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Abstract

A brief introduction to evolution algebras is presented. Evolution

algebras are motivated by genetics and Markov Chains. They are non-

associative and commutative. Evolution algebras possess distinct con-

cepts such as algebraic persistency, algebraic transiency and algebraic

periodicity. These notions lead to hierarchical structures for evolution

algebras. Algebraically, a hierarchical structure is given by a sequence

of semidirect-sum decompositions of an evolution algebra; dynamically,

a hierarchical structure displays directions of the flows induced by an

evolution algebra. The hierarchical structure is preserved under evolu-

tionary isomorphisms. Skeleton classification and skeleton-shape clas-

sification of evolution algebras are given. Each evolution algebra is

evolutionary homomorphic to its skeleton.

1 Introduction

In this article, we briefly introduce a new type of algebra, that we call

evolution algebra. It is motivated by evolution laws of genetics [1][2]. We
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view the generators of the algebra as alleles (or organelles or cells), then

define the multiplication of two ”alleles” Gi and Gj by Gi ·Gj = 0 if i 6= j.

However, Gi ·Gi is viewed as ”self-reproduction”, so that Gi ·Gi =
∑

j pijGj ,

where the summation is taken over all generators Gj . It seems obvious

that this type of algebra is non-associative, but commutative if we keep

in mind that reproduction in genetics is represented by multiplication in

algebras. In history, many mathematicians studied algebras corresponding

to Mendelian genetics [3][4][5][6][7][8]. Evolution algebras are corresponding

to non-Mendelian genetics [2][13]. When the pij ’s form Markovian transition

probabilities, the properties of the algebra are associated with properties of

Markov chains. Markov chains allow us to develop the algebras at deeper

hierarchical levels than standard algebras. After we introduce several new

algebraic concepts, particularly, algebraic persistency, algebraic transiency,

algebraic periodicity, we establish the hierarchical structure for evolution

algebras. The evolution algebras enable us to derive new results on Markov

chains at the same time. When we apply the algebras back to non-Mendelian

genetics, we can explain many puzzling features of organelle heredity[14]. We

will give basic definitions and properties in this paper, and most of them

we don’t give detailed proof. A detailed study of evolution algebras can be

found in my book [10].

2 Definitions and Basic Properties

In this section, we introduce the algebraic foundation of evolution algebras.

The basic reference are [11], [12], [9] and [10].
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2.1 Basic definitions

We define evolution algebras in terms of generators and defining relations.

The method of generators and relations is similar to the axiomatic method,

where the role of axioms is played by the defining relations.

Definition 2.1. Let X = {x1, x2, · · · , xv, · · · } be the set of generators and

R = {fl = x2
l +

v∑
k=1

al,kxk, fij = xixj | al,k ∈ K, i 6= j, l, i, j = 1, 2, · · · , v, · · · }
be the set of defining relations, where K is a field, the evolution algebra is

then defined by

E(X) =

〈
x1, · · · , xv, · · · | x2

l +
v∑

k=1

al,kxk, xixj , i 6= j; i, j, l ∈ Λ

〉

where Λ is the index set, Λ = {1, 2, · · · , v, · · · }.
An algebra is real, if K = R. An evolution algebra is nonnegative if it is

real and all structural constants aij are nonnegative.

we have the following theorems.

Theorem 2.1. (In page 19 of [10]) If the set of generators X is finite,

then the evolution algebra E(X) is finite dimensional. Moreover the set of

generators X can serve as a basis of the algebra E(X). X is called a natural

basis of E(X).

Theorem 2.2. (In page 20 of [10])

(1) Evolution algebras are not associative, in general.

(2) Evolution algebras are commutative, and hence flexible.

(3) Evolution algebra are not power-associative, in general.

(4) The direct sum of evolution algebras is an evolution algebra.
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(5) The Kronecker product of evolution algebras is an evolution algebra.

Definition 2.2. (1) Let A be an evolution algebra, and B be a subspace of

A. If B has a natural basis {gi | i ∈ Λ0}, which can be extended to a

natural basis {gj | j ∈ Λ} of A, B is called an evolution subalgebra,

where Λ0 is a subset of Λ.

(2) Let A be a commutative algebra, we define principal powers of a respect

to b ∈ A as follows

a1 ¯ b = ab, a2 ¯ b = a(a1 ¯ b), · · · · · · , an ¯ b = a(an−1 ¯ a).

And plenary powers of a ∈ A as follows

a[1] = a(2) = a · a, a[2] = a(4) = a[1] · a[1], · · · · · · ,

a[n] = a(2n) = a[n−1] · a[n−1].

