
Youshan Tao

Jianjun Paul Tian

Mathematical Oncology

SPIN Springer’s internal project number, if known

Free Boundary Problems of Tumor Growth

February, 2015

Springer



2

Berlin Heidelberg NewYork

HongKong London

Milan Paris Tokyo



To our mentor Professor Avner Friedman

and to our parents and families





Preface

(under revision) This book is devoted to the topics of tumor growth and

treatment, chemotactic driven cell movement, and cancer invasion. These

topics were the focuses of the authors’ research work in past decade. Cancers

appear with multiscale features: genes, cells, and biological tissues. From the

view point of scales, there are basically three types of mathematical models

of cancer: microscopic models (at the molecular and the cellular scales),

macroscopic models (at the tissue scale), multiscale model (the cancer model

is viewed as a system of subsystems with specific scales). However, this book

focuses only on macroscopic models which are generally based on partial

differential equations.

Chapters 1-5 deal with the mathematical modeling of tumor growth

under various therapies, whereas Chapters 6-8 are concerned with typical

mathematical problems arising from cancer biology. To explore tumor dynamics

and design possible optimal protocols of treatment, the models developed in

chapters 1-5 are confined to a spherical geometry.
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Chapter 1 deals with a model describing the growth of a prostate tumor

under hormone therapy. The model considers the mutation by which androgen-dependent

tumor cells mutate into androgen-independent ones. Interestingly, explicit

formulae of tumor growth in an androgen-deprived environment are found.

The relapse of tumor is a crucial problem in hormonal therapy of prostate

cancer. The androgen-independent cells are considered to be responsible for

such a recurrence. These cells are not sensitive to androgen suppression

but rather apt to proliferate even in an androgen-poor environment. Some

experimental and clinical studies suggested that intermittent androgen suppression

(IAS) may delay or prevent the relapse when compared with continuous

androgen suppression. A mathematical model of prostate tumor growth under

the IAS therapy is presented in Chapter 2, and the model suggests an optimal

protocol of the IAS therapy.

Replication-competent viruses have been used an alternative therapeutic

approach for cancer treatment. However, new clinical data revealed an innate

immune response to virus may mitigate the effects of treatment. Chapter 3 is

concerned with the competitive dynamics between tumor cells, a replication-competent

virus and an immune response. It finds an explicit threshold of the intensity

of the immune response for controlling a tumor. Chapter 4 deals with a

mathematical model of combined therapy which requires not only injection of

viruses but also adminstration of radioiodide. The combination of virotherapy

with radiotherapy has recently been experimentally and clinically shown to

be significantly more effective than treatment with virotherapy alone. The
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mathematical model not only verifies the above observation but also can be

used to numerically study an optimal timing for radio-iodine administration

and an optimal dose for the radioactive iodide.

Glioblastoma multiforme, a type of glioma, is the most aggressive of brain

tumors. The standard treatment for newly diagnosed glioblastoma multiforme

is surgical resection followed by radiotherapy and chemotherapy. Chapter 5

gives a mathematical model which could predict the survival time of patients

who undergo resection, radiation, and chemotherapy with different protocols.

Chapter 6 qualitatively studies a mathematical model describing the cell

cycle dynamics and chemotactic driven cell movement in multicellular tumor

spheroids. The model is a free boundary problem for a system of partial

differential equations with novel free boundary conditions due to different

velocities of cells.

Chapter 7 deals with a chemotaxis-haptotaxis model of cancer invasion.

The global existence and uniform-in-time boundedness of solutions to the

system is studied. This chapter develops some new a priori estimate techniques

for chemotaxis-haptotaxis systems. Chapter 8 is concerned with a density-dependent

chemotaxis-haptotaxis model of cancer invasion. The equation for cell density

includes two bounded nonlinear density-dependent chemotactic and haptotactic

sensitivity functions, which exclude the possibility of blow-up of solutions to

the model.
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Introduction
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Modeling Prostate Tumor Growth under

Androgen Suppression

2.1 Introduction

The prostate cancer is the secondly most common cancer in males after the

lung cancer [53]. More than 670,000 men are diagnosed with prostate cancers

every year in the world, and that accounts for one in nine of all new cancers

in men. The United States and Sweden have the highest incidence rate of

prostate cancers, while China and India have the lowest incidence rate [87].

The chestnut-shaped prostate gland under the bladder is a male sexual organ

which produces seminal fluid. The proliferation and apoptosis of prostate

cells are regulated by androgens. Prostate cancers are characterized as an

abnormal and uncontrolled growth of prostate cancer cells. At present, the

cause of prostate cancers is not fully understood, although it was found that

many factors such as gene mutations, aging, family history, race, and diet may

influence the development of prostate cancers [102, 135].

The growth of prostate tumors depends on androgens. Androgens are

secreted by the testicles and adrenal glands. In 1941, Huggin and Hodges
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[88] pioneered (ADT) for prostate cancers. Since then, ADT has been an

important treatment for prostate cancers. Androgen deprivation currently can

be achieved by medical castration [83]. ADT stops androgen production from

the testes. (TAB) which further combines anti-androgens with ADT is also

widely used. However, both ADT and TAB seldom succeed in removing all

prostate tumor cells, and relapses of prostate tumors often occur. The so-called

androgen-independent (AI) cells are considered to be responsible for tumor

relapses. These cells are not sensitive to androgen suppression but rather apt

to proliferate even in an androgen-poor environment [16, 90]. Since androgen

dependent (AD) cells cannot proliferation under the androgen deprivation

condition, a prostate tumor relapse would imply some increase of AI cells.

Several mechanisms have been identified for progression of AD cells to AI cells.

These include androgen receptor (AR) gene amplification, AR mutation, and

bypass of androgenic activation of AR or of AR signaling itself [83, 102, 113].

Hence, the continuous androgen suppression (CAS) therapy with ADT and

TAB often results in an AI relapse.

To our knowledge, Jackson [95, 96] developed the first partial differential

equation model for the CAS therapy of prostate cancers. The model considers

a prostate tumor as a heterogeneous mixture of AD and AI cells, and it is

assumed that a relapse of a prostate tumor can possibly result from decreasing

the apoptotic rate of the AI cells by androgen-deprivation. Jackson’s model

well agrees with experimental observations. This model predicts that the CAS

therapy is successful only for some small ranges of biological parameters. The
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model also suggests that an androgen-independent relapse is associated with

decreasing of apoptosis while without increasing of proliferation [95, 96].

In this chapter, we will first extend Jackson’s model. Our model will

incorporate mutation inhibitors [154]. By the mutation we mean that androgen-dependent

(AD) prostate tumor cells mutate into androgen-independent (AI) prostate

tumor cells, and by mutation inhibitors we mean inhibition effects to the

mutation rates. As afore-mentioned, the relapse of tumors is a crucial problem

in hormonal therapy of prostate cancers. Currently we know that there are two

possible mechanisms that a prostate tumor can recur [91]. One is mutation or

adaptation where AD cells mutate into AI cells under the androgen deprived

condition. The other is selection or competition where AI cells are minor but

exist from the beginning of the therapy and they will dominate under androgen

suppression condition. These two recurrence mechanisms have different effects

on the prostate tumor relapse, and they may work together. However, we

will first consider the mutation mechanism of prostate tumor relapse under

continuous androgen suppression.

Qualitative analysis suggests that a tumor relapse cannot be avoided

under androgen-deprived therapy. This implication may support a possible

strategy of intermittent androgen suppression (IAS). Intermittent androgen

suppression is a type of androgen ablative therapy delivered intermittently

with off-treatment periods [17]. Actually, there are several mathematical

models that study prostate tumor growth under IAS therapy. We will also
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review a mathematical model that considers the mutation mechanism of

prostate tumor relapse under intermittent androgen suppression.

2.2 Mathematical Model for Continuous Androgen

Suppression

Following [95, 96], the prostate tumor is viewed as a densely packed and

radially-symmetric sphere. We denote R(t) as the radius of the tumor sphere.

The tumor contains both AD and AI cells, and their number densities are

denoted by x1(r, t) and x2(r, t), respectively. Since the level of androgens

within the tissue under consideration can be regulated by medical methods

[17, 18, 95, 96], we neglect spatial heterogeneity of androgens within the

prostate tumor tissue. The tumor is assumed to be incompressible fluids with a

velocity field v (v := v ·r/|r|). The velocity field is caused by cell proliferation

and death. The cell proliferation depends on the androgen level, a(t). In solid

tumor growth modeling, it is usually assumed that cell movement has two

components: 1) motion due to the velocity v(r, t) [93, 94, 168], and 2) random

motion [20, 66, 73, 74]. We exploit the spherical symmetry of the problem

by assuming henceforth that the variables x1, x2, and v depend only on (r, t)

where r is the radial distance from the center of the tumor, and t is time.

As an extension of the model [95, 96], the model we consider consists of the

following equations:
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∂x1

∂t
(r, t) +

1

r2

∂

∂r

(
r2v(r, t)x1(r, t)

)
=
D1

r2

∂

∂r

(
r2 ∂x1

∂r
(r, t)

)
+p1(a(t))x1(r, t)− q1(a(t))x1(r, t)

−(1− I)m(a(t))x1(r, t), (2.1)

∂x2

∂t
(r, t) +

1

r2

∂

∂r

(
r2v(r, t)x2(r, t)

)
=
D2

r2

∂

∂r

(
r2 ∂x2

∂r
(r, t)

)
+ (1− I)m(a(t))x1(r, t)

+p2(a(t))x2(r, t)− q2(a(t))x2(r, t), (2.2)

where D1 and D2 are the random motility coefficients of the AD and

AI cells; p1(a(t)) and p2(a(t)) are proliferation rates of the AD and AI cells;

q1(a(t)), and q2(a(t)) are their apoptosis rates; m(a(t)) is the mutation rate by

which AD cells mutate to AI ones. The intensity of the inhibitors that reduces

the mutation rate is represented by parameter I, which varies from zero to one.

I = 0 corresponds to no inhibition to the mutation, while I = 1 corresponds

to the full inhibition to the mutation. So, the rate at which cells mutate from

the AD type to AI type is given by (1− I)m(a(t)). The cell proliferation rate,

apoptotic rate, and mutation rate are assumed to be dependent on the local

concentration of androgens, a(t).

It is a fact that within a tumor the total number of cells per unit volume

is constant [95, 96, 168]. Hence,

x1 + x2 = k ≡ constant. (2.3)

Equations (2.1) and (2.2) with assumption (2.3) yield
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k

r2

∂

∂r

(
r2v(r, t)

)
= (D1 −D2)

1

r2

∂

∂r

(
r2 ∂x1

∂r
(r, t)

)
+ p1(a(t))x1(r, t)

+p2(a(t))(k − x1(r, t))− q1(a(t))x1(r, t)

−q2(a(t))(k − x1(r, t)). (2.4)

By the radial symmetry assumption of the problem, we have

∂x1

∂r
(0, t) =

∂x2

∂r
(0, t) = v(0, t) = 0. (2.5)

To close the system of the equations, we need to impose boundary and

initial conditions.

Boundary Conditions: We assume that there is no-flux of cancer cells

across the outer boundary of the tumor. This assumption gives the following

equations,
[
x1(r, t)

dR(t)

dt
−
(
x1(r, t)v(r, t)−D1

∂x1

∂r
(r, t)

)]
r=R(t)

= 0,[
x2(r, t)

dR(t)

dt
−
(
x2(r, t)v(r, t)−D2

∂x2

∂r
(r, t)

)]
r=R(t)

= 0,

(2.6)

which, together with (2.3), yield the free boundary conditions:
dR(t)

dt
− v(R(t), t) = 0,

∂x1

∂r
(R(t), t) = 0.

(2.7)

Initial Conditions: We prescribe the initial data as follows,

R(0) = R0, x1(r, 0) = x10(r) for 0 ≤ r ≤ R0. (2.8)

Remark 2.1. The no-flux boundary condition (2.6) is obtained by considering

the relative velocities of cells on the outer boundary of the growing tumor.

These types of no-flux boundary conditions for diffusion-advection equations

in a moving domain {r ≤ R(t)} were firstly clarified by Tao [150].
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Since x1 + x2 = k, it is not necessary to impose any additional initial

condition for x2 in Eq. (2.8). We also note that Eq. (1.2) is a consequence of

Eqs. (2.1), (2.3) and (2.4), so in what follows we simply drop this equation.

After adopting the non-dimensional variables and some parameter values

given in [95], the model (2.1)-(2.8) can be rewritten as follows:

∂x1

∂t
(r, t) +

1

r2

∂

∂r

(
r2v(r, t)x1(r, t)

)
=
ε1
r2

∂

∂r

(
r2 ∂x1

∂r
(r, t)

)
+ p1(a(t))x1(r, t)− q1(a(t))x1(r, t)

−(1− I)m(a(t))x1(r, t), (2.9)

1

r2

∂

∂r

(
r2v(r, t)x1(r, t)

)
= p1(a(t))x1(r, t) + 1− x1(r, t)− q1(a(t))x1(r, t)

−q2(a(t))(1− x1(r, t)), (2.10)

dR

dt
= v(R(t), t), (2.11)

R(0) = 1, x1(r, 0) = x10(r), (2.12)

∂x1

∂r
(0, t) = 0, v(0, t) = 0, (2.13)

∂x1

∂r
(R(t), t) = 0, (2.14)

where 0 < ε1 � 1 is some constant. The functions a(t), p1(a(t)), q1(a(t)),

q2(a(t)), and m(a(t)) take the following specific forms (see [95] for details):
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a(t) = e−bt + as, t ≥ 0, (2.15)

p1(a(t)) = θ1 + (1− θ1)
a(t)

a(t) +K
, (2.16)

q1(a(t)) = δ1

[
ω1 + (1− ω1)

a(t)

a(t) +K

]
, (2.17)

q2(a(t)) = δ2

[
ω2 + (1− ω2)

a(t)

a(t) +K

]
, (2.18)

m(a(t)) = m1

(
1− a(t)

1 + as

)
, (2.19)

where b, K, m1, δ1, δ2, ω1, and ω2 are some positive constants with the

following assumed conditions:

0 ≤ as < 1, 0 ≤ θ1 < 1, δ1 < δ2, ω1 > 1, and ω2 < 1. (2.20)

In Eq. (2.15) we assume that the hormonal treatment is initiated at the time

t = 0. The parameter as > 0 corresponds to ADT, while as = 0 corresponds

to TAB. The parameter θ1 represents the proliferation rate of AD cells in the

androgen-deprived state. 0 ≤ θ1 < 1 means that the deprivation of androgens

will decrease the proliferation rate of the AD cells. The assumption of δ1 < δ2

is due to the fact that the AD cells are dominant in androgen-rich conditions

[52, 95, 96]. The assumption of ω1 > 1 and ω2 < 1 mean that the deprivation

of androgens will increase the apoptosis rate of the AD cells but reduce that

of AI cells [95]. Equation (2.19) assumes that the mutation rate m(a(t)) is

decreasing with increasing the local concentration of androgens a(t).
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2.3 Transformation of Continuous Androgen Suppression

Model

It is difficult to study free boundary problems, in general. We usually choose

various transformations to change free boundary problems to fixed boundary

problems. For the model we introduced above, we adopt, as shown in [145],

the change of variables (r, t, x1, v, R) 7→ (ρ, t, x̃1, ṽ, R) as follows:

ρ = r/R(t), t = t, R(t) = R(t),

x̃1(ρ, t) = x1(ρR(t), t), ṽ(ρ, t) = v(ρR(t), t)/R(t). (2.21)

In terms of the new variables and after dropping the tildes of x̃1(ρ, t) and

ṽ(ρ, t) for notational convenience, the system (2.9)-(2.14) takes the following

form in {0 < ρ < 1, t > 0}:

∂x1

∂t
(ρ, t) +

[
v(ρ, t)− ρv(1, t)

]∂x1

∂ρ
(ρ, t)− ε1

R2(t)

1

ρ2

∂

∂ρ

(
ρ2 ∂x1

∂ρ
(ρ, t)

)
=
[
p1(a(t)) + q2(a(t))− 1− q1(a(t))

]
x1(ρ, t)(1− x1(ρ, t))

−(1− I)m(a(t))x1(ρ, t), (2.22)

x1(ρ, 0) = x10(ρ), (2.23)

∂x1

∂ρ
(0, t) =

∂x1

∂ρ
(1, t) = 0, (2.24)

v(ρ, t) =
1

ρ2

∫ ρ

0

[
p1(a(t))x1(s, t) + 1− x1(s, t)− q1(a(t))x1(s, t)

−q2(a(t))(1− x1(s, t))
]
s2ds, (2.25)

dR(t)

dt
= R(t)v(1, t), (2.26)

R(0) = 1, (2.27)
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where we have used the fact that v(0, t) = 0 in deriving Eq. (2.25).

The global existence and uniqueness of solutions to the system (2.22)-(2.27)

were prove by Tao et al. [154]. We do not give the results and proofs here,

instead, in next section, we will review the dynamic behavior of tumor growth

in the androgen-deprived environment.

2.4 Formulae of Prostate Tumor Dynamics under

Continuous Androgen Suppression

For the general case where a = a(t) 6= 0 given in (2.15), the dynamics of

prostate tumor growth can be numerically studied (see Tao et al. [154] for

details). In this section, we shall focus on the dynamical behavior of prostate

tumor growth in androgen-deprived environment. That is, we consider the

case:

a = 0, (2.28)

and therefore

p1(a) = θ1, q1(a) = δ1ω1, q2(a) = δ2ω2, and m(a) = β1. (2.29)

Under the assumption (2.28), Eqs. (2.22)-(2.27) can be rewritten as follows:
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∂x1

∂t
(ρ, t) +

[
v(ρ, t)− ρv(1, t)

]∂x1

∂ρ
(ρ, t)− ε1

R2(t)

1

ρ2

∂

∂ρ

(
ρ2 ∂x1

∂ρ
(ρ, t)

)
=
(
θ1 + δ2ω2 − 1− δ1ω1

)
x1(ρ, t)(1− x1(ρ, t))

−(1− I)m1x1(ρ, t), (2.30)

x1(ρ, 0) = x10(ρ), (2.31)

∂x1

∂ρ
(0, t) =

∂x1

∂ρ
(1, t) = 0, (2.32)

v(ρ, t) =
1

ρ2

∫ ρ

0

[
θ1x1(s, t) + 1− x1(s, t)− δ1ω1x1(s, t)

−δ2ω2(1− x1(s, t))
]
s2ds, (2.33)

dR(t)

dt
= R(t)v(1, t), (2.34)

R(0) = 1. (2.35)

Set x2(ρ, t) := 1− x1(ρ, t), and define

V1(t) := 4πR3(t)

∫ 1

0

x1(ρ, t)ρ2dρ, V2(t) := 4πR3(t)

∫ 1

0

x2(ρ, t)ρ2dρ,

where V1(t) and V2(t) are the volumes occupied by AD cells and AI cells at

time t, respectively. Then

V (t) := V1(t) + V2(t) ≡ 4

3
πR3(t) (2.36)

is the tumor volume at time t. In this section we will derive formulae of the

tumor volume (or the tumor radius) at time t. The following results were

obtained by Tao et al. [154].

Theorem 2.1. Under various conditions about combined parameters θ1 −

δ1ω1− (1−I)m1 and 1−δ2ω2, the formulae for prostate tumor volume growth
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over time can be explicitly expressed. Specifically, the tumor volume growth

formulae are given under the following 5 different conditions.

(1). If the condition 1, θ1 − δ1ω1 − (1 − I)m1 = 0 and 1 − δ2ω2 = 0, holds,

then we have

V (t) =
4π

3
+ V1(0)(1− I)m1t. (2.37)

(2). If the condition 2, θ1 − δ1ω1 − (1 − I)m1 = 0 and 1 − δ2ω2 6= 0, holds,

then we have

V (t) = V1(0) + V2(0)e(1−δ2ω2)t +
(1− I)m1V1(0)

1− δ2ω2

[
e(1−δ2ω2)t − 1

]
. (2.38)

(3). If the condition 3, θ1 − δ1ω1 − (1 − I)m1 6= 0 and 1 − δ2ω2 = 0, holds,

then we have

V (t) = V2(0) + V1(0)e[θ1−δ1ω1−(1−I)m1]t

+
(1− I)m1V1(0)

θ1 − δ1ω1 − (1− I)m1

{
e[θ1−δ1ω1−(1−I)m1]t − 1

}
. (2.39)

(4). If the condition 4, θ1 − δ1ω1 − (1 − I)m1 6= 0, 1 − δ2ω2 6= 0, and θ1 −

δ1ω1 − (1− I)m1 = 1− δ2ω2, holds, then we have

V (t) =
[
V2(0) + (1− I)m1V1(0)t

]
e(1−δ2ω2)t + V1(0)e[θ1−δ1ω1−(1−I)m1]t.

(2.40)

(5). If the condition 5, θ1 − δ1ω1 − (1 − I)m1 6= 0, 1 − δ2ω2 6= 0, and θ1 −

δ1ω1 − (1− I)m1 6= 1− δ2ω2, holds, then we have

V (t) = V1(0)e[θ1−δ1ω1−(1−I)m1]t + V2(0)e(1−δ2ω2)t (2.41)

+
(1− I)m1V1(0)e(1−δ2ω2)t

θ1 − δ1ω1 − (1− I)m1 − 1 + δ2ω2

{
e[θ1−δ1ω1−(1−I)m1−1+δ2ω2]t − 1

}
.



2.4 Formulae of Prostate Tumor Dynamics under Continuous Androgen Suppression 15

Proof. Combining Eqs. (2.30) and (2.32)-(2.34) and applying integration by

parts, we directly calculate,

1

4π
V̇1(t) = 3R2(t)Ṙ(t)

∫ 1

0

x1ρ
2dρ+R3(t)

∫ 1

0

∂x1

∂t
ρ2dρ

= 3R3(t)v(1, t)

∫ 1

0

x1ρ
2dρ+R3(t)

∫ 1

0

∂x1

∂t
ρ2dρ

= 3R3(t)v(1, t)

∫ 1

0

x1ρ
2dρ

+R3(t)

∫ 1

0

[
(θ1 + δ2ω2 − 1− δ1ω1)x1(1− x1)− (1− I)m1x1

]
ρ2dρ

+ε1R(t)

∫ 1

0

∂

∂ρ

(
ρ2 ∂x1

∂ρ

)
dρ

−R3(t)

∫ 1

0

[
ρ2v(ρ, t)− ρ3v(1, t)

]∂x1

∂ρ
dρ

= 3R3(t)v(1, t)

∫ 1

0

x1ρ
2dρ

+R3(t)

∫ 1

0

[
(θ1 + δ2ω2 − 1− δ1ω1)x1(1− x1)− (1− I)m1x1

]
ρ2dρ

+ε1R(t)
(
ρ2 ∂x1

∂ρ

)∣∣∣1
ρ=0

−R3(t)
{[
ρ2v(ρ, t)− ρ3v(1, t)

]
x1(ρ, t)

}∣∣∣1
ρ=0

+R3(t)

∫ 1

0

x1
∂

∂ρ

[
ρ2v(ρ, t)

]
dρ− 3R3(t)v(1, t)

∫ 1

0

x1ρ
2dρ

= R3(t)

∫ 1

0

[
(θ1 + δ2ω2 − 1− δ1ω1)x1(1− x1)− (1− I)m1x1

]
ρ2dρ

+R3(t)

∫ 1

0

x1

[
θ1x1 + 1− x1 − δ1ω1x1 − δ2ω2(1− x1)

]
ρ2dρ

= R3(t)

∫ 1

0

[
θ1 − δ1ω1 − (1− I)m1

]
x1ρ

2dρ

=
1

4π

[
θ1 − δ1ω1 − (1− I)m1

]
V1(t).

We obtain an ODE for V1(t),

V̇1(t) = [θ1 − δ1ω1 − (1− I)m1]V1(t). (2.42)
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This equation further yields

V1(t) = V1(0)e[θ1−δ1ω1−(1−I)m1]t. (2.43)

Similarly, we combine Eqs. (2.36), (2.33), (2.34), and (2.42), and calculate

V̇2(t) = 4πR2(t)Ṙ(t)− V̇1(t)

= 4πR3(t)V (1, t)− [θ1 − δ1ω1 − (1− I)m1]V1(t)

= 4πR3(t)

∫ 1

0

[
θ1x1 + 1− x1 − δ1ω1x1 − δ2ω2(1− x1)

]
ρ2dρ

−4πR3(t)

∫ 1

0

[
θ1 − δ1ω1 − (1− I)m1

]
x1ρ

2dρ

= 4πR3(t)

∫ 1

0

(1− δ2ω2)x2ρ
2dρ

+4πR3(t)

∫ 1

0

(1− I)m1x1ρ
2dρ

= (1− δ2ω2)V2(t) + (1− I)m1V1(t).

This gives us an ODE equation for V2(t):

V̇2(t) = (1− δ2ω2)V2(t) + (1− I)m1V1(t). (2.44)

Now combining the initial condition(2.35), the tumor volume (2.36), and the

expressions (2.43) and (2.44), we easily obtain (2.37)-(2.41). ut

Remark 2.2. A necessary condition for successful treatments of prostate tumors

was derived in [95]. Our Theorem 2.1 gives the explicit formulae of the tumor

volume growth over time t in androgen-deprived environment. Therefore,

the dynamics of the tumor growth in androgen-deprived environment can

be predicted by these formulae. Although the formulae were derived under



2.4 Formulae of Prostate Tumor Dynamics under Continuous Androgen Suppression 17

the assumption of radial symmetry, it may be useful to predict the long-term

behavior of tumor growth qualitatively.

From Theorem 2.1, we can derive some interesting analytical results about

androgen deprivation therapy. To demonstrate, we look at several situations

in the following.

Case 2.1. In Jackson’s article [95], parameter values are given as

δ1 =
0.3812

0.4621
, δ2 =

0.4765

0.4621
, θ1 = 0.8, ω1 = 1.35, ω2 = 0.25.

For this set of typical paprameter values, we can easily verify that

θ1 − δ1ω1 < 0 and 1− δ2ω2 > 0. (2.45)

That means that the “net” growth rate of AD cells is negative whereas the

“net” growth rate of AI cells is positive in androgen-deprived environment.

It follows from (2.45) that

θ1 − δ1ω1 − 1 + δ2ω2 < 0. (2.46)

This is a general case in Theorem 2.1. To explain biological significance, we

now rewrite the formula (2.41) as follows:

V (t) =
(
V1(0) +

(1− I)m1V1(0)

θ1 − δ1ω1 − (1− I)m1 − 1 + δ2ω2

)
e[θ1−δ1ω1−(1−I)m1]t

+
(
V2(0)− (1− I)m1V1(0)

θ1 − δ1ω1 − (1− I)m1 − 1 + δ2ω2

)
e(1−δ2ω2)t

:= A(t) +B(t). (2.47)

If we further assume that
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V2(0) > 0,

namely, the initial volume occupied by AI cells is non-zero, then from (2.45)

and (2.46) we have

A(t)→ 0 and B(t)→ +∞, as t→ +∞.

Therefore, from (2.47) we obtain

V (t)→ +∞, as t→ +∞. (2.48)

This result implies a prostate tumor relapse under androgen-deprived therapy.

We should be aware of that (2.48) holds in a sense of mathematics, and

it may not be biologically plausible. In fact, the host will die when the

prostate tumor is large enough. However, (2.48) predicts eventual failure of

the androgen-deprived therapy.

Case 2.2. Because

A(t)→ 0 and B(t)→ +∞, as t→ +∞,

the term B(t) will dominate the growth of a prostate tumor. We also notice

that the factor of B(t),

− (1− I)m1

θ1 − δ1ω1 − (1− I)m1 − 1 + δ2ω2
≡ 1− (δ1ω1 − θ1) + (1− δ2ω2)

(1− I)m1 + (δ1ω1 − θ1) + (1− δ2ω2)
,

which is decreasing with increasing of I ∈ [0, 1] under conditions (2.45). This

fact suggests that controlling the mutation intensity may delay the relapse of

prostate tumors under the androgen-deprived therapy.
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Case 2.3. We now explain some biological significance of combined parameters

θ1 − δ1ω1 − (1− I)m1 and 1− δ2ω2 in Theorem 2.1. Let’s denote

the “net” growth rate of AD cells

= the proliferation rate of AD cells − the death rate of AD cells − the mutation rate

= θ1 − δ1ω1 − (1− I)m1,

the “natural net” growth rate of AI cells

= the proliferation rate of AI cells −the death rate of AI cells

= 1− δ2ω2,

the “net” growth rate of AI cells

= the mutation rate + the “natural net”growth rate of AI cells

= (1− I)m1 + (1− δ2ω2),

where the mutation rate (1 − I)m1 is defined for AD cells to mutate to AI

cells.

The condition 1 means that the “net” growth rate of AD cells and the

“natural net” growth rate of AI cells are both equal to zero. Theorem 2.1

says that under the condition 1 the prostate tumor relapse can not be avoided

due to the mutation of AD cells which results in increasing of AI cells as

shown in (2.37). However, (2.37) also suggests that controlling the mutation

(i.e. increasing the value of I) may delay (for 0 < I < 1) or prevent (for I = 1)

the relapse. In fact, from (2.37), as t→ +∞, we see

V (t)→ +∞ if 0 < I < 1, but V (t) ≡ 4

3
π if I = 1.
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The condition 2 means that the “net” growth rate of AD cells is equal to

zero and the “natural net” growth rate of AI cells is positive (we assume that

1 − δ2ω2 > 0 for the typical parameter values as given in [95]). Theorem 2.1

says that under the condition 2 the AI cells will dominate the prostate tumor

growth as shown in (2.38) and the tumor relapse can not be avoided. In fact,

from (2.38) and 1− δ2ω2 > 0, we see that

V (t)→ +∞ as t→ +∞.

The condition 3 means that the “net” growth rate of AD cells is non-zero

(we assume that it is negative for typical parameter values as given in [95])

and the “natural net” growth rate of AI cells is zero. Theorem 2.1 says that

under the condition 3 the prostate tumor growth could be controlled as shown

in (2.39). In fact, from θ1 − δ1ω1 − (1− I)m1 < 0 and (2.39), we have

V (t)→ V2(0) +
(1− I)m1V1(0)

(1− I)m1 − (θ1 − δ1ω1)
as t→ +∞.

The condition 4 means that the “net” growth rate of AD cells is equal to

the “natural net” growth rate of AI cells and they are positive. Theorem 2.1

states that under the condition 4 both AD cells and AI cells contribute to the

prostate tumor growth as shown in (2.40) and the tumor relapse can not be

avoided. In fact, from (2.40) and θ1− δ1ω1− (1− I)m1 = 1− δ2ω2 > 0, we see

V (t)→ +∞ as t→ +∞.

The condition 5 means that the “net” growth rate of AD cells and the

“natural net” growth rate of AI cells are both non-zero and they are not equal.
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For typical parameter values given in [95], we assume that the “net” growth

rate of AD cells is negative and the “natural net” growth rate of AI cells latter

is positive (as in (2.45)). Under these assumptions the AI cells will dominate

the prostate tumor growth as shown in (2.41) and the tumor relapse can not

be avoided as shown in (2.48).

2.5 Mathematical Model for Intermittent Androgen

Suppression

The prostate gland is a male sexual organ which produces and secretes seminal

fluid. Activities of prostate cells, such as proliferation and apoptosis, are

regulated by androgens. Causes of prostate cancer are not fully understood

although genes, aging, race, family history, and lifestyle-related factors are

regarded as influential factors [135]. The screening, detection, and staging of

prostate cancer is currently conducted by using the serum prostate-specific

antigen (PSA) test [140].

A prostate tumor as well as the prostate gland itself is influenced by

androgens. Androgens are secreted by the testicles and the adrenal glands.

Androgens circulate in the blood, diffuse into the prostate tissue, and stimulate

the prostate tumor to grow. The androgen suppression therapy for prostate

cancers was initially proposed by Huggins and Hodges in 1941 [88]. Androgen

suppression can now be realized easily by chemical castration [90]. However,

the relapse of a prostate tumor remains a crucial problem for androgen
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suppression therapy. The growth of androgen-independent (AI) cells is considered

as one of the causes for this relapse. These AI cells are not sensitive to

androgen suppression. As a result AI cells can still grow in androgen-deprived

environments where androgen-dependent (AD) cells cannot proliferate [16, 17,

18, 90]. Thus continuous androgen suppression (CAS) therapy often results

in a tumor relapse due to an emergence of such AI cancer cells, which has

already been studied in previous sections.

Recent clinical studies [12, 16, 17, 18] suggest that intermittent androgen

suppression (IAS) therapy may prolong or possibly prevent the relapse.

In IAS therapies, androgen suppression is stopped when the monitored

serum PSA concentration decreases to less than a lower threshold, while

androgen suppression is resumed when the PSA concentration exceeds an

upper threshold. The clinical results of IAS therapies are reviewed in the

article [12]. However, a very important question is how to administer IAS

therapy in order to have a maximum efficacy because IAS is dynamical

therapy. To answer this question, experimental results about the prostate

tumor relapse combining mathematical models for IAS therapy is needed.

There are intensive experimental studies on prostate tumor recurrence

[83, 98, 101, 102, 113]. Two possible mechanisms of prostate tumor recurrence

[91] are recognized currently. One is mutation or adaptation, where AI cells

may emerge from androgen-dependent (AD) cells under the androgen deprived

condition. The other is selection or competition, where AI cells are minor but

exist from the beginning of the therapy and will be winners of competition
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between AD cells and AI cells under the hormonal therapy. Since these two

mechanisms may work together and the real situation can be much more

complex due to polyclonality of AD cells and AI cells [52, 111, 132], different

mathematical models are needed for these mechanisms.

Ideta et al. [89] proposed an ordinary differential equation (ODE) model

for prostate cancer IAS therapy, which studies the mutation mechanism of

prostate tumor relapse. This model simplifies biological reality since spatial

heterogeneity is neglected. Incorporating spatial motion of cells, Guo et al.

[76] extended this ODE model to a partial differential equation (PDE) model.

The main difference between the ODE model [89] and the PDE model [76] is

that the subpopulation of AI (or AD) cells in the PDE model is nonlinearly

related to the subpopulations of AD (or AI) cells due to the spatial movement

of tumor cells, while the subpopulation of AI (or AD) cells in the ODE model

is linearly related to the subpopulations of AD (or AI) cells. Furthermore, the

numerical study of the PDE model finds an optimal lower threshold r0 (when

the upper threshold r1 is fixed), which suggests an optimal protocol for IAS

therapy.

As mentioned, mutation and competition are two different mechanisms of

the relapse of a prostate tumor. Shimada and Aihara [134] proposed another

ODE model for IAS therapy, which studies the competition mechanism of a

tumor relapse. Tao et al. [152] extended this ODE model to a PDE model by

incorporating the spatial motion of cells within the model.
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Let’s assume that Ω ∈ R3 is the domain of the solid prostate tumor

under consideration. To make the model tractable, Ω is assumed to be

spherical. Following [95, 96], the tumor is considered as a densely packed,

radially-symmetric sphere of radius R(t). We assume that tumor cells move

as a result of a convective velocity field v caused by cell proliferation and

death driving local volume changes [95, 168]. We also assume that cells

move through random processes such as diffusion processes [73, 74]. Since

the growth of a prostate tumor is mainly dependent on androgens [12, 95],

we also assume that the growth of a solid prostate tumor is stimulated

by androgens (here we neglect other nutrients or inhibitors). Androgen

deprivation now can be easily performed by chemical castration [12, 90],

for instance, by administration of pharmacological agents such as luteinizing

hormone releasing hormone (LHRH) analogs that inhibit the production of

androgens from its primary source, the testes. The remaining androgens that

are produced by the adrenal glands can also be eliminated by additional

treatment with androgen-receptor antagonists (anti-androgens). Thus, the

level of androgens within the tissue under consideration can be controlled

by medical means, and we can neglect spatial heterogeneity of androgens

within the tissue. As mentioned before, prostate cancer cells are divided

into two groups: androgen-dependent (AD) cells and androgen-independent

(AI) cells. AI cells are not sensitive to androgen suppression but rather

apt to increase even in an androgen deprivation condition in which AD

cells cannot proliferate. Therefore, we assume that their proliferation rate
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and apoptosis rate only depend on the androgen concentration within the

tissue. The serum PSA is secreted by prostate cancer cells, and its level

can be observed by medical blood examination. We can consider the PSA

concentration is a function of time only. The PSA is a good bio-marker for

estimating the progression for prostate cancer [16, 140], and IAS therapy is

based on monitoring of the concentration of PSA.

We introduce the following physical variables:

– the androgen concentration a

– the number density of the AD cells x1

– the number density of the AI cells x2

– the serum PSA concentration y

– the velocity field within the tumor v.

Since IAS therapy is a dynamical therapy, we use a binary variable u(t)

to describe IAS therapy of a prostate tumor: the medication is alternatively

either present (u = 1) or absent (u = 0). The switch on/off of the medication

is based on the monitored level y(t) of the serum PSA. Hence, the androgen

concentration level a(t) (nmol/l) satisfies the following equation [89]:

da(t)

dt
= −γ

(
a(t)− a0

)
− γa0u(t), (2.49)

where a0 (nmol/l) denotes the steady-state value of the normal androgen

concentration, which takes a value between 15 and 30 for usual adult males.

The rate of the recovery and decay of the androgen concentration is governed

by the parameter γ.
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Under the assumptions mentioned above, the mass balance equations for

the AD cell population and the AI cell population are given:

∂x1

∂t
(r, t) +

1

r2

∂

∂r

(
r2v(r, t)x1(r, t)

)
=
D

r2

∂

∂r

(
r2 ∂x1

∂r
(r, t)

)
+
[
α1p1(a(t))− β1q1(a(t))−m(a(t))

]
x1(r, t), (2.50)

∂x2

∂t
(r, t) +

1

r2

∂

∂r

(
r2v(r, t)x2(r, t)

)
=
D

r2

∂

∂r

(
r2 ∂x2

∂r
(r, t)

)
+m(a(t))x1(r, t)

+
[
α2p2(a(t))− β2q2(a(t))

]
x2(r, t), (2.51)

where D is the random motility coefficient of the AD and AI cells, α1p1(a(t))

and β1q1(a(t)) are proliferation rate and apoptosis rate of AD cells respectively,

α2p2(a(t)) and β2q2(a(t)) are proliferation rate and apoptosis rate of IA

cells, m(a(t)) is the mutation rate by which AD cells mutate to AI cells.

The cell proliferation rate, apoptotic rate, and mutation rate are assumed

to be dependent on the androgen concentration a(t) as assumed. These

androgen-dependent functions are given as follows [89]:

p1(a(t)) = k1 + (1− k1)
a(t)

a(t) + k2
, (2.52)

q1(a(t)) = k3 + (1− k3)
a(t)

a(t) + k4
, (2.53)
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p2(a(t)) =



(i) 1,

(ii) 1−
(

1− β2

α2

)
a(t)
a0

,

(iii) 1− a(t)
a0
,

(2.54)

q2(a(t)) = 1, (2.55)

m(a(t)) = m1

(
1− a(t)

a0

)
. (2.56)

As shown in Eqs. (2.52)-(2.53), the proliferation rate of AD cells is an

increasing function of the androgen concentration a while the apoptosis rate

of AD cells is a decreasing function of the androgen concentration a, where

0 ≤ k1 ≤ 1 and k3 > 1. The proliferation rate and apoptosis rate of AI cells

also depends on the androgen concentration [100], although details of their

androgen dependence remain unclear. We assume three possibilities on the

net growth rate of the AI cells, as given in Eqs. (2.54) and (2.55), which are

characterized by whether the net growth rate is positive, zero, or negative in

androgen-rich environments.

The fact that the number density of cells is constant within a solid tumor

[95, 168] gives,

x1(r, t) + x2(r, t) ≡ 1. (2.57)

Further, we assume that the serum PSA concentration y(t) is monitored

as a bio-marker for the prostate tumor growth. Since a large amount of PSA

is secreted by cancer cells, the PSA concentration is assumed to be linearly

dependent on the densities of the AD and AI cell populations as follows [89]:
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y(t) =

∫ 2π

0

dθ

∫ π

0

dϕ

∫ R(t)

0

(
c1x1(r, t) + c2x2(r, t)

)
r2 sinϕ dr, (2.58)

where c1 and c2 are some constants. The PSA concentration y(t) can be used

as a basis for intermittent administration in the IAS therapy model.

