there have been many outbreaks round the world. To understand the
dynamics of cholera, we conducted global stability analysis for several existing deterministic cholera
epidemic models. These models, incorporating both human population and pathogen V. cholerae
concentration, constitute high dimensional nonlinear autonomous systems. We employed three
different techniques, monotone dynamical systems, geometric approach, and Lyapunov functions,
to investigate the endemic global stability for several biologically important models in [27]. With a
graduate student, we have proposed some control strategies in cholera modeling in [33]. Inspired by
some models for cholera dynamics with time periodic parameters, I studied such non-autonomous
systems, and found several new results on classical Floquet theory in [35]. For example, for the
stability of periodic solutions to autonomous differential equations and non-autonomous periodic
systems, we gave some results for the Poincaré map and the linearizations around periodic
solutions, and some results on Floquet exponents of delay linear periodic systems. Based on
our deterministic models, we propose a stochastic model for cholera epidemics incorporating
environmental fluctuations, which is a nonlinear system of Ito SDEs [49]. We defined the basic
stochastic reproduction value R, which determines the dynamical patterns of the stochastic
model. When R, < 1 with probability 1, the cholera infection will be extinct within finite periods
of time almost surely. When R, > 1 with probability 1, the cholera infection will persist most of
the time, and there exists a unique stationary ergodic distribution to which all solutions of the
stochastic model will approach almost surely as noise intensities are bounded. When the basic
reproduction number Ry for the corresponding deterministic model is greater than 1, and the noise
intensities are large enough such that Rs < 1 with probability 1, the cholera infection is suppressed
by environmental noise.

The pandemic of avian influenza seems possible almost in every winter. The scientific
community is focusing on experimental research of all kinds of different candidates of avian influenza
viruses. HBS5N2 is one such candidate. Based on observations and experimental data, we put
forward two deterministic models (each with thirteen nonlinear ordinary and partial differential
equations) to study the evolution and dynamics of H5N2. The models incorporate mutation from
low pathogenic avian influenza viruses to high pathogenic counterparts, and also incorporate the
spreading into human population. We tried to answer several questions posed by a experimental



group in the Netherlands. They are different from traditional SIR or SI models. We did numerical
study of the PDE version of our model in [24] and [36]. We also conducted studies on a minimal
model of plankton systems with a new feature of spatial diffusion and maturation delay in [37].
Recently, we conducted a general study about how asymptomatic transmission shifts epidemic
dynamics [44].

1.4 Modeling of stem cell regulation

Understanding of stem cell regulation is fundamentally important for medical uses of stem cells
and tumor initiation. To study regulation of stem cells via physical interaction, I collaborated with
Ting Xie at Stowers Institute for Medical Research. Particularly, we focused on the mechanism
of Drosophila female germline stem cells competing for niche space and how one cell is physically
pushed out of the niche, which will then have a high possibility of becoming a cancer stem cell. We
published a preliminary study in [28]. To study the regulation of stem cells via signaling molecules,
we collaborate with Angelique Bordey at Yale School of Medicine. Particularly, we focus on the
signaling molecules GABA, glutamate, and Shh in the niche subventricular zone of human neural
stem cells, which has important features related to cancer stem cell initiation. Working with Philip
Maini, we are finalizing a manuscript [64]. We recently started to a study of neurons transportation
in subventricular zone, which may need our studies in [31] and [34].

My honors student Brian Waldman at WM did some numerical research on periodic behavior
of intestinal stem cells by using delay differential equations in his honors thesis.