For convenience, we denote a[0] = a. Then, we have a property

(
a[n]

)[m]
= a[n+m],

where n and m are nonnegative integers.

(3) We say an evolution algebra E is connected if E can not be decomposed

into a direct sum of two proper evolution subalgebras.

(4) An evolution algebra E is simple if it has no proper evolution subalgebra.

(5) Let A and B be evolution algebras, a linear homomorphism f from A

to B is called evolution homomorphism if f is an algebraic map and

for a natural basis X of A, f(X) spans an evolution subalgebra of B.
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2.2 Occurrence relation

Let E be an evolution algebra with the generator set {g1, g2, · · · , gv}. We

say gi occurs in x ∈ E if the coefficient αi ∈ K is nonzero in x =
∑v

j=1 αjgj ,

denote by gi ≺ x.

It is easy to see that if gi ≺ g
[n]
j , then 〈gi〉 ⊆ 〈gj〉, where 〈x〉 denotes the

evolution subalgebra generated by x.

Proposition 2.1. (In page 26 of [10]) Let E be a nonnegative evolution

algebra. When gi ≺ g
[n]
j and gj ≺ g

[m]
k , then gi ≺ gn+m

j .

We then have a type of partial order relation among the generator set of

an evolution algebra E. Let gi and gj be two generators of E, if gi occurs

in a plenary power of gj , define gi ≤ gj . Then this is a partial order in the

following sense.

(1) gi ≤ gi for any generator of E.

(2) If gi ≤ gj and gj ≤ gi, then we say gi and gj intercommunicate. Gener-

ally, gi and gj are not necessarily the same, the evolution subalgebra

generated by gi and the one by gj are the same, 〈gi〉 = 〈gj〉.

(3) If gi ≤ gj and gj ≤ gk, then gi ≤ gk.

2.3 Evolution operators and non-associative Banach alge-

bras

Definition 2.3. Let E be an evolution algebra with a generator set {gi | i ∈
Λ}. We define a K−linear map

∧
as

∧
: E −→ E

gi 7→ g2
i ∀ i ∈ Λ
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then linearly extend onto E.

Alternatively, by using a formal element Θ =
∑

i∈Λ gi, the evolution

operator is defined by
∧

(x) = Θ · x = (
∑

i∈Λ

gi) · x,

for x ∈ E.

Theorem 2.3. (In page 30 of [10]) If A is an evolution subalgebra of an

evolution algebra E, then the evolution operator L of E leaves A invariant,

namely,
∧

(A) ⊆ A.

When E is a real evolution algebra, we can equip it with the usual L1

norm, i.e., ‖ ∑
αigi ‖=

∑ | αi |. Then E becomes a complete linear space

with respect to the metric ρ(x, y) =‖ x−y ‖. In other words, E is a Banach

space. For finite dimensional evolution algebra E, it is a non-associative

Banach algebra.

When the dimension dim(E) is finite, all linear operators defined on E

are continuous. Particularly, every left translation by z, defined by Lz(x) =

zx, is continuous. Although the composition of two left translations is no

longer a left translation due to the lack of associativity, all left translations

generate a subalgebra of Hom(E, E), called the operator algebra of left

multiplication of the algebra E, denoted by L(E). If dimE2 6= 1, we have

dim(L(E)) > dim(E).

The subalgebra of Hom(E, E) generated by all left and right multiplica-

tion operators is called the multiplication algebra of E, denote M(E). The

centroid centralizes the multiplication algebra M(E), denote Γ(E).

Theorem 2.4. (In page 36 of [10]) Any evolution algebra is centroidal, i.e.,

Γ(E) = K.
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3 Periodicity and algebraic persistency

In this section, we introduce the periodicity for each generator of any evolu-

tion algebra. It turns out all generators of a simple evolution algebra have

the same periodicity. We also introduce the algebraic persistency or the

algebraic transiency for generators of any evolution algebra. They are basic

concepts in the study of evolution in algebras.

3.1 Periodicity of generators in an evolution algebra

Definition 3.1. Let gj be a generator of an evolution algebra E, the pe-

riod d(gj) of gj is defined to be the greatest common divisor of the set{
log2 m | gj ≺

(
g
(m)
j

)}
, where power g

(m)
j is some k − th plenary power,

2k = m. That is

d(gj) = g.c.d.
{

log2 m | gj ≺
(
g
(m)
j

)}
.

If this set is empty, we set d(gj) = ∞; d(gj) = 1, we say gj is aperiodic.