We switch the medication when the serum PSA marker level y(t) crosses

the upper and lower thresholds [89]:

u(t) =


0→ 1 when y(t) = r1 and dy(t)/dt > 0

1→ 0 when y(t) = r0 and dy(t)/dt < 0

, (2.59)

where r1 and r0 are the upper and lower thresholds, respectively. However, how

to administer IAS therapy, or how to appropriately set adjustable parameters

r1 and r0 under the condition of r1 > r0 > 0, is a very important question for

clinical practice [12].

By the radial symmetry assumption of the problem, we have

∂x1

∂r
(0, t) =

∂x2

∂r
(0, t) = 0, v(0, t) = 0. (2.60)

To complete the system, we impose the following initial and boundary

conditions:

R(0) = R0, x1(r, 0) = x10(r) with 0 ≤ x10(r) ≤ 1, (2.61)[
x1(r, t)

dR(t)

dt
−
(
x1(r, t)v(r, t)−D∂x1

∂r
(r, t)

)]
r=R(t)

= 0, (2.62)[
x2(r, t)

dR(t)

dt
−
(
x2(r, t)v(r, t)−D∂x2

∂r
(r, t)

)]
r=R(t)

= 0, (2.63)

where Eqs. (2.62) and (2.63) are no-flux boundary conditions for AD and AI

cells respectively, as explained in Chapter 2.2.
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The system (2.49)-(2.63) is the mathematical problem of prostate tumor

growth under intermittent androgen suppression. In order to solve this problem,

we need some more conditions or equations.

By adding Eqs. (2.50) and (2.51) and using the fact (2.57), we obtain an

equation for the velocity field within the tumor,

1

r2

∂

∂r

(
r2v(r, t)

)
=
[
α1p1(a(t))− β1q1(a(t))

]
x1(r, t)

+
[
α2p2(a(t))− β2q2(a(t))

]
(1− x1(r, t)). (2.64)

By adding Eqs. (2.62) and (2.63) and using (2.57), we obtain an equation

for the velocity of the outer boundary of the tumor,

dR(t)

dt
= v(R(t), t). (2.65)

This equation, together with Eq. (2.62), yields the following boundary condition

for AD cells

∂x1

∂r
(R(t), t) = 0. (2.66)

We notice that Eq. (2.51) is a consequence of Eqs. (2.50), (2.57), and the

expression (2.64). Therefore, in what follows we may drop this equation and

replace x2 by 1− x1 in Eqs. (2.50) and (2.58).

We also notice that the no-flux boundary conditions (2.62)-(2.63) are

equivalent to the boundary conditions (2.65)-(2.66) under the condition (2.57).

So shall replace Eqs. (2.62)-(2.63) with Eqs. (2.65)-(2.66).

In next section we will transform the problem (2.49)-(2.66) in the moving

domain {r ≤ R(t)} into a new system in a fixed domain.



30 2 Modeling Prostate Tumor Growth under Androgen Suppression

2.6 Transformation of Intermittent Androgen

Suppression Model

To transform the moving domain {r ≤ R(t)} into a fixed domain, as done in

Chapter 2.2, we introduce a change of variables (r, t, a, x1, v, R, y, u) 7→

(ρ, t, a, x̃1, ṽ, R, y, u) as follows:

ρ = r/R(t), x̃1(ρ, t) = x1(ρR(t), t), ṽ(ρ, t) = v(ρR(t), t)/R(t). (2.67)

For notational convenience, we drop the tildes of x̃1(ρ, t) and ṽ(ρ, t), in terms

of the new variables, the system (2.49)-(2.66) takes the following form in

{0 < ρ < 1, 0 < t < T}:

da(t)

dt
= −γ

(
a(t)− a0

)
− γa0u(t), a(0) = a0, (2.68)

∂x1

∂t
(ρ, t) +

[
v(ρ, t)− ρv(1, t)

]∂x1

∂ρ
(ρ, t)− D

R2(t)

1

ρ2

∂

∂ρ

(
ρ2 ∂x1

∂ρ
(ρ, t)

)
=
[
α1p1(a(t))− β1q1(a(t))− α2p2(a(t)) + β2q2(a(t))

]
x1(ρ, t)(1− x1(ρ, t))

−m(a(t))x1(ρ, t), (2.69)

x1(ρ, 0) = x10(ρ), (2.70)

∂x1

∂ρ
(0, t) =

∂x1

∂ρ
(1, t) = 0, (2.71)

v(ρ, t) =
1

ρ2

∫ ρ

0

{[
α1p1(a(t))− β1q1(a(t))

]
x1(s, t)

+
[
α2p2(a(t))− β2q2(a(t))

]
(1− x1(s, t))

}
s2ds, (2.72)

dR(t)

dt
= R(t)v(1, t), R(0) = R0, (2.73)
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y(t) = c0R
3(t), (2.74)

u(t) =


0→ 1 when y(t) = r1 and dy(t)/dt > 0

1→ 0 when y(t) = r0 and dy(t)/dt < 0

, (2.75)

where we have used the fact that v(0, t) = 0 in deriving Eq. (2.72), and we have

used the assumptions c1 = c2 and (2.57) in deriving Eq. (2.74) (c0 := 4πc1/3).

The model dynamics will be examined using numerical simulation in next

section.

2.7 Numerical Study of Intermittent Androgen

Suppression Model

In this section we will perform numerical simulations of the model (2.68)-(2.75)

to study the effects of IAS therapy in the three cases (i)-(iii) of the proliferation

rate of the AI cells in (2.54). The model describes IAS therapy for 0 < r0 < r1,

while the model can be viewed to describe CAS therapy if r0 = 0. The typical

parameter values and the initial conditions for the numerical simulations are

given[76, 89, 95]:

k1 = 0, k2 = 2, k3 = 8, k4 = 0.5, α1 = 0.0204, α2 = 0.0242,

β1 = 0.0076, β2 = 0.0168, γ = 0.08, a0 = 30, m1 = 0.00005

a(0) = 30, u(0) = 1, D = 0 and R(0) = 2 mm.

In the simulations, the initial condition for x10 is taken as follows:

x10 = 0.95.
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This initial condition implies that AI cells are minor at the beginning of the

therapy. The parameters r0 and r1 are the adjustable parameters in our

model.
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Fig. 2.1. The dynamics of the serum PSA concentration y(t) in case (i), where

c0 = 0.5.

Figure 2.1 shows the dynamics of the serum PSA concentration y(t) in case

(i). It indicates that IAS seems to be more ineffective than CAS in prolonging

a relapse, which is similar to the dynamics of the ODE model [89]. We notice

that the net growth rate (the proliferation rate − the apoptosis rate) of AI

cells is always positive due to α2p2 − β2q2 = α2 − β2 > 0 in case (i), and

therefore AI cells will be rapidly dominant within a prostate tumor. On the

other hand, Figure 2.1 also shows that a relapse occurs within approximately
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three years in all the trials with different values of r0 similarly with the CAS.

Therefore, the IAS therapy may be worthy to be adopted in the sense that

the periods of off-adminstration introduced by this therapy can reduce side

effects of androgen deprivation and improve the quality of life for patients.
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Fig. 2.2. The dynamics of the serum PSA concentration y(t) in case (ii), where

c0 = 1.5. r0 = 7 is a nearly optimal lower threshold for IAS therapy if we fix the

upper threshold at r1 = 15.

The dynamics of the serum PSA concentration y(t) in case (ii) of Eq.

(2.54) is presented in Figure 2.2. Unlike the previous case, all the trials with

IAS therapy prolong the relapse time when compared with the CAS therapy.

Figure 2.2 shows that the relapse time is not monotonously decreasing in the

lower threshold r0 ∈ [1, 14] if c0 = 1.5. Then, to achieve better effects of
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IAS therapy, the lower threshold r0 should be carefully selected. In fact, to

maximally delay the relapse time, a nearly optimal lower threshold r0 = 7 is

numerically found if the upper threshold is fixed at r1 = 15 as shown in Figure

2.2. It is impossible, however, to avoid an eventually relapse in case (ii) due to

α2p2(a)−β2q2(a) > 0 for 0 ≤ a < a0 and α2p2(a0)−β2q2(a0) = 0. This implies

that the population of AI cells increases in androgen-poor environments,

and does not decrease even in environments that have the normal androgen

concentration a0.
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Fig. 2.3. The dynamics of the serum PSA concentration y(t) in case (iii), where

c0 = 0.8 and r1 = 15.0. y(t) will be periodically oscillatory for 0.31 ≤ r0 < r1, where

r0 = 0.31 is the critical lower threshold for the existence of a stable periodic solution

which corresponds to successful IAS.
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Figure 2.3 shows the dynamics of the serum PSA concentration y(t) in case

(iii) with c0 = 0.8 and r1 = 15.0. The CAS therapy leads to a relapse due to

α2p2(0)− β2q2(0) = α2 − β2 > 0. This implies that the population of AI cells

continues to increase in an androgen-deprived state. However, IAS therapy

can realize cyclic growth and regression of the tumor without a relapse due to

α2p2(a0)− β2q2(a0) = −β2 < 0, which implies that the population of AI cells

decreases in an androgen-rich environment. In fact, the biological evidence

that proliferation of AI cancer cells is repressed by androgen [102].

2.8 Summary

This chapter reviews mathematical models for prostate tumor growth under

hormone therapy with mutation inhibitors. The prostate tumors have two

types of cancerous cells, androgen-dependent (AD) cells and androgen-independent

(AI) cells. AI cells are undetectable prior to treatments, but they grow even

in androgen-poor conditions during continuous hormone therapy. The models

are formulated as free boundary problems of nonlinear parabolic systems, and

describe the evolution of cancerous cell populations within a prostate tumor

and the dynamics of the tumor radius (volume).

We found explicit formulae of the tumor volume at any time t in continuously

androgen-deprived environment. The long-term behavior of tumor growth can

be predicted by these formulae. Qualitative analysis suggests that a tumor

relapse cannot be avoided under androgen-deprived therapy. This implication
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may support a possible strategy of intermittent androgen suppression (IAS).

Intermittent androgen suppression is a type of androgen ablative therapy

delivered intermittently with off-treatment periods [17].

In fact, a crucial problem of the CAS therapy on prostate cancer is

the relapse of a prostate tumor, which has been shown by a number of

experimental and clinical studies [12, 16, 17, 18, 83, 90, 95, 102]. This forces us

to look for alternative method to treat prostate tumor, which is intermittent

androgen suppression. We then reviews the PDE model [76] for IAS therapy.

The numerical results show that the IAS therapy may be more effective than

the CAS therapy in delaying a relapse in some cases (see Figs. 2.2 and 2.3).

To achieve a better effect of the IAS therapy, we need to optimally administer

the intermittent treatment. That is, we need to optimally choose the lower

threshold r0 (see Fig. 2.2), which depends on the parameters r1 and c0.

We should mention that the nonlinear competitive effects between AD and

AI cancer cells has been recently considered by Shimada and Aihara [134]. In

the same way as presented in this chapter, Tao et al. [152] extended this ODE

model to a PDE model and performed some qualitative and numerical analysis

of the extended PDE model.



3

Modeling the Competition between Tumor

Cells, Oncolytic Viruses and Immune Response

3.1 Introduction

In this chapter, we will review mathematical models for tumor virotherapy

[144, 170, 65]. Unlike the model of Byrne and Chaplain [19] which introduces a

genetic inhibitor, the present chapter considers a tumor therapy by oncolytic

viruses, called virotherapy. Virotherapy has been and is continues to be

actively tested in clinical trials for variety of malignant cancers [14, 34, 38,

77, 128, 181].

One of the obstacles in developing efficient gene therapies for cancers is in

the delivery process. The macromolecules used as gene delivery carriers are

too large to be transported into, and diffuse within, the tumor [92, 141]. A

recent approach aimed at bypassing this problem involves the use of viruses.

Viruses are engineered to selectively bind to receptors on the tumor cell surface

(but not to the surface of normal healthy cells). The virus particles then

gain entry by endocytosis and proceed to reproduce within the tumor cell,

eventually causing death (lysis). On lysis of an infected cell, a swarm of new
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viruses burst out of the dead cell, and then infect neighboring tumor cells.

This process continue until all cancer cells are destroyed.

However, most virus species are unable to eradicate the majority of tumor

modules. There are increasing evidences that the host immune response to

active viral infections. Indeed, it has been manifested that the innate immune

system destroys infected cells as well as free virus particles, thus enabling the

tumor to grow [33].

A mathematical model that describes the evolution of a solid tumor under

viral injection was initially developed by Wu, Byrne, Kirn and Wein [178].

They computed and compared the evolution of the tumor under different

initial conditions using the ’simplified’ version of their model. Friedman

and Tao [61] presented a somewhat different model, and made a rigorous

mathematical analysis on their model. The main difference between the FT

model and the WBKW model is a PDE for viruses. The WBKW model does

not include the diffusion term and their mathematical system is not well posed.

Later on, Wein, Wu and Kirn [170] incorporated the immune response

into their earlier model [178]. They used some preclinical and clinical data

to validate their model and estimate several key parameter values. They also

discussed some design of oncolytic viruses. The viruses should be designed for

rapid intratumoral spread and immune avoidance, in addition to tumor-selectively

and safety. Tao and Guo [144] made a rigorous mathematical analysis of the

WWK model. A very interesting point of the analysis is to theoretically find
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an explicit threshold of the intensity of the immune response for controlling

a tumor, which is the focus of the present chapter.

We also review a mathematical model proposed by Friedman and Tian

et al [65]. This model is formulated for spherical glioma under virotherapy.

The model studies administration of oncolytic virus hrR3 into the tumor

center. HrR3 is a mutant of herpes simplex virus (HSV) [34]. Importantly, this

model includes the effects of the immunosuppression drug cyclophosphamide.

We used this mathematical model to determine how different protocols of

cyclophosphamide treatment and how the burst size of mutated viruses will

affect the growth of gliomas. It is showed that with the current burst size

of oncolytic virus hrR3 the glioma tumor cannot be eradicated even with

administration of cyclophosphamide. If, however, the viruses can be further

altered to yield a burst size b ≥ 150, then the glioma tumor will shrink to

very small size even with no cyclophosphamide treatment.

In this chapter, we will mainly review the model [170] initially proposed

by Wein et al. and present some analytical mathematical results [144] on

this model. Section 3.2 gives the model. Section 3.3 re-formulates the model.

Section 3.4 states the analytical results. Section 3.5 numerically studies a

mathematical model with a time-delay of the immune response. Section 3.6

review the mathematical model for glioma virotherapy. Finally, this chapter

is closed with a summary section.



40 3 Modeling the Competition between Tumor Cells, Oncolytic Viruses and Immune Response

3.2 Mathematical Model

Consider a radially symmetrical tumor, and denote its boundary by R(t). We

use symbol r for the distance from a point to the center of the tumor, and r

will be a variable. We also introduce the following physical variables

the number density of uninfected tumor cells : x̂(r, t)

the number density of infected tumor cells : ŷ(r, t)

the number density of dead cells : n̂(r, t)

the number density of free virus particles : v̂(r, t)

the number density of the immune molecules : ẑ(r, t)

the velocity field within the tumor : u(r, t).

As that in Chapter 2.2, the proliferation and removal of cells cause movements

of cells with the radial velocity field u(r, t), where u(0, t) = 0.

There is some biological evidences that many types of tumor cells secrete

a variety of growth-promoting factors, for example, epidermal growth factor

(EGF) and transforming growth factor-α (TGF-α) [182]. So, we usually

consider that tumor cells proliferate. Following Wu et al [178], we assume that

the uninfected cells proliferate exponentially at rate λ. Viruses infect tumor

cells by binding to receptors on cell surfaces and gaining entry by endocytosis.

Therefore, as in [178] we assume that the infection rate of cells centered at

r equals a constant β times the density of uninfected cells at r times v̄(r, t),

which is the spatially-weighted average of virus density on the surface of a
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spherical cell with radius rc that is centered at r . In [178], Wu et al showed

that

v̄(r, t) =
1

2rc

∫ r+rc

r−rc
v̂(s, t)ds. (3.1)

Since the diffusion coefficient of tumor cells is much smaller than the diffusion

coefficient of the motile virus particles, we assume that the tumor cells are

subjected to the convection with velocity field u(r, t), and the diffusion of

tumor cells is neglected. for a similar assumption, we refer to articles [175,

178, 179]. By the conservation law of mass for the uninfected tumor cells,

Dx̂

Dt
≡ ∂x̂(r, t)

∂t
+

1

r2

∂

∂r

(
r2u(r, t)x̂(r, t)

)
= λx̂(r, t)− βx̂(r, t)v̄(r, t). (3.2)

As in papers [178, 179], we assume that the infected cells do not proliferate

and that all infected cells undergo lysis at rate δ, where δ−1 represents the

mean infected cell lifetime. Clinical results suggest that the immune response

is cytokine-mediated. The expression of viruses in tumor cells sensitizes cells to

lysis by the TNF (tumor necrosis factor) cytokine [130]. The binding of TNF

to death receptors on the tumor cell surface preferentially induces apoptosis

of viral-infected tumor cells, whereas the uninfected tumor cells are generally

resistant to TNF-induced killing. Based on the ability of TNF to selectively

kill viral-infected cells, we postulate that the immune response kills only the

infected tumor cells. The immune response is assumed to kill the infected

tumor cells at a rate (with proportionality constant k) proportional to the

product of the densities of the infected tumor cells and the immune response.
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We assumed that these killed cells do not release any free viruses. By the

conservation law of mass for infected cells,

Dŷ

Dt
≡ ∂ŷ(r, t)

∂t
+

1

r2

∂

∂r

(
r2u(r, t)ŷ(r, t)

)
= βx̂(r, t)v̄(r, t)− δŷ(r, t)− kŷ(r, t)ẑ(r, t). (3.3)

At the time of lysis, an infected cell becomes necrotic. We also regard the

infected cells which have been killed by the immune response as necrotic cells.

The necrotic debris is removed from the tumor at rate µ. By the conservation

law of mass for the necrotic cells,

Dn̂

Dt
≡ ∂n̂(r, t)

∂t
+

1

r2

∂

∂r

(
r2u(r, t)n̂(r, t)

)
= δŷ(r, t) + kŷ(r, t)ẑ(r, t)− µn̂(r, t). (3.4)

Since the free virus particles are very small relative to the cells, we

assume that they undergo diffusion within the tumor tissue. The viruses

addressed in this chapter play a role similar to an anti-tumor drug. The

major difference between viruses and anti-tumor drugs is that viruses have

replicating ability once they infect tumor cells and newly replicated viruses can

infect neighboring tumor cell when infected tumor cell lysis. The drugs usually

undergo diffusion within the tumor tissue [168]. There are some experimental

evidences that the diffusion coefficient of drugs is lowest near the center of

the tumor, and it is increasing to maximal levels at the tumor periphery [92].

However, for simplicity, one usually assume that the diffusion coefficient of a

drug is constant, see [168]. In this chapter we shall also confine ourselves to
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consider the situation in which the virus diffusion coefficient (denoted by D1)

is constant. When an infected tumor cell dies, we assume that N new virus

particles are released, and this number is call the burst size of the viruses.

The combined parameter Nδ is the release rate of free virus particles per

unit time per infected cell. Because virus particles are present throughout a

sphere of radius rc (where rc is the tumor cell radius), the rate of virus release

at location r is Nδ times ȳ(r, t), which is the spatially-averaged infected cell

density throughout a sphere of radius rc that is centered at r. In [178], Wu et

al derived that

ȳ(r, t) =
1

4rc3

∫ r+rc

r−rc
ŷ(s, t)[r2

c − (s− r)2]ds. (3.5)

As in [178, 179], we assume that the infected cells killed by the immune cells

do not release any free virus. The precise mechanism by which the viruses

are cleared remains unknown. We assume that it is cleared at a constant rate

γ, where 1/γ is the mean lifetime of free viruses. We shall also neglect the

effect of the velocity field on the virus, as in [178, 179]. By combining the

conservation law of mass with the effect of diffusion, we obtain

∂v̂(r, t)

∂t
= Nδȳ(r, t)− γv̂(r, t) +D1

1

r2

∂

∂r

(
r2 ∂v̂(r, t)

∂r

)
,

∂v̂(0, t)

∂r
= 0, (3.6)

where the last equation in (3.6) is a consequence of the radial symmetry.

Since the immune response (several innate immune cell populations) under

consideration in this chapter mainly consists of molecules with very small

size, we assume that it undergoes diffusion. Also, we will confine ourselves to

consider the situation in which the diffusion coefficient of immune response
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(denoted by D2) is constant. Typically, D2 = 10−2 cm2day−1 � Dc = 1.3×

10−6 cm2day−1 (the diffusion coefficient of tumor cells) [27]. We assume that

the immune response is produced at an unsaturated rate that is proportional

(with constant l) to the product of the density of infected tumor cells and the

immune response, and incurs second-order clearance with rate constant ω. We

assume second-order clearance because first-order clearance was inconsistent

with the clinical data [170]. By the conservation law of mass, we have

∂ẑ(r, t)

∂t
= lẑ(r, t)ŷ(r, t)− ω[ẑ(r, t)]2 +D2

1

r2

∂

∂r

(
r2 ∂ẑ(r, t)

∂r

)
,

∂ẑ(0, t)

∂r
= 0,

(3.7)

where the last equation in (3.7) is a consequence of the radial symmetry.

We finally assume that all tumor cells have the same size, and that they

are uniformly distributed in the tumor [178], so that

x̂+ ŷ + n̂ ≡ const. ≡ θ. (3.8)

Adding equations (3.2)-(3.4) and using (3.8), we get the equation for

velocity field,

θ

r2

∂

∂r

(
r2u(r, t)

)
= λx̂(r, t)− µn̂(r, t). (3.9)

The boundary conditions, at the outer boundary of the tumor, are

∂

∂r
v̂(R(t), t) = 0, (3.10)

∂

∂r
ẑ(R(t), t) = 0, (3.11)

dR(t)

dt
= u(R(t), t). (3.12)
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Remark 3.1. We assume that there is no-flux of tumor cells, virus particles

and the immune response across the outer boundary of the tumor, that is,

they remain within the tumor. Then, we have boundary conditions,

[
x̂(r, t)

dR(t)

dt
− x̂(r, t)u(r, t)

]
r=R(t)

= 0, (3.13)[
ŷ(r, t)

dR(t)

dt
− ŷ(r, t)u(r, t)

]
r=R(t)

= 0, (3.14)[
n̂(r, t)

dR(t)

dt
− n̂(r, t)u(r, t)

]
r=R(t)

= 0, (3.15)[
v̂(r, t)

dR(t)

dt
−
(
v̂(r, t)u(r, t)−D1

∂v̂

∂r
(r, t)

)]
r=R(t)

= 0, (3.16)[
ẑ(r, t)

dR(t)

dt
−
(
ẑ(r, t)u(r, t)−D2

∂ẑ

∂r
(r, t)

)]
r=R(t)

= 0. (3.17)

Adding Eqs. (3.13)-(3.15) and using Eq. (3.8), we derived the free boundary

condition (3.12). This, along with Eqs. (3.16) and (3.17), further yields the

boundary conditions (3.10) and (3.11). In Eqs. (3.6) and (3.7) we neglected the

effects of the velocity field on the virus and the immune response. However,

we need to consider the velocity field in deriving appropriate and tractable

boundary conditions for the viruses and immune response at the moving outer

boundary of the tumor. We further notice that, as addressed in Remark 2.1,

Eqs. (3.13)-(3.17) are obtained by considering the relative velocity of cells on

the outer boundary of the growing tumor.

We notice that Equation (3.4) is a consequence of Eqs. (3.2), (3.3), (3.8)

and (3.9). Therefore, in what follows we simply drop this equation and replace

n̂ by θ − x̂− ŷ in Eq. (3.9).
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3.3 Transformation

For the typical parameters rc = 0.01 mm, R(0) = 2 mm given in [178], we

have rc � R(0). By (3.1) and (3.5) we get

v̄(r, t) ≈ v̂(r, t), ȳ(r, t) ≈ ŷ(r, t). (3.18)

We introduce the new variables

x̃ =
x̂

θ
, ỹ =

ŷ

θ
, ṽ =

v̂

θN
, z̃ = ẑ, ũ = u

and the quantity

p0 =
βNθ

γ
.

The parameter p0 is called the basic reproductive ratio in the epidemic study.

It represents the mean number of virus particles released by one virus.

In terms of the new variables, the system (3.1)-(3.12) takes the following

form:

∂x̃(r, t)

∂t
= λx̃− p0γx̃ṽ −

1

r2

∂

∂r

(
r2ũx̃

)
, (3.19)

∂ỹ(r, t)

∂t
= p0γx̃ṽ − δỹ − kỹz̃ −

1

r2

∂

∂r

(
r2ũỹ

)
, (3.20)

∂ṽ(r, t)

∂t
= δỹ − γṽ +D1

1

r2

∂

∂r

(
r2 ∂ṽ

∂r

)
,

∂ṽ(0, t)

∂r
= 0, (3.21)

∂z̃(r, t)

∂t
= lθz̃ỹ − ωz̃2 +D2

1

r2

∂

∂r

(
r2 ∂z̃

∂r

)
,

∂z̃(0, t)

∂r
= 0, (3.22)

1

r2

∂

∂r

(
r2ũ(r, t)

)
= λx̃− µ(1− x̃− ỹ) (3.23)

in the moving domain {r < R(t), t > 0},

∂ṽ

∂r
(R(t), t) = 0, t > 0, (3.24)
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∂z̃

∂r
(R(t), t) = 0, t > 0, (3.25)

dR(t)

dt
= ũ(R(t), t), t > 0, (3.26)

ũ(0, t) = 0, t > 0 (3.27)

with initial conditions

R(0) is prescribed,

x̃(r, 0) = x̃0(r), ỹ(r, 0) = ỹ0(r), ṽ(r, 0) = ṽ0(r), z̃(r, 0) = z̃0(r)

where z̃0(r) > 0 and x̃0(r), ỹ0(r), ṽ0(r) are nonnegative

functions with x0(r) + y0(r) ≤ 1, for 0 ≤ r ≤ R(0).

(3.28)

It is convenient to transform the moving region {0 ≤ r ≤ R(t)} to the

fixed region {0 ≤ ρ ≤ 1}. So, we use Landau transformation

ρ = ρ(r, t) =
r

R(t)
,

and setting

x(ρ, t) = x̃(r, t), y(ρ, t) = ỹ(r, t), z(ρ, t) = z̃(r, t),

v(ρ, t) = ṽ(r, t), u(ρ, t) = ũ(r, t)/R(t),

Eqs. (3.19)-(3.23) combined with (3.27) take the following form in {0 < ρ <

1, t > 0}:

∂x

∂t
+
[
u(ρ, t)− ρu(1, t)

]∂x
∂ρ

= λx− p0γxv −
[
− µ+ (λ+ µ)x+ µy

]
x, (3.29)
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∂y

∂t
+
[
u(ρ, t)− ρu(1, t)

]∂y
∂ρ

= p0γxv − δy − kyz −
[
− µ+ (λ+ µ)x+ µy

]
y, (3.30)

∂v

∂t
− ρu(1, t)

∂v

∂ρ
= δy − γv +

D1

R2(t)

1

ρ2

∂

∂ρ

(
ρ2 ∂v

∂ρ

)
,

∂v

∂ρ
(0, t) = 0, (3.31)

∂z

∂t
−ρu(1, t)

∂z

∂ρ
= lθzy−ωz2 +

D2

R2(t)

1

ρ2

∂

∂ρ

(
ρ2 ∂z

∂ρ

)
,

∂z

∂ρ
(0, t) = 0, (3.32)

u(ρ, t) =
1

ρ2

∫ ρ

0

s2
[
− µ+ (λ+ µ)x(s, t) + µy(s, t)

]
ds. (3.33)

The boundary and initial conditions (3.24)-(3.3) become

Ṙ(t) = R(t)u(1, t), R(0) is given, (3.34)

∂v

∂ρ
(1, t) = 0, (3.35)

∂z

∂ρ
(1, t) = 0, (3.36)

x(ρ, 0) = x0(ρ), y(ρ, 0) = y0(ρ), v(ρ, 0) = v0(ρ), z(ρ, 0) = z0(ρ) (3.37)

x0(ρ) ≥ 0, y0(ρ) ≥ 0, x0(ρ) + y0(ρ) ≤ 1, z0(ρ) > 0. (3.38)

We also assume that

x0(ρ), y0(ρ), v0(ρ) and z0(ρ) belong to C1[0, 1], and
∂v0

∂ρ
(1) =

∂z0

∂ρ
(1) = 0.

(3.39)

We now state a result on the global existence and uniqueness of solutions

to the system (3.29)-(3.39) (see [144]).

Theorem 3.1. The system (3.29)-(3.39) has a unique solution (x(ρ, t), y(ρ, t),

v(ρ, t), z(ρ, t), u(ρ, t), R(t)) with x, ∂x/∂ρ, y, ∂y/∂ρ, v, ∂v/∂ρ, z, ∂z/∂ρ and u,

∂u/∂ρ in C[0 ≤ ρ ≤ 1, 0 < t <∞], R(t) in C1[0,∞), and
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x(ρ, t) ≥ 0, y(ρ, t) ≥ 0, x(ρ, t) + y(ρ, t) ≤ 1. (3.40)

R(0)e−βt < R(t) < R(0)eβt for some β > 0. (3.41)

Furthermore, if z0(ρ) = const. = z0, then

z0

1 + z0ωt
≤ z(ρ, t) ≤ 1

ω
lθ +

(
1
z0
− ω

lθ

)
e−lθt

≤ max
(
z0,

lθ

ω

)
. (3.42)

We conclude this section by recalling, from [170], estimates on the size of

parameters that appear in the system (3.29)-(3.32).

The parameter λ is typically small. For example, λ = 3.2 × 10−4 hr−1,

which corresponds to a tumor doubling time of three months, typical for head

and neck tumors [118]. The parameters δ and µ are one order of magnitude

larger than λ. Laboratory results from Onyx suggest that the mean infected

cell lifetime is about two days, and so we set δ = 1
48 hr−1. Typical necrotic

removal rate µ = 1
72 hr−1. The tumor cell density θ = 106 cells/mm3.

The parameter γ is at least one order of magnitude larger than δ and µ,

and some laboratory data suggests that γ is about 1 hr−1 [178]. Typical

value of the clearance rate ω of the immune response is 1.6 ml/ng-hr. The

three parameters, the immune stimulation rate l, the immune killing rate

k, and the basic reproductive ration p0, are more difficult to estimate. In

[170], the authors use new clinical data to estimate that p0 = 3.73, k =

15.3 mm3/ng-hr, l = 0.048 mm3/cells-hr.

The diffusion coefficients of several drugs given in [168] lay in the range

10−6 ∼ 10−5 cm2/s = 0.0864 ∼ 0.864 cm2/day. The drug diffusion coefficient

given in [93] is 1.7 cm2/day. For clarity and definiteness, we will take D1 =
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1 cm2/day in (3.31). The immune response diffusion coefficient D2 = 7.0 ×

10−5 ∼ 10−2 cm2/day in (3.32), see [27] and the references therein.

3.4 Threshold of the Immune Response

In this section we study the effect of the immune response to cancer treatment.

We will explore the threshold of the intensity of the immune response for

controlling the tumor. We begin with the constant equilibrium solutions

(xs, ys, vs, zs) to equations (3.29)-(3.32). We easily find there are precisely

following six solutions of this type:

E1 = (0, 0, 0, 0),

E2 = (1, 0, 0, 0),

E3 =
(
0, 1− δ

µ
,
δ

γ
(1− δ

µ
), 0

)
,

E4 =
(p0δ

2 − µ(p0δ − δ − λ)

p0δ(p0δ − λ)
,

(λ+ µ)(p0δ − δ − λ)

p0δ(p0δ − λ)
,

δ

γ
· (λ+ µ)(p0δ − δ − λ)

p0δ(p0δ − λ)
, 0
)
,

E5 =
(

0,
ω(µ− δ)
klθ + µω

,
δ

γ
· ω(µ− δ)
klθ + µω

,
lθ(µ− δ)
klθ + µω

)
,

E6 =
(klθ(λ+ µ) + ω[p0δ

2 − µ(p0δ − δ − λ)]

klθ(λ+ µ) + p0δω(p0δ − λ)
,

ω(λ+ µ)(p0δ − δ − λ)

klθ(λ+ µ) + p0δω(p0δ − λ)
,

δ

γ
· ω(λ+ µ)(p0δ − δ − λ)

klθ(λ+ µ) + p0δω(p0δ − λ)
,

lθ(λ+ µ)(p0δ − δ − λ)

klθ(λ+ µ) + p0δω(p0δ − λ)

)
.

From (3.42) in Theorem 3.1 we have that z(t) is nonnegative for all t > 0 if

z0(ρ) = const. = z0 > 0. As a result, we are only interested in the stability

of the equilibrium solutions in which zs > 0. Hence, the equilibrium solutions

E1, E2, E3 and E4 can be discarded. In the process of our analysis, we also
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assume

δ > µ, (3.43)

p0 > 1 +
λ

µ
+
λ

δ
(3.44)

which hold for the typical parameter values given in previous section. Since

µ < δ by (3.43), we see that zs < 0 in E5, and hence this equilibrium solution

can also be discarded. So, we are only interested in the equilibrium solution E6.

In the following we shall prove that if the initial densities are approximately

equal to E6, then the evolution of the tumor radius R(t) will strongly depend

on the intensity (m = lkθ
ω ) of the immune response.

Let (xs, ys, vs, zs) = E6. We look at the system (3.29)-(3.39) with (x0, y0, v0, z0)

near (xs, ys, vs, zs). It is convenient to introduce new variables:

X(ρ, t) = x(ρ, t)− xs, Y (ρ, t) = y(ρ, t)− ys,

V (ρ, t) = v(ρ, t)− vs, Z(ρ, t) = z(ρ, t)− zs,

U(ρ, t) = u(ρ, t).

(3.45)

Then the system (3.29)-(3.39) takes the following form in {0 < ρ < 1, t > 0}:

∂X

∂t
+
[
U(ρ, t)− ρU(1, t)

]∂X
∂ρ

=
[
(λ+ µ)− (p0δ + µ)ys − 2(λ+ µ)xs

]
X

−µxsY − p0γxsV −
[
(λ+ µ)X + µY + p0γV

]
X

+xs[λ+ µ− (p0δ + µ)ys − (λ+ µ)xs], (3.46)
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∂Y

∂t
+
[
U(ρ, t)− ρU(1, t)

]∂Y
∂ρ

=
[
p0γvs − (λ+ µ)ys

]
X −

[
(δ − µ) + (λ+ µ)xs + 2µys + kzs

]
Y

+p0γxsV − kysZ +
[
p0γXV − (λ+ µ)XY − µY 2 − kY Z

]
+ys[µ− δ − µys + (p0δ − µ− λ)xs − kzs], (3.47)

X(ρ, 0) = X0(ρ), Y (ρ, 0) = Y0(ρ), (3.48)

∂V

∂t
− ρU(1, t)

∂V

∂ρ
− D1

R2(t)

1

ρ2

∂

∂ρ
(ρ2 ∂V

∂ρ
) = δY − γV, (3.49)

V (ρ, 0) = V0(ρ),
∂V

∂ρ

∣∣∣
ρ=0

=
∂V

∂ρ

∣∣∣
ρ=1

= 0, (3.50)

∂Z

∂t
− ρU(1, t)

∂Z

∂ρ
− D2

R2(t)

1

ρ2

∂

∂ρ
(ρ2 ∂Z

∂ρ
) = (lθys − 2ωzs)Z − ωZ2

+lθZY + lθzsY + zs(lθys − ωzs), (3.51)

Z(ρ, 0) = Z0(ρ),
∂z

∂ρ

∣∣∣
ρ=0

=
∂Z

∂ρ

∣∣∣
ρ=1

= 0, (3.52)

U(ρ, t) =
1

ρ2

∫ ρ

0

s2
[
Q+ (λ+ µ)X(s, t) + µY (s, t)

]
ds, (3.53)

Ṙ(t) = R(t)U(1, t), R(0) is given, (3.54)

where X0(ρ) = x0(ρ) − xs, Y0(ρ) = y0(ρ) − ys, V0(ρ) = v0(ρ) − vs, Z0(ρ) =

z0(ρ)− zs,

Q ≡ −µ+ (λ+ µ)xs + µys

=
mλ(λ+ µ)− p0δ[µ(p0δ − δ − λ)− λδ]

m(λ+ µ) + p0δ(p0δ − λ)

(where m =
lkθ

ω
)
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and ∂V0(ρ)
∂ρ |ρ=1 = ∂Z0(ρ)

∂ρ |ρ=1 = 0. Since (xs, ys, vs, zs) is an equilibrium

solution, the last terms on the right-hand sides of (3.46), (3.47) and (3.51)

vanish.

As in [178] we combine the immune response parameters l, k and ω into

the single parameter m = lkθ
ω , which indicates the intensity of the immune

response against the virus. That is, the immune response is strong when the

value of l (the immune stimulation rate) and k (the immune killing rate) is

large relative to ω (the immune response clearance rate).

In the following we shall assume

Q 6= 0. (3.55)

Let us first consider the two eigenvalues (denoted by λ1 and λ2) of the

linear coefficient matrix A of the hyperbolic system (3.46)-(3.47). Here

A =

 (λ+ µ)− (p0δ + µ)ys − 2(λ+ µ)xs −µxs

(p0δ − λ− µ)ys −(δ − µ)− (λ+ µ)xs − 2µys − kzs


.

(3.56)

Notice that

lθys = ωzs, λ+ µ− (p0δ + µ)ys − (λ+ µ)xs = 0,

then the matrix A can be rewritten as

A =

 −(λ+ µ)xs −µxs

(p0δ − λ− µ)ys −(δ − µ)− (λ+ µ)xs − (2µ+m)ys



=:

a11 a12

a21 a22


.

(3.57)
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By the assumptions (3.43) and (3.44) we easily find that

λ1 + λ2 ≡ a11 + a22 < 0,

λ1 · λ2 ≡ |A| = a11a22 − a12a21 > 0.

Therefore, λ1 and λ2 have negative real parts,

Reλ1 < 0, Reλ2 < 0. (3.58)

Thus, we may expect that the constant equilibrium solution (xs, ys, vs, zs) =

E6 to Eqs. (3.29)-(3.33) is locally asymptomatically stable.

In fact, we have the following results [144].

Theorem 3.2. Denote

m =
lkθ

ω

and assume that

Q =:
mλ(λ+ µ)− p0δ[µ(p0δ − δ − λ)− λδ]

m(λ+ µ) + p0δ(p0δ − λ)
6= 0, (3.59)

δ > µ and p0 > 1 +
λ

µ
+
λ

δ
. (3.60)

If

‖ X0(ρ), Y0(ρ), V0(ρ), Z0(ρ)‖C1[0,1] ≤ ε (3.61)

where ε is sufficiently small, then there exists a unique global solution (X(ρ, t),

Y (ρ, t), V (ρ, t), Z(ρ, t), U(ρ, t), R(t)) of (3.46)-(3.54) for all t > 0 with R ∈

C1[0,∞), (X,Y, V, Z, U) in C1([0, 1]× [0,∞)) and the following estimates:

|X(ξ(t), t)|+ |Y (ξ(t), t)| ≤ Ce−αt ‖ (X0, Y0)‖C[0,1], (3.62)
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|∂X
∂ρ

(ξ(t), t)|+ |∂Y
∂ρ

(ξ(t), t)| ≤ Ce−αt ‖ (X0, Y0)‖C1([0,1]), (3.63)

which hold for all t > 0, where ξ(t) = ξ(t; ρ0) is any forward characteristic

curve of the equations (3.46) and (3.47) satisfying ρ0 = ξ(0; ρ0) and C is

some positive constants independent of T . Furthermore, if

0 ≤ m <
p0δ[µ(p0δ − δ − λ)− λδ]

λ(λ+ µ)
=: m0, (3.64)

then

Ṙ(t) < 0 for all t > 0, (3.65)

R(0)e−
|Q|
2 t ≤ R(t) ≤ R(0)e−

|Q|
6 t for all t > 0; (3.66)

if

m > m0, (3.67)

then

Ṙ(t) > 0 for all t > 0, (3.68)

R(t) ≥ R(0)e
|Q|
6 t for all t > 0. (3.69)

Remark 3.2. In order to perform (3.1) and (3.5) mathematically, we need the

following assumption

R(t) > rc.