1.5 Function of potassium in viral infection and virotherapy

We started this project in September 2020. Critical ions used by the body to maintain cellular
membrane potential. Extracellular potassium K™ levels are extremely low while intracellular K+
levels are extremely high. In Bartee’s lab at Medical School UNM, they use myxoma virus to
infect normal rabbit skin. The virus Kkills the cells in the middle of the lesion. This killing releases
the intracellular K™ thus increasing the extracellular K*. The increased extracellular K+ has
the chance to negatively impact viral replication. This is an important question in oncolytic
viral therapy. However, there is little research on potassium functions in viral infection. We use
mathematical modeling to figure out if there are theoretical conditions for the death of cells and
the clearing of KT under which extracellular K+ would build up to a level high enough to inhibit
myxoma virus replication. I build a mixed PDE-ODE system for this problem. We conducted
experiments with rabbit, and in the same time, we conducted detailed numerical studies of the
mathematical model to verify with experimental results. In August 2022, we submitted our first
manuscript [47], which is now published the Journal of Virology. We plan to continue this study
to find if there is a threshold value for potassium functionality.

1.6 Optimization of CAR T cell therapy

Chimeric antigen receptor (CAR) T cell therapy has been in development for more than two
decades. Recent US FDA approval of BCMA-targeting and CD19-targeting CAR-T cell therapies
for certain relapse/refractory hematologic malignancies have energized the field. Many other
CAR-T cells targeting various antigens are in clinical trials to treat various human diseases such
as cancer, infectious diseases, autoimmune diseases, cardiac diseases etc. However, not all clinical
trials have achieved expected results. The challenge is to identify mechanisms which determine
CAR-T cell expansion and persistence, the durability of antitumor response produced by CAR-T
cells, and toxicities caused by the treatment. Current research has accumulated a large amount of
discrete experimental and clinical data on each step of CAR T cell therapy, and each data set may
reveal some aspect of one step of CAR T cell therapy. But, it is difficult to recognize mechanisms
behind these discrete data for the whole treatment process and challenge to predict outcomes of



CAR T cell therapy based on these discrete bits of knowledge, let alone to achieve optimal benefits
for patients. These steps are distinct in time and spatial scales, and importantly, are dynamic in
time and space. Therefore, it is clear that the discrete experimental and clinical trial data call for
a collective study on dynamics of CAR T cell therapy in order to optimize it. Collaborating with
Frederick Locke at Moffitt, we plan to use a combination of mathematical modeling and medical
experiments and clinical trials to study the collective dynamics of CAR T cell therapy in order
to attain optimal protocols for treatment. Our plan consists of five stages: the first three stages
are to construct mathematical models for three basic processes of CD19 CAR T cell therapy for
local optimization - ex vivo CAR T cell expansion, interaction of CAR T cells, cancer cells, and
endogenous immune cells, and inflammatory process induced by CAR T cells, the fourth stage
is to integrate these three processes into a theoretical framework combining pharmacokinetics of
lymphodepleting chemotherapy and consolidative therapy for global optimization, and the last
stage is to extend this framework to CAR T cell therapy targeting other cancer antigens. To
start, we are working on identification of patient variabilities with different noises using stochastic
differential equations [58], and prepare a grant proposal.

1.7 Stochastic differential equations

The subject of SDEs is interesting in theory and applications. The basic theory was established
in the 1950s, and the theory is still in development. For systems of ODEs, there are well-developed
tools to analyse their local and global behaviors of the solutions. There are concepts, for example,
maximal interval of existence of solutions, equilibrium points, stability of solutions, and there are
theorems, for example, Hartman-Grobman Theorem, center manifold theorem. For SDEs, there
are concepts and theorems which are corresponding to those in ODEs. For instance, ergodic
invariant measures correspond to equilibrium points. However, it is difficult to prove existence
of ergodic invariant measures for a given SDE system in some domains, in general. Systematic
methods for analysis of SDEs are still lack although some partial results and tools have been
developed. For example, for Kolmogorov type of SDE systems with non-degenerated noise, there
are some results about existence of ergodic invariant measures under certain conditions. In our
research on Ito stochastic differential equations, we have constructed stochastic Liapunov functions
to prove existence of ergodic invariant measures, and boundary analysis for some SDE systems
with certain boundaries; for noise degenerated problems, we use the Hormander Theorem to
study hypoellipticity and transition probability density functions, and apply some knowledge from
control theory and support theorem (Stroock-Varadhan support theorem) to study the supports of
invariant measures. We plan to develop systematic methods to qualitatively analyse SDEs, which
we hope it will become a tool box for researchers to use in their study of stochastic models. In a
four dimensional SDE system, we discovered Hopf bifurcation without parameters which is the first
time to obtain in Ito SDEs, for which we termed as stochastic Hopf bifurcation without parameters
[54-55]. For one dimensional SDEs, we obtained a complete classification and easy-check criterions
for long-term behaviors of the solutions [60]. I have a book project about SDEs and applications
with AMS.