Proposition 3.1. (In page 40 of [10]) Generator gj has a period d if and

only if d is the greatest common divisor of the set {n | ρj Θn ¯ gj) 6= 0}.
That is

d(gj) = g.c.d.{n | ρj Θn ¯ gj) 6= 0},

where ρi is a projection map of E, which maps an element of E to its gi

component.

Theorem 3.1. All generators have the same period in a nonnegative simple

evolution algebra.

For the purpose of illustration, we give a simple proof here.
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Proof. Let gi and gj be two generators in a nonnegative simple evolution

algebra E. The periods of gi and gj are di and dj respectively. Since gi

must occur in a plenary power of gj , say gi ≺ e
[n]
j and gj must occur in a

plenary power of gi, say gj ≺ g
[m]
i , we have gi ≺ g

[n+m]
i and gj ≺ e

[n+m]
j .

Then di | n + m, and dj | n + m. Since gj ≺ g
[dj ]
j , so gi ≺ g

[dj+n]
j and

gi ≺ g
[dj+n+m]
i , then di | dj + n + m. Therefore di | dj . Similarly, we have

dj | di. Thus, we get di = dj .

3.2 Algebraic persistency and algebraic transiency

Generator gj is said to be algebraically persistent if the evolution subalgebra

〈gj〉, generated by gj , is a simple subalgebra, and gi is algebraically transient

if the subalgebra 〈gi〉 is not simple. Then, it is obvious that every generator

in a nonnegative simple evolution algebra is algebraically persistent, since

each generator can generate the algebra that is simple. We know that if

x ≤ y and y ≤ x, the evolution subalgebra generated by x is the same as

the one generated by y. Moreover, we have the following theorem.

Theorem 3.2. Let gi and gj be generators of an evolution algebra E. If

gi ≤ gj and gj ≤ gi and both are algebraically persistent, then they belongs

to the same simple evolution subalgebra of E.

Proof. Since gi ≤ gj and gj ≤ gi, gi occurs in 〈gj〉 and gj occurs in 〈gi〉 .
Then, there are some powers of gi, denoted by P (gi) and some powers of gj ,

denoted by Q(gj), such that:

P (gi) = agj + u a 6= 0,

Q(gj) = bgi + v b 6= 0.
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Since subalgebras are also ideals in an evolution algebra, we have

P (gi)gj = ag2
j ∈ 〈gi〉 ,

Q(gj)gi = ag2
i ∈ 〈gj〉 .

Therefore, 〈gi〉 ∩ 〈gj〉 6= {0}. Since 〈gi〉 and 〈gj〉 are both simple evolution

subalgebras, then 〈gi〉 = 〈gj〉 . Thus, gi and gj belong to the same simple

evolution subalgebra.

For an evolution algebra, we can give certain conditions to specify whether

it is simple or not by the following corollary.

Corollary 3.1. (1) Let E be a connected evolution algebra, then E has

a proper evolution subalgebra if and only if E has an algebraically

transient generator.

(2) Let E be a connected evolution algebra, then E is a simple evolution

algebra if and only if E has no algebraically transient generator.

(3) If E has no algebraically transient generator, then E can be written as

a direct sum of Evolution subalgebras (the number of summands can

be one).

Now, for any evolution algebra, is there always an algebraically persistent

generator? Generally, it is not true. For any finite dimensional evolution

algebra, we have the following statement.

Theorem 3.3. Any finite dimensional evolution algebra has a simple evo-

lution subalgebra.

Proof. We assume the evolution algebra E is connected, otherwise we just

need to consider a component of a direct sum of E.
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Let {gi, g2, · · · , gn} be a generator set of E. Consider evolution sub-

algebras generated by each generator 〈g1〉, 〈g2〉, · · · · · · , 〈gn〉. If there is

a subalgebra that is simple, it is done. Otherwise, we choose a subalge-

bra which contain the least number of generators, for example, 〈gi〉 and

{gi1 , gi2 , · · · , gik} ⊂ 〈gi〉 , where {gi1 , gi2 , · · · , gik} is a subset of {g1, g2, · · · ,

gn}. Then, consider 〈gi1〉, 〈gi2〉, · · · · · · , 〈gik〉. If there is some subalgebra

that is simple in this sequence, we are done. Otherwise, we choose a certain
〈
gij

〉
in the same way as we choose 〈gi〉. Since the number of generators is

finite, this process will stop. Therefore, we always have a simple evolution

subalgebra.

4 Hierarchy of an evolution algebra

The hierarchical structure of an evolution algebra is an interesting property

that gives a picture of the dynamical process when multiplication in the

evolution algebra is treated as a discrete-time dynamical step.