In fact, if the tumor radius R(t) < rc (here rc is the radius of a tumor

cell), then the tumor cannot contain a single live tumor cell and therefore

the tumor is controlled. Actually, the models in [170, 178, 179] are valid only

for R(t) > rc. From rc = 0.01 mm, R(0) = 2 mm [178] we find that the tumor
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nodule with a size of 2 mm in radius contains around 8 × 106 cells. So, the

assumption R(t) > rc is minor, and the approximation (3.18) is reasonable.

Remark 3.3. In the absence of an immune response, the viruses (if uniformly

injected throughout the tumor) may be powerful enough to eradicate the

tumor. For example, if no immune response occurs (i.e., m = 0), then by

Theorem 3.2 and the parameter values, λ = 3.2×10−4, δ = 1
48 , µ = 1

72 , p0 =

3.73, given in Section 3.3, we easily find that

R(t)→ 0 monotonously and exponentially as t→ +∞.

Further, we see that without immune response (i.e., m = 0), the viruses can

eradicate tumors with

λ ≤
(1

δ
+

1

µ

)−1
(p0 − 1) = 0.0225 hr−1. (3.70)

This means that any tumor with a doubling time more than 31 hours will be

eradicated.

However, the strength of the immune-mediated clearance displayed in the

human clinical data changes the entire picture. The viruses cannot control the

tumor in the presence of the effective immune response. For example, by the

clinical data given in [170], we have

m =
lkθ

ω
= 459 hr−1,

m0 =
p0δ[µ(p0δ − δ − λ)− λδ]

λ(λ+ µ)
≈ 13.81 hr−1.

Therefore
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m� m0.

So, from Theorem 3.2 we get

R(t)→ +∞ monotonously and exponentially as t→ +∞.

Because of the relative low of p0 we see that only the slowest-growing tumors

might be eradicated by the viruses in presence of immune-mediated clearance.

By Theorem 3.2, in order to control tumor, we need the following condition:

m < m0.

that is,

λ <
p0(p0 − 1)δ2

m
≈ 0.0963× 10−7 hr−1, approximately. (3.71)

Remark 3.4. The critical immune response intensity m0 found in Theorem

3.2 is biologically interesting. In order to improve the efficacy of the oncolytic

adenovirus, the immune-mediated viral clearance must be suppressed. One

possible strategy to combat the effect of the immune response is to administer

an immune suppressor, which would decrease the stimulation rate l in our

model. For example, if

l < 1.4441× 10−3 mm3/cells− hr, (3.72)

then, the tumor can be controlled from Theorem 3.2 for the typical parameter

values given in Section 3.3. In fact, Friedman et al [65] proposed a mathematical

model considering the effects of an immune suppressor.
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Remark 3.5. Currently, biopharmaceutical companies and academic investigators

working in the area of cancer viral therapies have made hundreds of viruses

that are potential candidates for cancer therapy (see [170], for instance).

3.5 A Time-Delay Model

The data in [170] suggests that the immune system responds to the virus

infection with a time delay of about 42 hours.

Using the quasi-steady-state approximation, V = δ
γY , a simplified version

of the system (3.46)-(3.54) with a time delay τ for the immune response takes

the following form:

∂X

∂t
+
[
U(ρ, t)− ρU(1, t)

]∂X
∂ρ

=
[
(λ+ µ)− (p0δ + µ)ys − 2(λ+ µ)xs

]
X

−µxsY − p0γxsV −
[
(λ+ µ)X + µY + p0γV

]
X, (3.73)

∂Y

∂t
+
[
U(ρ, t)− ρU(1, t)

]∂Y
∂ρ

=
[
p0γvs − (λ+ µ)ys

]
X −

[
(δ − µ) + (λ+ µ)xs + 2µys + kzs

]
Y

+p0γxsV − kysZ +
[
p0γXV − (λ+ µ)XY − µY 2 − kY Z

]
, (3.74)

X(ρ, 0) = X0(ρ), Y (ρ, 0) = Y0(ρ), (3.75)

∂Z

∂t
− ρU(1, t)

∂Z

∂ρ
− D2

R2(t)

1

ρ2

∂

∂ρ
(ρ2 ∂Z

∂ρ
) = (lθys − 2ωzs)Z − ωZ2

+lθZY (·, t− τ) + lθzsY (·, t− τ), (3.76)
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Z(ρ, 0) = Z0(ρ),
∂Z

∂ρ

∣∣∣
ρ=0

=
∂Z

∂ρ

∣∣∣
ρ=1

= 0, (3.77)

U(ρ, t) =
1

ρ2

∫ ρ

0

s2
[
Q+ (λ+ µ)X(s, t) + µY (s, t)

]
ds, (3.78)

Ṙ(t) = R(t)U(1, t), R(0) is given. (3.79)

Fig. 3.1. The spatio-temporal dynamics of the density y(ρ, t) of the infected cells

for D2 = 0.015, l = 1.8 × 10−3, τ = 50, (xs, ys, zs) = (0.97933, 0.00321, 0.00361).

Take (x0(ρ), y0(ρ), z0(ρ)) ∼ (xs, ys, zs).

Figure 3.1 shows the spatio-temporal dynamics of the infected cells.

Clearly, if the immune system responds to the virus with a time delay τ > τ0

(where τ0 ≈ 28.6 is the critical value for the stability of the steady state

E6, see [144]), then the density of the infected cells will have an oscillation.

This oscillation may become strong. Figure 3.1 also indicates the spatially

heterogeneous distribution of the infected cells.
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Fig. 3.2. The effects of the diffusivity D2 of the immune response on tumor

growth for l = 1.8 × 10−3, τ = 50, (xs, ys, zs) = (0.97933, 0.00321, 0.00361). Take

(x0(ρ), y0(ρ), z0(ρ)) ∼ (xs, ys, zs).

Figure 3.2 shows that the diffusivity D2 of the immune response has little

effects on the tumor growth when the time t ≤ 1100 (hours) and the immune

system responds to the virus with a time-delay τ > τ0. However, the tumor

growth will heavily influenced by the diffusivity D2 when the time is large

(t > 1100 hours ≈ 46 days). Furthermore, we find that the tumor growth is

monotonously increasing if the time t is sufficiently large. This phenomenon

may be biologically explained as follows. The faster the immune response

diffuses, the more quickly the viruses may be killed, which may mitigate the

effects of the treatment.
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3.6 Glioma Virotherapy

In this section, we review a mathematical model about glioma virotherapy

proposed by Friedman and Tian et al [65]. This model is similar to a model

introduced by Wu et al [178, 179]. However, there are several important

differences. First, this model has included the effects of immunosuppressive

agent Cyclophosphamide (CPA), and we used our model to determine the

effect of administering CPA under different protocols on the progress of

glioma. A second difference is that our model includes the presence of

innate immune cells in the tumor tissue, whereas [178] includes only the

immune response (tumor necrotic factor TNF) which consists of molecules

with negligible volume. This difference is important, since the immune cells

make up to 50% of the total number of cells at some stages of the tumor

progression. We have also added a term which accounts for the destruction

of virus particles by the immune cells [5]. Finally, in the mathematical model

of [178], the parameters are estimated by using data from head and neck

cancer. In our model, the parameters are estimated so as to conform with

experimental results for glioma in article by Fulci G et al, Cyclophospharnide

enhances glioma virotherapy by inhibiting innate immune response [68]. There

is a substantial difference in the values of some of the parameters due to the

fact that glioma is much more aggressive cancer.
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3.6.1 Mathematical model and parameter values

Our model includes infected tumor cells (y), uninfected tumor cells (x),

necrotic cells (n), immune cells (z) and free virus particles (v). The model

is given as follows.

∂x(r, t)

∂t
+

1

r2

∂

∂r
(r2u(r, t)x(r, t)) = λx(r, t)− βx(r, t)v(r, t), (3.80)

∂y(r, t)

∂t
+

1

r2

∂

∂r
(r2u(r, t)y(r, t)) = βx(r, t)v(r, t)− ky(r, t)z(r, t)− δy(r, t),

(3.81)

∂n(r, t)

∂t
+

1

r2

∂

∂r
(r2n(r, t)u(r, t)) = ky(r, t)z(r, t) + δy(r, t)− µn(r, t), (3.82)

∂z(r, t)

∂t
+

1

r2

∂

∂r
(r2z(r, t)u(r, t)) = sy(r, t)z(r, t)−c(z(r, t))z(r, t)−P (r, t)z(r, t)

(3.83)

∂v(r, t)

∂t
−D 1

r2

∂

∂r
(r2 ∂v

∂r
= bδy(r, t)− k0v(r, t)z(r, t)− γv(r, t), (3.84)

We assume that all the cells have the same size and that they are uniformly

distributed in the tumor. Then

x(r, t) + y(r, t) + n(r, t) + z(r, t) = const. = θ (3.85)

and, by [122], θ ≈ 106cells/mm3.

Combining the equations (3.80)-(3.83) and using (3.85), we obtain

θ

r2

∂

∂r
(r2u(r, t))

= λx(r, t)− µn(r, t) + sy(r, t)z(r, t)− c(z(r, t))z(r, t)− P (r, t)z(r, t).

(3.86)
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We also have

∂v

∂r
(0, t) = 0, fort > 0. (3.87)

Since the free viruses remain in the tumor,

∂v

∂r
(R(t), t) = 0, for t > 0. (3.88)

Finally, the free boundary is subject to the kinematic condition

dR(t)

dt
= u(R(t), t). (3.89)

In our simulation, we will take R(0)=2 mm and

x(r, 0) = 0.84× 106, y(r, 0) = 0.1× 106,

z(r, 0) = 0.06× 106, v(r, 0) = Ae−
r2

22 , 0 ≤ r ≤ 2

5.2π × 108 ≤ 4π

∫ 2

0

Ae−
r2

22 rdr ≤ 11.2π × 108.

The way immune cells are cleared is typically by membrane protein Fas and

FasL which, when combined on the cell surface, signal to caspase protein to

execute the cell. The percentage of immune cells in the brain is typically 1-2%.

When stimulated by infected cells in glioma, this percentage arises sharply. As

the number of infected cells drops, the need for immune cells diminishes, so

they undergo apoptosis, either by killing themselves (using their own Fas and

FasL to activate caspase) or by killing each other (Fas from one cell ligands

to FasL from another cell)[5] [121]. The first process occurs when z is small,

and yields a linear clearance; the second process occurs when z is large, and

it yields a quadratic clearance. Hence,
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c(z)z =


cz if z < z0,

c
z0
z2 if z ≥ z0.

From [121] one can infer the value of z0, and combining this with the linear

clearance rate, we arrive at the number ω = c
z0
≈ 20× 10−8mm3/hour · cell.

For simplicity we will assume only quadratic clearance with a rate ω as above.

After CPA is administered to the rats, the level of CPA arises and reaches

a plateau after 2 days. This level is maintained for approximately 3 days and

then begins to drop off to zero in the next two days. We simulate the CPA

level in the tumor by a piecewise linear function

P (t) =


8.5× 10−2 if 0 ≤ t ≤ 72,

8.5×10−2

48 (120− t) if 72 ≤ t ≤ 120,

and P (t) = 0 if t ≥ 120, where the unit of P (t) is 1/hour.

The model parameters are based on experimental results of Fulci et al ??.

In these experiments D74/HveC Rat Glioma cell lines were implanted into the

brain of rats. After 7 days, the tumor reached the size of 4mm in diameter, and

then the oncolytic virus hrR3 (which is a mutant of Herpes Simplex virus 1

(HSV)) was injected into the center of the tumor. This mutant attacks tumor

cells, but does not attack healthy normal cells. Six hours after injection, some

rats were sacrificed, the tumor was stained and the JPEG pictures were taken,

and then the infected area of the tumor was measured. This procedure was

repeated after 72-76 hours from the time of virus injection, and then once

more, one week after virus injection. Five different stains were used: one for
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each of four innate immune cells, and one for the infected cells. The immune

cells are CD11b (dendritic cells), CD68+ (main monocytes, also called ED1

in rats), CD163+ (also called ED2 in rats) and CD169 (also called ED3 in

rats). Different immune cells may participate in the inflammatory response

at different time points and may be cleared at different time points. Rapid

up-regulation was observed for certain immune cells, and depletion of some

macrophages alone has also been produced. However, the CPA effects on the

different immune cells were only partially reproduced. For this reason, we shall

take in our model the average response of all the immune cells, rather than

the response of each population of immune cells. The immunosuppression

drug CPA was pre-administered to rats on the fifth day after tumor cell

implantation, that is, 2 days before virus injection. Most of the parameter

values we obtained from experimental results or literature. We provide them

here: Proliferation rate of tumor cells λ = 2 × 10−2 per hour, Infected cell

lysis rate δ = 1
18 per hour, Removal rate of necrotic cells µ = 1

48 per hour,

Burst size of infected cells b = 50 viruses per cell, Density of tumor cells

θ = 106 cells per mm3, Diffusion coefficient of viruses D = 3.6 × 10−2 mm2

per hour, Infection rate β = 7
10 × 10−9 mm3 per hour per virus, Immune

killing rate k = 2 × 10−8mm3 per hour per immune cell, Take-up rate of

viruses k0 = 10−8mm3 per hour immune cell, Stimulation rate by infected cells

s = 5.6× 10−7mm3 per hour per infected cell, Clearance rate of immune cells

ω = 20×10−8mm3 per hour per cell, Clearance rate of viruses γ = 2.5×10−2

per hour.
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3.6.2 Comparing with data

In order to compare our numerical simulation with the experimental results of

article [68] we take, as in article [68], the initial radius of the tumor to be 2mm,

and the number of particle forming units (pfu) of virus injected at the center

to be 108-109. The initial time is the seventh day after tumor implantation in

the rat’s brain.
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Fig. 3.3. Experimental data vs simulation results. Figure 1A is for infected tumor

cells without CPA; Figure 1B is for immune cells without CPA; Figure 1C is for

innate immune cells with CPA. In each picture, data group 1 is after 6 hours, data

group 2 is after 72 hours and data group 3 is before the rat dies.

Fig.3.3 1A compares the experimental measurements with our numerical

simulation of the percentage of infected tumor cells (relative to the total

number of all cells) without pretreatment of CPA. Fig.3.3 1B compares

the experimental measurement data with the numerical simulation of the

percentage of the innate immune cells without pretreatment of CPA. Fig.3.3

1C compares the experimental measurements of immune cells, when CPA

was administered, with our numerical simulation. The discrepancy between



3.6 Glioma Virotherapy 67

measurements and simulation develops only after a relatively long time both

in Fig.3.3 1B and 1C.

Fig.3.3 shows that our model fits quite well with experiments. We next

proceed to compare the cancer progression with and without CPA.

3.6.3 Comparing studies

Fig.3.4 shows simulation results based on our model. Fig.3.4 A shows the
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Fig. 3.4. Profiles of the percentages of cell populations within the tumor with and

without CPA. Figure A is for innate immune cells, B is for infected tumor cells, and

C is for uninfected tumor cells.

profiles of the averages over space, of immune cell densities with and without

CPA pre-treatments. Without CPA, the immune cells reach the maximum

52% at 26th hour after virus injection; with CPA, the immune cells reach the

maximum 34% at 24th hour after virus injection. Thus, CPA suppresses the

maximum level of innate immune cells and shortens the time that the immune

system reaches its peak. Since the effect of CPA disappears after 120 hours,

the percentage of the immune cells climbs up after 120 hours, thus forming a

bimodal profile.
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Fig.3.4 B shows the profiles of the percentage of infected tumor cell with

and without CPA. Clearly with CPA we expect to have more infected cells.

As the simulation shows, without CPA, the infected cells reach the maximum

46% at 5th hour; with CPA, the infected cells reach the maximum 50% at 7th

hour approximately.

Fig.3.4 C shows the profiles of the percentage of uninfected tumor cells with

and without CPA. The first thing to notice is that there is a time delay in the

effect of CPA; the immune suppression does not begin right away; in fact, there

is a 3 days delay. The effect of CPA becomes negligible after approximately

17 days. However, during the intermediate period, it is significant.

3.6.4 Burst size of viruses

Suppose we inject into the tumor OV which replicates at a faster rate than

hrR3. A large burst size b of virus will increase the stimulation of the immune

system, which will then attack the infected cells and the free viruses. As a

result, the population of viruses will decrease and this will be followed by

a decrease in the population of immune cells. The population of virus and

infected cells will then be able to increase, and it will follow by a re-stimulation

of the immune system, etc. Thus, we may expect a ”feedback mechanism”

which will cause an oscillatory behavior of the percentages of infected cells,

immune cells, and uninfected cells, with slight time-shift of the corresponding

maxima. This is indeed demonstrated in Fig.3.5 for burst size b = 400 and
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1000. For smaller values of b such as b = 200, oscillations occur only in the

first 20-30 days. For b = 50 (not shown here), we do not see any oscillation.
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Fig. 3.5. Profiles of cell populations within the tumor with different burst sizes.

Figure A is for infected tumor cells, B is for uninfected tumor cells, and C is for

innate immune cells.

3.6.5 CPA treatments

We compare two different protocols for administering CPA. The first protocol

is to administer a ”normal” amount of CPA weekly, and the second protocol

is to administer twice the normal amount every two weeks. The simulation

results of the percentage of uninfected tumor cells for burst sizes b = 100, 200

and 400 is shown in Fig.3.6.

These figures show that there is little difference between the weekly and

bi-weekly treatments, especially when we consider weekly averages.

It is instructive to compare these treatments with the ”traditional” treatment,

where we pre-administer normal amount CPA just once. The weekly treatment

reduces the weekly averages of the uninfected cells, but due to oscillations
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Fig. 3.6. Profiles of uninfected tumor cell populations with different treatments

and different burst sizes. Figure A is for burst size 100, B is for burst size 200, and

C is for burst size 400.

there are periods of time when this traditional treatment yields a small

percentage of uninfected cells.

3.6.6 The tumor radius

All the preceding numerical results are based on solving the partial differential

equations (PDEs) of the model given in the Appendix and then taking

averages over the tumor region. We have obtained approximately the same

numerical results using the much simpler ordinary differential equations

(ODEs) obtained by neglecting spatial variations.

There is however one important quantity that we have not yet taken into

account, namely, the radius of the tumor, and in order to compute it we need

to work directly with the PDE system.

As the simulations presented above show, uninfected tumor cells will

persist even with large burst sizes and with repeated CPA treatments.

However, if the radius of the tumor can be kept small enough then long term
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survival of the animals can be assured, unless cell invasion and metastasis will

occur as a result of cell shedding and migration.

Fig.3.7 simulates the growth of the tumor radius for b = 50 without CPA

and with one pre-treatment of CPA.
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Fig. 3.7. Tumor radius with different burst sizes and CPA treatments.

According to Fulci et al [68], without CPA the rats die after 8-10 days

after the injection of viruses, and with one CPA pretreatment the rats die

after 11-13 days after the injection of viruses; at death, the radius of the

tumor is approximately 6 mm. These experimental results roughly fit with

the simulations in Fig.3.7a.

Fig.3.7b simulates the growth of the tumor’s radius without CPA and with

weekly CPA treatment for different burst sizes.

We see that with weekly CPA treatment, the radius of the tumor will

decrease as long as the burst size is bigger than 100; without any CPA

treatment and with burst size b already as high as 150, the radius of the

tumor will decrease to 1 mm. If the burst size could be increased to 400, the
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tumor will shrink to an extremely small size. Finally, the weekly treatment by

CPA helps in decreasing the radius of the tumor, as can by seen by comparing

the profiles in Fig.3.7b for burst size b = 130 and b = 150: For b = 130 with

CPA we achieve a smaller radius than for b = 150 without CPA.

3.6.7 Conclusion of glioma virotherapy

We have shown that with the current burst size of oncolytic virus hrR3 the

tumor cannot be eradicated with CPA treatment. In fact, its radius will grow,

and the rats will die within several weeks. If, however, the virus can be further

altered to yield a burst size b ≥ 150, then the tumor will shrink to a very small

size, even with no CPA treatment. It is well known that tumor cells in glioma

may shed and migrate into other areas in the brain. We did consider this

infiltration/invasion problem. Thus even when the tumor size can be kept very

small, there is still a chance of developing a secondary tumor. In this respect,

a repeated treatment of the tumor by CPA is important, for it decreases the

percentage of uninfected tumor cells, and thus reduces the risk of secondary

tumors.

As was shown, by our model, that there is little difference between the

weekly and bi-weekly CPA treatments. The protocol of choice should therefore

depend on the side effects to this chemotherapy.

Finally, our model considers only spherical gliomas with oncolytic virus

injection at the center. But we expect that conclusions here will hold also for

non-spherical gliomas.
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Based on this mathematical model, there are several studies on particular

aspect of the glioma virotherapy. For example, an analysis [157] shows the

replicability of oncolytic virus is a critical parameter, [158, 159] show rich and

complex dynamical behavior involved in virotherapy.

3.7 Summary

Replication-selective viruses as a novel therapeutic approach for cancer treatment

have now been used in clinical trials. The immune response to anti-tumor virus

can cause early elimination of viruses but also possibly be beneficial because

it causes the immune-mediated killing of tumor cells. So, the competitive

dynamics between tumor cells, a replication virus and the immune response

is complex. To figure out the complex dynamics and help to design optimal

protocols of tumor treatment, mathematical models may be needed. Wein,

Wu and Kirn [170] have formulated a model describing the complex interplay

between tumor cells, a replication-competent virus that kill tumor cells, and an

immune response that kills the virus-infected tumor cells (and hence the virus

itself). The mathematical model is a free boundary problem for a nonlinear

system of partial differential equations. The variables are the radius of the

tumor r = R(t), the evolving densities x(r, t), y(r, t), n(r, t), v(r, t) and z(r, t)

of the uninfected cells, the infected cells, the dead cells, the free viruses and

the immune response, and the velocity field u(r, t).
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Importantly, an explicit and theoretical threshold m0 of the intensity m

of the immune response for controlling the tumor was found by Tao and Guo

[144] in the following sense:

(i) If 0 ≤ m < m0, then for the initial densities

x(r, 0) ∼ const. = xs, y(r, 0) ∼ const. = ys,

v(r, 0) ∼ const. = vs, z(r, 0) ∼ const. = zs,

the radius R(t) will decrease monotonically and exponentially to zero as t

increase to ∞;

(ii) If m > m0, then for the same initial densities (x(r, 0), y(r, 0), v(r, 0),

z(0)) ∼ (xs, ys, vs, zs) as in (i), the radius R(t) will increase monotonically

and exponentially to ∞ as t increase to ∞.

The above result suggests that the efficacy of the replication-competent

viruses for treatment of tumors strongly depends on the intensity of an innate

immune response against virus-infected tumor cells. Therefore, the viruses

should be designed to immune avoidance, in addition to tumor-selectivity and

safety. One possible strategy to combat the effect of the immune response

is to co-administer an immune suppressor, which have been considered by

Friedman et al. [65]. It is reported that hundreds of viruses have now been

tested preclinically, and at least ten have already initiated testing in humans

[65, 179].

We have found that for one pair of initial densities

x(r, 0) ∼ const. = xs, y(r, 0) ∼ const. = ys, z(r, 0) ∼ const. = zs
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the following is true:

Given any initial radius R(0), if the intensity m of the immune response

against the virus is weaker than the threshold m0, by injecting virus particles

of density

v(r, 0) ∼ const. = vs where vs =
δ

γ
ys,

the radius R(t) will decrease monotonically and exponentially to zero as t

increase to ∞.

This example suggests that one may reduce tumors with doses of viral

densities that are not necessarily large, which is quite different from the

traditional chemotherapy in the sense that the doses of drugs of chemotherapy

are usually large [92]. The above difference may be due to the replicating

ability of virus within the tumor tissue.

We also review a similar mathematical model for glioma virotherapy in

Section 3.6. This model includes the effects of immunosuppressive agent

Cyclophosphamide (CPA). This model has a new term which accounts for

the destruction of virus particles by the immune cells. This model explicitly

includes the biological parameter virus burst size b. As a concrete study, the

parameter values are estimated so as to conform with experimental results

for glioma in article [68]. We used this model to determine the effect of

administering CPA under different protocols on the progress of glioma. We

showed that with the current burst size of oncolytic virus hrR3 the tumor

cannot be eradicated with CPA treatment. In fact, the gliomas will grow, and
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the rats will die within several weeks. But, if the virus can be further altered to

yield a burst size b ≥ 150, then the tumor will shrink to a very small size, even

with no CPA treatment. There is a difference between CPA pre-treatment and

repeated treatment, although there is little difference between the weekly and

bi-weekly CPA treatments.

This chapter also reviews the spatio-temporal heterogeneity of cancer cells

caused by the time-delay of the immune response. In fact, spatial heterogeneity

is an important topic in mathematical biology; see [28, 41], for instance.
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Modeling Cancer Radiovirotherapy

4.1 Introduction

Traditional therapy for tumors is chemotherapy. Mathematicians have developed

some mathematical models to study and improve chemotherapy, for example,

models presented in articles [93, 168] and rigorously analysis presented in

articles [143, 145]. However, one of the obstacles in developing efficient

chemotherapy to cancers is in the delivery process. The macromolecules used

as drug delivery carriers are too large to be transported into, and diffuse

within, the tumor [92]. Recently, replication-competent viruses have been

proposed as an approach to bypass the delivery problem. The advantage of

replicating viruses for cancer therapy is the establishment of the persistent

infection with ongoing viral proliferation. The virus is engineered to selectively

bind to receptors on the tumor cell surface (but not to the surface of normal

healthy cells). The virus particles then gain entry by endocytosis and proceed

to proliferate exponentially within the tumor cell, eventually causing death

(lysis). Thereupon the newly reproduced virus particles are released and then
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proceed to infect adjacent cancer cells. Mathematical models of virotherapy

have recently been developed [178] and studied [61]. However, a major factor

influencing the efficacy of virus agents is immune response. New clinical

data [117, 118] revealed an innate immune response to viruses that may

mitigate the effects of treatments. The interaction between tumor cells, a

replication-competent virus and the potential immune response is a complex

biological process [170, 175, 176, 179].

The study in [175] suggests that a fast growth rate of the tumor decreases

the efficacy of treatments with viruses, the success of therapies can be

promoted by using a combination of viral therapy and conventional chemotherapy

or radiotherapy. These suggestions are supported by experimental data [56, 77,

129]. The studies in [49, 50, 51] show that while some cell lines are sensitive in

vitro to the oncolytic effect of the virus, tumor xenografts in animal models can

persist despite repeated doses of the virus. In order to circumvent this problem,

Dingli et al [49, 50] engineered the virus to induce expression of the human

sodium iodide symporter that allows infected tumor cells to concentrate on

iodide isotopes. This virus retains the natural oncolytic activity of the parent

virus but has the advantage that it can eliminate tumors resistant to the

virus when it is combined with radioiodide [49]. The ODE model developed

by Dingli et al in [51], is the first mathematical model for radiovirotherapy.

Radiovirotherapy requires not only injection of viruses but also administration

of radioiodide. Radioiodide is in a continuous state of flux between the tumor

and the remaining part and continuously lost from the system due to both
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physical decay as well as losses to the environment due to excretion [49]. The

experimental data in [49, 50] were obtained for immunocompromised mice

and these mice do not mount an immune response to either the virus or

tumor. On the other hand, the model in [51] focuses on multiple myeloma and

patients with multiple myeloma, the disease for which the virus was designed,

have profound defects in the immune system. So, the model in [51] does not

explicitly include the immune system.

Tao and Guo [146] developed a PDE model for cancer radiovirotherapy,

which is a generalization of Dingli et al ’s ODE model [51]. The ODE

model in [51] provides a simplified description of cancer radiovirotherapy as

homogeneity assumption is imposed. However, more effective therapy requires

a deep understanding of non homogeneity of tumor spatial structures. In this

chapter, we review the PDE model for radiovirotherapy proposed by Tao and

Guo (2007). Modeling method in this article is a combination of that in [51, 61]

and [178]. The tumor volume is modeled as an incompressible fluid, through

which cells move via a convective field. Local changes in cell numbers lead

to variations of the internal pressure, which in turn induce motion of tumor

cells.

((The structure of this chapter is as follows. Section 4.2 presents the model.

Section 4.3 scales the system of equations by non-dimensionalization and

reduces the free boundary problem into a problem in a fixed region. Section 4.4

discusses constant equilibrium solutions. Section 4.5 is devoted to study the

stability of equilibrium solutions and to find an explicit parameter condition
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for tumor eradication by this novel therapy. Section 4.6 numerically studies

the model to explore possible optimal therapy strategies. Finally, this chapter

is closed with a summary and discussion section.))

4.2 Mathematical Model

In order to model the effects of radiation on tumor cells, we introduced a

population of cells that is irreparably damaged by radiation, in addition to

populations of virus particles, uninfected cells, infected cells and necrotic cells.

These damaged cells do not proliferate, and are destined to die. But they still

occupy space and compete for nutrients, and therefore should contribute to

the self-regulation of tumor growth. We then introduce the following physical

variables,

x̂ = density of uninfected tumor cells,

ŷ = density of infected tumor cells,

ẑ = density of tumor cells irreparably damaged by radiation,

n̂ = density of necrotic cells,

v̂ = density of free viruses in the extracellular tissues,

u = the velocity field within the tumor.

The velocity field is a result of the spatio-temporal variation due to the

proliferation of uninfected tumor cells and the removal of necrotic cells. Local

changes in cell population lead to variations in the internal pressure, which
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in turn, induce motion of tumor cells. We assume that the tumor is radially

symmetric, so that all unknown variables or functions depend only on (r, t),

where r is the distance from the tumor center and t is time. The model was

derived by applying the principle of mass conservation to each of the cell

population. The model consists of the following system of equations:

Dx̂

Dt
≡ ∂x̂

∂t
(r, t) +

1

r2

∂

∂r

(
r2u(r, t)x̂(r, t)

)
= λx̂(r, t)− βx̂(r, t)v̂(r, t)− κD(t)x̂(r, t), (4.1)

Dŷ

Dt
≡ ∂ŷ

∂t
(r, t) +

1

r2

∂

∂r

(
r2u(r, t)ŷ(r, t)

)
= βx̂(r, t)v̂(r, t)− δŷ(r, t)− κD(t)ŷ(r, t), (4.2)

Dẑ

Dt
≡ ∂ẑ

∂t
(r, t) +

1

r2

∂

∂r

(
r2u(r, t)ẑ(r, t)

)
= κD(t)

(
x̂(r, t) + ŷ(r, t)

)
− σ

(
ẑ(r, t)

)ν
, (4.3)

Dn̂

Dt
≡ ∂n̂

∂t
(r, t) +

1

r2

∂

∂r

(
r2u(r, t)n̂(r, t)

)
= δŷ(r, t) + σ

(
ẑ(r, t)

)ν − µn̂(r, t), (4.4)

∂v̂

∂t
(r, t) = Nδŷ(r, t)− γv̂(r, t) + d

1

r2

∂

∂r

(
r2 ∂v̂

∂r
(r, t)

)
,

∂v̂

∂r
(0, t) = 0. (4.5)

Although we do not consider the microenvironment within the tumor, we

implicitly assume that tumor cells have ample nutrients, and allow them to

experience first-order growth with a rate constant λ in (4.1) [178]. β is the

infection rate of the uninfected cells. The rate κ by which tumor cells (both

virus infected and uninfected) become irreparably damaged by radiation is
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assumed to be proportional to the radiation dose D(t) absorbed by these cells

and to their densities [51, 164]. Parameter κ is taken to be the constant for

simplicity.

In (4.2), δ is the death rate of the infected cells from lysis. This parameter

measures viral cytotoxicity.

In (4.3), the term σ
(
ẑ(r, t)

)ν
represents the effective death rate of damaged

cells. Power-law dependence of rates is known to represent general behavior

of biological systems [131]. The data in [51] suggests that 0 < ν ≤ 1.

In (4.4), µ is the removal rate of the necrotic cells.

In (4.5), γ is the removal (or clearance) rate of viruses (1/γ is the mean

lifetime of free viruses), Nδ is the virus release rate (N is the burst size of

virus at the death of an infected cell), and d is the diffusion coefficient of

viruses.

Radioiodide is in a continuous state of flux between the tumor and the

remaining part. Iodide undergoes beta particle decay. The emitted beta

particles have a path length of 0.8 mm with a significant effect on tumor

cells [49, 50]. In model (4.1)-(4.5), we assume that after injection, radioactive

iodine is rapidly distributed within the tumor, and that only the radioactivity

at tumor site contributes to the absorbed dose [51]. The absorbed radiation

dose D(t) is proportional to the cumulative activity [49, 82].

We finally assume that all tumor cells have the same size, and that they

are uniformly distributed in the tumor. Then,
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x̂+ ŷ + ẑ + n̂ ≡ const. ≡ θ. (4.6)

Summing equations (4.1)-(4.4) together and using (4.6) yield

θ

r2

∂

∂r

(
r2u(r, t)

)
= λx̂(r, t)− µn̂(r, t). (4.7)

The boundary conditions, at the outer boundary of the tumor, are

∂

∂r
v̂(R(t), t) = 0, (4.8)

dR(t)

dt
= u(R(t), t), (4.9)

which can be biologically explained as in Chapter 2.

We notice that Eq. (4.4) is a consequence of Equations (4.1)-(4.3), (4.6)

and (4.7). So, in what follows we may drop this equation and replace n̂ by

θ − x̂− ŷ − ẑ in (4.7).

We also note that since the velocity field is radially symmetric, we have

u(0, t) = 0. (4.10)

To completely pose this free boundary problem, we impose the following

initial conditions,

R(0) is prescribed,

x̂(r, 0) = x̂0(r), ŷ(r, 0) = ŷ0(r), ẑ(r, 0) = ẑ0(r), v̂(r, 0) = v̂0(r),

where x̂0(r), ŷ0(r), ẑ0(r) and v̂0(r) and are nonnegative

functions with x̂0(r) + ŷ0(r) + ẑ0(r) ≤ θ, for 0 ≤ r ≤ R(0).

(4.11)

In next section, we will transform free boundary problem (4.1)-(4.2) into

a problem in a fixed region.



84 4 Modeling Cancer Radiovirotherapy

4.3 Model transformation

We first introduce the variables

x̃ =
x̂

θ
, ỹ =

ŷ

θ
, z̃ =

ẑ

θ
, ṽ =

v̂

θN
, ũ = u

and the quantity

p0 =
βNθ

γ
, σ0 =

σ

θ1−ν .

The parameter p0 is called the basic reproductive ratio in the epidemic models.

It represents the mean number of virus particles released by one virus.

Then, we introduce the change of variables:

ρ = ρ(r, t) = r/R(t),

x(ρ, t) = x̃(r, t), y(ρ, t) = ỹ(r, t), z(ρ, t) = z̃(r, t),

v(ρ, t) = ṽ(r, t), u(ρ, t) = ũ(r, t)/R(t),

In terms of new variables, Eqs. (4.1)-(4.3), (4.5) and (4.7) take the following

form in {0 < ρ < 1, t > 0}:

∂x

∂t
+
[
u(ρ, t)− ρu(1, t)

]∂x
∂ρ

= λx− p0γxv − κD(t)x−
[
− µ+ (λ+ µ)x+ µy + µz

]
x, (4.12)

∂y

∂t
+
[
u(ρ, t)− ρu(1, t)

]∂y
∂ρ

= p0γxv − δy − κD(t)y −
[
− µ+ (λ+ µ)x+ µy + µz

]
y, (4.13)

∂z

∂t
+
[
u(ρ, t)− ρu(1, t)

]∂z
∂ρ

= κD(t)(x+ y)− σ0z
ν −

[
− µ+ (λ+ µ)x+ µy + µz

]
z, (4.14)
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∂v

∂t
− d

R2(t)

1

ρ2

∂

∂ρ

(
ρ2 ∂v

∂ρ

)
− ρu(1, t)

∂v

∂ρ
= δy − γv, (4.15)

u(ρ, t) =
1

ρ2

∫ ρ

0

s2
[
− µ+ (λ+ µ)x(s, t) + µy(s, t) + µz(s, t)

]
ds. (4.16)

The boundary and initial conditions (4.8)-(4.9) and (4.2) become

Ṙ(t) = R(t)u(1, t), R(0) is given, (4.17)

vρ(0, t) = vρ(1, t) = 0, (4.18)

x(ρ, 0) = x0(ρ), y(ρ, 0) = y0(ρ), z(ρ, 0) = z0(ρ), v(ρ, 0) = v0(ρ),(4.19)

x0(ρ), y0(ρ), z0(ρ) ≥ 0, x0(ρ) + y0(ρ) + z0(ρ) ≤ 1. (4.20)

We also assume that,

x0(ρ), y0(ρ), z0(ρ) and v0(ρ) belong to C1[0, 1], and
∂v0

∂ρ
(1) = 0, (4.21)

D(t) ∈ C[0,∞), D(t) ≥ 0, D = lim
t→∞

D(t). (4.22)

Here the absorbed radiation dose D(t) is proportional to the cumulative

activity (so we assume that it is increasing in t), and we assume that it has a

maximum value D.

The global existence and uniqueness of the solutions to the system (4.12)-(4.22)

was proved by Tao and Guo [146]. We do not present the proof here, instead,

we will focus our attention on finding an explicit parameter condition for

success of therapy (i.e., R(t)→ 0 as t→∞).

4.4 Constant Equilibrium Solutions

To find a parameter condition for R(t) → 0, we first discuss the constant

equilibrium solutions of (4.12)-(4.15). These solutions are determined by the
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equations,

[
(λ+ µ− κD)− (λ+ µ)x− (p0δ + µ)y − µz

]
x = 0, (4.23)

[
(δ + κD − µ) + (λ+ µ− p0δ)x+ µy + µz

]
y = 0, (4.24)

κD(x+ y)− σ0z
ν −

[
− µ+ (λ+ µ)x+ µy + µz

]
z = 0, (4.25)

δy − γv = 0. (4.26)

Clearly, (xs, ys, zs, vs) = (0, 0, 0, 0) := E0 is a trivial equilibrium solution. In

the following we try to find non-zero equilibrium solutions. Throughout this

section, we assume

κD > λ+ µ, (4.27)

which is the maximal rate condition for radiation damage.

Theorem 4.1. Under the assumption (4.27), we have

(i) if

(1− ν)1−ν

(2− ν)2−ν <
σ0

µ
, (4.28)

there is no non-zero equilibrium solutions;

(ii) if

(1− ν)1−ν

(2− ν)2−ν =
σ0

µ
, (4.29)

there exists unique non-zero equilibrium solution (xs, ys, zs, vs) = (0, 0, z
(0)
s , 0) :=

E0 where z
(0)
s = 1−ν

2−ν ;

(iii) if

(1− ν)1−ν

(2− ν)2−ν >
σ0

µ
, (4.30)
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there exist two non-zero equilibrium solutions (x
(1)
s , y

(1)
s , z

(1)
s , v

(1)
s ) = (0, 0, z

(1)
s , 0) :=

E1 and (x
(2)
s , y

(2)
s , z

(2)
s , v

(2)
s ) = (0, 0, z

(2)
s , 0) := E2 where 0 < z

(1)
s < z

(0)
s <

z
(2)
s < 1.

Proof. The proof was given by Tao and Guo [146]. We distinguish four cases.

Case 1: x = 0, y = 0.

From (4.25), the equilibrium solutions satisfy

σ0z
ν + (−µ+ µz)z = 0.

Noting z 6= 0 in this case for non-zero equilibrium solutions, this equation can

be rewritten as

σ0

µ
+ (−1 + z)z1−ν = 0. (4.31)

Define

f(z) =
σ0

µ
+ (−1 + z)z1−ν , 0 ≤ z ≤ 1. (4.32)

We easily check that

f(0) = f(1) =
σ0

µ
> 0,

f ′(z) = (2− ν)z−ν
(
z − 1− ν

2− ν
)
,

f ′(z(0)
s ) = 0 where z(0)

s =
1− ν
2− ν

, (4.33)

f ′(z) < 0 for 0 < z < z(0)
s , (4.34)

f ′(z) > 0 for z(0)
s < z ≤ 1, (4.35)

f(z(0)
s ) = min

0≤z≤1
f(z) =

σ0

µ
− (1− ν)1−ν

(2− ν)2−ν .

From these facts we easily get the conclusions in Theorem 4.1.
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Case 2: x = 0, y 6= 0.

From (4.24) we have that the non-zero equilibrium solutions must satisfy

(δ + κD − µ) + µy + µz = 0,

which does not exist non-negative solution (ys, zs) by assumption (4.27).