From application perspective, stochastic differential equations not only offer a broad spectrum
for interpretations, but also provide a way to construct more realistic models for the real-world.
Deterministic ODE models may model the averages of variables (for example, populations), while
SDE models may model each variable (for example, individuals). For stable stochastic dynamics,
there is an ergodic invariant measure. In theory, we can have the distribution function, the
expectation and variance for interpretation of the results. If the ergodic invariant measure is
not explicitly obtained, we can run numerical simulations with the same initial condition for
any numbers of times to get an approximation of the distribution, expectation, and variance.
Even for transient stochastic dynamics, we can define relevant stopping times. Then, we can
perform numerical simulation with the same initial condition for any numbers of times, and



obtain approximations of probability distributions for the stopping times. That will provide the
information for interpretation of the results. We did some in silicon clinical trials using this scheme
and tried to understand patient variability [56].

2.1 Research in low-dimensional topology and knot theory

During the first several years of my graduate study, my focus had been directed towards
low-dimensional topology and knot theory. In order to understand the quantum invariants of links
and 3-manifolds defined without representations of quantum groups, I gave a method to construct
them, and made a detailed comparison of all methods of defining invariants without representations.
We concluded that, essentially without representations of quantum groups, there is only one family
of invariants that can be constructed. I published three papers on those results [8-10].

Since Reshetikhin and Turaev constructed invariants of links and 3-manifolds and established
the equivalence of tensor categories and 3-dimensional topological quantum field theories, the
representation theory of Hopf algebras, particularly, quantum groups, has become an important
tool in the study of low-dimensional topology. However, the necessity of representation theory can
be obliterated, since, in a sense, the objects and their representations are equivalent. Actually,
there is some work already done in this direction. Hennings was the first to use quasitriangular
ribbon Hopf algebras and their right integrals to directly construct invariants for colored framed
links and 3-manifolds. Then, Kauffman and Ohtsuki modified Henning’s method and defined
so-called universal invariants of framed links and 3-manifolds. In my study, we first explored if
there is any alternative approach to construct invariants without representations. To do this,
fixing a ribbon Hopf algebra, we defined an algebraic tensor product space and a formal tensor
space, whose elements may be regarded as homogeneous tangle diagrams. Then we constructed a
map from the algebraic tensor product space to the formal tensor space under certain conditions.
This map gives a regular isotopic universal invariant of homogeneous tangles. By a linear map
on the algebra, we defined a topological invariant of the 3-manifold obtained by surgery along the
framed link. Thus we found another way to construct invariants of links and 3-manifolds without
representations. These results was published in [8]. Secondly, we carried out a comprehensive
comparison among all the work that had been done in this direction. An interesting result I
obtained is that there is an accompany algebra for every unimodular quasitriangular ribbon Hopf
algebra which is also the same type algebra. This intrinsic property of Hopf algebras helps to
reveal relations among invariants defined by Hennings, Kauffman and Radford, Ohtsuki and us.
That is, these four approaches and their results are equivalent, if the difference by a constant or
accompany is ignored. Our conclusion is that there is only one family of invariants of links and
3-manifolds that can be constructed without representations of quantum groups [9].

One problem remained — what is the difference between invariants derived with and without
braid group representations? To figure out this difference, we turned to the fundamental algebraic
structure behind 3-manifold theory: braid groups. The smooth manifold of the representation
variety R = R(F,,G), where G is a semisimple compact Lie group, can be obtained by taking
braid group B, as a subgroup of Aut(F,,). This manifold gives a representation of Aut(F,), or B,
on the diffeomorphism group of R, which is a linear representation of B,, on Lie algebra of R along
a fixed path. By taking Lie group SU(2, ('), the Burau representation is obtained on the complex
part of the Lie algebra. After taking a product manifold of the representation space, SU(2,C)", we
got a new family of representations of braid groups on the tangent bundle of this product manifold
which is a generalized Long’s structure [10]. An interesting case is in my preprint [6].