4.1 The periodicity of a simple evolution algebra

As we know, all generators of a simple evolution algebra have the same pe-

riod. It might be well to say that a simple algebra has a period. Thus,

simple evolution algebras can be roughly classified as either periodic or ape-

riodic. The following theorem establishes the structure of a periodic simple

evolution algebra.

Theorem 4.1. Let E be a simple evolution algebra with generator set {gi |
i ∈ Λ}, then all generators have the same period, denoted by d. There is

a partition of generators with d disjointed classes C0, C2, · · · , Cd−1, such

that
∧

(∆k) ⊆ ∆k+1( mod d), or ∆2
k ⊆ ∆k+1( mod d), k = 1, 2, · · · d − 1,
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where ∆k = Span (Ck) and
∧

is the evolution operator, mod is taken with

respect to the index of the class of generators. There is also a direct sum of

linear subspaces

E = ∆0 ⊕∆1 ⊕ · · · ⊕∆d−1.

Proof. Since E is simple, if any generator gi has a period of d, then every

generator has a period of d. Set Cm =
{

gj | gj ≺ g
[nd+m]
i , j ∈ Λ

}
, 0 ≤ m <

d, for any fixed gi. Because this evolution algebra is simple, each generator

gj will occur in some Cm. So

∪d−1
m=0Cm = {gk | k ∈ Λ}

Claim that these Cm are disjoint. We can also prove that if we take gk

as a fixed generator that is different from the previous gi for partitioning, we

still get the same partition. Now, if gj ∈ Ck, then g
(2nd+k)
i = agj + v, a 6= 0.

We have g
[k+1]
i = a2g2

j + v2 = a2
∧

(gj) + v2, which means that generators

occur in
∧

(gj) ∈ Ck+1 or generators occur ing2
j ∈ Ck+1.

Denote the linear subspace spanned by Ck as ∆k, k = 1, 2, · · · d−1, then

we have a direct sum for E = ∆0⊕∆1⊕· · ·⊕∆d−1, and
∧

: ∆k → ∆k+1 for

k = 1, 2, · · · d− 1. Or, we have ∆2
k ⊆ ∆k+1, ∆d

k ⊆ ∆k for k = 1, 2, · · · d− 1.

This concludes the proof.

4.2 Semi-direct-sum decompositions of an evolution algebra

A general evolution algebra has algebraically persistent generators and alge-

braically transient generators. These two types of generators have distinct

“reproductive behavior” — dynamical behavior. Algebraically persistent

ones can generate a simple subalgebra. Once an element belongs to a subal-

gebra, it will never “reproduce” any element that is not in the subalgebra.
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Or, dynamically, once the dynamical process, represented by the evolution

operator
∧

, enters a simple evolution subalgebra, it will never escape from

it. In contrast, algebraically transient generators behave differently. They

generate reducible subalgebras. The following theorem demonstrates how

to distinguish these two types of generators algebraically.

Theorem 4.2. (In page 45 of [10]) Let E be a connected evolution algebra.

As a vector space, E has a decomposition:

E = A1 ⊕A2 ⊕ · · · ⊕An

•
+ B

where Ai, i = 1, 2, · · · , n, are all simple evolution subalgebras, Ai∩Aj = {0}
for i 6= j, and B is a subspace spanned by algebraically transient generators

(which we call a transient space). We call this decomposition a semi-direct-

sum decomposition of E. This decomposition is unique for all algebras which

are evolutionary isomorphic each other.

Note, if E is simple, n is 1 and B = φ.

4.3 Hierarchy of an evolution algebra

(1) The 0−th structure of an evolution algebra E : the 0−th decomposition

of E is given by the above theorem

E = A1 ⊕A2 ⊕ · · · ⊕An0

•
+ B0

where B0 is called the 0− th transient space.

(2) The 1− st structure of E is the decomposition of B0 :

• Briefly speaking, in the space B0, we can define every induced (or

first) algebraic concepts: induced multiplication, induced evolu-
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tion operator,induced evolution subalgebra, first algebraical per-

sistency, etc.

• Theorem of decomposition of B0 is given by

B0 = A1,1 ⊕A1,2 ⊕A1,3 ⊕ · · · ⊕A1,n1

•
+ B1

where A1,i, i = 1, 2, · · · , n1, are all first simple evolution subalge-

bras of B0, A1,i∩A1,j = {0}, if i 6= j, and B1 is the first transient

space spanned by the first algebraically transient generators.