Case 3: x 6= 0, y = 0.

This case can be discussed similarly to Case 2.

Case 4: x 6= 0, y 6= 0.

From (4.23) and (4.27), we easily check that there do not exist non-zero

equilibrium solutions in this case. ut

4.5 Stability of Equilibrium Solutions

For simplicity, throughout this section we assume that D(t) ≡ D. We denote

the right-hand sides of Eqs. (4.12)-(4.14) by g1(x, y, z, v), g2(x, y, z, v) and

g3(x, y, z, v), respectively.

We begin with considering the trivial equilibrium solution E0 = (xs, ys, zs, vs)

= (0, 0, 0, 0). By simple calculation, the linearized coefficient matrix A0 of the

right-hand terms of hyperbolic system (4.12)-(4.14) with ν = 1 at equilibrium

point E0 has the form:

A0 =


∂g1
∂x

∂g1
∂y

∂g1
∂z

∂g2
∂x

∂g2
∂y

∂g2
∂z

∂g3
∂x

∂g3
∂y

∂g3
∂z


E0

=


−(κD − λ− µ) 0 0

0 −(κD + δ − µ) 0

0 0 −σ0 + µ


.
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We have

Theorem 4.2. In addition to the assumption (4.27), we also assume that

σ0 > µ. (4.36)

Then, the trivial equilibrium solution E0 of the system (4.12)-(4.22) with ν =

1 is locally stable.

Proof. Under the assumptions (4.27) and (4.36), the three eigenvalues of

matrix A0 are negative. Therefore, the equilibrium solution E0 to system

(4.12)-(4.22) with ν = 1 is linearly stable. Furthermore, proceeding as in

the proofs of Lemma 6.2, Theorem 7.1 and Theorem 8.1 in [61], we can

obtain the locally nonlinear stability of equilibrium solution E0 to the system

(4.12)-(4.22) with ν = 1. ut

Remark 4.1. The stability of the trivial equilibrium solution E0 of the system

(4.12)-(4.22) for general 0 < ν < 1 remains open, because the function ∂g3/∂z

has singularity at E0 ( ∂g3
∂z

∣∣
E0 =∞). The stability of the equilibrium solution

E0 corresponds to success of the therapies. However, the instability of the

equilibrium solution E0 may imply the recurrence of a tumor.

We next turn to study the stability of the non-zero equilibrium solutions

Ei (i = 0, 1, 2). It is easy to check that
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∂g1

∂x

∣∣
Ei

= λ+ µ− κD − µz(i)
s ,

∂g1

∂y

∣∣
Ei

= 0,
∂g1

∂z

∣∣
Ei

= 0,

∂g2

∂x

∣∣
Ei

= 0,
∂g2

∂y

∣∣
Ei

= µ− δ − κD − µz(i)
s ,

∂g2

∂z

∣∣
Ei

= 0,

∂g3

∂x

∣∣
Ei

= κD − (λ+ µ)z(i)
s ,

∂g3

∂y

∣∣
Ei

= κD − µz(i)
s ,

∂g3

∂z

∣∣
Ei

= −σ0ν
(
z(i)
s

)ν−1
+ µ− 2µz(i)

s .

Hence, the linearized coefficient matrix Ai (i = 0, 1, 2) of the right-hand sides

of the hyperbolic system (4.12)-(4.14) at corresponding equilibrium point Ei

has the form:

Ai =


λ+ µ− κD − µz(i)

s 0 0

0 µ− δ − κD − µz(i)
s 0

κD − (λ+ µ)z
(i)
s κD − µz(i)

s −σ0ν
(
z

(i)
s

)ν−1
+ µ− 2µz

(i)
s

 .

(4.37)

Using the assumption (4.27) and noting z
(i)
s > 0 (i = 0, 1, 2), we easily find

that

λ+ µ− κD − µz(i)
s < 0, (4.38)

µ− δ − κD − µz(i)
s < 0. (4.39)

Define

h(z) ≡ g3(0, 0, z, 0) = −σ0z
ν + (µ− µz)z. (4.40)

That is,

h(z) = −µzνf(z), (4.41)

where f(z) is defined by (4.32). Clearly, by (4.40) we have

h′(z) = −σ0νz
ν−1 + µ− 2µz. (4.42)
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On the other hand, by (4.41) we get

h′(z) = −µνz1−νf(z)− µzνf ′(z). (4.43)

In the following we assume that condition (4.30) holds. Using (4.34), (4.35),

(4.43) and Theorem 4.1 and noting f(z
(1)
s ) = f(z

(2)
s ) = 0, we have

h′(z(1)
s ) = −µ

(
z(1)
s

)ν
f ′(z(1)

s ) > 0, (4.44)

h′(z(2)
s ) = −µ

(
z(2)
s

)ν
f ′(z(2)

s ) < 0. (4.45)

From (4.37), (4.43) and (4.44) we find that matrix A1 has a positive eigenvalue.

Therefore, arrive at the following theorem.

Theorem 4.3. Under assumptions (4.27) and (4.44), the non-zero equilibrium

solution E1 is linearized unstable.

By (4.37)-(4.39), (4.43) and (4.45) we find that under the assumptions

(4.27) and (4.30), all eigenvalues of matrix A2 are negative, and therefore the

non-zero equilibrium solution E2 is linearly stable. Furthermore, proceeding

as in the proofs of Lemma 6.2, Theorem 7.1 and Theorem 8.1 in [61], we can

get the locally nonlinear stability of the non-zero equilibrium solution E2.

More precisely, we have

Theorem 4.4. Assume that (4.27) and (4.30) hold. If

‖x0(ρ), y0(ρ), z0(ρ)− z(2)
s , v0(ρ)‖C1[0,1] ≤ ε

where ε is sufficiently small, then the global solution (x(ρ, t), y(ρ, t), z(ρ, t),

v(ρ, t), u(ρ, t), R(t)) satisfies
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|x(ξ(t), t)|, |y(ξ(t), t)|, |z(ξ(t), t)− z(2)
s |, |v(ξ(t), t)| ≤ Cεe−ηt for all t > 0

where C and η are some positive constants, and ξ(t) = ξ(t; ρ0) is the forward

characteristic curve of the first-order hyperbolic equation (4.12) satisfying

ρ0 = ξ(0; ρ0).

We are now in a position to study the convergence of the tumor radius

R(t) to zero, which corresponds to the success of therapies. In fact, we have

Theorem 4.5. Assume that (4.27) and (4.30) hold. If

‖x0(ρ), y0(ρ), z0(ρ)− z(2)
s , v0(ρ)‖C1[0,1] ≤ ε

where ε < µ(1− z(2)
s )/2, then we have

R(t)→ 0 exponentially.

Proof. (4.16) and (4.17) yield

Ṙ(t)

R(t)
=

∫ 1

0

s2
[
− µ+ (λ+ µ)x(s, t) + µy(s, t) + µz(s, t)

]
ds.

This, together with Theorem 4.4, yields

Ṙ(t)

R(t)
<

∫ 1

0

s2
(
− µ+ µz(2)

s + ε
)
ds

=
1

3

[
− µ(1− z(2)

s ) + ε
]

< −1

6
µ(1− z(2)

s ) for sufficiently large t.

Thus,

R(t) < R(0)e−
1
6µ(1−z(2)s )t → 0 exponentially.

ut
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Remark 4.2. We conclude from Theorems 4.4 and 4.5 that the non-zero

equilibrium point E2 corresponds to a successful therapy, which has not

been found in [51]. Hence, the condition (4.27) and (4.30) is a new explicit

parameter condition for successful eradication of a tumor.

4.6 Possible Optimal Protocols

In this section we will numerically explore possible optimal therapy strategies.

The typical parameter values for the numerical simulation are λ = 0.0086, δ =

0.0293, γ = 0.0119, ν = 0.176, σ = 18.57/24, d = 25/6, µ = 1/72, p0 =

3.73, θ = 106 given in [146, 179, 117].
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Fig. 4.1. The comparison between the effect of radiovirotherapy with

(x0, y0, v0, z0) = (0.01, 0.001, 0.1, 0.02), D = 0.01 and the effect of virotherapy alone

with (x0, y0, v0) = (0.01, 0.001, 0.1), D = 0, z(t) ≡ 0.
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Fig.4.1 shows that radiovirotherapy is more effective than virotherapy

alone. Fig.4.1 clearly indicates that the combination of virotherapy with

radiation (radiovirotherapy) may reduce tumors when virotherapy alone

failed. This has been verified by experimental research [50]. The mathematical

model and numerical simulation in [146] give us a deeper understanding of the

design of radiovirotherapy strategy.
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Fig. 4.2. The effects of the different timing of radio-iodine administration on

tumor growth. Take (x0, y0, v0) = (0.01, 0.001, 0.1), D = 0.01 (t > tr), z|t=tr =

0.02, z(t) ≡ 0 and D = 0 for 0 ≤ t < tr.

Fig.4.2 shows the effects of the different timing of radio-iodine administration

on tumor growth. If we take (x0, y0, v0) = (0.01, 0.001, 0.1), D = 0.01 (t >

tr), z|t=tr = 0.02, z(t) ≡ 0 and D = 0 for 0 ≤ t < tr (where tr is the

start timing of radio-iodine administration), then Fig.4.2 shows that there
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exists an optimal timing toptr ≈ 300 (hours) for radio-iodine administration.

Earlier or later administrations of iodine result in a larger size of the tumor.

Furthermore, our numerical simulations (not presented here) also show that

the optimal timing toptr depends on the dose D of the radioactive iodide. The

optimal timing toptr = 0 for small D and large D.
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Fig. 4.3. The effects of the different doses of radioactive iodide on tumor growth.

Take (x0, y0, v0, z0) = (0.01, 0.001, 0.1, 0.02), tr = 0.

Fig.4.3 shows the effects of the different doses of radioactive iodide

on tumor growth. If we take (x0, y0, v0, z0) = (0.01, 0.001, 0.1, 0.02) and

tr = 0, then Fig.4.3 shows that there exists an optimal dose Dopt ≈

0.005 of the radioactive iodide. Fig.4.3 shows that the dose of radio-iodine

administration is another important issue for radiovirotherapy. It suggests
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that given intermediate dose of radioactive iodide for treatment may be an

optimal therapy strategy. Another reason why the dose of radioactive iodide

given for treatment is important is that radiation damages the health tissue.

Therefore, the optimal dose of iodine for treatments still needs to be further

experimentally investigated.

The numerical simulations lead to the design of possible optimal therapeutic

strategies. The timing of radio-iodine administration and the dose of iodine are

two critical factors for the efficacy of a combined treatment of viral and radio

therapy. The numerical results of this section may be helpful for experimental

research.

4.7 Summary and Discussion

The combination of virotherapy with radiotherapy (radiovirotherapy) is more

effective than treatments with virotherapy alone, which has been supported

by experimental data. Radiovirotherapy is a very complex and sensitive

dynamical system. To better understand its outcome, mathematical modeling

may play a role. The PDE model [146] reviewed in this chapter is a generalization

of the previously existing ODE model [51]. And it is also a generalization of

the previously existing PDE model [61], which is a model of virotherapy. This

chapter reviews the modeling of a combined action of viral and radio therapy,

which allows us to study the optimal strategies for treatments.
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Under some appropriate assumptions on model parameters, we found that

there are two non-zero equilibrium solutions E1 = (x
(1)
s , y

(1)
s , z

(1)
s , v

(1)
s ) =

(0, 0, z
(1)
s , 0) and E2 = (x

(2)
s , y

(2)
s , z

(2)
s , v

(2)
s ) = (0, 0, z

(2)
s , 0) with 0 < z

(1)
s <

z
(2)
s < 1. The non-zero equilibrium solution E1 is linearly unstable. However,

we proved the locally nonlinear stability of the non-zero equilibrium solution

E2, which corresponds to a successful therapy of a tumor.

The numerical simulations in Section 4.6 verify that radiovirotherapy is

more effective than treatments with virotherapy alone. These simulations also

suggest that there is an optimal timing of radio-iodine administration and an

optimal dose of the radioactive iodide, which need to be further experimentally

tested.

ONYX-015, a genetically modified adenovirus, is one of oncolytic viruses

that have been tested in clinical trials. Studies in clinical trials have shown that

the expression of the coxsackie-adenovirus receptor (CAR) strongly influences

the entry of virus into cancer cells (for example, see [10]). Mitogen-activated

protein kinase kinase (MEK, also known as MAP-kinase kinase) inhibitors

have been shown to promote CAR expression, and could result in increased

ONYX-015 entry into target cells (see [183] and references therein). This could

lead to a novel combined therapeutic approach to cancer, using ONYX-015

and MEK inhibitors. However, MEK inhibitors can cause temporary cell-cycle

arrest, which inhibits the life-cycle of ONYX-015 (the cell cycle is generally

considered to consist of four phases of proliferate growth: the growth phase

(G1), a phase of DNA synthesis (S), a period before cell division (G2) and
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mitosis (M); and a single phase of quiescent behavior (G0). ONYX-015

needs to lock the cell in S-phase to replicate and lyse the cell). So, MEK

inhibitors may limit the replication of viruses. To design an effective protocol

of combined therapies against cancer using ONYX-015 and MEK inhibitors,

the positive effect of MEK inhibitors should be optimally balanced with the

negative effect of MEK inhibitors. This complicates the dynamics of MEK

inhibitors, viruses and tumor cells. Zurakowski and Wodarz [183] initially

introduced an ODE model to study the effects of MEK inhibitors and viruses

on tumor cells. They used their model to explore the reduction of the tumor

size, and the tumor size reduction can be achieved by the combined therapies.

Tao and Guo [148] extended Zurakowski and Wodarz’s model to a PDE model

and used the PDE model to analytically and numerically explore a possible

optimal dose and the optimal timing of MEK inhibitors.
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Modeling of Resection, Radiation, and

Chemotherapy in Glioblastoma

5.1 Introduction

Glioblastoma multiforme, a type of glioma, is the most aggressive of brain

tumors. The life expectancy from the time when it is diagnosed is typically one

year. The current treatment is surgical resection followed by radiotherapy and

chemotherapy. There are only a few consistent clinical studies which compare

life expectancies of patients who underwent different resections (residual or

complete) and different protocols of radiotherapy and chemotherapy. Among

the most consistent studies are those of Albert et al. [3], Lacroix et al. [107],

and Stupp et al. [137].

A detailed study of 135 patient data by Albert et al. [3] showed that

patients who underwent subtotal surgery postoperatively had 6.6 times higher

risk of death in comparison to patients who underwent complete resection,

and patients treated by radiotherapy had 0.26 times lower risk of death

in comparison to patients who were not treated with radiation. Lacroix et

al. [107] analyzed 416 patients data and showed that a significant survival
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advantage was associated with resection of 98% or more of the tumor volume,

and generally, gross total tumor resection led to longer life expectancy.

The efficacy of chemotherapy has been steadily improved with the development

of new cancer drugs. Stupp et al. [137] analyzed the data of 573 patients and

showed that the median survival time (MST) was 14.6 months for patients

who underwent radiotherapy plus chemotherapy with temozolomide, but only

12.1 months for those with radiotherapy alone.

All these clinical data analysis are retrospective. They have value for

reference, but they are likely quite biased in nature, and cannot give any

perspective prediction. Tian et al. [160] developed a mathematical model

which integrates the treatment of patients by surgery, radiotherapy and

chemotherapy. The model parameters were chosen in Tian et al. [160] so

that the simulation results fit with the patient data analysis reported in

[3, 107, 137]. The Study of the model in [160] suggested a combination

of treatment protocols that can give patients maximal survival time. This

chapter reviews the mathematical model proposed by Tian et al [160].

5.2 Mathematical Model and Clinical Data

The mathematical model describes a spherical tumor regrowing after surgical

resection. The tumor contains tumor stem cells x and necrotic cells y. The

quantity x represents the number density of tumor cells (i.e., the number

of tumor cells in 1 mm3), the quantity y represents the number density of
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necrotic cells. It is assumed that the number density of cells in a tumor is a

constant [178], that is, x+ y = number of cells in 1 mm3, which is 106 [119].

New tumor cells are produced by proliferation, and they transit to necrotic

cells by lysis.

Tumor cells that are near to the expanding surface of the solid tumor

receive more nutrients and proliferate faster than tumor cells that are near the

core of the tumor. Indeed, as mentioned in [127], the proportion of proliferating

cells varies considerably from the outer region to the inner region of the tumor.

For simplicity we assume that the proliferation rate, λ, is constant. According

to [68], λ = 2 × 10−2 h−1. We shall also assume the rate of cells become

necrotic, δ, is constant. We take δ to be slightly smaller that λ, namely, δ =

1.89× 10−2 h−1. According to [67], necrotic cells are removed on the average

of 2–3 days. We shall take the removal rate µ to be 1/72 h−1.

According to [107], the median preoperative tumor volume was 34 cm3.

If we assume that the tumor is spherical, then this corresponds to radius

at resection time of R0 = 20 mm. In the partial resection case, a smaller

ball of radius R∗ is removed, and residual tumor cells remain in the region

between the two concentric balls. After surgery the ball of radius R∗ fills

with cerebro-spinal fluid, and the residual tumor begins to grow outward, as

illustrated schematically in Fig. 5.1. From the rate λ of tumor cell proliferation

and the reported life expectancy, we estimate that the patient dies at the time

when the tumor radius reaches 40 mm. This estimate is confirmed in [107].
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Fig. 5.1. The inner ball is the surgically removed part of the tumor, the dark

concentric ball is the residual tumor, and the outer shell is the regrowth part of the

tumor.

Consider a radially symmetrical tumor and denoted by r the distance from

a point to the origin. We denote the boundary of the tumor by r = R(t).

The proliferation and removal of cells cause a movement of cells within the

tumor, with a convection term, for tumor cells x, in the form 1
r
∂
∂r

[
r2u(r, t)x(r, t)

]
,

where u(r, t) is the radial velocity field, and u(R∗, t) = 0 since the tumor does

not grow inward. By the conservation law of mass, we have the equation for

tumor cell population,

∂x(r, t)

∂t
+

1

r2

∂

∂r

(
r2u(r, t)x(r, t)

)
= λx(r, t)− δx(r, t). (5.1)

Similarly, we have the for necrotic cell population,

∂y(r, t)

∂t
+

1

r2

∂

∂r

(
r2u(r, t)y(r, t)

)
= δx(r, t)− µy(r, t). (5.2)
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As mentioned before, the total number density of tumor cells is constant,

that is, x(r, t) + y(r, t) = const. = θ, and θ = 106/mm3 [119]. Adding Eqs.

(5.1) and (5.2) together, we obtain the equation for the radial velocity field:

θ

r2

∂

∂r

(
r2u
)

= (λ+ µ)x(r, t)− µθ. (5.3)

The tumor radius evolves according to

dR

dt
= u(R(t), t). (5.4)

We assume that,

x(r, 0) =
9

10
θ, for R∗ ≤ r ≤ R0. (5.5)

That is, initially 90% of cells are tumor (stem) cells, and 10% are necrotic

cells.

We need to solve Eqs. (5.1), (5.3) in R∗ ≤ r ≤ R(t) with the initial

condition (5.5) and with the tumor growth condition (5.4). The above model

does not include radiotherapy and chemotherapy yet. According to [137],

within 6 weeks after the histologic diagnosis of glioblastoma, patients were

assigned to receive standard focal radiotherapy alone or standard radiotherapy

plus concomitant daily temozolomide followed by adjuvant temozolomide,

whether or not they had previously undergone debulking surgery. The standard

radiotherapy consists of fractionated focal irradiation at a dose of 2 Gy per

fraction given daily, 5 days per week (Monday through Friday), over a period

of 6 weeks, for a total dose of 60 Gy. Accordingly, we take the radiation activity

function to be
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ρ(t) =


1 if 6 ≤ t ≤ 12,

0 otherwise.

We assume that the radiation kills tumor cells at a rate A, so that the

death rate by radiotherapy is Aρ(t). For simplicity, we lump together the cells

killed by radiation with necrotic cells.

Chemotherapy we consider is administration of temozolomide at a dose

of 75 mg per square meter of body surface per day, given 7 days a week

from the first day of radiation until the last day of radiation. Then, after a

4-week break, chemotherapy continues, and patients receive a double dose of

temozolomide daily for 28 days. After the end of this period, another cycle

of temozolomide dosing is administered at 8
3 level of the original dose, that

is 200 mg per square meter. We therefore introduce the temozolomide dosing

function as

τ(t) =



1 if 6 ≤ t ≤ 12,

2 if 16 ≤ t ≤ 20,

8
3 if 20 ≤ t ≤ 40,

0 otherwise.

If chemotherapy with 75 mg dose kills tumor cells at a rate B, then the

killing rate by chemotherapy treatment is Bτ(t).

If the standard radiotherapy is administered over a period of 6 weeks

during the time period 6 ≤ t ≤ 12 and the temozolomide is given for 40

weeks. Eqs. (5.1) and (5.2) are replaced by
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∂x(r, t)

∂t
+

1

r2

∂

∂r

(
r2u(r, t)x(r, t)

)
= λx(r, t)− δx(r, t)−Aρ(t)x(r, t)−Bτ(t)x(r, t), (5.6)

∂y(r, t)

∂t
+

1

r2

∂

∂r

(
r2u(r, t)y(r, t)

)
= δx(r, t) +Aρ(t)x(r, t) +Bτ(t)x(r, t)− µy(r, t). (5.7)

By adding this two equations together, we obtain the same Eq. (5.3), as

before, for the velocity field u(r, t).

In next section we will numerically solve Eqs. (5.6), (5.3) in R∗ ≤ r ≤ R(t)

together with (5.4) and (5.5).

Albert et al. [3] provide the median survival time (MST) for various age

groups of patients. For definiteness we consider the group of patients between

the age of 20 and 39. This group is further divided into three subgroups [3]:

(a) Patients had complete resection (no residual tumor) and undergone

radiotherapy; their MST was 92 weeks.

(b) Patients had partial resection (with residual tumor) and undergone

radiotherapy; their MST was 46 weeks.

(c) Patients had partial resection (with residual tumor) without radiotherapy;

their MST was 15 weeks.

A recent study by Stummer et al. [136] of 243 patients compares the

MST of patients who underwent complete resection versus subtotal (partial)

resection while both groups received radiation therapy. Repeat surgery and

/or initiation of chemotherapy were applied to some patients after tumor

progression. The MST was 71 weeks for the first group and 49 weeks for
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the second group. By contrast with the data in [3] quoted above (in (a)

and (b)) the study in [136] lumps together all ages≤ 60; these data may

indicate that older patients may not do as well as younger patients undergoing

complete resection. Studies on the effect of different modes of radiation

(without distinguishing between complete and subtotal resection) are reported

in [25, 54, 139, 171].

It is commonly believed that by the time glioblastoma is diagnosed, some

cancer cells have already migrated from the main body of the tumor. Thus,

even when resection is complete there are residual tumor cells in the vicinity

of the tumor. The model [160] accounts for these cells by defining complete

resection to be the removal of not all the ball of radius R0, but of a slightly

smaller ball of radius R0 − ε. We take ε = 5 µm, half the size of a typical

cell, thereby making implicit assumption that glioma cells in the thin shell

R0 − ε ≤ r ≤ R0 are in ’migration mode’ from the solid tumor.

In the next section we use data from [3, 107, 137] to determine the

parameter R∗ corresponding to partial resection and the parameters A and ε.

5.3 Parameter Estimation

In all the numerical simulations discussed below we assume that the initial

density of tumor cells in the shell R∗ ≤ r ≤ R0, in nine times higher than the

density of the necrotic cells. We first use numerical simulations to determine

what the partial resection means mathematically. That is, in order to call
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a surgery is partial resection, how much should the tumor be removed? or

what is R∗? Second, we determine the radiotherapy killing rate A. Third, we

determine what the complete resection means, R(0) = R0 − ε, what is ε?

After we obtain these parameter values, we can use our model to study some

treatment protocols.
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Fig. 5.2. Partial resection R∗ = 18 mm: residual tumor regrowth without

radiotherapy and chemotherapy

Fig. 5.2 shows the growth of the tumor radius R(t) without any therapy

if R∗ = 18 mm (partial resection). The time T at which R(T ) becomes

40 mm, that is the survival time, is approximately 15 weeks, as reported

for the subgroup (c) above. This agreement validates our choice of R∗. We

notice that the initial growth of the tumor is extremely fast. Thus although
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the simulation begins with tumor radius of 18 mm, the radius very quickly

arises to over 20 mm. The same holds for the subsequent figures.
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R

residual tumor (R*=18)
with regular radiotherapy (A=1.0)
no chemotherapy

Fig. 5.3. Partial resection R∗ = 18 mm: residual tumor regrowth with radiotherapy

only, at regular strength (A = 1.0)

Fig. 5.3 shows the growth of the tumor radius R(t) if we take in the model

the radiation killing rate A = 1.0 and partial resection R∗ = 18 mm. We see

that R(T ) = 40 mm at approximately T = 46, as reported for the subgroup

(b) above. This validates the choice of the parameter value A = 1.0. Note

that the tumor radius begins growing until the start of radiation. Radiation

treatment decreases the radius, but as soon as radiation is stopped, the tumor

begins to grow again.
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radiotherapy on

Fig. 5.4. Complete resection R(0) = R0 − ε, ε = 5µm, with radiotherapy only, at

regular strength (A = 1.0)

Fig. 5.4 shows the growth of R(t) after the complete resection (that is,

R(0) = R0 − ε, where ε = 5µm) and radiotherapy. We see that R(T ) =

40 mm at T = 92 weeks which is in agreement with the MST reported for the

subgroup (a). This agreement validates the choice of the parameter ε.

5.4 Mathematical Protocols

The mathematical model can be used to explore the effect of different radiation

protocols and resections. The standard radiation is given for a period of 6

weeks. In Fig. 5.5 we see the result of giving the same total amount 60

Gy of radiation within 3 weeks instead of 6 weeks, and of giving the same

total amount distributed over 12 weeks; both profiles are computed for the
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Fig. 5.5. Radiation with R∗ = 18mm. Protocol 1 (dashed line): radiotherapy only,

at double strength, half time. Protocol 2 (solid line): radiotherapy only, at half

strength, double time

residual case. The survival time increases in the first case from 46 weeks

to 50 weeks, and in the second case from 46 weeks to 49.5 weeks. Thus both

procedure of 6 weeks. It should be pointed out that the use of 60 Gy is actually

radiobiologically impertinent as it ignores overriding issues of normal cerebral

toxicity and radioresistance, but is interesting to consider in the abstract.

The model can also be extended to explore the effect of chemotherapy. As

in the case of radiotherapy, chemotherapy kills tumor cells at some rate B. Fig.

5.6 profiles R(t) in the residual tumor case. By choosing B = 0.03 we achieve

survival time of 60 weeks as given in [137]. We see that chemotherapy has
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Fig. 5.6. Residual tumor, R∗ = 18mm, regrowth with radiotherapy at regular

strength (A = 1) and chemotherapy B = 0.03

very little benefits compared to radiotherapy (i.e., B = 0.03 is much smaller

than A = 1.0).

Our model can predict the benefits that will occur if the resection will

be more complete, or if the radiation dose is increased. For example, Fig.

5.7 shows that resection with R∗ = 19 mm followed by radiotherapy yields

survival time of 52 weeks as compared to 46 weeks when R∗ = 18 mm, and

92 weeks when resection is complete. Fig. 5.8 shows, in the case of residual

resection (R∗ = 18mm), that if in the standard radiation treatment the

amount of dose is doubled, then the MST will increase from 46 weeks to

80 weeks. But this of course does not take into account toxic side effects due

to increased radiation.
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Fig. 5.7. Residual tumor, R∗ = 19mm, regrowth with radiotherapy at regular

strength (A = 1) but no chemotherapy

5.5 Explicit solutions

It is well known that most nonlinear free boundary problems are impossible to

solve in terms of explicit analytical solutions. In contrast, the hyperbolic free

boundary problem 5.1 – 5.7 is solvable, and the explicit solution is found

by using the backward characteristic curve method [180]. An interesting

finding is that the original free boundary problem can be reformulated as

a fixed boundary problem defined on an infinite domain with discontinuous

initial condition. To our knowledge, this analytical treatment of nonlinear free

boundary problems is new, and was published in [180] recently. These solutions

will not only confirm the numerical prediction in the previous sections, but
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R*=18, X0=90%
radiotherapy only
double strength, same time
(double totoal amount)

Fig. 5.8. Radiation protocol 3: R∗ = 18mm with radiotherapy only as standard

treatment, but with double stength dosage

also shed light on further analysis for problems of this type towards better

understanding the complicated phenomena of tumor growth.

Below we first transform this model for ease of analysis.

Notice α(t) := λ− δ − Aρ(t)− Bτ(t). We will treat α(t) as step function

or constant. We apply the following minor change of notations:

x̃(r, t) = x(r, t)/θ β = λ+ µ,

and the system becomes:
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∂x̃(r, t)

∂t
+

1

r2

∂

∂t
(r2u(r, t)x̃(r, t)) = αx̃(r, t), R∗ ≤ r ≤ R(t), t ≥ 0,

1

r2

∂

∂t
(r2u(r, t)) = βx̃(r, t)− µ, R∗ ≤ r ≤ R(t), t ≥ 0,

u(R∗, t) = 0, t ≥ 0,

dR(t)

dt
= u(R(t), t), t ≥ 0,

with the initial conditions: R(0) = R0, x̃(r, 0) = c, for R∗ ≤ r ≤ R(0). Here

the second equation is also replaced by the sum of the first two equations.

To get rid of all r2 or r terms, we introduce the “volume velocity”:

v(r, t) := r2u(r, t)

The system then becomes:

∂x̃(r, t)

∂t
+

1

r2

∂

∂t
(v(r, t)x̃(r, t)) = αx̃(r, t), R∗ ≤ r ≤ R(t), t ≥ 0,

1

r2

∂v(r, t)

∂t
= βx̃(r, t)− µ, R∗ ≤ r ≤ R(t), t ≥ 0,

v(R∗, t) = 0, t ≥ 0,

R(t)2 dR(t)

dt
= v(R(t), t), t ≥ 0,

with the initial conditions: R(0) = R0, x̃(r, 0) = c, for R∗ ≤ r ≤ R(0).

Then we apply the following change of variables:

s := r3,

V (t) := R(t)3,

V∗ := R3
∗,

V0 := R3
0,

ω(s, t) := 3v( 3
√
s, t).
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By abusing notations, we redefine “x” as function x̃ in terms of variable s:

x(s, t) := x̃( 3
√
s, t).

Then we have:

∂ω(s, t)

∂s
= 3

∂

∂s
v( 3
√
s, t) =

∂v(r, t)

∂r
s−

2
3 = vr(r, t)r

−2,

∂x(s, t)

∂s
=

1

3

∂x̃(r, t)

∂r
s−

2
3 =

1

3

∂x̃(r, t)

∂r
r−2,

dV (t)

dt
=

d

dt
(R(t)3) = 3R(t)2 dR(t)

dt
= 3v(R(t), t) = ω(V (t), t).

After the change of variables, the system becomes:

∂x(s, t)

∂t
+

∂

∂s
(ω(s, t)x(s, t)) = αx(s, t), V∗ ≤ s ≤ V (t), t ≥ 0,

∂ω(s, t)

∂s
= βx(s, t)− µ, V∗ ≤ s ≤ V (t), t ≥ 0,

ω(V∗, t) = 0, t ≥ 0,

dV (t)

dt
= ω(V (t), t), t ≥ 0,

with the initial conditions: V (0) = V0, x(s, 0) = c, for V∗ ≤ s ≤ V (0).

Substitute the second equation into the first one to obtain:

∂x(s, t)

∂t
+ ω(s, t)

∂x(s, t)

∂s
= βx(s, t) (K − x(s, t)) ,

where K := α+µ
β , and K < 1.

Thus, we have transformed the original system into the following system:

∂x(s, t)

∂t
+ ω(s, t)

∂x(s, t)

∂s
= βx(s, t) (K − x(s, t)) , V∗ ≤ s ≤ V (t), t ≥ 0,

∂ω(s, t)

∂s
= βx(s, t)− µ, V∗ ≤ s ≤ V (t), t ≥ 0,

ω(V∗, t) = 0, t ≥ 0,

dV (t)

dt
= ω(V (t), t), t ≥ 0,

(5.8)
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with the initial conditions: V (0) = V0, x(s, 0) = ϕ(s), for V∗ ≤ s ≤ V (0). Here

a more general initial condition ϕ(s) will be considered.

We define the “characteristic” curve of the first equation in the system

(5.8) as follows,

γ = γ(s, t), V∗ ≤ s ≤ V0, t ≥ 0, (5.9)

which satisfies:
dγ(s, t)

dt
= ω(γ(s, t), t), V∗ ≤ s ≤ V0, t ≥ 0,

γ(s, 0) = s, V∗ ≤ s ≤ V0.

(5.10)

Since ω(s, t) is continuous in (s, t) and continuously differentiable in γ, these

curves are uniquely defined, satisfying V∗ < γ(s, t) < V (t) for V∗ < s < V0, t ≥

0, and γ(V∗, t) = V∗, γ(V0, t) = V (t) for t ≥ 0. Setting x̂(s, t) := x(γ(s, t), t),

ω̂(s, t) := ω(γ(s, t), t), the system (5.8) reduces to:

∂x̂(s, t)

∂t
= βx̂(s, t) (K − x̂(s, t)) , V∗ ≤ s ≤ V0, t ≥ 0,

∂ω̂(s, t)

∂s
= (βx̂(s, t)− µ)

∂γ(s, t)

∂s
, V∗ ≤ s ≤ V0, t ≥ 0,

dγ(s, t)

dt
= ω̂(s, t), V∗ ≤ s ≤ V0, t ≥ 0,

(5.11)

with the initial conditions x̂(s, 0) = x(s, 0) = ϕ(s) for V∗ ≤ s ≤ V0.

The first equation of the system (5.11) is a logistic equation, which has a

standard solution

x̂(s, t) =


Kϕ(s)eβKt

K + ϕ(s)(eβKt − 1)
, if K 6= 0 ;

ϕ(s)

ϕ(s)βt+ 1
, if K = 0 .

(5.12)

Combine the second and the third equations in the system (5.11), we get an

ordinary differential equation of ∂γ
∂s (s, t),



5.5 Explicit solutions 117
∂

∂t

(
∂γ(s, t)

∂s

)
= (βx̂(s, t)− µ)

∂γ(s, t)

∂s
,

∂γ(s, 0)

∂s
= 1,

which has the solution:

∂γ(s, t)

∂s
= exp

(∫ t

0

(βx̂(s, ρ)− µ)dρ

)
.

Hence

γ(s, t) = V∗ +

∫ s

V∗

exp

(∫ t

0

(βx̂(σ, ρ)− µ)dρ

)
dσ, (5.13)

where x̂(s, t) is given by the formula (5.12). Since ∂γ(s,t)
∂s = exp

(∫ t
0
(βx̂(s, ρ)− µ)dρ

)
>

0, we can solve for the inverse of γ(s, t) for fixed t. Denote the inverse of γ(s, t)

by η(s, t). It follows that
x(s, t) = x̂(η(s, t), t),

ω(s, t) =

∫ s

V∗

(βx(σ, t)− µ)dσ.

The free boundary is given by:

V (t) = γ(V0, t) = V∗ +

∫ V0

V∗

exp

(∫ t

0

(βx̂(σ, ρ)− µ)dρ

)
dσ,

R(t) = 3
√
V (t) = 3

√
R3
∗ +

∫ R3
0

R3
∗

exp

(∫ t

0

(βx̂(σ, ρ)− µ)dρ

)
dσ,

(5.14)

where x̂(s, t) is calculated by formula (5.12).

In order to solve the system we assumed α to be a constant. If α is a

step function, the solution can be given piece-wise by applying the formula

(5.12) piece by piece. Let α(t) = αi, t ∈ [ti−1, ti), i = 1, 2, . . . , n, x̂0(s, 0) :=

ϕ(s), Ki := αi+µ
β , then the solution in (5.12) changes to x̂(s, t) = x̂i(s, t),

t ∈ [ti−1, ti), i = 1, 2, . . . , n, where
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x̂i(s, t) =


Kix̂i−1(s, ti−1)eβKi(t−ti−1)

Ki + x̂i−1(s, ti−1)(eβKi(t−ti−1) − 1)
, if Ki 6= 0 ;

x̂i−1(s, ti−1)

x̂i−1(s, ti−1)β(t− ti−1) + 1
, if Ki = 0 ,

(5.15)

whereas the formula (5.14) will also be given piece by piece.

Here we look at several interesting cases or applications of this explicit

solution. First, we look at how tumor regrows after the surgical resection

without any treatment. In this case, K = λ+µ−δ
λ+µ , where λ is the tumor cell

proliferation rate, δ is death rate of tumor cells (the rate at which the tumor

cells becomes necrotic), µ is the removal rate of necrotic cells.

When K = 0, that is, δ = λ+ µ, the growth of the tumor radius R(t), or

scaled volume V (t) = R3(t) will follow the following curve,

V (t) = (β

∫ V0

V∗

ϕ(s)ds)e−µtt+ V0e
−µt + V∗(1− e−µt).

From this expression, we find there is a time T , approximately T = 1
µ , such

that the tumor radius will increase before T and decrease after it. When time

goes to infinity, the tumor shrinks to the size V∗.

When K 6= 0, we have

V (t) = V0 +
(eβKt − 1)e−µt

K

∫ V0

V∗

ϕ(s)ds. (5.16)

Since
∫ V0

V∗
ϕ(s)ds is a constant, the growth of the radius depends on (eβKt−1)e−µt

K .

Substituting original parameters, we have (eβKt−1)e−µt = e(βK−µ)t−e−µt =

e(λ−δ)t − e−µt. Hence, if λ > δ, the tumor will grow infinitely. If λ < δ, the

tumor will shrink to the size V0. If λ = δ, the tumor radius will reach a

stationary solution
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Vs = V0 +
λ+ µ

µ

∫ V0

V∗

ϕ(s)ds.

Second, we consider radiotherapy and chemotherapy. After the surgical

resection, the patient has to rest for a period of time, usually six weeks, and

then is treated by radiotherapy and chemotherapy. Set the rest period to be

0 ≤ t ≤ t1. Then, the tumor grows from V0 to V (t1), where V (t1) is given by

(5.16) at t = t1, or explicitly

V (t1) = V0 +
(λ+ µ)(e(λ−δ)t1 − e−µt1)

λ+ µ− δ

∫ V0

V∗

ϕ(s)ds.

Let the treatment period of radiotherapy with chemotherapy be t1 ≤ t ≤ t2,

then the tumor growth follows

V (t) = V0 +
(λ+ µ)(e(λ−δ−A−B)t − e−µt)

λ+ µ− δ −A−B

∫ V0

V∗

ϕ(s)ds, t1 ≤ t ≤ t2. (5.17)

Let the treatment period of chemotherapy be t2 ≤ t ≤ t3, then the tumor

growth follows

V (t) = V0 +
(λ+ µ)(e(λ−δ−B)t − e−µt)

λ+ µ− δ −B

∫ V0

V∗

ϕ(s)ds, t2 ≤ t ≤ t3. (5.18)

These solutions clearly give the tumor growth pattern in any finite period

of time. They provide some information for treatments. We will discuss this

issue in next section.

5.6 Summary and Discussion

We have reviewed a mathematical model of glioblastoma treatment by radiotherapy

and chemotherapy, which also incorporates the size of the tumor which is
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removed by surgery. The model can be used to explore the benefits of different

protocols of treatment. In particular we have shown that somewhat greater

benefits incur if the same total amount of radiation is given over a period of

12 weeks instead of over 6 weeks.

We have also shown that the benefits of chemotherapy are very little for

patients already undergoing radiotherapy. Subtotal resection occurs either by

design (if the tumor borders a critically essential part of the brain) or because

of failure of the surgeon to determine the precise boundary of the tumor. We

have estimated the average diameter for the residual tumor at R∗ = 18mm,

when the tumor size is R0 = 20mm. Our model can predict the benefits that

will occur if the resection will be more complete, or if the radiation dose is

increased.

If instead of using the data of the group of patients between the age of 20

and 39 in Albert et al. [3] we use the patients data of different age groups in [3]

or the patients data of Stummer et al. [136] for the age group B60, we obtain

slightly different parameters A, B, ε, but this does not affect the qualitative

conclusions as described in Figs. 5.2 – 5.8.