It is interesting to find relations between braid groups and evolution algebras. My honors
student Carolyn Troha at WM did some exploration about the relations in her honors thesis.

2.2 Algebraic structures from genetics



This research was motivated by a study of algebras in genetics including Claude E. Shannon’s
Ph.D thesis and coalescent theory. It occurred to me that a coalgebraic structure of genetic
inheritance exists when we look at Mendelian genetics reversely from progeny to parents. For
non-Mendelian genetics, we defined a new type of algebra, evolution algebra. It was published as a
research monograph in the series of Lecture Notes in Mathematics of Springer [1], and other related
publications are [2-6]. I also have an invited expository article on evolution algebra [7]. These
algebras have raised interests among pure and applied mathematicians. Particularly, evolution
algebra has become a sub-field in mathematics. There were international workshops and
winter schools held on evolution algebras in Europe and America (for example, some links listed
on https://web.nmsu.edu/ jtian/e-algebra/e-alg-index.htm); many research papers were produced
to study evolution algebras (there are more than 250 papers in MathSciNet), several Ph.D theses
and honors theses studied evolution algebras; my monograph was adopted as research text in some
colleges and universities, for example, in Reed College and UC Irvine; some paper even starts to
study the history of evolution algebra.

The importance of these algebraic structures is twofold. From the biological viewpoint,
genetic coalgebra models genetic processes back in time, which is helpful in building phylogenetic
trees for a given population. Evolution algebra models non-Mendelian inheritance process in
time, for example, organelle inheritance, which can produce a long-term distribution of a given
non-Mendelian heredity process. These algebras reveal new mathematical structures in genetics.
From the mathematical viewpoint, genetic coalgebra is an example of coalgebra from natural
science, while evolution algebras are non-associative and non-power-associative Banach algebras
from natural science. What makes the theory of evolution algebras different from the classical
theory of algebras is that in evolution algebras, there are two different types of generators:
algebraically persistent generators and algebraically transient generators, and evolution algebras
possess an evolution operator which reveals the dynamical information of evolution algebras. These
notions of mixture of algebra and analysis make evolution algebras a sub-field of mathematics
with its own value. In addition, evolution algebras have connections with several sub-fields in
mathematics, for example, graph theory, group theory, Markov chains, dynamical systems, knot
theory, 3-manifolds, and the study of the Riemann-zeta function (the Ihara-Selberg zeta function),
and could be a unified tool for studies in these fields.

Coalgebraic structure of genetic inheritance: The coalgebraic structure of genetics,
which we called genetic coalgebras, exists when we consider multiplication in the direction from
progeny to parents. The coalgebraic structure is not the dual coalgebraic structure and can be
used in the construction of phylogenetic trees. Mathematically, to construct phylogenetic trees
means to solve equations of principal or plenary powers 2" = q or (™ = b. This is generally
impossible in algebras. However in coalgebras, we can solve them in the sense of tracing back
for their ancestors. In paper [2], we developed a theoretical framework of coalgebraic structure of
genetics. From the view of genetics, we introduced a series of fundamental algebraic concepts and
examined their properties which are of genetic significance.