(3) We can construct the 2nd induced evolution algebra over the first tran-

sient space B1, if B1 is connected and not simple. If the k−th transient

space Bk is disconnected and each component is simple, we will stop

with a direct sum of (k + 1) − th simple evolution subalgebras. Oth-

erwise, we can continue to construct evolution subalgebras until we

reach a level where each evolution subalgebra is simple. Now, we have

the hierarchy as follows

E = A0,1 ⊕A0,2 ⊕ · · · ⊕A0,n0

•
+ B0

B0 = A1,1 ⊕A1,2 ⊕ · · · ⊕A1,n1

•
+ B1

B1 = A2,1 ⊕A2,2 ⊕ · · · ⊕A2,n2

•
+ B2

· · · · · · · · · · · · · · · · · ·

Bm−1 = Am,1 ⊕Am,2 ⊕ · · · ⊕Am,nm

•
+ Bm

Bm = Bm,1 ⊕Bm,2 ⊕ · · · ⊕Bm,h

where Ak,l is a k− th simple evolution subalgebra, Ak,l ∩Ak,l′ = {0}
if l 6= l′, Bk is the k − th transient space. Bm can be decomposed as

a direct sum of (m + 1) − th simple evolution subalgebras. We may
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call these (m + 1) − th simple evolution subalgebras the heads of the

hierarchy, h is the number of heads.

(4) This hierarchy is unique for all algebras which are evolutionary isomor-

phic each other.

4.4 Reducibility of an evolution algebra

From the hierarchy of an evolution algebra, we get an impression about

dynamical flows of an algebra. That is, if we start at a high level, a big index

level, the dynamical flow will automatically go down to a low level, it may

also sojourn in a simple evolution subalgebra at each level. It is reasonable

to view each simple evolution subalgebra at each level as one point or one

dimensional subalgebra. The big evolutionary picture still remains. If we

call this remained hierarchy the skeleton of the original evolution algebra,

all evolution algebras which possess the same skeleton will have a similar

dynamical characteristics, and they are evolutionary homomorphic to the

skeleton. We call this procedure the reducibility of an evolution algebra and

write it as a statement.

Theorem 4.3. (In page 50 of [10]) Every evolution algebra E is evolution-

ary homomorphic to a unique evolution algebra Er such that its evolution

subalgebras in its hierarchy are all one dimensional subalgebras. Such a

unique evolution algebra Er is called the skeleton of E.

The concept of the skeleton can be used to give a rough classification

of all evolution algebras. The number of levels m and the numbers nk of

simple evolution subalgebras at each level k, can roughly determine the

shape of the hierarchy of an evolution algebra, ignoring the flow relations
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between two different levels. We define skeleton-shapes to classify evolution

algebras. If two evolution algebras have the same number m of levels and the

same numbers nk of simple evolution subalgebras at each level k including

h subalgebras in m + 1 level, we say these two evolution algebras belong

to the same class of skeleton-shape. Furthermore, we say two evolution

algebras belong to the same class of skeleton if they belong to the same

class of skeleton-shape and the flow relations between any two different levels

correspondingly are the same.

Given the level number m and the total number n of simple evolu-

tion subalgebras (including heads) wherever they are, how many classes of

skeleton-shapes of evolution algebras can we have? The answer is a famous

number in number theory, pm+1 (n) , the number of partitions of n into m+1

cells. For n < m + 1, pm+1 (n) = 0 and pm+1 (m + 1) = 1. Generally, we

have the recursion

pm+1 (n) = pm+1 (n−m− 1) + pm (n−m− 1) + · · ·+ p1 (n−m− 1) .

Generally, we have

pm+1 (n) =
nm

m! (m− 1)!
+ Rm−1 (n) , n ≡ n′ ((m + 1)!) ,

where Rm−1 (n) is a polynomial in n of degree at most m − 1. Therefore,

by the number of level and the numbers of simple evolution subalgebras, we

can determine an evolution algebra up to its skeleton-shape. We thus obtain

a skeleton-shape classification of all evolution algebras.

In order to get a skeleton classification for all evolution algebras, we

need to know how many classes of skeletons of evolution algebras we can

have given the level number m and the numbers nk of simple evolution
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subalgebras at each level. Set

bp(n,m) =
n∑

k=0

(−1)k

(
n

k

)
(

m∑

l=0

(−1)l

(
m

l

)
2(n−k)(m−l)).

Then the number of classes of skeletons is given by

bp(n0, n1)bp(n1, n2) · · · bp(nm−1, nm).

Therefore, by the number of levels and subalgebras at each level, we can

determine an evolution algebra up to its skeleton.
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