The present chapter is based on data from [3, 107, 137]. A recent article by

Gorlia et al. [72] provides similar data which agree with those of [3, 107, 137]

in the case of patients who undergone partial resection with radiotherapy and

with or without chemotherapy. However it gives a shorter MST for patients

who undergone complete resection with radiotherapy. This inconsistency may

be the result of how one interprets complete resection. Our model parameters
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can be adjusted to the data in [72], but the qualitative results described in

Figs. 5.2 – 5.8 will not be affected.

We conclude this chapter with some comments and discussion about

explicit solutions we obtained in the previous section.

There is an interesting feature of the explicit solution. Observing the

solution formula, we see the dependent domain of x̂(s, t) is one point {s}

and the dependent domain of γ(s, t), as calculated by the formula (5.13), is

the interval [V∗, s], hence the dependent domain of the tumor radius R(t), or

V (t), is the interval [V∗, V0]. Therefore, if we extend the domain of ϕ(s) from

[V∗, V0] to [V∗,+∞) by assigning arbitrary values to the extended part of ϕ(s),

the solution will not be affected.

Due to this property of the solution, the original free boundary problem

can be reformulated as a fixed boundary problem defined on an infinite domain

[V∗,+∞)×[0,+∞) with a discontinuous initial condition. That is, the solution

of the system (5.8) on its domain coincides with that of the following system:

∂x(s, t)

∂t
+ ω(s, t)

∂x(s, t)

∂s
= βx(s, t) (K − x(s, t)) , V∗ ≤ s, t ≥ 0,

∂ω(s, t)

∂s
= βx(s, t)− µ, V∗ ≤ s, t ≥ 0,

ω(V∗, t) = 0, t ≥ 0,

dV (t)

dt
= ω(V (t), t), t ≥ 0,

(5.19)

with the initial conditions: V (0) = V0, x(s, 0) = ψ(s), for V∗ ≤ s, where

ψ(s) =


ϕ(s) , s ≤ V0 ;

0 , s > V0 .

(5.20)
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For the hyperbolic free boundary problem obtained by the mass conversation

law where the free boundary moves only because of the expansion of the inside

mass, this property of the solution seems true. Conceptually, we can change

this type of free boundary problem to a fixed boundary problem. Moreover,

the methods developed in this paper can be used in analysis of more general

free boundary problems.

We now discuss some biological significance of our explicit solutions. Based

on the solution (5.16) where there is no treatment after the surgical resection,

if the tumor cell proliferation rate λ is greater than the tumor cell death rate

δ, the tumor will grow until the patient dies. If the the tumor cell proliferation

rate λ is smaller than the tumor cell death rate δ, the tumor will shrink, and

the patient survives. If the the tumor cell proliferation rate λ is equal to the

tumor cell death rate δ, the tumor will grow to a certain size and then stop

growing, so that it reaches a stationary state. This threshold phenomenon is

biologically reasonable. Unfortunately, the tumor cell proliferation rate λ is

always greater than the tumor cell death rate δ in reality; otherwise, there will

be no tumor. By the solution (5.17), the tumor is treated by the combined

radiotherapy and chemotherapy after the tumor regrows to a size of V (t1).

Theoretically, we can make the combined parameter λ− δ−A−B as small as

we want by increasing A and B. This means, we need to increase the strength

of the radiotherapy and chemotherapy. Within the tolerable toxicity of these

therapies, λ − δ − A − B may be negative. It is obvious that the longer the

tumor is treated by the combined radiotherapy and chemotherapy, the more
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the tumor cells are killed. However, the radiotherapy cannot be applied too

long because of its side effects and toxicity. Then, the chemotherapy has to be

applied individually as the solution (5.18) shows. It may be the case where the

density of tumor cells drops to such a low level that is beyond the detection

after these treatments. A condition on which the tumor could be eradicated

is λ < δ+B, and then it is automatically true that λ < δ+A+B. Since these

are parameters of exponential functions, there is no guarantee that all tumor

cells are killed with a period of finite time. However, these solutions can be

used to compute the survival times when different protocols of radiotherapy

and chemotherapy are applied.





6

Tumor Modeling with Different Cell Velocities

6.1 Introduction

Cancers appear with multiscale features: genes, cells, and biological tissues,

corresponding to the molecular, cellular, and tissue scales. Hence, selecting

the proper modeling scale from the multiple scales is an important issue.

Bellomo et al. [8, 9] discussed the multiscale aspects of cancer modeling.

According to the classification of scales, there are basically three types of

mathematical models of cancers: microscopic models (at the molecular and the

cellular scales), macroscopic models (at the tissue scale), multiscale models

(the overall system is viewed as a system of subsystems with specific scales).

Microscopic models usually refer to the early stage of cancer onset and

developments, and they are derived in the framework of the kinetic theory for

active interactions (see [7, 9, 47], for instance). After a suitable maturation

time, tumor cells may start to condense and aggregate into a solid form. At

this stage, various space phenomena, such as cell motion and tumor size,

play a relevant role in the overall dynamics, and macroscopic models may be
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needed for understanding of tumor growth. Macroscopic models are usually

based on mass conservation laws and on reaction-diffusion processes within

tumor (see [1, 11, 26, 63, 73, 74, 93, 94, 143, 145, 147, 168], for instance).

Multiscale models illustrate that the molecular and cellular events continue to

play a crucial role in macroscopic tumor progression (see [23], for instance).

Microscopic models often consist of nonlinear integro-differential equations

(IDEs), macroscopic models lead to systems of nonlinear partial differential

equations (PDEs), and multiscale models are usually hybrid systems. For

more detailed descriptions of microscopic models, macroscopic models and

multiscale models, the reader is refer to two recent review articles [9, 112].

Multiscale models are good approximations of biological realities, although

they can become analytically intractable. On the other hand, microscopic

models are often complex and abstract, and they can also become analytically

intractable. So, the present chapter and the next two chapters will focus on

the mathematical analysis of macroscopic models.

In this chapter, we reviews a mathematical model describing the cell cycle

dynamics and chemotactic driven cell movement in a multicellular tumor

spheroid. Tumor cells consist of two types of cells: proliferating cells and

quiescent cells, which have different chemotactic responses to an extracellular

nutrient supply.

((This chapter is organized as follows. Section 6.2 presents the model.

Section 6.3 transforms the problem in a moving-domain into a new problem

in a fixed domain. Section 6.4 establishes some useful a priori bounds. Section
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6.5 gives the main ideas of the proof. Section 6.6 studies a parabolic problem

with a nonlinear boundary condition. Section 6.7 proves the local existence

and uniqueness of solutions of the problem. Section 6.8 extends the above local

solution to all t > 0. Finally, this chapter is closed with a summary section.))

6.2 Mathematical Model

Multicellular tumor spheroids (MCTSs) are three-dimensional cell cultures

which have structural similarity to in vivo tumors, and MCTSs are routinely

used as in vitro models of tumor growth. A number of mathematical models

of partial differential equations (PDEs) have been developed to describe the

growth of MCTSs (see [19, 20, 46, 73, 125, 133, 163, 166, 167, 168], for

instance). Rigorous mathematical analysis of these models, such as global

existence, uniqueness and stability of a solution are interesting (see [43, 44,

58, 62, 63, 143, 145], for instance).

In this chapter, we review a mathematical model describing the cell cycle

and cell movement in a MCTS. This model was proposed by Tindall and

Please [163]. One novelty of this model is that the model includes an explicit

description of proliferating and quiescent cells within a MCTS. A common

feature of most continuum mathematical models of avascular tumor growth is

the assumption that all cells within a tumor have a common spatial velocity

profile. However, in the model [163], Tindall and Please have considered the

possibility of differing cell velocities, which is another novelty of their model.
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The different cell velocities are created when proliferating and quiescent

cells have different chemotactic responses to an extracellular nutrient supply.

Considering a spherically symmetric MCTS, Tindall and Please’s model reads

as follows:

1

r2

∂

∂r

(
r2 ∂c

∂r

)
= λ(c)c, for 0 < r < R(t), t > 0, (6.1)

p+ q = N, for 0 ≤ r ≤ R(t), t ≥ 0, (6.2)

uq(r, t) = up(r, t) + χ
∂c

∂r
, for 0 ≤ r ≤ R(t), t > 0, (6.3)

∂p

∂t
+

1

r2

∂

∂r

(
r2(upp)

)
= D

1

r2

∂

∂r

(
r2 ∂p

∂r

)
+
(
Kb(c)−Kq(c)−Ka(c)

)
p

+Kp(c)q, for 0 < r < R(t), t > 0, (6.4)

∂q

∂t
+

1

r2

∂

∂r

(
r2(uqq)

)
= D

1

r2

∂

∂r

(
r2 ∂q

∂r

)
+Kq(c)p

−
(
Kd(c) +Kp(c)

)
q, for 0 < r < R(t), t > 0, (6.5)

∂c

∂r
(r, t) = 0 at r = 0, for t > 0, (6.6)

c(r, t) = c∞ at r = R(t), for t > 0, (6.7)

p(r, 0) = p0(r), for 0 ≤ r ≤ R(0), t > 0, (6.8)

∂p

∂r
(r, t) =

∂q

∂r
(r, t) = up(r, t) = uq(r, t) = 0 at r = 0, for t > 0, (6.9)

p
dR(t)

dt
−
(
pup −D

∂p

∂r

)
= 0 at r = R(t), (6.10)

q
dR(t)

dt
−
(
quq −D

∂q

∂r

)
= 0 at r = R(t), (6.11)

R(0) = R0 > 0 is prescribed. (6.12)
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Here R(t), c, p, q, up and uq are unknown functions, which will be explained

in the following. R(t) represents the spheroid radius. In (6.1), c(r, t) is the

concentration of nutrient, λ(c) is any positive smooth function, and λ(c)c is a

consumption rate of nutrient which is zero when c = 0. In (6.2), N is the total

number of live cells per unit volume, and we assume that tumor cells consist

of two types of cells: proliferating and quiescent cells. p(r, t) and q(r, t) are the

proliferating and quiescent cell densities, respectively. The cells are taken to

fill any region within the tumor. In addition, for simplicity, we shall neglect

the space taken by any dead cell material [163, 168]. In (6.3), up = up(r, t)

is the velocity of proliferating cells, uq = uq(r, t) is the velocity of quiescent

cells, and χ is a parameter introduced to describe the relative strength of the

chemotactic response of the two cell phases [163]: proliferating cells move up

the chemotactic gradient relative to quiescent cells when χ < 0; proliferating

cells move at the same velocity as quiescent cells when χ = 0; and proliferating

cells move down the chemotactic gradient relative to quiescent cells if χ > 0.

In (6.4) and (6.5), cell motion is described by both random motion of the cells

(diffusion) and directed motion stimulated by nutrient gradients (chemotaxis).

D is a positive constant, which is the random diffusion coefficient of the cells.

Kb(c) is the rate of cell birth, Kp(c) is the rate at which cells return to

the proliferative compartment from quiescence, Kq(c) is the rate at which

proliferating cells become quiescent, Ka(c) is the death rate of proliferating

cells, and Kd(c) is the death rate of quiescent cells. Ka(c)p in (6.4) is the

death of proliferating cells due to apoptosis, while Kd(c)q in (6.5) is the death
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of quiescent cells due to necrosis. (6.6) is a result of the radial symmetry

assumption of the problem, and (6.7) assumes that the spheroid is supported

in a nutrient-rich medium. (6.8) is an initial condition for the cell distribution.

(6.9) is also a result of the radial symmetry assumption of the problem. On

the outer boundary of the spheroid we impose no-flux conditions as given

in (6.10) and (??) for proliferating cells and quiescent cells, respectively; see

Remark 6.2 below for further explanation. (6.12) is an initial condition for

tumor radius.

By adding Eqs. (6.4) and (6.5) and invoking assumptions (6.2) and (6.3)

an equation for the velocity of the proliferating cells is obtained

1

r2

∂

∂r

(
r2up

)
=

1

N

(
Kb(c)p−Ka(c)p−Kd(c)(N − p)

)
+
χ

N

1

r2

∂

∂r

(
r2(p−N)

∂c

∂r

)
. (6.13)

By adding Eqs. (6.10) and (6.11) and using assumptions (6.2) and (6.3)

an equation for the velocity of the outer boundary of the spheroid is obtained

dR(t)

dt
= up +

χ

N
q
∂c

∂r
at r = R(t). (6.14)

This, together with (6.10), yields a boundary condition for proliferating cells

D
∂p

∂r
+
( χ
N
q
∂c

∂r

)
p = 0 at r = R(t). (6.15)

We note that Eq. (6.5) is a consequence of Eqs. (6.2)-(6.4) and (6.13), so

that in the sequel we may drop this equation and replace q by N − p in (6.4),

(6.14) and (6.15).
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We also notice that the no-flux boundary conditions (6.10)-(6.11) are

equivalent to the boundary conditions (6.14)-(6.15) under the assumptions

(6.2) and (6.3), so that in what follows we shall replace (6.10)-(6.11) with

(6.14)-(6.15).

We further note that the empirical rules used for the functional dependence

of Ka,Kb,Kd,Kp and Kq on c are not critical to our analytical result. For the

global existence of a solution to the model, we only need the following simple,

Ka(c) ≥ 0,Kb(c) ≥ 0,Kd(c) ≥ 0,Kp(c) ≥ 0,Kq(c) ≥ 0

and these functions are C1-smooth functions, (6.16)

This assumption is physically realistic. The requirement of the C1-smoothness

will be explained in Section 6.7.

Remark 6.1. In Tindall and Please’s model [163], they neglected the random

cell motion term in Eqs. (6.4) and (6.5). Their numerical results clearly

indicate the formation of shocks in the proliferating cell distributions. Mathematically,

by dropping the diffusion terms in Eqs. (6.4) and (6.5), the solution of

corresponding first-order hyperbolic equations may evolve shocks due to the

dominant cell motion directed by chemotaxis. Here we retain random cell

motion in Eqs. (6.4) and (6.5), and prove that afore-mentioned shocks can

be smoothed by this random cell motion. Indeed, we will prove the global

existence and uniqueness of a C1+λ,(1+λ)/2-smooth (0 < λ < 1) solution of

the model (6.1)-(6.16). Furthermore, in section 6.8 we will give some indication
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where the analysis might break down if the diffusion of the cell types is sent

to zero.

Remark 6.2. If χ = 0, the global existence and uniqueness of a solution to

the model (6.1)-(6.16) can be proved using the methods of [145, 169]. So,

throughout the remainder of this chapter, we assume that χ 6= 0. On the outer

boundary of the spheroid, the flux of proliferating cells has two components,

One is the diffusion flux −D ∂p
∂r (R(t), t), and the other is the flux, pup(R(t), t),

due to proliferation and death of cells. Since the spheroid changes at the rate

Ṙ(t), the no-flux boundary condition for p should be pṘ−
(
pup −D ∂p

∂r

)
= 0

as shown in (6.10). The no-flux boundary condition (6.11) can be similarly

explained.

Remark 6.3. Once diffusion is introduced, the analysis in this chapter will

be independent of the sign of χ. However, for definiteness and clarity of

the statement, we will assume that χ > 0 throughout the remainder of this

chapter.

Tindall and Please [163] numerically studied the model (6.1)-(6.16) with

D = 0 and empirical linear functions Ka(c),Kb(c),Kd(c),Kp(c) and Kq(c).

In particular, they investigated the different distributions of quiescent and

proliferating cells that can occur within a MCTS. Tao [150] proved the global

existence and uniqueness of a solution to the model (6.1)-(6.16). This chapter

will mainly review Tao’s results [150]. The main difficulties of the proof are

due to the chemotactic term in (6.13), to the nonlinear boundary condition
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(6.15), and to possible singularity at tumor center if we regard Eqs. (6.4) and

(6.5) as two 1-dimension parabolic equations with a radial spatial variable

r (Note that 1
r2

∂
∂r (r2 ∂p

∂r ) = ∂2p
∂r2 + 2

r
∂p
∂r ). To overcome these difficulties, we

establish some necessary estimates, employ the Leray-Schauder fixed point

theorem, and use the three-dimensional Cartesian coordinate.

6.3 Transformation and Main Results

After re-scalings (see Appendix in [163]), the system (6.1)-(6.16) takes the

following form in {0 < r̄ < R̄(t̄), t̄ > 0}:

4r̄ c̄ = λ̄(c̄)c̄, (6.17)

∂c̄

∂r̄
(0, t̄) = 0, (6.18)

c̄(R̄(t̄), t̄) = 1, (6.19)

∂p̄

∂t̄
+

1

r̄2

∂

∂r̄

(
r̄2(ūpp̄)

)
= D̄4r̄ p̄+

(
K̄b(c̄)− K̄q(c̄)− K̄a(c̄)

)
p̄+ K̄p(c̄)(1− p̄), (6.20)

p̄(r, 0) = p̄0(r), (6.21)

∂p̄

∂r̄
(0, t̄) = 0, D

∂p̄

∂r̄
+
(
χ̄(1− p̄)∂c̄

∂r̄

)
p̄ = 0 at r̄ = R̄(t̄), (6.22)

1

r̄2

∂

∂r̄

(
r̄2ūp

)
= K̄b(c̄)p̄− K̄a(c̄)p̄− K̄d(c̄)(1− p̄)−

χ̄

r̄2

∂

∂r̄

(
r̄2(1− p̄)∂c̄

∂r̄

)
, (6.23)

ūp(0, t̄) = 0, (6.24)

dR̄(t̄)

dt̄
= ūp + χ̄

(
1− p̄

)∂c̄
∂r̄

at r̄ = R̄(t̄), (6.25)

R̄(0) = R̄0, (6.26)
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where

0 ≤ K̄a(c̄), K̄b(c̄), K̄d(c̄), K̄p(c̄), K̄q(c̄) ∈ C1 (6.27)

and

4r̄ =
1

r̄2

∂

∂r̄

(
r̄2 ∂

∂r̄

)
.

To transform the moving domain {r̄ < R̄(t̄)} into a fixed domain, as shonw

in [145], we introduce a change of variables (r̄, t̄, c̄, p̄, ūp, R̄) 7→ (ρ, t̄, c̃, p̃, ũ, R̄)

as follows:

ρ = r̄/R̄(t̄), t̄ = t̄,

c̃(ρ, t̄) = c̄(ρR̄(t̄), t̄), p̃(ρ, t̄) = p̄(ρR̄(t̄), t̄), (6.28)

ũ(ρ, t̄) = ūp(ρR̄(t̄), t̄)/R̄(t̄), R̄(t̄) = R̄(t̄).

In terms of the new variables and after dropping the tildes of c̃, p̃ and ũ and the

bars of t̄, R̄, D̄, K̄a, K̄b, K̄d, K̄p, K̄q, χ̄ and R̄0 for notational convenience,

the system (6.17)-(6.27) takes the following form in {0 < ρ < 1, t > 0}:

4ρc = R2(t)λ(c)c, (6.29)

∂c

∂ρ
(0, t) = 0, c(1, t) = 1, (6.30)

∂p

∂t
+
[
u(ρ, t)− ρu(1, t)

]∂p
∂ρ

+
[ χ

R2(t)

∂c

∂ρ
p− χρ 1

R2(t)

∂c(1, t)

∂ρ

(
1− p(1, t)

)]∂p
∂ρ
− D

R2(t)
4ρp

=
[
−Kq(c) +

(
Kb(c) +Kd(c)−Ka(c) + χλ(c)c

)
(1− p)

]
p

+Kp(c)(1− p), (6.31)
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p(ρ, 0) = p0(ρ), (6.32)

∂p

∂ρ
(0, t) = 0,

[
D
∂p

∂ρ
+
(
χ(1− p) ∂c

∂ρ

)
p
]∣∣∣
ρ=1

= 0, (6.33)

u(ρ, t) =
1

ρ2

∫ ρ

0

[
Kb(c)p−Ka(c)p−Kd(c)(1− p)

]
s2ds

−χ(1− p) 1

R2(t)

∂c

∂ρ
, (6.34)

dR(t)

dt
= R(t)

∫ 1

0

[
Kb(c)p−Ka(c)p−Kd(c)(1− p)

]
s2ds, (6.35)

R(0) = R0, R0 is given, (6.36)

0 ≤ Ka(c),Kb(c),Kd(c),Kp(c),Kq(c) ∈ C1, (6.37)

where we have used the fact that 4ρc = R2(t)λ(c)c in deriving Eq. (6.31).

We shall also assume that

0 ≤ p0(ρ) ≤ 1,

p0(ρ) ∈W 2
k (B1(0)), (6.38)

∂p0

∂ρ
(0) =

(
D
∂p0

∂ρ
+ χp0(1− p0)

∂c

∂ρ

∣∣∣
t=0

)∣∣∣
ρ=1

= 0,

here B1(0) = {y ∈ R3 : |y| ≤ 1} and W 2
k (B1(0)) :=

{
ϕ(ρ)

∣∣ϕ, ϕyi , ϕyiyj ∈
Lk(B1(0)

}
, in which k > 5, i, j = 1, 2, 3, and the derivatives are in the weak

sense. We note that (6.38) is physically realistic as it ensures that both of the

cell populations, p and q, are initially non-negative. Throughout this chapter,

we also assume that

λ(c) is any positive C1-smooth function, (6.39)



136 6 Tumor Modeling with Different Cell Velocities

which is physically realistic as it ensures that the consumption rate of nutrient,

λ(c)c, is non-negative smooth function of c which is zero when c = 0. The

requirement of the C1-smoothness of λ(c) will be explained in next section.

Remark 6.4. Tindall and Please’s model [163] empirically assumed that λ(c) =

1. However, physically any positive smooth function should be adequate for

global existence of a solution to the model.

We shall use the following notation:

QT = B1(0)× [0, T ], W 2,1
k (QT ) =

{
p(ρ, t)|p, pyi , pyiyj , pt ∈ Lk(QT )

}
where 1 ≤ k ≤ ∞, i, j = 1, 2, 3, and the derivatives are in the weak sense.

The main result of this chapter is as follows:

Theorem 6.1. Under the assumptions (6.37)-(6.39), there exists a unique

solution (R(t), c(ρ, t), u(ρ, t), p(ρ, t)) of the problem (6.29)-(6.36) for all t >

0; furthermore, R(t) ∈ C1[0,∞), u(ρ, t) ∈ C1([0, 1] × [0,∞)), c(ρ, t) ∈

C2,1([0, 1] × [0,∞)), p(ρ, t) ∈ W 2,1
k (QT ) for some k > 5 and any T > 0,

and

0 < c(ρ, t) ≤ 1, (6.40)

0 ≤ p(ρ, t) ≤ 1, (6.41)

|u(ρ, t)| ≤ β, (6.42)

R0e
−βt ≤ R(t) ≤ R0e

βt (6.43)

for some β > 0.
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6.4 A Priori Bounds

In this section we establish several a priori bounds which will be used later.

Lemma 6.1. Under the assumptions (6.37)-(6.39), for any solution of (6.29)-(6.36)

there hold:

0 ≤ c(ρ, t) ≤ 1, for 0 ≤ ρ ≤ 1, t > 0, (6.44)

0 ≤ 1

ρR2(t)

∂c

∂ρ
≤M0, for 0 ≤ ρ ≤ 1, t > 0, (6.45)

where M0 := 1
3 max0≤c≤1 λ(c) > 0 .

Proof. Set r := ρR(t). Then Eqs. (6.29)-(6.30) can be rewritten as follows:

4rc = λ(c)c, for 0 < r < R(t), t > 0, (6.46)

∂c

∂r
(0, t) = 0, c(R(t), t) = 1. (6.47)

By λ(c) > 0 and the maximum principle for elliptic equations, we have

c(r, t) ≥ 0 (6.48)

and

c(r, t) ≤ 1. (6.49)

Hence, the proof of (6.44) is completed.

We now turn to prove (6.45). We derive from (6.46), the first equation in

(6.47), (6.39), (6.48) and (6.49) that

0 ≤ r2 ∂c

∂r
(r, t) =

∫ r

0

λ(c(s, t))c(s, t)s2ds ≤ 1

3
λ1r

3
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and therefore

0 ≤ 1

r

∂c

∂r
(r, t) ≤ 1

3
λ1, (6.50)

where λ1 = max0≤c≤1 λ(c) > 0. This completes of the proof of (6.45). ut

Remark 6.5. We note that the C1-smoothness of function λ(c) as assumed

in (6.39) is used for deriving the C2-regularity of the solution to problem

(6.46)-(6.47) by Schauder theory.

Lemma 6.2. For any solution of (6.29)-(6.39) with p ∈ C(QT ) and R(t) ∈

C[0, T ], there holds:

0 ≤ p(ρ, t) ≤ 1. (6.51)

Proof. We first assert that

if the minimum of p in QT is negative, then it cannot

be attained at the boundary ρ = 1. (6.52)

Suppose, to the contrary, that there exists a point (y0, t0) (|y0| = 1, 0 < t0 ≤

T ) such that

p(y0, t0) = min
0≤t≤T

p(y, t) < 0. (6.53)

Then we have

∂p

∂ρ

∣∣∣
(y0,t0)

≤ 0. (6.54)

We note that

∂c

∂ρ
(1, t) > 0 (6.55)

by (6.29)-(6.30) and the strong maximum principle of elliptic equations. The

inequality (6.55), together with (6.53)-(6.54) and χ > 0, further yields
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D
∂p

∂ρ
+ χp(1− p) ∂c

∂ρ

)∣∣∣
(y0,t0)

< 0

which contradicts the boundary condition of p at the boundary ρ = 1 in (6.33).

So, (6.52) holds.

On the other hand, by Kp(c) ≥ 0, Eq. (6.31) can be written as follows:

∂p

∂t
− D

R2(t)
4ρ p+ a(p, u, c)

∂p

∂ρ
+ b1(p, u, c)p ≥ 0, (6.56)

where

a(p, u, c) = u(ρ, t)− ρu(1, t) +
χ

R2(t)

∂c

∂ρ
p− χρ 1

R2(t)

∂c(1, t)

∂ρ

(
1− p(1, t)

)
,

b1(p, u, c) = Kp(c) +Kq(c)

−
(
Kb(c) +Kd(c)−Ka(c) + χλ(c)c

)
(1− p).

Without loss of generality, we may assume that b1 ≥ 0 due to the standard

exponential transform (i.e. p = ek0tp̄ for large k0 > 0). Therefore, we derive

from b1 ≥ 0 and (6.56) that

if the minimum of p in QT is negative, then it cannot

be attained in the interior of QT . (6.57)

This, together with (6.52), (6.32) and (6.38), that

p(ρ, t) ≥ 0. (6.58)

Next we shall prove that p(ρ, t) ≤ 1. To this end, we set q =: 1 − p. We

easily derive from (6.31)-(6.33), (6.38), (6.58) and Kq(c) ≥ 0 that



140 6 Tumor Modeling with Different Cell Velocities

∂q

∂t
− D

R2(t)
4ρ q + a(p, u, c)

∂q

∂ρ
+ b2(p, u, c)q ≥ 0 in QT , (6.59)

q(ρ, 0) = 1− p0(ρ) ≥ 0,
∂q

∂ρ
(0, t) = 0, (6.60)[

D
∂q

∂ρ
+
(
− χp∂c

∂ρ

)
q
]
ρ=1

= 0, (6.61)

here

b2(p, u, c) = Kp(c) +
(
Kb(c) +Kd(c)−Ka(c) + χλ(c)c

)
p

and ∂
∂ρ ≡

∂
∂ν , in which ν is the outward vector of the domain B1(0). By (6.45),

p ∈ C(QT ) and R(t) ∈ C[0, T ], we also have

−χp∂c
∂ρ
≥ −A(T )⇔ −χp∂c

∂ρ
is bounded from below,

where A(T ) > 0 is some constant possibly depending on T . Therefore, the

comparison principle holds for problem (6.59)-(6.61) with the third boundary

condition (cf. [109, Theorem 2.10] and the remarks following that). Hence

q(ρ, t) ≥ 0.

This completes the proof of Lemma 6.2. ut

From (6.34)-(6.35) and Lemmas 6.1 and 6.2, we easily deduce that

Lemma 6.3. For any solution of (6.29)-(6.39) with p ∈ C(QT ) and R(t) ∈

C[0, T ], there hold:

−β ≤ u(ρ, t)

ρ
≤ β, (6.62)

R0e
−βt ≤ R(t) ≤ R0e

βt, (6.63)

where β > 0 is some positive constant.
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If we regard Eq. (6.31) as a 1-dimensional parabolic equation with the

spatial variable ρ, then the coefficient of ∂p/∂ρ has singularity at tumor center

ρ = 0 due to

4ρp ≡
∂2p

∂ρ2
+

2

ρ

∂p

∂ρ
.

However, this singularity can be eliminated by using the estimates (6.45) and

(6.62) and employing the three-dimensional Cartesian coordinate.

It is easily checked that

ρpρ ≡ y · 5p, 4ρp ≡ 4p, (6.64)

where y = (y1, y2, y3), ρ =
√
y2

1 + y2
2 + y2

3 , ∇ = ( ∂
∂y1

, ∂
∂y2

, ∂
∂y3

), 4 = ∂2

∂y21
+

∂2

∂y22
+ ∂2

∂y23
. Then the system (6.29)-(6.36) can be rewritten in the following

form in QT :

4ρc = R2(t)λ(c)c, (6.65)

∂c

∂ρ
(0, t) = 0, c(1, t) = 1, (6.66)

∂p

∂t
− D

R2(t)
4 p

+
[u(ρ, t)

ρ
− u(1, t) +

χ

ρR2(t)

∂c

∂ρ
p− χ

R2(t)

∂c(1, t)

∂ρ

(
1− p(1, t)

)]
y · 5p

=
[
−Kq(c) +K(c)(1− p)

]
p+Kp(c)(1− p), (6.67)

p(ρ, 0) = p0(ρ), (6.68)

∂p

∂ρ
(0, t) = 0,

[
D
∂p

∂ρ
+
(
χ(1− p) ∂c

∂ρ

)
p
]∣∣∣
ρ=1

= 0, (6.69)

u(ρ, t) =
1

ρ2

∫ ρ

0

[
Kb(c)p−Ka(c)p−Kd(c)(1− p)

]
s2 ds

−χ(1− p) 1

R2(t)

∂c

∂ρ
, (6.70)
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dR(t)

dt
= R(t)

∫ 1

0

[
Kb(c)p−Ka(c)p−Kd(c)(1− p)

]
s2 ds, (6.71)

R(0) = R0, R0 is given, (6.72)

0 ≤ Ka(c),Kb(c),Kd(c),Kp(c),Kq(c) ∈ C1, (6.73)

where

K(c) = Kb(c) +Kd(c)−Ka(c) + χλ(c)c. (6.74)

Lemma 6.4. Let T be any finite positive number. Then, for any solution

of (6.29)-(6.39) with p ∈ Cγ,γ/2(QT ) and R(t) ∈ C1[0, T ], there holds

p ∈W 2,1
k (QT ) with k(1− γ) < 1. Furthermore,

‖p‖W 2,1
k (QT ) ≤M(T ), (6.75)

where M(T ) > 0 is some constant which may depend on T .

Proof. By (6.37), Lemmas 6.6, 6.8 and 6.9, and the assumption R(t) ∈ C[0, T ],

Eq. (6.67) can be rewritten in the following form:

∂p

∂t
− D

R2(t)
4 p+ a0 y · 5p+ b0 p = h (6.76)

with

D

R2(t)
∈ C(QT ),

D

R2
0

e−2βT ≤ D

R2(t)
≤ D

R2
0

e2βT , (6.77)

‖a0‖L∞ , ‖b0‖L∞ , ‖h‖L∞ ≤M1, (6.78)

where M1 is some positive constant. We easily derive from (6.65)-(6.66) and

R(t) ∈ C1[0, T ] that

∂c

∂ρ
∈ C1,1(QT ).
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This, together with p ∈ Cγ,γ/2(QT ), yields

χ(1− p) ∂c
∂ρ
∈ Cγ,γ/2(QT ). (6.79)

Hence, by (6.76)-(6.79), (6.68)-(6.69), (6.38) and the parabolic Lp-theory (cf.

[109, Theorem 7.20]) we see that p̂ ∈W 2,1
k (QT ) with k(1− γ) < 1 and

‖p‖W 2,1
k (QT ) ≤ A(T )

(
‖p0(ρ)‖W 2,k(B1(0)) + ‖h‖Lk(QT )

)
, (6.80)

where A(T ) is some constant which may depend on T . This, combined with

‖h‖L∞ ≤M1, further yields

‖p‖W 2,1
k (QT ) ≤ A(T )

(
‖p0(ρ)‖W 2,k(B1(0)) +M1

∣∣B1(0)
∣∣T 1

k

)
:= M(T ).

This completes the proof of Lemma 6.4. ut

6.5 Main Ideas

For clarity, in this section we will give the sketch of the proof of Theorem ??.

The detailed proof will be left in the next three sections. We shall use the

contraction mapping principle to prove that (6.65)-(6.74) has a unique local

solution. For given T > 0, we introduce a metric space (XT , d) as follows:
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XT =
{

(R, p) = (R(t), p(ρ, t)) (0 ≤ ρ ≤ 1, 0 ≤ t ≤ T ) :

R(t) ∈ C1[0, T ], R(0) = R0,
1

2
R0 ≤ R(t) ≤ 2R0;

p(ρ, t) ∈ Cγ,γ/2(QT ) with γ ∈ (
4

5
, 1), 0 ≤ p(ρ, t) ≤ 1,

∂p

∂ρ
(0, t) = 0, p(ρ, 0) = p0(ρ),[

D
∂p

∂ρ
+
(
χ(1− p) ∂c

∂ρ

)
p
]∣∣∣
ρ=1

= 0 where c is

the solution to problem (6.65)-(6.66) for given R(t)
}
.

The metric d in XT is defined by

d
(
(R1, p1), (R2, p2)

)
= ‖R1 −R2‖C1[0,T ] + ‖p1 − p2‖Cγ,γ/2(QT ).

For any given (R(t), p(ρ, t)) ∈ XT we define c(ρ, t) being the solution

of (6.65)-(6.66) and define u(ρ, t) by (6.70). Let R̂(t) and p̂(ρ, t) solve the

following two decoupled problems in {0 ≤ ρ ≤ 1, t ≥ 0}:

dR̂(t)

dt
= R̂(t)

∫ 1

0

[
Kb(c)p−Ka(c)p−Kd(c)(1− p)

]
s2 ds, (6.81)

R̂(0) = R0, (6.82)

∂p̂

∂t
− D

R2(t)
4 p̂

+
[u(ρ, t)

ρ
− u(1, t) +

χ

ρR2(t)

∂c

∂ρ
p− χ

R2(t)

∂c(1, t)

∂ρ

(
1− p(1, t)

)]
y · 5p̂

=
[
−Kq(c) +K(c)(1− p̂)

]
p̂+Kp(c)(1− p̂), (6.83)

p̂(ρ, 0) = p0(ρ), (6.84)

∂p̂

∂ρ
(0, t) = 0,

[
D
∂p̂

∂ρ
+
(
χ(1− p̂) ∂c

∂ρ

)
p̂
]∣∣∣
ρ=1

= 0. (6.85)

Then, we define a mapping

F : (R(t), p(ρ, t)) −→ (R̂(t), p̂(ρ, t)).
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In next two sections we will prove that F is contractive if T is sufficiently

small, and this will complete the proof of the local existence and uniqueness

of a solution of the system (6.65)-(6.74). The global existence will be proved

in Section 6.8.

We first consider the problem (6.81)-(6.82). Clearly,

R̂(t) = R0e

∫ t
0

( ∫ 1
0

[
Kb(c)p−Ka(c)p−Kd(c)(1−p)

]
s2 ds

)
dτ
∈ C1[0, T ], (6.86)

R0

2
≤ R̂(t) ≤ 2R0, for 0 ≤ t ≤ T , (6.87)

where T > 0 is sufficiently small.

Since the problem (6.83)-(6.85) is a new nonlinear parabolic problem, the

solvability of it will be left in next section.

6.6 Problem with Nonlinear Boundary Condition

In this section we shall solve the problem (6.83)-(6.85). For notational convenience,

in what follows we shall denote various constants which are independent of T

by A0. The main result of this section is as follows.

Theorem 6.2. Under the assumptions (6.37)-(6.39), for any (R, p) ∈ XT ,

the problem (6.83)-(6.85) has a unique solution p̂ ∈ Cγ,γ/2(QT ) for 0 < T < 1.

Furthermore,

0 ≤ p̂(ρ, t) ≤ 1, (6.88)

‖p̂(ρ, t)‖W 2,1
k (QT ) ≤ A0, (6.89)

where A0 > 0 is some constant being independent of T .
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Proof. Existence: We will use the Leray-Schauder fixed point theorem (cf.

[71, Theorem 11.6]) to prove the existence of a solution p̂ ∈ Cγ,γ/2(QT ) to the

problem (6.83)-(6.85). To this end, we set P =:
{
p | p(ρ, t) ∈ Cγ,γ/2(QT )

}
,

which is a Banach space. For any w ∈ P and σ ∈ [0, 1], we let p̂ solve the

following linear parabolic problem:

∂p̂

∂t
− D

R2(t)
4 p̂

+
[u(ρ, t)

ρ
− u(1, t) +

χ

ρR2(t)

∂c

∂ρ
p− χ

R2(t)

∂c(1, t)

∂ρ

(
1− p(1, t)

)]
y · 5p̂

= σ
[
−Kq(c) +K(c)(1− w)

]
p̂+ σKp(c)(1− p̂), (6.90)

p̂(ρ, 0) = σp0(ρ), (6.91)

∂p̂

∂ρ
(0, t) = 0, (6.92)[

D
∂p̂

∂ρ
+ σ

(
χ(1− w)

∂c

∂ρ

)
p̂
]∣∣∣
ρ=1

= 0. (6.93)

Using (R, p) ∈ XT , Lemmas 6.1 and 6.3, the assumptions (6.37)-(6.39),

and the parabolic Lp-theory (cf. [109, Theorem 7.20]), we find that problem

(6.90)-(6.93) has a unique solution p̂(ρ, t) ∈ W 2,1
k (QT ) with k(1 − γ) < 1.

Furthermore, as before,

‖p̂(ρ, t)‖W 2,1
k (QT ) ≤ A0 (6.94)

provided 0 < T < 1. We then can take some k > 5 satisfying k(1−γ) < 1 due

to γ ∈ ( 4
5 , 1). Using the Sobolev embedding W 2,1

k (QT ) ↪→ C1+λ,(1+λ)/2(QT )

(k > 5, λ = 1− 5
k ; cf. [108]) and therefore by (6.94), we have

‖p̂(ρ, t)‖C1+λ,(1+λ)/2(QT ) ≤ A0. (6.95)

We now can define a mapping
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S : P × [0, 1] 7→ P

p̂ = S(w, σ).

By C1+λ,(1+λ)/2(QT ) ↪→ Cγ,γ/2(QT ) compactly,

the mapping S is well defined and it is a compact mapping. (6.96)

Clearly, by the maximum principle,

S(w, 0) = 0 for all w ∈ P . (6.97)

If p̂ = S(p̂, σ) for some σ ∈ [0, 1], then by the define of the mapping S, p̂

satisfies

∂p̂

∂t
− D

R2(t)
4 p̂

+
[u(ρ, t)

ρ
− u(1, t) +

χ

ρR2(t)

∂c

∂ρ
p− χ

R2(t)

∂c(1, t)

∂ρ

(
1− p(1, t)

)]
y · 5p̂

= σ
[
−Kq(c) +K(c)(1− p̂)

]
p̂+ σKp(c)(1− p̂), (6.98)

p̂(ρ, 0) = σp0(ρ), (6.99)

∂p̂

∂ρ
(0, t) = 0, (6.100)[

D
∂p̂

∂ρ
+ σ

(
χ(1− p̂) ∂c

∂ρ

)
p̂
]∣∣∣
ρ=1

= 0. (6.101)

Proceeding as in the proof of Lemma 6.2, we can prove that

0 ≤ p̂ ≤ 1. (6.102)

Then, by Lemma 6.4, we have

‖p̂(ρ, t)‖W 2,1
k (QT ) ≤ A0 (6.103)
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for 0 < T < 1, and therefore by the Sobolev embedding W 2,1
k (QT ) ↪→

C1+λ,(1+λ)/2(QT ) (k > 5, λ = 1− 5
k ) again

‖p̂(ρ, t)‖C1+λ,(1+λ)/2(QT ) ≤ A0.