Evolution algebra: In my book FEwvolution Algebras and Their Applications, we introduced
a new type of algebra, evolution algebras. Evolution algebras were motivated by evolution laws of
genetics. We view alleles (or organelles) as generators of algebras, and define the multiplication of
two “alleles”G; and G; by G; - G; = 0 if @ # j. However, G; - G; is viewed as “self-reproduction”,
so that G; - G; = > y pi; G, where the summation is taken over all generators Gjs. Then, the
reproduction process in genetics is represented by multiplication in algebras. Evolution algebras are
commutative, but not necessary associative. When the p;;s are Markovian transition probabilities,
the properties of algebras can be associated with properties of Markov chains. Markov chains
allow us to develop algebras at deeper hierarchical levels than standard algebras. Introducing
several new algebraic concepts, algebraic persistency, algebraic transiency, algebraic periodicity,
we establish hierarchical structures for evolution algebras in Chapter 3. The analysis developed



in this book, particularly in Chapter 4, enables us to take a new perspective into Markov process
theory and to derive new algebraic properties on Markov chains at the same time. We see that
any general Markov chain has a dynamical hierarchy and the probabilistic flow is moving with
invariance on this hierarchy, and that all Markov chains can be classified by the skeleton-shape
classification of their evolution algebras. When we apply the algebras back to non-Mendelian
genetics, such as organelle heredity, we can not only explain a puzzling feature of establishment of
homoplasmy from heteroplasmic cell populations and the coexistence of mitochondrial triplasmy,
but also predict mechanisms to establish the homoplasmy of cell populations. Actually, these
mechanisms are hypothetical in current mitochondrial disease research. Evolution algebras have
many connections with other fields of mathematics, such as graph theory, group theory, knot
theory, and Ihara-Selberg zeta functions. Evolution algebras provide a theoretical framework to
unify many phenomena. We put these related ideas in Chapter 6 as further research topics.

2.3 Colored coalescent theory and stochastic processes

Evolution algebra can be thought of as an algebraic view of coalescent theory as I defined.
When I started to study biology, I contacted biologist Michael T. Clegg in UC Riverside and he
introduced coalescent theory to me. We have published 5 papers [12-16].

Coalescent theory is a basic theoretical framework for molecular population genetics.
Mathematically, coalescent theory studies stochastic processes leading to the most recent common
ancestor (MRCA) from a sample under various model conditions. If one views more commonly
studied branching processes as stochastic models of generating random trees from their roots,
coalescent processes can be viewed as inverse processes, which recover random trees from their
leaves. In order to answer a question about migration in human evolution history asked by
Michael Clegg, we introduced a colored coalescent model to incorporate geographic factors.
Moving backward along colored genealogical trees, the color of vertices may change only when two
vertices coalesce. The rule that governs the change of color involves a parameter. We found the
explicit formulas of expectation and the cumulative distribution function of the coalescent time
to MRCA with different colors. For example, when x = % for a sample of n colored individuals,
the expected time to reach a black MRCA or a white MRCA is 3 — % respectively. On the other
hand, the expected time for the colored coalescent process to reach a MRCA, either black or
white, is 2 — %, which is the same as that in the standard Kingman coalescent process. We also
studied colored coalescent processes with color mutation processes, which are independent Poisson
processes running on random genealogical trees. These results appeared in [12] and [14].

Inspired by coalescent theory, we introduced a stochastic model called “multi-person simple
random walks”or coalescent random walks on a graph G. There is a finite number of persons
distributed randomly at the vertices of G. In each step of the Markov chain, we randomly pick
up a person and move it to a random adjacent vertex. To study this model, we introduced two
new concepts: tensor powers of graphs and tensor products of Markov processes. In this
context, a coalescent random walk becomes a simple random walk on a tensor power of G. We
gave estimates of the expected number of steps for these persons to meet all together at a specific
vertex. This work was published in [15].

In order to understand time scaling in coalescent theory, we introduced the notion of
frequency for graphs and Markov processes. This serves as a scaling factor between any Markov
time of a continuous time Markov process and that of its jump chain. However, for a Markov process
with huge states, the computation of any quantities, even for its jump chain, is still difficult. For a
lumpable process, in order to recover certain quantities from the jump chain of the lumped process,
it needs a type of commutativity among four processes: Markov process X, its lumped process
X, the jump chain of X, and the jump chain of X. We gave a necessary and sufficient condition
for commutativity, and conditions to recover some of the basic quantities of the original process
from the jump chain of the lumped Markov process. These results appeared in [13] and [16].
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