This further yields

‖p̂(ρ, t)‖Cγ,γ/2(QT )

= ‖p̂(ρ, t)‖C0(QT ) + ‖p̂(ρ, t)‖Cγ,0(QT ) + ‖p̂(ρ, t)‖C0,γ/2(QT )

≤ ‖p̂(ρ, t)− p̂(ρ, 0)‖C0(QT ) + ‖p̂(ρ, 0)‖C0(QT )

+‖p̂(ρ, t)‖C1,0(QT ) + ‖p̂(ρ, t)‖C0,γ/2(QT )

≤ T
1+λ
2 ‖p̂(ρ, t)‖C0,(1+λ)/2(QT ) + ‖p̂(ρ, 0)‖C0(QT )

+‖p̂(ρ, t)− p̂(ρ, 0)‖C1,0(QT ) + ‖p̂(ρ, 0)‖C1(QT )

+T
1+λ−γ

2 ‖p̂(ρ, t)‖C0,(1+λ)/2(QT )

≤
(
T

1+λ
2 + T

1+λ−γ
2

)
‖p̂(ρ, t)‖C0,(1+λ)/2(QT )

+T
1+λ
2 ‖p̂(ρ, t)‖C1,(1+λ)/2(QT ) + 2‖p̂0(ρ)‖C1(B1(0))

≤
(

2T
1+λ
2 + T

1+λ−γ
2

)
A0 + 2‖p̂0(ρ)‖C1(B1(0))

≤ 3A0 + ‖p̂0(ρ)‖C1(B1(0))) provided 0 < T < 1

:= M, (6.104)

where M > 0 is a constant. Summarizing (6.98)-(6.102) and (6.104), we have

that there exists a constant M > 0 such that

‖p̂(ρ, t)‖Cγ,γ/2(QT ) ≤M (6.105)
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for all (p̂, σ) ∈ P × [0, T ] satisfying p̂ = S(p̂, σ). We then conclude from (6.96),

(6.97), (6.105), and the Leray-Schauder fixed point theorem that S(p̂, 1) has

a fixed point in P for 0 < T < 1. That is, (6.83)-(6.85) has a solution p̂(ρ, t) ∈

Cγ,γ/2(QT ) for 0 < T < 1.

Uniqueness: By the maximum principle for parabolic equations with the

third boundary condition as afore-mentioned, we easily prove the uniqueness

of a solution to problem (6.83)-(6.85) with given (R, p) ∈ XT .

Estimates: The estimates (6.88) and (6.89) follow from Lemmas 6.2 and

6.4. ut

Now, we conclude from (6.82), (6.84)-(6.87), (6.88) and (6.105), that

(R̂(t), p̂(ρ, t)) ∈ XT for small T > 0. Thus, the mapping F is well defined

and it maps XT into itself for small T > 0.

In next section we shall prove that F is contractive provided T is sufficiently

small.

6.7 Local Existence and Uniqueness

To complete the proof of the local existence and uniqueness of a solution to

problem (6.65)-(6.74), we still need to prove that F is contractive provided T

is sufficiently small.

Take (R1, p1) and (R2, p2) in XT , denote (R̂i, p̂i) = F (Ri, pi), i = 1, 2,

and set R∗ = R̂1− R̂2, p
∗ = p̂1− p̂2. Then, by direct calculations we see that

R∗(t) and p∗(ρ, t) satisfy the following two decoupled problems:
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dR∗(t)

dt
= R∗(t)g1(t) + g2(t), for t > 0, (6.106)

R∗(0) = 0, (6.107)

where

g1(t) =

∫ 1

0

[
Kb(c1)p1 −Ka(c1)p1 −Kd(c1)(1− p1)

]
s2 ds, (6.108)

g2(t) = R̂2(t)

∫ 1

0

[
Kb(c1)p1 −Ka(c1)p1 −Kd(c1)(1− p1)

]
s2 ds

−R̂2(t)

∫ 1

0

[
Kb(c2)p2 −Ka(c2)p2 −Kd(c2)(1− p2)

]
s2 ds, (6.109)

∂p∗

∂t
− D

R2
1(t)
4 p∗

+
[u1(ρ, t)

ρ
− u1(1, t) +

χ

ρR2
1(t)

∂c1
∂ρ

p1 −
χ

R2
1(t)

∂c1(1, t)

∂ρ

(
1− p1(1, t)

)]
y · 5p∗

−
[
−Kq(c1)−Kp(c1) +K(c1)(1− p̂1)

]
p∗ = f(ρ, t) in QT , (6.110)

p∗(ρ, 0) = 0, (6.111)

∂p∗

∂ρ
(0, t) = 0, (6.112)

D
∂p∗

∂ρ
+
(
χ(1− p̂1 − p̂2)

∂c1
∂ρ

)
p∗ = g(ρ, t) at ρ = 1, (6.113)

where

f(ρ, t) = D
( 1

R2
1(t)
− 1

R2
2(t)

)
4 p̂2

−
[(u1(ρ, t)

ρ
− u1(1, t) +

χ

ρR2
1(t)

∂c1
∂ρ

p1 −
χ

R2
1(t)

∂c1(1, t)

∂ρ

(
1− p1(1, t)

))
−
(u2(ρ, t)

ρ
− u2(1, t) +

χ

ρR2
2(t)

∂c2
∂ρ

p2 −
χ

R2
2(t)

∂c2(1, t)

∂ρ

(
1− p2(1, t)

))]
y · 5p̂2

+
[(
−Kq(c1) +K(c1)(1− p̂1)

)
−
(
−Kq(c2) +K(c2)(1− p̂2)

)]
p̂2

+
(
Kp(c1)−Kp(c2)

)
(1− p̂2),

g(ρ, t) = −χp̂2(1− p̂2)
(∂c1
∂ρ
− ∂c2
∂ρ

)
.
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We first consider the problem (6.106)-(6.107). By (6.65)-(6.66), (6.37),

(6.44), (6.45), (6.87) and (Ri, pi) ∈ XT (i = 1, 2), we get

‖g1(t), g2(t)‖L∞[0, T ] ≤ A0

(
‖R1 −R2‖C[0, T ] + ‖p1 − p2‖C(QT )

)
. (6.114)

We easily derive from (6.106) and (6.107) that

R∗(t) =

∫ t

0

g2(τ)e
∫ t
τ
g1(τ̃)dτ̃ dτ. (6.115)

This, along with (6.114), yields

‖R∗(t)‖C1[0, T ]

≤ TeA0T ‖g2(t)‖L∞[0, T ] + T
γ
2 ‖g2(t)‖Cγ/2[0,T ]

≤ A0

(
T + T

γ
2

)(
‖R1 −R2‖C1[0, T ] + ‖p1 − p2‖Cγ,γ/2(QT )

)
, (6.116)

here we have used R1(0)−R2(0) = p1(0)− p2(0) = c1(ρ, 0)− c2(ρ, 0) = 0 and

we have assumed that 0 < T < 1.

Next, we turn to consider the parabolic problem (6.110)-(6.113). By

(Ri, pi) ∈ XT (i = 1, 2), (6.88), (6.103), and the parabolic Lp-estimate as

before, we have

‖p∗‖W 2,1
k (QT )

≤ A0

(
‖f‖Lk(QT ) + ‖g‖W 1,1

k (QT )

)
≤ A0

(
‖R1 −R2‖C1[0, T ] + ‖p1 − p2‖C(QT )

)(
1 + ‖p̂2‖W 2,1

k (QT )

)
.(6.117)

However, by (6.103), we have

‖p̂2‖W 2,1
k (QT ) ≤ A0

(
1 + ‖p0(ρ)‖W 2,k(B1(0))

)
. (6.118)
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Combining (6.117) and (6.118) we have

‖p∗‖W 2,1
k (QT ) ≤ A0

(
‖R1 −R2‖C1[0, T ] + ‖p1 − p2‖C(QT )

)
, (6.119)

where the constant A0 depends on ‖p0(ρ)‖W 2,k(B1(0)). Using the embedding

W 2,1
k (QT ) ↪→ C1+λ, 1+λ2 (QT ) (k > 5, λ = 1− 5

k ), we find that

‖p∗‖
C1+λ, 1+λ

2 (QT )
≤ A0

(
‖R1 −R2‖C1[0, T ] + ‖p1 − p2‖Cγ,γ/2(QT )

)
. (6.120)

Hence, proceeding as in (6.104) and using (6.111), we have

‖p∗(ρ, t)‖Cγ,γ/2(QT ) (6.121)

≤
(

2T
1+λ
2 + T

1+λ−γ
2

)
‖p∗‖

C1+λ, 1+λ
2 (QT )

+ 2‖p∗0(ρ)‖C1(B1(0))

=
(

2T
1+λ
2 + T

1+λ−γ
2

)
‖p∗‖

C1+λ, 1+λ
2 (QT )

≤ A0

(
2T

1+λ
2 + T

1+λ−γ
2

)(
‖R1 −R2‖C1[0, T ] + ‖p1 − p2‖Cγ,γ/2(QT )

)
.

Finally, we derive from (6.116) and (6.121) that

d
(
(R̂1, p̂1), (R̂2, p̂2)

)
≤ A0

(
2T

1+λ
2 + T

1+λ−γ
2

)
d
(
(R1, p1), (R2, p2)

)
. (6.122)

This yields that the mapping F is contractive provided T is sufficiently small

such that A0

(
2T

1+λ
2 +T

1+λ−γ
2

)
< 1. Hence, F has a unique fixed point (R, p)

in XT . That is, (R, p) together with (c, u) defined by (6.65)-(6.66) and (6.70),

is the unique solution of the problem (6.65)-(6.74) for 0 ≤ t ≤ T . Summarizing

above results, we obtain

Theorem 6.3. Under the assumptions (6.37)-(6.39), there exists a T > 0

which only depends on ‖p0(ρ)‖W 2,k(B1(0)), such that the problem (6.65)-(6.72)
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has a unique solution (R(t), c(ρ, t), u(ρ, t), p(ρ, t)) with R(t) ∈ C1[0, T ], c(ρ, t) ∈

C2,1(QT ), u(ρ, t) ∈ C1(QT ) and p(ρ, t) ∈W 2,1
k (QT ) (k > 5).

Remark 6.6. The C1-smoothness of functions Ka(c),Kb(c),Kd(c),Kp(c) and

Kq(c) assumed in (6.37) is used for deriving the estimates (6.114) and (6.117).

6.8 Global Existence

Theorem 6.4. Under the assumptions (6.37)-(6.39), there exists a unique

solution (R(t), c(ρ, t), u(ρ, t), p(ρ, t)) of the problem (6.65)-(6.72) for all t >

0; furthermore, R(t) ∈ C1[0, ∞), c(ρ, t) ∈ C2,1([0, 1] × [0, ∞)), u(ρ, t) ∈

C1([0, 1]× [0, ∞)), p(ρ, t) ∈W 2,1
k (QT ) for k > 5 and any T > 0, and

0 ≤ c(ρ, t) ≤ 1, (6.123)

0 ≤ p(ρ, t) ≤ 1, (6.124)

|u(ρ, t)| ≤ β, (6.125)

R0e
−βt ≤ R(t) ≤ R0e

βt (6.126)

for some β > 0.

Proof. Suppose to the contrary that [0, T̃ ) is the maximum time interval for

the existence of the solution. By a priori estimates established in Section 6.4,

we find that (6.44),(6.45), (6.51), (6.62), (6.63) and (6.77) hold for all t < T̃ .

Therefore, we have
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0 ≤ c(ρ, t) ≤ 1, 0 ≤ p(ρ, t) ≤ 1, for all t < T̃ and 0 ≤ ρ ≤ 1, (6.127)

R0e
−A0T̃ ≤ R(t) ≤ R0e

A0T̃ , for all t < T̃ , (6.128)

‖u(ρ, t)

ρ
‖L∞ , ‖

1

ρR2(t)

∂c

∂ρ
‖L∞ ≤ A0, for all t < T̃ , (6.129)

‖p |W 2,1
k (QT̃ ) ≤M(T̃ ), (6.130)

where M(T̃ ) is some constant which may depend on T̃ .

We take p(ρ, T̃ − ε) (where 0 < ε < T̃ is arbitrary) as a new initial data,

then we can extend the solution to Q(T̃−ε)+δ for small δ > 0 proceeding as in

the proof of Theorem 6.3. Furthermore, the proof of Theorem 6.3 shows that

δ depends only on an upper bound on ‖ p(ρ, T̃ − ε) ‖W 2,k(B1(0)). By a priori

estimate (6.130) we find that δ depends on A(T̃ ) (but δ is independent of ε),

i.e., δ = δ(T̃ ). If we take ε < δ(T̃ ), then we get

(T̃ − ε) + δ > T̃ ,

which contradicts the assumption that [0, T̃ ) is the maximum time interval

for the existence of the solution. Therefore, the maximum time interval for

the existence of the solution is [0,∞). ut

Remark 6.7. The estimate (6.130) may break down if the diffusion of the cell

types is sent to zero (i.e., D = 0 in (6.67)). To prove that the mapping F

defined in Section 6.5 is contractive, we need to establish some necessary

bound ∂p
∂ρ (see the estimate (6.117)). However, the hyperbolic equation (6.67)

with D = 0 has the feature that the characteristic curves come from the region
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{0 < ρ < 1} at the outer boundary ρ = 1. So difficulties will arise on this

boundary. This is why the diffusion is so central to our results.

6.9 Summary

In this chapter, we reviewed Tindall and Please’s model [163] and Tao’s

analytical results [150]. The model describs the cell cycle dynamics and

chemotactic driven cell movement in a multicellular tumor spheroid which

consists of proliferating and quiescent cells. The two types of cells are assumed

to move with different velocity whereas most partial differential equation

models of tumor growth assume that all cells within a tumor have a common

spatial velocity profile. This chapter extended Tindall and Please’s model to

a new one with diffusion of the two cell types. The extended model [150]

assumes that cell movement is affected by not only chemotaxis but also

diffusion. Noting the relative velocity of cells on the outer boundary of the

spheroid, we clarified how to impose appropriate no-flux boundary condition

for reaction-diffusion-advection equations in a moving-domain. By including

the diffusion terms the formation of possible shock should be avoided. Indeed,

we have proven the global existence and uniqueness of a solution to the newly

extended model. The methods of the proof include a fixed point argument

and Lp-theory for parabolic equations with the third boundary condition.

In Tindall and Please’s model, as well as the PDE models studied in

previous chapters, is confined to a spherical geometry. However, the morphological
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instability of a tumor, such as fingering and fragmentation, provides a mechanism

for invasion. So, the stability of spherical tumors to asymmetric perturbations

and the symmetry-breaking bifurcation from stability to instability are biologically

and mathematically interesting topics (see [6, 21, 22, 28, 42, 45, 59, 62, 64],

for instance), which are not included in this book.



7

Chemotaxis-Haptotaxis Modeling for Cancer

Invasion

7.1 Introduction

Cancer invasion is a very complex process which involves many various

biological mechanisms. In fact, a variety of mathematical models have been

proposed for various aspects of cancer invasion, and various attempts of

including more relevant biology into models have been made by different

researchers. Gatenby and Gawlinski [69] used a reaction-diffusion population

competition model to examine how the tumor invades the surrounding normal

tissue or extracellular matrix (ECM). They suggested that tumor cells produce

lactic acid toxic to normal tissue, and the high acidity leads to the death

of the normal tissue, which creates space for tumor cells to proliferate and

invade into the surrounding tissue. In contrast to the acid-invasion mechanism,

Perumpanani and Byrne [124] found that ECM heterogeneity affects invasion.

They proposed a model under the assumptions that ECM is degraded by

proteases; in addition to random diffusion, the movement of tumor cells is

biased towards a gradient of the non-diffusible ECM, which is referred to
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as haptotaxis; the protease production is proportional to the product of the

tumor cell density and the collagen gel concentration. Chaplain and Anderson

[29] also developed a haptotaxis model to describe the interactions between

the tumor and surrounding tissue. They made assumptions that the tumor

cells produce MDEs to degrade the ECM; the degradation gives rise to the

haptotactic movement of the tumor cells. Later on, Chaplain and Lolas [30]

suggested that, in addition to random diffusion and haptotactic movement,

the migration of cancer cells is biased towards a gradient of the diffusible

MDEs, which is referred to as chemotaxis. Besides, the proliferation of tumor

cells and the re-modeling of ECM are taken into account. Recently, Gerisch

and Chaplain [70] developed a novel non-local model which incorporates

cell-cell adhesion and cell-matrix adhesion, playing important roles in the

tumor invasion process. We note that Szymańska et al. [142] proposed another

non-local model which focuses on the role of nonlocal kinetic terms modeling

competition for space and degradation. We also mention that Lachowicz

[105, 106] constructed some microscopic models for tumor invasion and

bridged the microscopic model [106] with the macroscopic model [29].

The qualitative analysis of various models of cancer invasion is mathematically

interesting. Walker and Webb [165] examined the issues of global existence and

uniqueness for Chaplain and Andersons’s model [29]. Tao and Wang [149]

and Tao [151] studied the global existence of solutions to the Chaplain and

Lolas model [30] for large logistic growth rate of cells in dimension 3 and

for any positive logistic growth rate in dimension 2, respectively. Tao and
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Wang [153] also proved the global existence and boundedness of solutions to

a simplified version of the Chaplain and Lolas model. Marciniak-Czochra and

Ptashnyk recently [114] proved the uniform boundedness of solutions to the

haptotaxis model [29]. Szymańska et al. [142] studied the global existence

and uniqueness of solutions to their non-local model. Very recently, Liţcanu

and Morales-Rodrigo [110] established the asymptotic behavior of solutions

to a simplified haptotaxis model of cancer invasion. We should note that the

global existence for the chemotaxis-haptotaxis model [30] is still open for small

positive logistic growth rate of cells in dimension 3.

This chapter mainly reviews a chemotaxis-haptotaxis model [30] and its

mathematical analysis [153]. Actually, Chaplain and Lolas’ model can be

regarded as an extension of the classical chemotaxis model which may be

first proposed in 1970 by Keller and Segel [99].

The 2 × 2 Keller-Segel model takes into account the density of cells and

the concentration of the chemical substance which is assumed to influence

the movement of the cell population, and the total mass of cells is formally

conserved. The Keller-Segel model has now been greatly extended and studied

in the last two decades (see [24, 35, 36, 39, 40, 55, 60, 79, 81, 84, 85, 97, 103,

104, 120, 147, 161, 162, 172] and the references cited therein). The interesting

feature of Keller-Segel types of models is the possibility of blow-up of solutions

in finite time, which strongly depends on the space dimension and initial mass

(see [15, 36, 37, 79, 97, 115, 116, 123, 126, 173], for instance). Jäger and

Luckhaus [97], to our knowledge, initiated the technique of Lp estimates in
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the analysis of the Keller-Segel system and proved the blow-up of solutions for

small initial mass. Blanchet, Dolbeault and Perthame [15] found the critical

mass for the blow-up of solutions in the two-dimensional case. Some recent

studies show that the nonlinear chemotactic sensitivity function (see [24, 80,

81, 86, 177]), the nonlinear porous medium diffusion (see [104, 138]) and the

logistic growth term (see [162, 172, 174]) may prevent the blow-up of solutions.

However, Chaplain and Lolas’ model under consideration in this paper is a

3×3 system which considers the competition between chemotaxis, haptotaxis

and logistic cell growth, and the total mass of cells is not conserved.

Chaplain and Lolas’ model [30] consists of a parabolic chemotaxis-haptotaxis

PDE describing the evolution of tumor cell density, a parabolic PDE governing

the evolution of proteolytic enzyme concentration, and an ODE modeling the

proteolysis of ECM. Since the proteolytic enzyme diffuses much faster than

cancer cells do, in this chapter we will consider a simplified version of Chaplain

and Lolas’ model in which an elliptic PDE, instead of the above-mentioned

parabolic PDE, governs the evolution of proteolytic enzyme concentration.

The above quasi-stationary simplification was initially proposed by Jäger and

Luckhaus [97], and it was mostly considered in the study of the blow-up of

smooth solutions to the classical chemotaxis model (see [97, 115, 123], for

instance).

We should note that there exists an important technical difference between

a 2×2 parabolic-elliptic chemotaxis system and a 3×3 parabolic-ODE-elliptic

chemotaxis-haptotaxis system. For a 2×2 parabolic-elliptic chemotaxis system,
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one may easily estimate the chemotaxis-related integral term
∫
Ω
cs−1 5 c ·

5udx by directly multiplying the elliptic equation for the chemoattractant

concentration by cs and integrating the product in Ω. However, for a 3 × 3

parabolic-ODE-elliptic chemotaxis-haptotaxis system, we need to develop

new techniques to estimate the chemotaxis-related integral term
∫
Ω
cs−1| 5

c · 5u|dx. Here, we should emphasize that we must estimate the term∫
Ω
cs−1| 5 c · 5u|dx rather than the term

∫
Ω
cs−1 5 c · 5udx.

This chapter is organized as follows. Section 7.2 describes the mathematical

model. Section 7.3 proves the local existence and uniqueness of smooth

solutions to the model. Finally, Sections 7.4 and 7.5 study the global existence

and uniform-in-time boundedness of solutions in three dimensional space for

large logistic growth rate of cells and in two dimensional space for any positive

logistic growth rate of cells, respectively.

7.2 Mathematical Model

The mathematical model of cancer invasion is involved in the following three

key physical variables: the cancer cell density c, the extracellular matrix

density v, and the matrix degrading enzyme (MDE) concentration u.

The migration of cancer cells is assumed to undergo random motion,

chemotaxis, and haptotaxis. In the absence of any extracellular matrix (ECM),

cancer cell proliferation is assumed to follow a logistic growth law. The

presence of ECM leads to competition for space between the cancer cells and
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the ECM. Hence, the equation describing the evolution of cancer cell density

is given as follows [30]:

∂c

∂t
= Dc 4 c︸ ︷︷ ︸

random motion

−5 · (χc5 u)︸ ︷︷ ︸
chemotaxis

−5 · (ξc5 v)︸ ︷︷ ︸
haptotaxis

+ µc(1− c− v)︸ ︷︷ ︸
proliferation

, (7.1)

where Dc is the random motility coefficient, χ and ξ are the chemotactic and

haptotactic coefficients, respectively, µ is the logistic proliferation rate of the

cells.

Since ECM is “static”, we neglect any diffusion and focus solely on

its degradation by MDEs upon contact. For simplicity, we assume that no

remodeling of the ECM takes place. The equation modeling the proteolysis of

the ECM is therefore given by [30]:

∂v

∂t
= − δuv︸︷︷︸

proteolysis

, (7.2)

where δ > 0 is a rate parameter of degradation.

The MDE concentration is assumed to be influenced by diffusion, production,

and decay. Specifically, MDE is produced by cancer cells, diffuses throughout

ECM, and undergoes decay through a simple degradation. Hence, we have the

following equation for the MDE concentration [30]:

∂u

∂t
= Du 4 u︸ ︷︷ ︸

diffusion

+ αc︸︷︷︸
production

− βu︸︷︷︸
decay

, (7.3)

where Du, α, and β are assumed to be positive constants.

We define a non-dimensional variable:

t̃ = Dct
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and new parameters via the following scaling:

χ̃ =
χ

Dc
, ξ̃ =

ξ

Dc
, µ̃ =

µ

Dc
, δ̃ =

δ

Dc
, ε =

Dc

Du
, α̃ =

α

Du
, β̃ =

β

Du
.

Henceforth, we omit the tildes for notational simplicity. The dimensionless

governing equations can then be written as follows:

∂c

∂t
= ∆c−∇ · (χc∇u)−∇ · (ξc∇v) + µc(1− c− v), (7.4)

∂v

∂t
= −δuv, (7.5)

ε
∂u

∂t
= ∆u+ αc− βu. (7.6)

For the parameter values given in [30], ε is typically very small compared with

other parameters: α, β, δ, χ, ξ, and µ.

In this chapter we will consider the limit ε → 0 and fix the positive

parameters α, β, δ, χ, ξ, and µ (this approach of quasi-steady-state approximation

was mostly used to study the classical chemotaxis model; see [97, 123] and

references cited therein). Finally, we obtain (ε = 0 in (7.6))

∂c

∂t
= ∆c−∇ · (χc∇u)−∇ · (ξc∇v) + µc(1− c− v), (7.7)

∂v

∂t
= −δuv, (7.8)

0 = ∆u+ αc− βu. (7.9)

The equations (7.7)-(7.9) are considered on some bounded domain Ω ⊂

Rd (d = 2 or 3) with boundary ∂Ω. To close the system of equations, we need

to impose boundary and initial conditions.

Boundary conditions: Guided by the in vitro experimental protocol in
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which invasion takes place within an isolated system [124], we assume that

there is no-flux of cancer cells or MDEs across the boundary of the domain,

− ∂c
∂ν

+ χc
∂u

∂ν
+ ξc

∂v

∂ν
= 0 on ∂Ω × (0, T ), (7.10)

∂u

∂ν
= 0 on ∂Ω × (0, T ), (7.11)

where ν is the outward normal vector to ∂Ω. We note that the choice of

the boundary conditions (7.10) and (7.11) is rather mathematically than

biologically motivated. This chapter does not consider possible boundary

effects. The boundary conditions (7.10) and (7.11), however, may be justified

by the fact that the tumor is far from the boundary of the domain containing

the tissue under consideration [31].

Initial conditions: We prescribe the initial data

c(x, 0) = c0(x), v(x, 0) = v0(x), x ∈ Ω. (7.12)

For any 0 < T ≤ ∞, we set

QT = Ω × {0 < t < T}, ΓT = ∂Ω × {0 < t < T}.

For consistency, we shall use the following notations:

W 2
p (Ω) = {u| u,Dxu,D

2
xu ∈ Lp(Ω)},

W 2,1
p (QT ) = {u| u,Dxu,D

2
xu,Dtu ∈ Lp(QT )}

with norm

‖ u ‖W 2
p (Ω)=‖ u ‖Lp(Ω) + ‖ Dxu ‖Lp(Ω) + ‖ D2

xu ‖Lp(Ω),

‖ u ‖W 2,1
p (QT )=‖ u ‖Lp(QT ) + ‖ Dxu ‖Lp(QT ) + ‖ D2

xu ‖Lp(QT ) + ‖ Dtu ‖Lp(QT )
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in which p ≥ 1 is integer, T > 0, and the derivatives are in the weak sense.

We denote by Ck+λ,θ(QT ) (k ≥ 0 integer, 0 < λ < 1, 0 < θ < 1) the space

of function u(x, t) with finite norm

‖ u ‖Ck+λ,θ(QT )=

k∑
|j|=0

[
sup
QT

|Dj
xu|+ < Dj

xu >
(λ)
x, QT

+ < Dj
xu >

(θ)
t, QT

]
where

< u >
(λ)
x, QT

= sup
(x,t), (y,t)∈QT

|u(x, t)− u(y, t)|
|x− y|λ

,

< u >
(θ)
t, QT

= sup
(x,t), (x,τ)∈QT

|u(x, t)− u(x, τ)|
|t− τ |θ

.

We denote by C2+λ,1+θ(QT ) the space of functions u(x, t) with norm

‖ u ‖C2+λ,θ(QT ) + ‖ ut ‖Cλ,θ(QT ) .

We introduce the following variable change:

a = ce−ξv. (7.13)

In terms of the variables a, v, and u, the system (7.7)-(7.12) takes the following

form:

∂a

∂t
= e−ξv 5 ·(eξv 5 a)− e−ξv 5 ·(χeξva5 u)

+ξδauv + µa(1− eξva− v) in QT , (7.14)

∂v

∂t
= −δuv in QT , (7.15)

0 = 4u+ αeξva− βu in QT , (7.16)

∂a

∂ν
=
∂u

∂ν
= 0 on ΓT , (7.17)

a(x, 0) = a0(x), v(x, 0) = v0(x) in Ω. (7.18)
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Remark 7.1. The Lp estimate techniques for the hapotactic term and the

chemotactic term in Eq. (7.7) are quite different in three space dimensions,

since the ECM density v satisfies the first-order ODE (7.8) whereas the

proteolytic enzyme concentration u solves the elliptic equation (7.9). We note

that there appears the second-order spatial derivative of v in Eq. (7.7), but

this second-order spatial derivative term 4v can be transformed into the

time derivative term ∂v/∂t (i.e., −δuv by Eq. (7.8)) under the transformation

(7.13). However, it doesn’t make sense to transform the second-order spatial

derivative term 4u in Eq. (7.7) into the time derivative term ∂u/∂t, since u

solves the second-order elliptic equation (7.9). We also note that the divergence

form of Eq. (7.14) on a is favorable for Lp estimates in three space dimensions

(see Section 7.4 below). The transformation (7.13) has already been performed

in [39, 55, 60] in order to prove the existence of classical solutions. Here,

we should further note that, in order to guarantee that (7.14)-(7.16) and

(7.7)-(7.9) are equivalent, we need (a, v, u) ∈ C2,1(QT )×C2,1(QT )×C2,0(QT ).

Hence, we will study the existence of C2,1(QT )×C2,1(QT )×C2,0(QT )-smooth

solutions to the system (7.14)-(7.18).

Throughout this chapter we assume that

a0(x) ≥ 0, 0 ≤ v0(x) ≤ 1,

∂Ω ∈ C2+σ, a0(x) ∈ C2+σ(Ω), v0(x) ∈ C3(Ω),

∂a0(x)
∂ν = ∂u0(x)

∂ν = ∂v0(x)
∂ν = 0 on ∂Ω,

(7.19)

where σ = 3/4.
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In next section we will prove that the system (7.14)-(7.2) has a unique

local (in time) classical solution.

7.3 Local Existence and Uniqueness

For notational convenience , in what follows we denote various constants which

depend on T by A, while we denote various constants which are independent

of T by A0.

Theorem 7.1. Under the assumption (7.2), there exists a unique solution

(a(x, t), v(x, t), u(x, t)) ∈ C2+σ,1+σ/2(QT )× C2+σ,1+σ/2(QT )× C2+σ,σ/2(QT )

to the system (7.14)-(7.18) for small T > 0 which depends on

M :=‖ c0(x) ‖C2+σ(Ω) + ‖ v0(x) ‖C2+σ(Ω) +1

.

Proof. We shall prove the local existence by a fixed point argument. We

introduce the Banach space X of the function c with norms

‖ c ‖
Cσ,

σ
2 (Q̄T )

(0 < T < 1)

and a subset

XM = {c ∈ X : c ≥ 0, ‖ c ‖
Cσ,

σ
2 (Q̄T )

≤M}.

Given any c̃ ∈ XM , we define a corresponding function c = F c̃ by

c = eξva,
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where (a, v), together with u, satisfies the following system:

−4 u+ βu = αc̃ in QT , (7.20)

∂u

∂ν
= 0 on ΓT , (7.21)

∂v

∂t
= −δuv in QT , (7.22)

v(x, 0) = v0(x) in Ω, (7.23)

∂a

∂t
−4a+ (χ5 u− ξ 5 v) · 5a

+
[
χ4 u+ χξ 5 v · 5u− ξδuv − µ(1− c̃− v)

]
a = 0 in QT , (7.24)

∂a

∂ν
= 0 on ΓT , a(x, 0) = a0(x) in Ω. (7.25)

By (7.20)-(7.21) and the standard elliptic Schauder theory [71], we have

‖ u ‖C2+σ,0(Q̄T )≤ A0 ‖ c̃ ‖Cσ,0(Q̄T )≤ A0M. (7.26)

By c̃ ≥ 0 and the maximum principle [71], we also have

u ≥ 0 in QT . (7.27)

Note that for any x ∈ Ω and 0 < t1 < t2 < T < 1,

−4
(u(x, t1)− u(x, t2)

| t1 − t2 |σ/2
)

+ β
u(x, t1)− u(x, t2)

| t1 − t2 |σ/2

= α
c̃(x, t1)− c̃(x, t2)

| t1 − t2 |σ/2
in QT , (7.28)

∂

∂ν

(u(x, t1)− u(x, t2)

| t1 − t2 |σ/2
)

= 0 on ΓT . (7.29)

By (7.28)-(7.29) and the maximum principle, we further have

max
Ω

| u(x, t1)− u(x, t2) |
| t1 − t2 |σ/2

≤ A0 ‖
c̃(x, t1)− c̃(x, t2)

| t1 − t2 |σ/2
‖L∞(Ω)

≤ A0 ‖ c̃(x, t) ‖C0,σ/2(QT )≤ A0 ‖ c̃(x, t) ‖Cσ,σ/2(QT )≤ A0M,
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so

‖ u ‖C0,σ/2(Q̄T )≤ A0M. (7.30)

We easily conclude from (7.2), (7.22)-(7.23), (7.3)-(7.27), (7.30), and 0 <

T < 1 that

‖ u ‖C2+σ,σ/2(Q̄T )≤ A0M, ‖ v ‖C2+σ,σ/2(Q̄T )≤ A0M. (7.31)

This, together with Eq. (7.22), yields

‖ v ‖C2+σ,1+σ/2(Q̄T )≤ A0M. (7.32)

Furthermore, by (7.2), (7.22)-(7.23), and (7.27), we easily get

0 ≤ v ≤ 1. (7.33)

We now turn to Eq. (7.24). Note that Eq. (7.24) can be rewritten as

∂a

∂t
−4a+ (χ5 u− ξ 5 v) · 5a+ ha = 0 (7.34)

with

‖ χ5 u− ξ 5 v ‖Cσ,σ/2(Q̄T )≤ B1, (7.35)

‖ h ‖Cσ,σ/2(Q̄T )

= ‖ χ4 u+ χξ 5 v · 5u− ξδuv − µ(1− c̃− v) ‖Cσ,σ/2(Q̄T )≤ B2 (7.36)

by the estimates (7.3), (7.30), (7.32) and c̃ ∈ XM ; here and in the following we

shall denote various constants which depend only on M by Bk (k = 1, 2, ...).

Hence, Eq. (7.3) is a linear parabolic equation with Cσ,σ/2(Q̄T ) coefficients
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and, by the Schauder theory, the parabolic problem (7.3) and (7.25) has a

unique solution satisfying

‖ a ‖C2+σ,1+σ/2(Q̄T ) ≤ ‖ a |t=0‖C2+σ(Ω) +B3

≤ M +B3 := B4. (7.37)

By (7.2), (7.24)-(7.25), and the maximum principle [108], we easily get

a ≥ 0. (7.38)

We conclude from (7.32)-(7.33) and (7.37)-(7.38) that

c ≥ 0, ‖ c ‖C2+σ,1+σ/2(Q̄T )≤ B5. (7.39)

For any function c(x, t), it is easy to check that

‖ c(x, t)− c(x, 0) ‖Cσ,σ/2(Q̄T )≤ A0 max(Tσ/2, T 1−(σ/2) ‖ c ‖C2+σ,1+σ/2(Q̄T ) .

(7.40)

Combining (7.39) and (7.40), we conclude that if T is sufficiently small (T

depends only on M), then

‖ c(x, t) ‖Cσ,σ/2(Q̄T ) ≤ ‖ c(x, 0) ‖Cσ,σ/2(QT ) +A0 max(Tσ/2, T 1−(σ/2)B5

≤ ‖ c0(x) ‖Cσ(Ω) +1 ≤M. (7.41)

This, together with c ≥ 0, yields c ∈ XM . Hence, F maps XM into itself.

Next, proceeding as in the proof of the contraction in Theorem 3.1 in [149],

we can prove that F is contractive in XM if we take T sufficiently small. By

the contraction mapping principle F has a unique fixed point c. Furthermore,
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we can raise the regularity of c to C2+σ,1+σ/2(QT ) by using the parabolic

Schauder estimates. ut

7.4 Global Existence and Boundedness in Dimension 3

We shall need the following Gagliardo-Nirenberg interpolation inequality

[57, 75]: Assume that Ω ⊂ Rd is a bounded domain, ∂Ω ∈ Ck, u(x) ∈

W k
q (Ω)

⋂
Lr(Ω), and 0 ≤ l ≤ k. Then,

‖ Dlu ‖Lp(Ω)≤ A0 ‖ u ‖θWk
q (Ω)‖ u ‖

1−θ
Lr(Ω), (7.42)

where

l

k
≤ θ ≤ 1, 1 ≤ q, r ≤ ∞, d

p
− l = θ

(d
q
− k
)

+
(

1− θ
)d
r

when k − l − d
q is not a nonnegative integer;

θ =
l

k
< 1, 1 < q <∞, 1 < r <∞

when k − l − d
q is a nonnegative integer.

We shall also need the following Sobolev imbedding Theorem (see [32,

Theorem 3.5]): Assume that u ∈ W 2l,l
p (QT ), ∂Ω ∈ C2l, where l is a positive

integer. Then, for 0 ≤ r+2s = µ < 2l, p > d+2
2l−µ (where d+2

p is not an integer),

we have

‖ Ds
tD

r
xu ‖Cα,α/2(QT )≤ A ‖ u ‖W 2l,l

p
(QT ), (7.43)

where α = 2l − µ− (d+ 2)/p.

To continue the local solution established in the above section to all t > 0,

we need to establish some a priori estimates.
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Lemma 7.1. There holds

a ≥ 0, u ≥ 0, 0 ≤ v ≤ 1. (7.44)

Proof. The inequality a ≥ 0 follows from the parabolic maximum principle,

and the inequality u ≥ 0 follows from a ≥ 0 and the elliptic maximum

principle. The inequalities 0 ≤ v ≤ 1 follow from u ≥ 0 and the maximum

principle. This completes the proof of Lemma 7.1. ut

Lemma 7.2. There holds

‖ a ‖L1(Ω)≤‖ c ‖L1(Ω)≤ max(‖ c0 ‖L1(Ω), |Ω|), (7.45)

‖ u ‖L1(Ω)≤ αβ−1 max(‖ c0 ‖L1(Ω), |Ω|). (7.46)

Proof. Integrating (7.7) in Ω and noting (7.10) and (7.1), we have

d

dt
‖ c ‖L1(Ω) ≤ µ ‖ c ‖L1(Ω) −µ

∫
Ω

c2 dx

≤ µ ‖ c ‖L1(Ω) −
µ

|Ω|
‖ c ‖2L1(Ω), (7.47)

where we have used the Hölder’s inequality:

(∫
Ω

cdx
)2

≤
∫
Ω

12dx ·
∫
Ω

c2dx = |Ω|
∫
Ω

c2dx.

We derive from (7.47) that

‖ c ‖L1(Ω)≤
1

1
|Ω| +

(
1

‖c0‖L1(Ω)
− 1
|Ω|
)
e−µt

≤ max(‖ c0 ‖L1(Ω), |Ω|). (7.48)

This, along with (7.13) and (7.1), yields (7.45).
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Integrating (7.9) in Ω and noting (7.11), we have

d

dt
‖ u ‖L1(Ω)≤‖ c ‖L1(Ω) − ‖ u ‖L1(Ω) .

This, along with (7.48), yields (7.46). ut

Up to now we have had the L1(Ω)-estimate on a. In the following we shall

raise the a priori estimate of a from L1(Ω) to L2(Ω) and then to L4(Ω).

Theorem 7.2. There exists some positive constant

µ∗ = µ∗(χ, ξ, α, β, δ, |Ω|, ‖ a0(x) ‖L2(Ω))

such that

‖ a ‖L4(Ω)≤ A0 (7.49)

for all t ∈ (0, T ] and µ ≥ µ∗.

Proof. For s ≥ 2, we will perform the Ls(Ω)-estimate of a. To this end, we

need to consider the integral
∫
Ω
asdx, which is equivalent to

∫
Ω
eξvasdx by

the estimate 0 ≤ v ≤ 1 in (7.1). There is a strong difference between the

cases ξ > 0 and ξ = 0 when we proceed to estimate the integral
∫
Ω
eξvasdx

(this point will be addressed more clearly later on). We also note that the

quantities a and c are almost equivalent by the transformation (7.13) and

0 ≤ v ≤ 1. It should be pointed out that there are bad influences of the

haptotaxis contribution (ξ > 0) and chemotaxis contribution (χ > 0) in the

following computations for getting a priori estimates, whereas there is a good

influence of the logistic damping (µ > 0).
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We derive from (7.14), (7.15), (7.17) and (7.1) that

d

dt

∫
Ω

eξvasdx =

∫
Ω

ξeξv
∂v

∂t
asdx+

∫
Ω

eξvsas−1 ∂a

∂t
dx

= −ξδ
∫
Ω

eξvasuvdx+

∫
Ω

sas−1 5 ·(eξv 5 a)dx

−χ
∫
Ω

sas−1 5 ·(eξva5 u)dx+ ξδ

∫
Ω

eξvsas−1auvdx

+µ

∫
Ω

eξvsas−1a(1− eξva− v)dx

≤ −
∫
Ω

s(s− 1)as−2| 5 a|2eξvdx

+χ

∫
Ω

s(s− 1)as−1eξv 5 a · 5udx

+ξδs

∫
Ω

eξvasudx+ µs

∫
Ω

eξvasdx− µs
∫
Ω

e2ξvas+1dx

≤ −4(s− 1)

s

∫
Ω

| 5 as/2|2dx

+µeξs

∫
Ω

asdx− µs
∫
Ω

as+1dx

+ξδeξs

∫
Ω

uasdx

+χeξs(s− 1)

∫
Ω

as−1| 5 a · 5u|dx. (7.50)

We note that the integral
∫
Ω
uasdx in (7.50) comes from the haptotaxis term

in Eq. (7.7), whereas the integral
∫
Ω
as−1| 5 a · 5u|dx in (7.50) comes from

the chemotaxis term in Eq. (7.7). From the derivation of the inequality (7.50),

we find that we need only to estimate the integral
∫
Ω
as−15a ·5udx in order

to deal with the chemotaxis term in Eq. (7.7) for the case ξ = 0. However, we

must estimate the integral
∫
Ω
as−1|5a ·5u|dx for the case ξ > 0. Multiplying

Eq. (7.16) by as, integrating the product in Ω, and using the no-flux boundary

condition ∂u
∂ν |ΓT = 0 in (7.17), one may easily estimate the integral

∫
Ω
as−15a·

5udx for the case ξ = 0. However, it needs many more techniques to estimate
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the integral
∫
Ω
as−1| 5 a · 5u|dx for the case ξ > 0 (see the remainder of the

proof of Lemma 7.2).

The proof of the estimate (7.49) is divided into the following two steps.

Step 1 : Estimate ‖ a ‖L2(Ω). Taking s = 2 in (7.50), one finds

d

dt

∫
Ω

eξva2dx = −2

∫
Ω

| 5 a|2dx+ 2µeξ
∫
Ω

a2dx− 2µ

∫
Ω

a3dx

+2ξδeξ
∫
Ω

ua2dx+ 2χeξ
∫
Ω

a| 5 a · 5u|dx. (7.51)

We first note that, by the Young inequality

yz ≤ εyp +A0ε
− qp zq (y, z ≥ 0, ε > 0, p, q > 0,

1

p
+

1

q
= 1), (7.52)

one may estimate ∫
Ω

a2dx ≤ ε
∫
Ω

a3dx+A0(ε), (7.53)

with ε > 0 arbitrary.

We next estimate the integral
∫
Ω
ua2dx. Applying the Young inequality

(7.52), one obtains

∫
Ω

ua2dx ≤
∫
Ω

a3dx+A0

∫
Ω

u3dx. (7.54)

Using Eq. (7.16), the estimate 0 ≤ v ≤ 1 and the elliptic Lp-estimate [71], one

finds

‖ u ‖W 2,3(Ω)≤ A0 ‖ a ‖L3(Ω) . (7.55)

Combining (7.54) and (7.55), one has

∫
Ω

ua2dx ≤ A0

∫
Ω

a3dx. (7.56)
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We now consider the integral
∫
Ω
a|5a ·5u|dx. Using the Young inequality

(7.52), one finds∫
Ω

a| 5 a · 5u|dx

≤ ε

∫
Ω

| 5 a|2dx+A0(ε)

∫
Ω

a2| 5 u|2dx

≤ ε

∫
Ω

| 5 a|2dx+A0(ε)

∫
Ω

a3dx+A0(ε)

∫
Ω

| 5 u|6dx. (7.57)

Applying the interpolation inequality (7.42) with l = 1, p = 6, k = 2, q = 3,

r = 1, d = 3, θ = 1/2 and using the estimates (7.46) and (7.55), one obtains

‖ 5u ‖L6(Ω)≤ A0 ‖ u ‖1/2W 2
3 (Ω)
‖ u ‖1/2L1(Ω)≤ A0 ‖ u ‖1/2W 2

3 (Ω)
≤ A0 ‖ a ‖1/2L3(Ω),

and therefore

‖ 5u ‖6L6(Ω)≤ A0 ‖ a ‖3L3(Ω) . (7.58)

One derives from (7.57) and (7.58) that∫
Ω

a| 5 a · 5u|dx ≤ ε
∫
Ω

| 5 a|2dx+A0(ε)

∫
Ω

a3dx. (7.59)

Inserting (7.53), (7.56), and (7.59) into (7.51), and taking ε sufficiently

small, one finds

d

dt

∫
Ω

eξva2dx ≤ −
∫
Ω

| 5 a|2dx− (µ−A0ξδe
ξ −A0χe

ξ)

∫
Ω

a3dx+A0µe
ξ.

(7.60)

Note that

µ−A0ξδe
ξ −A0χe

ξ ≥ 1 if µ ≥ A0(ξδ + χ)eξ + 1. (7.61)

Clearly, it follows from the fully explicit bound of µ from below in (7.61)

that this bound is worse than for the haptotaxis system without chemotaxis.
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Also, this bound is worse than for the Fisher-Kolmogorov-Petrovski-Piskunov

equation without chemotaxis/haptotaxis. We further find from the explicit

bound of µ from below in (7.61) that this bound becomes worse for faster

degradation of the ECM (i.e., for larger δ).

By (7.60), (7.61), the estimate 0 ≤ v ≤ 1, and the Hölder inequality, one

obtains

d

dt

∫
Ω

eξva2dx ≤ −
∫
Ω

a3dx+A0µe
ξ

≤ − 1

|Ω| 12

(∫
Ω

a2dx
) 3

2

+A0µe
ξ

≤ − 1

e
3
2 ξ|Ω| 12

(∫
Ω

eξva2dx
) 3

2

+A0µe
ξ. (7.62)

Denote Ã0 := e−
3
2 ξ|Ω|− 1

2 , h(t) :=
∫
Ω
eξva2dx. Then, h(t) satisfies

h′(t) ≤ −Ã0h(t)
3
2 +A0µe

ξ, (7.63)

implying (see [162], for instance)

h(t) ≤ max
{
h(0),

(A0µe
ξ

Ã0

) 2
3
}
. (7.64)

Hence, ∫
Ω

a2dx ≤ A0, (7.65)

where A0 may depend on ‖ a0 ‖L2(Ω). From the fully explicit bound of ‖

a ‖L2(Ω) from above in (7.64), we find that the bound is worse than for

the chemotaxis system without haptotaxis (ξ = 0) and that this bound is

also worse than for the haptotaxis system without chemotaxis (χ = 0) (note

that we can choose a smaller µ for the haptotaxis system without chemotaxis

(χ = 0) by (7.61)).
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Step 2 : Estimate ‖ a ‖L4(Ω). Taking s = 4 in (7.50), one finds

d

dt

∫
Ω

eξva4dx ≤ −3

∫
Ω

| 5 a2|2dx+ 4µeξ
∫
Ω

a4dx− 4µ

∫
Ω

a5dx

+4ξδeξ
∫
Ω

ua4dx+ 12χeξ
∫
Ω

a3| 5 a · 5u|dx. (7.66)

First, employing the Young inequality and proceeding as in Step 1, one

has, for ε > 0 arbitrary,

∫
Ω

a4dx ≤ ε

∫
Ω

a5dx+A0(ε), (7.67)∫
Ω

ua4dx ≤ A0

∫
Ω

a5dx. (7.68)

We now focus on estimating the integral
∫
Ω
a3| 5 a · 5u|dx in (7.66).

Applying the Young inequality (7.52), one finds

∫
Ω

a3| 5 a · 5u|dx

≤
∫
Ω

(a3| 5 a|) 10
9 dx+A0

∫
Ω

| 5 u|10dx

=

∫
Ω

(a2 · a| 5 a|) 10
9 dx+A0

∫
Ω

| 5 u|10dx

≤ ε

∫
Ω

(a| 5 a|) 10
9 ·

9
5 dx+A0(ε)

∫
Ω

a
20
9 ·

9
4 dx+A0

∫
Ω

| 5 u|10dx

=
ε

4

∫
Ω

| 5 a2|2dx+A0(ε)

∫
Ω

a5dx+A0

∫
Ω

| 5 u|10dx. (7.69)

Using Eq. (7.16), the estimates (7.65), 0 ≤ v ≤ 1, and the elliptic Lp-estimate

[71], one finds

‖ u ‖W 2
2 (Ω)≤ A0 ‖ a ‖L2(Ω)≤ A0.

This, together with the Sobolev imbedding theorem [71], yields

‖ 5u ‖L6(Ω)≤ A0 ‖ u ‖W 2
2 (Ω)≤ A0. (7.70)
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Again, by the elliptic Lp-estimate [71], one has

‖ u ‖W 2
5 (Ω)≤ A0 ‖ a ‖L5(Ω) . (7.71)

Applying the interpolation inequality (7.42) with l = 0, p = 10, k = 1, q = 5,

r = 6, d = 3, θ = 2/9 and using the estimates (7.70) and (7.71), one obtains

‖ 5u ‖L10(Ω) ≤ A0 ‖ u ‖2/9W 2
5 (Ω)
‖ 5u ‖7/9L6(Ω)

≤ A0 ‖ u ‖2/9W 2
5 (Ω)

≤ A0 ‖ a ‖2/9L5(Ω) .

This, together with the Young inequality, yields

‖ 5u ‖10
L10(Ω)≤ A0 ‖ a ‖20/9

L5(Ω)≤ A0 ‖ a ‖5L5(Ω) +A0. (7.72)

Combining (7.69) and (7.72), one has

∫
Ω

a3| 5 a · 5u|dx ≤ ε

4

∫
Ω

| 5 a2|2dx+A0(ε)

∫
Ω

a5dx+A0. (7.73)

Inserting (7.67), (7.68), and (7.73) into (7.66) and taking ε sufficiently

small, one obtains if µ ≥ A0 + 1/4, then

d

dt

∫
Ω

eξva4dx ≤ −
∫
Ω

| 5 a2|2dx− 4(µ−A0)

∫
Ω

a5dx+A0

≤ −4(µ−A0)

∫
Ω

a5dx+A0

≤ −
∫
Ω

a5dx+A0

≤ − 1

|Ω| 14

(∫
Ω

a4dx
) 5

4

+A0

≤ − 1

e
5
4 ξ|Ω| 14

(∫
Ω

eξva4dx
) 5

4

+A0. (7.74)
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As before, the inequality (7.74) implies

∫
Ω

eξva4dx ≤ A0.

This completes the proof of Theorem 7.2. ut

Theorem 7.3. Assume that µ ≥ µ∗, where µ∗ is defined in Theorem 7.2.

Then, there holds

‖ u ‖Cγ(Ω)≤ A0, ‖ v ‖Cγ(Ω)≤ A (7.75)

for any 0 ≤ γ < 5
4 .

Proof. It follows from Eq. (7.16), the estimates (7.1) and (7.49), and the

elliptic Lp-theory that

‖ u ‖W 2
4 (Ω)≤ A0. (7.76)

This, together with the Sobolev imbedding theorem, yields

‖ u ‖Cγ(Ω)≤ A0 for any 0 ≤ γ < 5

4
. (7.77)

One derives from Eq. (7.15) that

v(x, t) = v0(x)e−δ
∫ t
0
u(x,s)ds, (7.78)

5v = e−δ
∫ t
0
u(x,s)ds 5 v0 − δv0(x)e−δ

∫ t
0
u(x,s)ds

∫ t

0

5uds. (7.79)

Combining (7.77)-(7.79), (7.1), and (7.2), one obtains

‖ v ‖Cγ(Ω)≤ A for any 0 ≤ γ < 5

4
. (7.80)

This completes the proof of Theorem 7.3. ut
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Theorem 7.4. Assume that µ ≥ µ∗, where µ∗ is defined in Theorem 7.2.

Then, there holds

‖ a(x, t), v(x, t) ‖C2+σ,1+σ/2(QT )≤ A, ‖ u(x, t) ‖C2+σ,σ/2(QT )≤ A, (7.81)

where σ = 3/4.

Proof. Eq. (7.14) can be rewritten as in the following nondivergence form:

at−4a−(ξ5v−χ5u) ·5a+[χξ5u ·5v+χ4u−ξδuv−µ(1−c−v)]a = 0,

(7.82)

where

‖ ξ 5 v − χ5 u ‖L∞(QT )≤ A, (7.83)

‖ χξ 5 u · 5v + χ4 u− ξδuv − µ(1− c− v) ‖L4(QT )≤ A (7.84)

by the estimates (7.1), (7.75), and (7.76). By (7.82)-(7.84) and the parabolic

Lp-estimates [108], one obtains

‖ a ‖W 2,1
4 (QT )≤ A.

Applying the Sobolev imbedding theorem (7.43) with l = 1, p = 4, d = 3, r =

s = µ = 0, one finds

‖ a ‖Cσ,σ/2(QT )≤ A, (7.85)

where σ = 3/4.

One may derive from (7.78), (7.2) and (7.77) that, for any 0 < t1 < t2 < T ,
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|v(x, t1)− v(x, t2)|
|t1 − t2|σ/2

= |v0(x)| |e
−δ

∫ t1
0 u(x, s)ds − e−δ

∫ t2
0 u(x, s)ds|

|t1 − t2|σ/2

= |v0(x)||δu(x, η)e−δ
∫ η
0
u(x, s)ds| · |t1 − t2|1−σ/2 (for some t1 < η < t2)

≤ A.

This, together with (7.80), yields

‖ v ‖Cσ,σ/2(QT )≤ A. (7.86)

Proceeding as in the proof of Theorem 7.1, one obtains from Eq. (7.16),

the estimates (7.85) and (7.86), and the elliptic Schauder estimates that

‖ u ‖C2+σ,σ/2(QT )≤ A. (7.87)

Again, proceeding as in the proof of Theorem 7.1, one can get

‖ v ‖C2+σ,1+σ/2(QT )≤ A. (7.88)

Finally, one derives from Eq. (7.82), the estimates (7.87) and (7.88), and

the parabolic Schauder estimates that

‖ a ‖C2+σ,1+σ/2(QT )≤ A.

This completes the proof of Theorem 7.4. ut

The a priori estimate (7.81) allows us to continue the local solution in

Theorem 7.1 step-by-step to all t > 0, as done in Chapter 6. Thus, we have

the following result of global existence of solutions.
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Theorem 7.5. Under the assumption (7.2), there exists some constant

µ∗ = µ∗(χ, ξ, α, β, δ, |Ω|, ‖ a0(x) ‖L2(Ω)) > 0

such that, for any µ > µ∗, the system (7.14)-(7.18) admits a unique global

solution (a, v, u) ∈ C2+σ,1+σ/2(QT ) × C2+σ,1+σ/2(QT ) × C2+σ,σ/2(QT ) for

any T > 0. Furthermore,

a ≥ 0, u ≥ 0, 0 ≤ v ≤ 1, (7.89)

‖ u ‖L∞(QT )≤ A0, ‖ 5u ‖L∞(QT )≤ A0. (7.90)

Remark 7.2. If µ = 0, v ≡ 0 in (7.7)-(7.9), then blow-up of smooth solutions

occurs for large initial mass as aforementioned in Section 7.1 in three dimensions

and two dimensions. In next section, we shall prove that global existence holds

true for µ > 0 in two dimensions. However, it remains open whether blow-up

of classical solutions occurs for small µ > 0 in three dimensions

Furthermore, in the following we will derive the uniform-in-time boundedness

of a(x, t) of the global solution.

Theorem 7.6. Let (a, v, u) be the unique global solution of the system

(7.14)-(7.18) in Theorem 7.5. Then, there holds

‖a‖L∞(QT ) ≤ A0‖a0‖L∞(Ω), (7.91)

where A0 depends on χ, ξ, α, β, δ, µ, and |Ω|.

Proof. We go back to the differential inequality (7.50).
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We first estimate the integral
∫
Ω
uasdx. By the estimate u ≥ 0 in (7.89)

and the estimate ‖u‖L∞(QT ) ≤ A0 in (7.90), one obtains

∫
Ω

uasdx ≤ A0

∫
Ω

asdx. (7.92)

We next consider the integral
∫
Ω
as−1| 5 a · 5u|dx. By the estimate ‖ 5

u‖L∞(QT ) ≤ A0 in (7.90) and the Cauchy inequality, one has

∫
Ω

as−1| 5 a · 5u|dx ≤ A0

∫
Ω

as−1| 5 a|dx

= A0

∫
Ω

a
s
2 · a s2−1| 5 a|dx

≤ A0ε

∫
Ω

as−2| 5 a|2dx+
A0

ε

∫
Ω

asdx

=
4A0ε

s2

∫
Ω

| 5 a
s
2 |2dx+

A0

ε

∫
Ω

asdx. (7.93)

Inserting (7.92) and (7.93) into (7.50) and taking ε sufficiently small, one

finds

d

dt

∫
Ω

eξvasdx+
2(s− 1)

s

∫
Ω

|5 as/2|2dx ≤ A0s(s− 1)

∫
Ω

asdx for all s ≥ 2.

(7.94)

Noting 0 ≤ v ≤ 1 and using the iterative technique of Alikakos [4], one obtains

from (7.94) that

sup
t≥0
‖eξv(x, t)a(x, t)‖L∞(Ω) ≤ A0‖eξv0(x)a0(x)‖L∞(Ω). (7.95)

We also refer to recent references [40, 103] for a detailed derivation of the

estimate (7.95). Hence, the proof of Theorem 7.6 is completed. ut
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7.5 Global Existence and Boundedness in dimension 2

Throughout this section, we assume that d = 2. We first note that Lemmas

7.1 and 7.2 are also true for d = 2. Up to now we have had the L1(Ω)-estimate

on c. In the following we shall raise the a priori estimate of c in the following

way: L1(Ω)→ L3(QT )→ L2(Ω)→ L4(QT )→ L3(Ω).

From Eq. (7.7), we have the following two lemmas [151].

Lemma 7.3. There holds

d

dt

∫
Ω

[
(c+ 1) log(c+ 1)− c

]
dx+

∫
Ω

1

c+ 1
| 5 c|2dx

≤ µ

∫
Ω

[
(c+ 1) log(c+ 1)− c

]
dx (7.96)

+A0(χ+ ξ)
(
‖ 4u(t) ‖2L2(Ω) + ‖ 4v(t) ‖2L2(Ω) + ‖ c(t) ‖2L2(Ω)

)
+A0µ.

Proof. We easily derive from (7.8), the boundary condition (7.11), and the

assumption ∂v0(x)
∂ν

∣∣∣
∂Ω

= 0 in (7.2) that

∂v

∂ν

∣∣∣
∂ΩT

= 0. (7.97)

Multiplying Eq. (7.7) by log(c+1), integrating the product in Ω, and using

the no-flux boundary condition (7.10), one obtains

d

dt

∫
Ω

[
(c+ 1) log(c+ 1)− c

]
dx+

∫
Ω

1

c+ 1
| 5 c|2 dx

= χ

∫
Ω

c

c+ 1
5 c · 5u dx+ ξ

∫
Ω

c

c+ 1
5 c · 5v dx

+µ

∫
Ω

c(1− c− v) log(c+ 1) dx. (7.98)

Here, one observes that
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Ω

c

c+ 1
5 c · 5u dx =

∫
Ω

[
log(c+ 1)− c

]
4 u dx, (7.99)∫

Ω

c

c+ 1
5 c · 5v dx =

∫
Ω

[
log(c+ 1)− c

]
4 v dx, (7.100)

in which we have used the boundary condition (7.11) and (7.97). On the other

hand, one observes that∫
Ω

[
log(c+ 1)− c

]
4 u dx ≤ A0(‖ 4u(t) ‖2L2 + ‖ c(t) ‖2L2), (7.101)∫

Ω

[
log(c+ 1)− c

]
4 v dx ≤ A0(‖ 4v(t) ‖2L2 + ‖ c(t) ‖2L2), (7.102)∫

Ω

c(1− c− v) log(c+ 1) dx ≤
∫
Ω

c log(c+ 1) dx

≤
∫
Ω

[
(c+ 1) log(c+ 1)− c

]
dx+ ‖c‖L1(Ω)

≤
∫
Ω

[
(c+ 1) log(c+ 1)− c

]
dx+A0, (7.103)

in which we have used the basic inequality: log(1 + c) ≤ c for any c ≥ 0 in

derivation of estimates (7.101) and (7.102), and we have used estimates (7.1)

and (7.45) in derivation of estimate (7.103). Taking into account all above

estimates, one obtains from (7.96) from (7.98). ut

Lemma 7.4. Assume that µ > 0 and that the following estimate

‖ (c+ 1) log(c+ 1) ‖L1(Ω)≤ A (7.104)

is true; then there holds

d

dt

∫
Ω

c2dx+

∫
Ω

| 5 c|2dx

≤ ε
(
‖ 54 u(t) ‖2L2(Ω) + ‖ 54 v(t) ‖2L2(Ω)

)
+Aε−1/2g(ε−1) +A, (7.105)

where ε > 0 is any number and g(·) is some increasing function.



7.5 Global Existence and Boundedness in dimension 2 187

Proof. This lemma is the core of the argument concerning global existence in

the two-dimensional case.

Multiply Eq. (7.7) by c, integrate the product in Ω, and use the no-flux

boundary condition (7.10). One obtains

1

2

d

dt

∫
Ω

c2dx+

∫
Ω

| 5 c|2dx = χ

∫
Ω

c5 c · 5udx+ ξ

∫
Ω

c5 c · 5vdx

+µ

∫
Ω

c2(1− c− v)dx. (7.106)

Note that ∫
Ω

c5 c · 5u dx = −1

2

∫
Ω

c2 4 u dx, (7.107)∫
Ω

c5 c · 5v dx = −1

2

∫
Ω

c2 4 v dx (7.108)

by the boundary conditions (7.11) and (7.97).

Applying the Gagliardo–Nirenberg interpolation inequality (7.42) with l =

1, p = 3, k = q = r = d = 2, and θ = 2/3, one obtains

‖ 4 u‖L3(Ω) ≤ A0‖u‖2/3H3(Ω)‖u‖
1/3
H1(Ω) for u ∈ H3(Ω), (7.109)

where Hq(Ω) := W q
2 (Ω).

We shall also need the following interpolation inequality proved by Biler,

Hebisch, and Nadzieja [13]:

‖c‖3L3(Ω) ≤ ε‖c‖
2
H1(Ω) ‖ (c+ 1) log(c+ 1) ‖L1(Ω) +g(ε−1)‖c‖L1(Ω) (7.110)

for c ≥ 0 and c ∈ H1(Ω), where ε > 0 is any number and g(·) is some

increasing function.

By (7.45), Eq. (7.9) and the regularity theory for elliptic equations in two

dimensions, one has
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‖ 5 u‖L2(Ω) ≤ A0‖ c‖L1(Ω) ≤ A0. (7.111)

Applying the interpolation inequality (7.42) and using the estimates (7.46)

and (7.11), one obtains

‖ u‖L2(Ω) ≤ A0‖ u‖W 1
1Ω)‖ u‖L1(Ω) ≤ A0. (7.112)

Now we estimate
∣∣ ∫
Ω
c2 4 u dx

∣∣:
∣∣∣ ∫
Ω

c2 4 u dx
∣∣∣ ≤ A0‖c‖2L3(Ω)‖ 4 u‖L3(Ω) (by Hölder’s inequality)

≤ A0‖c‖2L3(Ω)‖u‖
2/3
H3(Ω)‖u‖

1/3
H1(Ω) (by (7.109))

≤ A0‖c‖2L3(Ω)‖u‖
2/3
H3(Ω) (by (7.111) and (7.112))

≤ A0

[
ε‖c‖2H1(Ω) ‖ (c+ 1) log(c+ 1) ‖L1(Ω) +g(ε−1)‖c‖L1(Ω)

]2/3
‖u‖2/3H3(Ω)

(by Biler, Hebisch, and Nadzieja’s interpolation inequality (7.110))

≤ A
[
ε‖c‖2H1(Ω) + g(ε−1)

]2/3
‖u‖2/3H3(Ω) (by (7.45) and (7.104))

≤ ε‖u‖2H3(Ω) +Aε−1/2
[
ε‖c‖2H1(Ω) + g(ε−1)

]
(by Young’s inequality)

= ε‖u‖2H3(Ω) +Aε1/2‖c‖2H1(Ω) +Aε−1/2g(ε−1). (7.113)

Similarly, one has

∣∣∣ ∫
Ω

c2 4 v dx
∣∣∣ ≤ ε‖v‖2H3(Ω) +Aε1/2‖c‖2H1(Ω) +Aε−1/2g(ε−1). (7.114)

On the other hand, by Young’s inequality,

∫
Ω

c2 dx ≤ ε
∫
Ω

c3 dx+A0(ε)|Ω|. (7.115)

Taking into account above estimates (7.106)-(7.108), (7.113)-(7.115), and

using assumption µ > 0, one has
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1

2

d

dt

∫
Ω

c2dx+

∫
Ω

| 5 c|2dx

≤ ε
(
‖u‖2H3(Ω) + ‖v‖2H3(Ω)

)
+Aε−1/2g(ε−1) +A0

≤ ε
(
‖ 54u‖2L2(Ω) + ‖ 54v‖2L2(Ω)

)
+Aε−1/2g(ε−1) +A

for sufficiently small ε > 0, where we have used the facts that

‖u‖H3(Ω) ≤ A0

(
‖ 54u‖L2(Ω) + ‖u‖H1(Ω)

)
(for u ∈ H3(Ω) with

∂u

∂ν

∣∣∣
∂Ω

= 0)

≤ A0‖ 54u‖L2(Ω) +A (by (7.111) and (7.112))

and that

‖v‖H3(Ω) ≤ A0‖ 54v‖L2(Ω) +A (for v ∈ H3(Ω) with
∂v

∂ν

∣∣∣
∂Ω

= 0).

This completes the proof of Lemma 7.4. ut

Lemma 7.5. Assume that d = 2 and µ > 0. Then there holds

‖ c ‖L3(QT )≤ A. (7.116)

Proof. The proof is divided into the following eight steps. In Steps 1-6, we

will give attention to the dependency of the bounds of some estimates on the

parameters µ, χ and ξ. From (7.45) and its proof, we find that the bound

from above of ‖c‖L1(Ω) is independent of the parameters µ, χ, and ξ. In the

following we may assume that µ > 0 is small, say, 0 < µ < 1, since we can

proceed the estimates for large µ > 0 in two dimensions as in three dimensions

in Section 7.4.

Step 1 : Estimate ‖ c ‖2L2(QT ). Integrating Eq. (7.7) in Ω × [0, t] (t ≤ T ),

noting the no-flux boundary condition (7.10), and using the assumption that
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µ > 0 and the estimates (7.1) and (7.45), one obtains

∫ t

0

∫
Ω

c2dxds ≤ Aµ−1. (7.117)

Step 2 : Estimate ‖ 4u ‖2L2(QT ). Multiply Eq. (7.9) by 4u, integrate the

product in Ω, and use the no-flux boundary condition (7.11). Then

∫
Ω

| 4 u|2dx+ β

∫
Ω

| 5 u|2dx = −α
∫
Ω

c4 udx.

Cauchy’s inequality allows us to write

1

2

∫
Ω

| 4 u|2dx+ β

∫
Ω

| 5 u|2dx ≤ α2

2

∫
Ω

c2dx,

which gives ∫
Ω

| 4 u|2dx ≤ α2

∫
Ω

c2dx.

This, together with the estimate (7.117), yields

∫ t

0

∫
Ω

| 4 u|2dxds ≤ Aµ−1. (7.118)

Step 3 : Estimate ‖ 5u ‖2L2(Ω). We notice by the standard results in the

regularity theory for elliptic equations that from Eq. (7.9) and the L1-estimate

(7.45) of c we have

sup
t∈[0,T ]

‖ 5 u(·, t)‖Lq(Ω) ≤ A0 sup
t∈[0,T ]

‖c(·, t)‖L1(Ω) ≤ A0 (7.119)

where

q =
d

d− 1
,

which gives

‖ 5 u(·, t)‖L2(Ω) ≤ A0. (7.120)
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Step 4 : Estimate ‖ 5 v‖2L2(Ω). Note that Eq. (7.8) can be rewritten as

v(x, t) = v0(x)e−δ
∫ t
0
u(x, s)ds, (7.121)

and therefore

5v = e−δ
∫ t
0
u(x, s)ds 5 v0 − δv0(x)e−δ

∫ t
0
u(x, s)ds

∫ t

0

5uds. (7.122)

Using the estimates (7.1) and (7.120), one obtains from (7.122) that

∫
Ω

| 5 v|2dx ≤ A. (7.123)

Step 5 : Estimate ‖ 4 v‖2L2(QT ). One derives from (7.122) that

4v = e−δ
∫ t
0
u(x, s)ds 4 v0 − 2δe−δ

∫ t
0
u(x, s)ds

∫ t

0

5u · 5v0ds

+δ2v0(x)e−δ
∫ t
0
u(x, s)ds

(∫ t

0

5uds
)2

−δv0(x)e−δ
∫ t
0
u(x, s)ds

∫ t

0

4uds. (7.124)

By Eq. (7.9) and the elliptic Lp-theory, one finds

‖u‖H2(Ω) ≤ A0‖c‖L2(Ω). (7.125)

This, together with the estimate (7.117), yields

∫ t

0

‖u‖2H2(Ω)ds ≤ A0

∫ t

0

‖c‖2L2(Ω)ds ≤ Aµ
−1. (7.126)

Applying the Gagliardo–Nirenberg interpolation inequality (7.42) with l =

0, p = 4, k = 1, q = r = d = 2, θ = 1/2 and using the estimate (7.120), one

obtains

‖ 5 u‖L4(Ω) ≤ A0‖u‖1/2H2(Ω)‖ 5 u‖1/2L2(Ω) ≤ A0‖u‖1/2H2(Ω).
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This, together with the estimate (7.126), yields

∫ t

0

‖ 5 u‖4L4(Ω)ds ≤ A0

∫ t

0

‖u‖2H2(Ω)ds ≤ Aµ
−1. (7.127)

Finally, using the estimates (7.1), (7.118), (7.120) and (7.127), one derives

from (7.124) that ∫ t

0

∫
Ω

| 4 v|2dxds ≤ Aµ−1. (7.128)

Step 6 : Estimate ‖(c + 1) log(c + 1)‖L1(Ω). Lemma 7.3, together with

Gronwall’s lemma and the estimates (7.117), (7.118), and (7.128), yields

∫
Ω

[
(c+ 1) log(c+ 1)− c

]
dx ≤ A(χ+ ξ + 1)µ−1. (7.129)

Here we should note that (c+ 1) log(c+ 1)− c ≥ 0 for any c ≥ 0. Combining

(7.45) and (7.129), one has

∫
Ω

(c+ 1) log(c+ 1)dx ≤ A(χ+ ξ + 1)µ−1. (7.130)

Clearly, the bound from above of ‖(c+ 1) log(c+ 1)‖L1(Ω) in (7.130) strongly

depends on µ, and it becomes unbounded as µ → 0+. This is why the

assumption that µ > 0 is so crucial to our results of global existence in two

dimensions.

Step 7 : Estimate ‖ 5 c‖L2(QT ). By Lemma 7.4 and the estimate (7.130),

one has

d

dt

∫
Ω

c2dx+

∫
Ω

| 5 c|2dx

≤ ε
(
‖ 54u‖2L2(Ω) + ‖ 54v‖2L2(Ω)

)
+Aε−1/2g(ε−1) +A. (7.131)
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We first estimate ‖ 5 4u‖L2(Ω). We derive from (7.122), the boundary

condition (7.11), and the assumption ∂v0(x)
∂ν |∂Ω= 0 in (7.2) that

∂v

∂ν

∣∣∣
ΓT

= 0. (7.132)

This, together with the boundary conditions (7.10) and (7.11), further yields

∂c

∂ν

∣∣∣
ΓT

= 0. (7.133)

Next, multiply Eq. (7.9) by42u and integrate the products. Using integration

by parts, one obtains

∫
Ω

| 5 4u|2dx+ β

∫
Ω

| 4 u|2dx

= −α
∫
Ω

5c · 5 4 udx

≤ 1

2

∫
Ω

| 5 4u|2dx+
α2

2

∫
Ω

| 5 c|2dx, (7.134)

where we have used the following compatibility condition

∂ 4 u

∂ν

∣∣∣
ΓT

= β
∂u

∂ν

∣∣∣
ΓT
− α ∂c

∂ν

∣∣∣
ΓT

= 0 (7.135)

by (7.9), (7.11), and (7.133). One further derives from (7.134) that

∫
Ω

| 5 4u|2dx ≤ α2

∫
Ω

| 5 c|2dx. (7.136)

We are now in a position to consider ‖ 54v‖2L2(Ω). One can derive from

(7.124), the assumption v0(x) ∈ C3(Ω) in (7.2), the estimate u ≥ 0, and the

estimates (7.118), (7.120), and (7.127) that

‖ 54v‖2L2(Ω) ≤ A+A

∫ t

0

∫
Ω

| 5 4u|2dxds. (7.137)
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Inserting (7.136) and (7.137) into (7.131), one obtains

d

dt

∫
Ω

c2dx+ (1− α2ε)

∫
Ω

| 5 c|2dx ≤ Aε
∫ t

0

∫
Ω

| 5 c|2dxds+A(ε).

Integrating with respect to the variable t in both sides of the above inequality

and taking ε > 0 sufficiently small, one finds

∫ T

0

∫
Ω

| 5 c|2dxdt ≤ A. (7.138)

Step 8 : Estimate ‖c‖L3(QT ). Applying the Gagliardo–Nirenberg inequality

(7.42) with l = 0, k = 1, p = 3, q = d = 2, r = 1, θ = 2/3 and using the

estimate (7.45), one obtains

‖c(t)‖L3(Ω) ≤ A0‖c(t)‖2/3W 1
2 (Ω)
‖c(t)‖1/3L1(Ω)

≤ A0‖c(t)‖2/3W 1
2 (Ω)

.

This, together with the estimate (7.117) and (7.138), yields

∫ t

0

‖c(s)‖3L3(Ω)ds ≤ A0

∫ t

0

‖c(s)‖2W 1
2 (Ω)ds ≤ A.

This completes the proof of Lemma 7.5. ut

Lemma 7.6. Assume that d = 2 and µ > 0. Then there holds

‖ 5 u‖L6(QT ) ≤ A. (7.139)

Proof. Applying the interpolation inequality (7.42) with l = 0, p = d =

2, k = q = r = 1, θ = 1 and using the estimates (7.46) and (7.120), one

obtains

‖u‖L2(Ω) ≤ A0‖u‖W 1
1 (Ω)‖u‖L1(Ω) ≤ A0. (7.140)
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Combining (7.136) and (7.138), one also has

∫ T

0

∫
Ω

| 5 4u|2dxdt ≤ A. (7.141)

Note the fact that

‖u‖H3(Ω) ≤ A0

(
‖54u‖L2(Ω) +‖u‖H1(Ω)

)
for u ∈ H3(Ω) with

∂u

∂ν

∣∣∣
∂Ω

= 0.

This, together with (7.120), (7.140) and (7.41), yields

∫ T

0

‖u(t)‖2H3(Ω) ≤ A. (7.142)

Applying the interpolation inequality (7.42) with l = 0, p = 6, k = q =

r = d = 2, θ = 1/3 and using the estimate (7.120), one obtains

‖ 5 u‖L6(Ω) ≤ A0‖ 5 u‖1/3H2(Ω)‖ 5 u‖2/3L2(Ω) ≤ A0‖u‖1/3H3(Ω). (7.143)

Combining (7.142) and (7.143), one finds

∫ T

0

‖ 5 u(t)‖6L6(Ω)dt ≤ A
∫ T

0

‖u(t)‖2H3(Ω)dt ≤ A.

This completes the proof of Lemma 7.6. ut

Lemma 7.7. Assume that d = 2 and µ > 0. Then there holds

‖a‖L2(Ω) ≤ A. (7.144)

Proof. Setting s = 2 in the inequality (7.50), one finds

d

dt

∫
Ω

eξva2dx ≤ −2

∫
Ω

| 5 a|2dx+ 2µeξ
∫
Ω

a2dx

+2δξeξ
∫
Ω

ua2dx+ 2χeξ
∫
Ω

a| 5 a · 5u|dx. (7.145)
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We first estimate the integral
∫
Ω
ua2dx. Using the Young inequality and

the elliptic Lp-theory as before, one has

∫
Ω

ua2dx ≤ 1

3

∫
Ω

u3dx+
2

3

∫
Ω

a3dx ≤ A0

∫
Ω

a3dx. (7.146)

We now consider the integral
∫
Ω
a| 5 a · 5u|dx in (7.145). Applying the

Young inequality (7.52), one finds

∫
Ω

a| 5 a · 5u|dx

≤ ε

∫
Ω

(a| 5 a|) 6
5 dx+A0(ε)

∫
Ω

| 5 u|6dx

≤ ε

∫
Ω

| 5 a| 65 · 53 +A0(ε)

∫
Ω

a
6
5 ·

5
2 dx+A0(ε)

∫
Ω

| 5 u|6dx

= ε

∫
Ω

| 5 a|2dx+A0(ε)

∫
Ω

a3dx+A0(ε)

∫
Ω

| 5 u|6dx. (7.147)

Inserting (7.146) and (7.147) into (7.145), taking ε sufficiently small, using

1 ≤ eξv ≤ eξ, and noting
∫
Ω
a2dx ≤ A0 +A0

∫
Ω
a3dx, one obtains

d

dt

∫
Ω

eξva2dx ≤ A0 +A0

∫
Ω

a3dx+A0

∫
Ω

| 5 u|6dx.

This, together with Lemmas 7.5 and 7.6, yields

∫
Ω

eξva2dx ≤
∫
Ω

eξv0(x)a2
0(x)dx+A0T

+A0

∫ T

0

∫
Ω

a3dxdt+A0

∫ T

0

∫
Ω

| 5 u|6dxdt

≤ A.

This completes the proof of Lemma 7.7. ut

Lemma 7.8. Assume that d = 2 and µ > 0. Then there hold



7.5 Global Existence and Boundedness in dimension 2 197

‖c‖L4(QT ) ≤ A, (7.148)

‖ 5 u‖Lq(Ω) ≤ A for any 1 < q <∞. (7.149)

Proof. Applying the interpolation inequality (7.42) with l = 0, p = 4, q =

r = d = 2, θ = 1/2 and using Lemma 7.7 and the estimate (7.1), one finds

‖c‖L4(Ω) ≤ A0‖c‖1/2H1(Ω)‖c‖
1/2
L2(Ω) ≤ A‖c‖

1/2
H1(Ω).

Hence, using the estimates (7.138) and (7.144), one obtains

∫ T

0

‖c(t)‖4L4(Ω)dt ≤ A

∫ t

0

‖c(t)‖2H1(Ω)dt

≤ A

∫ T

0

‖ 5 c(t)‖2L2(Ω)dt+A

∫ T

0

‖c(t)‖2L2(Ω)dt

≤ A.

So, the estimate (7.148) holds.

We now turn to prove the estimate (7.149). Note that Eq. (7.9) can be

rewritten as follows:

−4 u+ βu = αc ∈ L2(Ω) (7.150)

by Lemma 7.7. We conclude from (7.150), (7.11), and the standard elliptic

Lp-theory [71] that u ∈ W 2
2 (Ω). This, together with Sobolev imbedding

theorem, yields the estimate (7.149). Hence, Lemma 7.8 is proved. ut

Lemma 7.9. Assume that d = 2 and µ > 0. Then there holds

‖a‖L3(Ω) ≤ A. (7.151)

Proof. Setting s = 3 in the inequality (7.50), one finds
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d

dt

∫
Ω

eξva3dx ≤ −8

3

∫
Ω

| 5 a3/2|2dx+ 3µeξ
∫
Ω

a3dx

+3ξδeξ
∫
Ω

ua3dx+ 6χeξ
∫
Ω

a2| 5 a · 5u|dx. (7.152)

We first estimate the integral
∫
Ω
ua3dx. Applying the Young inequality

and using the the elliptic Lp-theory as before, one finds

∫
Ω

ua3dx ≤ 1

4

∫
Ω

u4dx+
3

4

∫
Ω

a4dx ≤ A0

∫
Ω

a4dx. (7.153)

We now turn to the integral
∫
Ω
a2| 5 a · 5u|dx in (7.152). Applying the

Young inequality and using the estimate (7.149), one finds

∫
Ω

a2| 5 a · 5u|dx ≤ ε

∫
Ω

(a2| 5 a|) 12
11 dx+A(ε)

∫
Ω

| 5 u|12dx

≤ ε

∫
Ω

(a
3
2 · a 1

2 | 5 a|) 12
11 dx+A(ε)

≤ ε

∫
Ω

(a
1
2 | 5 a|) 12

11 ·
11
6 dx+A(ε)

∫
Ω

a
3
2 ·

12
11 ·

11
5 dx+A(ε)

=
4ε

9

∫
Ω

| 5 a
3
2 |2dx+A(ε)

∫
Ω

a
18
5 dx

≤ ε

∫
Ω

| 5 a
3
2 |2dx+A(ε)

∫
Ω

a4dx+A(ε). (7.154)

Finally, inserting (7.153) and (7.154) into the inequality (7.152), noting∫
Ω
a3dx ≤ A0 +A0

∫
Ω
a4dx, and taking ε sufficiently small, one obtains

d

dt

∫
Ω

eξva3dx ≤ A+

∫
Ω

a4dx.

Integrating with respect to t in both sides of above inequality and using the

estimate (7.148), one finds

∫
Ω

eξva3dx ≤
∫
Ω

eξv0(x)a3
0(x)dx+

∫ T

0

∫
Ω

a4dxdt ≤ A.

This completes the proof of Lemma 7.9. ut



7.5 Global Existence and Boundedness in dimension 2 199

Remark 7.3. It is almost impossible to find an explicit bound from above in

terms of µ, χ, and ξ in the estimate (7.151), since this bound is involved

in all the bounds appeared in the estimates (7.104)-(7.149) and it concerns

many complicated computations. However, the bound from above of ‖(c +

1) log(c + 1)‖L1(Ω) in (7.130) has already given us a good understanding

of the above-mentioned dependency on the parameters µ, χ and ξ. Roughly

speaking, the bound from above in the estimate (7.151) will probably be

directly proportional to the following quantity: (χ + ξ)µ−1. Therefore, we

conclude that the assumption that µ > 0 is central to our results of global

existence in two dimensions.

Using the estimate (7.151) and proceeding as in the proof of Theorem 7.3 -

7.4 and Theorems 7.5 - 7.6, one has the following main results of this section.

Theorem 7.7. Under the assumptions (7.2) and that d = 2 and µ > 0, there

exists a unique global solution

(a, v, u) ∈ C2+σ̃, 1+σ̃/2(QT )×C2+σ̃, 1+σ̃/2(QT )×C2+σ̃, σ̃/2(QT ) (σ̃ :=
2

3
)

of the system (7.14)-(7.18) for any T > 0. Furthermore,

a ≥ 0, u ≥ 0, 0 ≤ v ≤ 1, (7.155)

‖u‖L∞(QT ) ≤ A0, ‖ 5 u‖L∞(QT ) ≤ A0, (7.156)

‖a‖L∞(QT ) ≤ A0‖a0‖L∞(Ω). (7.157)





8

Density-Dependent Chemotaxis-Haptotaxis

Model of Cancer Invasion

8.1 Introduction

In Chapter 7, we reviewed a simplified version of the Chaplain and Lolas’

model [30]. However, the original model is a 3 × 3 parabolic-ODE-parabolic

chemotaxis-haptotaxis system. The global existence and uniqueness of classical

solutions to this model has been proved for any µ ≥ 0 (where µ is the logistic

growth rate of cancer cells) in one space dimension (see [149]), for any µ > 0

in two space dimensions (see [151]) and for large µ in three space dimensions

(see [149]). In addition to global existence and uniqueness, the uniform-in-time

boundedness of solutions to a simplified 3×3 parabolic-ODE-elliptic chemotaxis-haptotaxis

system has been proved for any µ > 0 in two space dimensions and for

large µ in three space dimensions (see [153]), which has been reviewed in

last chapter. We should note that the global existence is still open for

small µ > 0 in three space dimensions for the parabolic-ODE-parabolic

chemotaxis-haptotaxis system and the parabolic-ODE-elliptic chemotaxis-haptotaxis

system. When µ = 0, the solution of Chaplain and Lolas’ model may blow up
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in finite time (see [149, Section 6]). However, it is obvious that the blow-up of

cancer cell density in a finite time is biologically irrelevant. Hence, we need to

deal with the following problem, how can we reasonably modify the Chaplain

and Lolas model [30] to obtain the global existence? This is the concern of

the present chapter.

Recently, Tao and Cui [155] extended the Chaplain and Lolas’ model

to a new one with nonlinear density-dependent chemotaxis and haptotaxis,

and studied the global existence and boundedness of solutions to this newly

extended model.

This chapter will review the extended model and its mathematical analysis.

This chapter is organized into five sections. Section 8.2 presents the mathematical

model. Section 8.3 proves the local existence and uniqueness of solutions.

Section 8.4 completes the proof of global existence. Finally, Section ??

shows the boundedness of solutions to a chemotaxis-haptotaxis model with

volume-filling.

8.2 Mathematical Model

The mathematical model of cancer invasion is involved in the following three

physical variables: cancer cell density c(x, t), ECM density v(x, t), and MDE

concentration u(x, t).

The migration of cancer cells is assumed to be governed by random

motion, chemotaxis and haptotaxis. In the absence of any ECM, cancer cell
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proliferation is assumed to be typically logistic. The presence of ECM leads

to competition for space between the cancer cells and the ECM. Hence, the

equation describing the evolution of cancer cell density reads (see [30])

∂c

∂t
= Dc 4 c︸ ︷︷ ︸

random motion

−5 · (V1(c)5 u)︸ ︷︷ ︸
chemotaxis

−5 · (V2(c)5 v)︸ ︷︷ ︸
haptotaxis

+ µc(1− c− v)︸ ︷︷ ︸
proliferation

, (8.1)

whereDc is the random diffusion coefficient, V1(c) and V2(c) are the density-dependent

chemotactic and haptotactic sensitivity functions, respectively, and µ is the

logistic proliferation rate of the cells.

Since ECM is “static,”we neglect any diffusion and focus solely on its

degradation by MDEs upon contact; for simplicity, we assume that no

remodeling of the ECM takes palce. Hence, the equation modeling the

proteolysis of ECM is therefore given by (see [30])

∂v

∂t
= − δuv︸︷︷︸

proteolysis

, (8.2)

where δ > 0 is a rate parameter of degradation.

MDE is produced by cancer cells, diffuses throughout ECM, and undergoes

decay through simple degradation. Hence, the equation for MDE concentration

is (see [30])

∂u

∂t
= Du 4 u︸ ︷︷ ︸

diffusion

+ αc︸︷︷︸
production

− βu︸︷︷︸
decay

, (8.3)

where Du, α and β are assumed to be positive constants.

Throughout this paper we will assume that

Vi(c) ∈ C1([0,+∞)), Vi(c) ≥ 0, Vi(0) = 0, and V ′i (c) is Lipschitz continuous,

(8.4)
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where i = 1, 2. Here we should note that it is necessary for the global existence

of C2-smooth solutions of Eqs. (8.1)-(8.3) to assume that V ′1(c) and V ′2(c) are

Lipschitz continuous (see [156]).

In Chaplain and Lolas’ original model [30], it is assumed that V1(c) = χc

and V2(c) = ξc (χ, ξ > 0 are some constants). For this choice of V1(c) and

V2(c), although the assumption (8.4) is satisfied, the solution of the model

may blow up in finite time as afore-mentioned. However, the blow-up of cancer

density in finite time is biologically irrelevant. Hence, we would like to slightly

modify the choice of V1(c) and V2(c) such that the modified model has a unique

global solution, which excludes the possibility of a blow-up in finite time. To

this end, in addition to the assumption (8.4), we will assume that

V1(c) and V2(c) are bounded for any c ≥ 0. (8.5)

For example, we may take V1(c) = χc
1+ε1c

and V2(c) = ξc
1+ε2c

(ε1, ε2 > 0 are

small constants; see [81], for instance). Clearly V1(c) → χc as ε1 → 0 and

V2(c) → ξc as ε2 → 0. For this choice of V1(c) and V2(c), the assumptions

(8.4) and (8.5) are both satisfied. Another choice of V1(c) and V2(c) satisfying

(8.5) is that V1(c) ≡ 0 and V2(c) ≡ 0 for c ≥ cm, which has a clear biologically

relevant interpretation: the cancer cells stop to accumulate at a given point of

the tumor tissue after their density attains a maximal density cm. A similar

assumption for a prey-taxis sensitivity function was made in [2].

However, for typical volume-filling chemotactic-haptotactic functions V1(c) =

χc(1− c/γ) and V2(c) = ξc(1− c/γ) (γ ≥ 1 denotes the maximal cell density;
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see [81]), the assumption (8.5) is not satisfied. However, these specific forms

of V1(c) and V2(c) will be in favor of the proofs of global existence and

boundedness of solutions to the model (see Section ?? below).

The Eqs. (8.1)-(8.3) are considered on some bounded domain Ω ⊂ R3 with

boundary ∂Ω. To close the system of equations, we need to impose boundary

and initial conditions.

Boundary conditions: Guided by the in vitro experimental protocol in

which invasion takes place within an isolated system [124], we assume that

there is no-flux of cancer cells or MDEs across the boundary of the domain

−Dc
∂c

∂ν
+ V1(c)

∂u

∂ν
+ V2(c)

∂v

∂ν
= 0 on ∂Ω × (0,∞), (8.6)

∂u

∂ν
= 0 on ∂Ω × (0,∞), (8.7)

where ν is the outward normal vector to ∂Ω.

Initial conditions: We prescribe the initial data

c(x, 0) = c0(x), v(x, 0) = v0(x), u(x, 0) = u0(x), x ∈ Ω. (8.8)

For any 0 < T <∞ we set

ΩT = Ω × {0 < t < T}, ∂ΩT = ∂Ω × {0 < t < T}.

To simplify the formulae, throughout this chapter we suppose that

Dc = δ = Du = α = β = 1. (8.9)

However, we will keep the key model parameter µ, since our result on global

existence will depend on the presence of logistic damping.
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Throughout this chapter we assume that

c0(x) ≥ 0, 0 ≤ v0(x) ≤ 1, u0(x) ≥ 0,

∂Ω ∈ C2+σ, 0 < σ < 1,

c0(x), v0(x), u0(x) ∈ C2+σ(Ω),

∂c0(x)
∂ν = ∂v0(x)

∂ν = ∂u0(x)
∂ν = 0 on ∂Ω.

(8.10)

Note that Eq. (8.2) can be rewritten as

v = v0(x)e−
∫ t
0
u(x,s)ds

and therefore

5v = e−
∫ t
0
u(x,s)ds 5 v0 − v0(x)e−

∫ t
0
u(x,s)ds

∫ t

0

5u ds.

This, along with (8.7) and ∂v0(x)
∂ν = 0 on ∂Ω in (8.10), yields

∂v

∂ν
= 0 on ∂ΩT . (8.11)

We then conclude from (8.6), (8.7), and (8.11) that

∂c

∂ν
= 0 on ∂ΩT . (8.12)

8.3 Local Existence and Uniqueness

Using the assumptions (8.9) and the boundary conditions (8.11) and (8.12),

the problem (8.1)-(8.3) and (8.6)-(8.2) takes the following form:
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ct = 4c−5 · (V1(c)5 u)−5 · (V2(c)5 v) + µc(1− c− v) in ΩT , (8.13)

vt = −uv in ΩT , (8.14)

ut = 4u+ c− u in ΩT , (8.15)

∂c

∂ν
=
∂v

∂ν
=
∂u

∂ν
= 0 on ∂ΩT , (8.16)

c(x, 0) = c0(x), v(x, 0) = v0(x), u(x, 0) = u0(x) in Ω. (8.17)

For notational convenience, in what follows we denote various constants

which are independent of T by A0, whereas we denote various constants which

depend on T by A.

In the following, under the assumptions (8.4) and (8.10), we shall prove

that the system (8.13)-(8.17) has a unique local (in time ) smooth solution

for any µ ≥ 0.

Theorem 8.1. For any µ ≥ 0, under the assumptions (8.4) and (8.10),

there exists a unique solution (c, v, u) ∈
(
C2+σ, 1+σ/2(ΩT )

)3

of the system

(8.13)-(8.17) for some small T > 0 which depends on ‖ (c0(x), v0(x), u0(x)) ‖C2+σ(Ω).

Proof. We shall prove the local existence by a fixed point argument. We

introduce the Banach space X of function c with norm

‖c‖X = ‖c‖C1+σ,σ/2(Ω̄T ) (0 < T < 1)

and a subset

XM =
{
c ∈ X : ‖c‖C1+σ,σ/2(Ω̄T ) ≤M

}
,

where
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M :=‖ c0(x) ‖C2+σ(Ω) + ‖ v0(x) ‖C2+σ(Ω) + ‖ u0(x) ‖C2+σ(Ω) +1.

Given any c ∈ XM , we define a corresponding function c̃ = Fc, where c̃,

together with u and v, satisfies the following system:

ut −4u+ u = c in ΩT , (8.18)

∂u

∂ν
= 0 on ∂ΩT , (8.19)

u(x, 0) = u0(x) in Ω, (8.20)

v = v0(x)e−
∫ t
0
u(x,s)ds in ΩT , (8.21)

c̃t −4c̃− µ(1− c− v)c̃ = f(c, u, v) in ΩT , (8.22)

∂c̃

∂ν
= 0 on ∂ΩT , (8.23)

c̃(x, 0) = c0(x) in Ω. (8.24)

where

f(c, u, v) : = −5 ·(V1(c)5 u)−5 · (V2(c)5 v)

= −V1(c)4 u− V2(c)4 v

−(V ′1(c)5 u+ V ′2(c)5 v) · 5c. (8.25)

We first consider the linear parabolic problem (8.18)-(8.20). By c ∈

XM , 0 < T < 1, (8.10), the maximum principle, and the Schauder theory

(see [108], for instance), the problem (8.18)-(8.20) has a unique solution u

satisfying



8.3 Local Existence and Uniqueness 209

‖u‖C2+σ,1+σ/2(Ω̄T ) ≤ A0

(
‖u‖C0(Ω̄T ) + ‖u0‖C2+σ(Ω̄) + ‖c‖Cσ,σ/2(Ω̄T )

)
≤ A0

(
‖u0‖C0(Ω̄) +A0T‖c‖C0(Ω̄T )

+‖u0‖C2+σ(Ω̄) + ‖c‖Cσ,σ/2(Ω̄T )

)
≤ A0M. (8.26)

We easily derive from (8.21) that

5v = e−
∫ t
0
u(x,s)ds 5 v0 − v0(x)e−

∫ t
0
u(x,s)ds

∫ t

0

5u ds, (8.27)

4v = e−
∫ t
0
u(x,s)ds 4 v0

−2e−
∫ t
0
u(x,s)ds

∫ t

0

5u · 5v0ds+ v0(x)e−
∫ t
0
u(x,s)ds

(∫ t

0

5uds
)2

−v0(x)e−
∫ t
0
u(x,s)ds

∫ t

0

4u ds. (8.28)

Using v0(x) ∈ C2+σ(Ω), (8.26), and 0 < T < 1, we obtain from (8.21), (8.27),

and (8.28) that

‖v‖C2+σ,1+σ/2(Ω̄T ) ≤ A0M. (8.29)

We now turn to the linear parabolic problem (8.22)-(8.24). Using c ∈ XM ,

(8.25), (8.26), and (8.29) and noting V ′1(c) and V ′2(c) are Lipschitz continuous,

we have

‖f‖Cσ,σ/2(Ω̄T ) ≤ A0M, (8.30)

‖1− c− v‖Cσ,σ/2(Ω̄T ) ≤ A0M. (8.31)

Hence, by 0 < T < 1 and the parabolic Schauder theory as before, the problem

(8.22)-(8.24) admits a unique solution c̃ satisfying
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‖c̃‖C2+σ,1+σ/2(Ω̄T ) ≤ A0

(
‖c0‖C2+σ(Ω̄) + ‖f‖Cσ,σ/2(Ω̄T )

)
≤ A0M. (8.32)

By direct calculations, we find that for any function c̃,

‖c̃(x, t)− c̃(x, 0)‖C1+σ,σ/2(Ω̄T ) ≤ A0 max(Tσ/2, T 1/2)‖c̃‖C2+σ,1+σ/2(Ω̄T ).

If we further take T = T (M) sufficiently small, then by (8.32)

‖c̃(x, t)‖C1+σ,σ/2(Ω̄T ) ≤ ‖c̃(x, 0)‖C1+σ(Ω̄) +A0 max(Tσ/2, T 1/2)M

≤ ‖c̃(x, 0)‖C1+σ(Ω̄) + 1

≤ M.

Hence, c̃ ∈ XM , i.e. F maps XM into itself.

We are now in a position to show that F is contractive. Take c1, c2 in XM

and set c̃1 ≡ Fc1, c̃2 ≡ Fc2. We derive from (8.18)-(8.20) that

∂t(u1 − u2)−4(u1 − u2) + (u1 − u2) = c1 − c2 in ΩT , (8.33)

∂(u1 − u2)

∂ν
= 0 on ∂ΩT , (8.34)

(u1 − u2)(x, 0) = 0 in Ω. (8.35)

Proceeding as in the proof of (8.26), we have

‖u1 − u2‖C2+σ,1+σ/2(Ω̄T ) ≤ A0‖c1 − c2‖Cσ,σ/2(Ω̄T ). (8.36)

This, along with (8.21), (8.27), (8.28), and 0 < T < 1, yields

‖v1− v2‖C2+σ,1+σ/2(Ω̄T ) ≤ A0‖u1−u2‖C2+σ,1+σ/2(Ω̄T ) ≤ A0‖c1− c2‖Cσ,σ/2(Ω̄T ).

(8.37)
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Next, we derive from (8.22)-(8.25) that

∂t(c̃1 − c̃2)−4(c̃1 − c̃2)− µ(1− c1 − v1)(c̃1 − c̃2) = h in ΩT , (8.38)

∂(c̃1 − c̃2)

∂ν
= 0 on ∂ΩT , (8.39)

(c̃1 − c̃2)(x, 0) = 0 in Ω, (8.40)

where

h : = −µc̃2[(c1 − c2) + (v1 − v2)]

−V1(c1)4 (u1 − u2) +
(
V1(c2)− V1(c1)

)
4 u2

−V2(c1)4 (v1 − v2) +
(
V2(c2)− V2(c1)

)
4 v2

−V ′1(c1)5 c1 · 5(u1 − u2) +
(
V ′1(c2)5 c2 − V ′1(c1)5 c1

)
· 5u2

−V ′2(c1)5 c1 · 5(v1 − v2) +
(
V ′2(c2)5 c2 − V ′1(c1)5 c1

)
· 5v2.

Noting V ′1(c) and V ′2(c) are Lipschitz continuous and using (8.4), (8.26), (8.29),

(8.32), (8.36), and (8.37), we find that

‖h‖Cσ,σ/2(Ω̄T )

≤ A0

(
‖c1 − c2‖Cσ,σ/2(Ω̄T ) + ‖u1 − u2‖C2+σ,1+σ/2(Ω̄T ) + ‖v1 − v2‖C2+σ,1+σ/2(Ω̄T )

)
≤ A0‖c1 − c2‖Cσ,σ/2(Ω̄T ). (8.41)

This, along with (8.38)-(8.40) and the parabolic Schauder theory, yields

‖c̃1 − c̃2‖C2+σ,1+σ/2(Ω̄T ) ≤ A0‖c1 − c2‖Cσ,σ/2(Ω̄T ). (8.42)

Noting (c̃1 − c̃2)(x, 0) ≡ 0 and proceeding as before, we have
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‖c̃1 − c̃2‖C1+σ,σ/2(Ω̄T ) ≡ ‖(c̃1 − c̃2)(x, t)− (c̃1 − c̃2)(x, 0)‖C1+σ,σ/2(Ω̄T )

≤ A0 max(Tσ/2, T 1/2)‖c̃1 − c̃2‖C2+σ,1+σ/2(Ω̄T )

≤ A0 max(Tσ/2, T 1/2)‖c1 − c2‖Cσ,σ/2(Ω̄T ). (8.43)

Finally, taking T sufficiently small such that

A0 max(Tσ/2, T 1/2) ≤ 1/2,

we conclude from (8.43) that F is contractive in XM . By the contraction

mapping theorem, F has a unique fixed point c in XM . This completes the

proof of Theorem 8.1. ut

8.4 A Priori Estimates and Global Existence

To continue the local solution in Theorem 8.1 to all t > 0, we need to

establish some a priori estimates. Throughout this section, in addition to

the assumptions (8.4) and (8.10), we assume that the assumption (8.5) holds.

Noting V1(0) = V2(0) = 0, c0(x) ≥ 0, 0 ≤ v0(x) ≤ 1, and u0(x) ≥ 0, and

using the maximum principle, we easily prove the following lemma.

Lemma 8.1. Assume that (c, v, u) ∈ C2,1(ΩT ) is a solution to (8.13)-(8.17),

then there holds

c ≥ 0, 0 ≤ v ≤ 1, u ≥ 0. (8.44)

Lemma 8.2. Assume that (c, v, u) ∈ C2,1(ΩT ) is a solution to (8.13)-(8.17)

and that
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µ > 0, (8.45)

then there hold

‖c‖L1(Ω) ≤ A0, (8.46)

‖u‖L1(Ω) ≤ A0, (8.47)

‖ 5 u‖L2(Ω) ≤ A0, (8.48)

‖ 5 v‖L2(Ω) ≤ A. (8.49)

Proof. Integrating Eqs. (8.13) and (8.11) over Ω and proceeding as in the

proof of Lemma 7.2 in Chapter 7, we easily prove the estimates (8.46) and

(8.47).

We next turn to prove the estimate (8.48). Integrating Eq. (8.13) over Ω

and using (8.16) and (8.44), we have

d

dt
‖c‖L1(Ω) ≤ µ‖c‖L1(Ω) − µ

∫
Ω

c2dx. (8.50)

Multiplying Eq. (8.11) by −4 u and integrating over Ω, we find that

1

2

d

dt

∫
Ω

| 5 u|2dx+

∫
Ω

| 4 u|2dx+

∫
Ω

| 5 u|2dx

= −
∫
Ω

c4 udx ≤ 1

4

∫
Ω

c2dx+

∫
Ω

| 4 u|2dx.

So,

1

2

d

dt

∫
Ω

| 5 u|2dx+

∫
Ω

| 5 u|2dx ≤ 1

4

∫
Ω

c2dx.

Combining this with (8.50), we get

d

dt

(1

2

∫
Ω

| 5 u|2dx+
1

4µ

∫
Ω

c dx
)

+ 2
(1

2

∫
Ω

| 5 u|2dx+
1

4µ

∫
Ω

c dx
)

≤
(1

4
+

1

2µ

)
‖c‖L1(Ω).
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This, along with Gronwall’s lemma and the estimate (8.46), yields

1

2

∫
Ω

| 5 u|2dx+
1

4µ

∫
Ω

c dx ≤ A0.

Hence, the estimate (8.48) holds.

Finally, we prove the estimate (8.49). We derive from (8.10), (8.27), (8.48),

u ≥ 0 and Hölder’s inequality that

∫
Ω

| 5 v|2dx ≤ A0 +A0T

∫ T

0

∫
Ω

| 5 u|2dxds ≤ A.

This completes the proof of Lemma 8.2. ut

Lemma 8.3. Assume that (c, v, u) ∈ C2,1(ΩT ) is a solution to (8.13)-(8.17)

and that the assumption (8.45) holds, then there hold

‖c‖L2(Ω) ≤ A. (8.51)

Proof. For any s ≥ 2, we derive from (8.13), (8.16), (8.44), and the assumption

(8.5) that

d

dt

∫
Ω

csdx = s

∫
Ω

cs−1ctdx

= s

∫
Ω

cs−1
[
4 c−5 · (V1(c)5 u)−5 · (V2(c)5 v) + µc(1− c− v)

]
dx

≤ −4(s− 1)

s

∫
Ω

∣∣5 cs/2
∣∣2dx+ µs

∫
Ω

csdx

+A0s(s− 1)

∫
Ω

cs−2
(
| 5 c| · | 5 u|+ | 5 c| · | 5 v|

)
dx. (8.52)

Taking s = 2 in (8.52) and using Cauchy’s inequality and the estimates

(8.48) and (8.49), we obtain
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d

dt

∫
Ω

c2dx ≤ −2

∫
Ω

∣∣5 c
∣∣2dx+ 2µ

∫
Ω

c2dx

+A0

∫
Ω

(
| 5 c| · | 5 u|+ | 5 c| · | 5 v|

)
dx

≤ −2

∫
Ω

∣∣5 c
∣∣2dx+ 2µ

∫
Ω

c2dx

+2ε

∫
Ω

| 5 c|2dx+A0(ε)

∫
Ω

(
| 5 u|2 + | 5 v|2

)
dx

≤ A+ 2µ

∫
Ω

c2dx.

This, together with Gronwall’s lemma, yields the estimate (8.51). ut

Up to now we have had the L2(Ω)-estimate. To raise the a priori estimate

to Ls(Ω)-estimate (s > 3), we need the following lemma [104, Lemma 1],

which is an extension of Lemma 4.1 in [86].

Lemma 8.4. Consider the following linear parabolic problem

ut −4u+ u = c in ΩT , (8.53)

∂u

∂ν
= 0 on ∂ΩT , (8.54)

u(x, 0) = u0(x) in Ω. (8.55)

Assume that u0 ∈W 1
∞(Ω) and that (u, c) satisfies (8.53)-(8.55). Moreover,

‖ c ‖Lρ(Ω)≤ A0

for all t ∈ (0, T ). Then for every 1 ≤ ρ < d (where d := the space dimension)

we have

‖ u(t) ‖W 1
q (Ω)≤ A0(q), (8.56)

where
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q <
dρ

d− ρ
. (8.57)

If ρ = d, then (8.56) is true with every q < +∞ and if ρ > d, then (8.56) is

true with q = +∞.

Lemma 8.5. Assume that (c, v, u) ∈ C2,1(ΩT ) is a solution to (8.13)-(8.17)

and that the assumption (8.45) holds, then there holds

‖c‖L4(Ω) ≤ A. (8.58)

Proof. Going back to (8.52) and taking s = 4, we have

d

dt

∫
Ω

c4dx ≤ −3

∫
Ω

∣∣5 c2
∣∣2dx+ 4µ

∫
Ω

c4dx

+A0

∫
Ω

c2
(
| 5 c| · | 5 u|+ | 5 c| · | 5 v|

)
dx. (8.59)

By the estimate (8.51) and Lemma 8.4, we have

‖ u(t) ‖W 1
q (Ω)≤ A for any 1 < q < 6;

in particular,

‖ 5u(t) ‖L5(Ω)≤ A. (8.60)

This, along with (8.27) and Hölder’s inequality, yields

∫
Ω

| 5 v|5dx ≤ A0 +A0T
4

∫ T

0

∫
Ω

| 5 u|5dxdt ≤ A. (8.61)

By Young’s inequality and the estimate (8.60), we have that for any

sufficiently small ε > 0,



8.4 A Priori Estimates and Global Existence 217∫
Ω

c2| 5 c| · | 5 u|dx

≤ ε

∫
Ω

c2| 5 c|2dx+A0(ε)

∫
Ω

c2| 5 u|2dx

≤ ε

4

∫
Ω

| 5 c2|2dx+A0(ε)

∫
Ω

(
c2
) 5

3 dx+A0(ε)

∫
Ω

(
| 5 u|2

) 5
2 dx

≤ ε

4

∫
Ω

| 5 c2|2dx+A0(ε)

∫
Ω

c
10
3 dx+A(ε)

≤ ε

4

∫
Ω

| 5 c2|2dx+A0(ε)

∫
Ω

c4dx+A(ε). (8.62)

Similarly,∫
Ω

c2| 5 c| · | 5 v|dx ≤ ε

4

∫
Ω

| 5 c2|2dx+A0(ε)

∫
Ω

c4dx+A(ε). (8.63)

Inserting (8.62) and (8.63) into (8.59) and taking ε sufficiently small, we

get

d

dt

∫
Ω

c4dx ≤ A0

∫
Ω

c4dx+A.

This, together with Gronwall’s lemma, yields the estimate (??). ut

Lemma 8.6. Assume that (c, v, u) ∈ C2,1(ΩT ) is a solution to (8.13)-(8.17)

and that the assumption (8.45) holds, then there hold

‖u‖W 1
∞(Ω) ≤ A, (8.64)

‖ 5 v‖L∞(Ω) ≤ A, (8.65)

‖c‖Lp(Ω) ≤ A for any p > 5. (8.66)

Proof. By the estimate (??) and Lemma 8.4, we find that the estimate (8.64)

holds. This, along with (8.27), yields the estimate (8.65).

We now turn to prove the estimate (8.66). Going back to (8.52), taking

s = p > 5 and using (8.64), (8.65), and Young’s inequality, we have
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d

dt

∫
Ω

cpdx ≤ −4(p− 1)

p

∫
Ω

∣∣5 cp/2
∣∣2dx+ pµ

∫
Ω

cpdx

+A(p)

∫
Ω

cp−2| 5 c|dx

≤ −4(p− 1)

p

∫
Ω

∣∣5 cp/2
∣∣2dx+ pµ

∫
Ω

cpdx

+ε

∫
Ω

∣∣5 cp/2
∣∣2dx+A(p, ε)

∫
Ω

cp−2dx

≤ A

∫
Ω

cpdx+A.

So,

d

dt

∫
Ω

cpdx ≤ A
∫
Ω

cpdx+A.

This, along with Gronwall’s lemma, yields the estimate (8.66). ut

Lemma 8.7. Assume that (c, v, u) ∈ C2,1(ΩT ) is a solution to (8.13)-(8.17)

and that the assumption (8.45) holds, then, for any p > 5 there hold

‖u‖W 2,1
p (ΩT ) ≤ A, (8.67)

‖ 4 v‖Lp(Ω) ≤ A. (8.68)

Proof. By (8.53)-(8.55), (8.66), and the parabolic Lp-theory, we get the

estimate (8.67).

By (8.28), (8.44), (8.64), (8.67), and Hölder’s inequality, we have

∫
Ω

| 4 v|pdx ≤ A+A0T
p−1

∫ T

0

∫
Ω

| 4 u|pdxdt ≤ A.

So, the estimate (8.68) holds. ut

In the following we will establish a priori W 2,1
p (ΩT )-estimate on c. We

derive from (8.13), (8.16), and (8.17) that
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ct −4c+ b · 5c = g in ΩT , (8.69)

∂c

∂ν
= 0 on ∂ΩT , (8.70)

c(x, 0) = c0(x) in Ω, (8.71)

where

b := V ′1(c)5 u+ V ′2(c)5 v, (8.72)

g := µc(1− c− v)− V1(c)4 u− V2(c)4 v. (8.73)

To apply the Lp-theory to the problem (8.69)-(8.71), we need to prove

‖b‖L∞(Ω) ≤ A. To this end, by (8.64) and (8.65), we need only ‖V ′1(c)‖L∞(Ω) ≤

A and ‖V ′2(c)‖L∞(Ω) ≤ A, which in turn need to prove ‖c‖L∞(Ω) ≤ A.

In Chapter 7 we used the iterative technique of Alikakos [4] to establish

the uniform-in-time boundedness of solutions. However, in the present chapter

we cannot get the unifrom-in-time boundedness of c since the L2(Ω)-bound

of 5v depends on the time T (see (8.49)). Unlike Chapter 7, this chapter

will employ Horstmann and Winkler’s method (see [48, 86]), along with the

estimates (8.64)-(8.66) and the assumption (8.5), to establish a L∞(Ω)-bound

of c, which depends on the time T .

Let p > 1 and define

B := −4+I

with domain

D(B) :=
{
c ∈W 2

p (Ω) :
∂c

∂ν
= 0 on ∂Ω

}
.
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For each η ≥ 0, define the sectorial operator Bη (see [78]) and

Xη := D(Bη) with the norm ‖c‖Xη := ‖Bηc‖Lp(Ω).

Lemma 8.8. Assume that (c, v, u) ∈ C2,1(ΩT ) is a solution to (8.13)-(8.17)

and that the assumption (8.45) holds, then there hold

‖c(t)‖Xη ≤ A(t0) for 2η < 1 and t ∈ [t0, T ) (0 < t0 < T ), (8.74)

‖c(t)‖L∞(Ω) ≤ A for all t ∈ [0, T ). (8.75)

Proof. We first prove the estimate (8.74). By (8.13) and c(x, 0) = c0(x), we

have

c(t) = e−tBc0+

∫ t

0

e−(t−τ)B
[
−5·(V1(c)5u)−5·(V2(c)5v)+(µ+1)c−µc2−µcv

]
dτ

and therefore

‖c(t)‖Xη ≤ ‖e−tBc0‖Xη +

∫ t

0

‖e−(t−τ)B
[
−5 · (V1(c)5 u)−5 · (V2(c)5 v)

+(µ+ 1)c− µc2 − µcv
]
‖Xηdτ. (8.76)

By [78, Theorem 1.4.3] and (8.10)

‖e−tBc0‖Xη ≤ A0t
−ηe−δt‖c0‖Lp(Ω) ≤ A0t

−ηe−δt (8.77)

and, by 0 ≤ v ≤ 1 and (8.66),

‖e−(t−τ)B
(
(µ+ 1)c− µc2 − µcv

)
‖Xη

≤ (t− τ)−ηe−δ(t−τ)
(

(2µ+ 1)‖c‖Lp(Ω) + µ‖c2‖Lp(Ω)

)
≤ A(t− τ)−ηe−δ(t−τ) (8.78)
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where δ ∈ (0, 1) and p > 5. By [86, Lemma 2.1], (8.5), (8.64), and (8.65), we

have

‖e−(t−τ)B
[
−5 · (V1(c)5 u)−5 · (V2(c)5 v)

]
‖Xη

≤ A0‖e−(t−τ)4[−5 · (V1(c)5 u)−5 · (V2(c)5 v)
]
‖Xη

≤ A0(ε)(t− τ)−1/2−η−εe−δ(t−τ)‖V1(c)5 u− V2(c)5 v‖Lp(Ω)

≤ A(t− τ)−1/2−η−εe−δ(t−τ) (8.79)

where ε > 0 such that −1/2− η − ε > −1.

Inserting (8.77)-(8.79) into (8.76) and noting 1/2 + η + ε < 1 and η < 1,

we obtain

‖c(t)‖Xη ≤ A0t
−ηe−δt +A(ε)

∫ t

0

[
(t− τ)−1/2−η−εe−δ(t−τ) + (t− τ)−ηe−δ(t−τ)

]
dτ

≤ A(t0)

for all t ∈ [t0, T ) (0 < t0 < T ). Hence, the estimate (8.74) is proved.

We are now in a position to prove the estimate (8.75). Note p > 5 and

let 2η ∈ ( 3
p , 1). Since 2η > d/p (d := the space dimension), by [78, Theorem

1.6.1] we have that

Xη ↪→ C(Ω).

Hence, by (8.74) we have that

‖c(t)‖L∞(Ω) ≤ A(t0) for t > t0 > 0.

Furthermore, the local existence Theorem 8.1 yields that there exists some

t0 ∈ (0, 1) such that
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‖c(t)‖L∞(Ω) ≤ A0 for t ≤ t0.

Therefore,

‖c(t)‖L∞(Ω) ≤ A for all t ∈ [0, T ).

This completes the proof of the estimate (8.75). ut

Lemma 8.9. Assume that (c, v, u) ∈ C2,1(ΩT ) is a solution to (8.13)-(8.17)

and that the assumption (8.45) holds, then, for any p > 5 there hold

‖c‖W 2,1
p (ΩT ) ≤ A. (8.80)

Proof. Returning to (8.69)-(8.73), noting (8.4) and (8.44), and using Lemmas

8.6 - 8.8, we have

‖b‖L∞(Ω) ≤ A, (8.81)

‖g‖Lp(ΩT ) ≤ A. (8.82)

These, along with (8.10) and the parabolic Lp-theory, yields the estimate

(8.80). ut

Lemma 8.10. Assume that (c, v, u) ∈ C2,1(ΩT ) is a solution to (8.13)-(8.17)

and that the assumption (8.45) holds, then there hold

‖u‖C2+σ,1+σ/2(ΩT ) ≤ A, (8.83)

‖v‖C2+σ,1+σ/2(ΩT ) ≤ A, (8.84)

‖c‖C2+σ,1+σ/2(ΩT ) ≤ A. (8.85)

Proof. By (8.80) and the Sobolev embedding theorem (see [108], taking p

sufficiently large),
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‖c‖Cσ,σ/2(ΩT ) ≤ A.

This, together with (8.53)-(8.55) and the parabolic Schauder theory, yields

(8.83).

Moreover, by (8.10), (8.21), (8.27), (8.28), and (8.83), we get the estimate

(8.84).

We next turn to prove the estimate (8.85). Returning to (8.69)-(8.73) and

noting (8.4), (8.83), and (8.84), we have

‖b‖Cσ,σ/2(ΩT ) ≤ A, ‖g‖Cσ,σ/2(ΩT ) ≤ A.

Hence, by the Schauder theory again, we obtain the estimate (8.85). ut

With a priori estimates (8.83)-(8.85), we can extend the local classical

solution established in Theorem 8.1 to all t > 0, as done in Chapters 6 and 7.

Namely, we have

Theorem 8.2. In addition to the assumption (8.4), (8.5), and (8.10), we

assume that

µ > 0.

Then, there exists a unique solution (c, v, u) ∈
(
C2+σ, 1+σ/2(ΩT )

)3

of the

system (8.13)-(8.17) for any given T > 0. Furthermore

c ≥ 0, 0 ≤ v ≤ 1, u ≥ 0.

Remark 8.1. The uniform-in-time boundedness of c remains open due to the

bound of ‖ 5 v‖L2(Ω) depends on the time T (see the estimate (8.49) and its
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proof). Moreover, our global existence result strongly depends on the presence

of the logistic damping (i.e. µ > 0). In other word, the global existence remains

open for µ = 0.

8.5 Boundedness for A Volume-Filling Model

Assuming that cancer cells carry a nonzero finite volume and that occupation

of an area limits other cells from penetrating it, typical density-dependent

chemotactic and haptotactic sensitivity functions reads as follows (see[70, 81]):

for i = 1, 2,

Vi(c) = χic
(

1− c

γ

)
, where γ ≥ 1 denotes the maximum cell density.

(8.86)

In (8.86), χ1 and χ2 are assumed to be two positive constants. Clearly, Vi(c)→

χic as γ → +∞. For this choice of V1(c) and V2(c), the assumption (8.4)

holds, but the assumption (8.5) is not satisfied (since V1(c), V2(c) → −∞ as

c→ +∞). However, these specific forms of V1(c) and V2(c) are in favor of the

proofs of global existence and boundedness. In fact, we have

Theorem 8.3. In addition to the assumption (8.10) and (8.86), we assume

that

0 ≤ c0(x) ≤ γ. (8.87)

Then, there exists a unique solution (c, v, u) ∈
(
C2+σ, 1+σ/2(ΩT )

)3

of the

system (8.13)-(8.17) for any given T > 0. Furthermore
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0 ≤ c ≤ γ, (8.88)

0 ≤ v ≤ 1, (8.89)

u ≥ 0. (8.90)

Proceeding as in the proof of Theorem 8.1, we can first establish the

local existence and uniqueness of solutions. To extend the local solution

to all t > 0, as done in Section ??8.4, we need to establish a priori

C2+σ, 1+σ/2(ΩT )-estimate of (c, v, u), which strongly depends on a priori

L∞Ω)-estimate of c.

Lemma 8.11. Assume that (c, v, u) ∈ C2,1(ΩT ) is a solution to (8.13)-(8.17)

and that the assumptions (8.86) and (8.87) hold, then there holds

0 ≤ c ≤ γ. (8.91)

Proof. By V1(0) = V2(0) = 0 and c0(x) ≥ 0, we easily find that c := 0 is

a sub-solution of the problem (8.69)-(8.71). On the other hand, by (8.87),

v ≥ 0, and V1(γ) = V2(γ) = 0, we easily find that c := γ is a sup-solution

of the problem (8.69)-(8.71). Hence, by the maximum principle, we have the

estimate (8.91). ut

With the a priori estimate (8.91), we can prove Theorem 8.3 in the same

way of the proof of Theorem 8.2.
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