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A B S T R A C T

Based on a deterministic and stochastic process hybrid model, we use white noises to account for patient
variabilities in treatment outcomes, use a hyperparameter to represent patient heterogeneity in a cohort,
and construct a stochastic model in terms of Ito stochastic differential equations for testing the efficacy of
three different treatment protocols in CAR T cell therapy. The stochastic model has three ergodic invariant
measures which correspond to three unstable equilibrium solutions of the deterministic system, while the
ergodic invariant measures are attractors under some conditions for tumor growth. As the stable dynamics of
the stochastic system reflects long-term outcomes of the therapy, the transient dynamics provide chances of
cure in short-term. Two stopping times, the time to cure and time to progress, allow us to conduct numerical
simulations with three different protocols of CAR T cell treatment through the transient dynamics of the
stochastic model. The probability distributions of the time to cure and time to progress present outcome details
of different protocols, which are significant for current clinical study of CAR T cell therapy.
1. Introduction

Chimeric antigen receptor (CAR) T cell immunotherapy has been re-
garded as a major advance in the fight against cancers, especially those
associated with the hematopoietic system [1]. This is a special adoptive
cellular therapy in that T lymphocytes are taken from the patient’s
blood, genetically modified to recognize specific antigens expressed by
the tumor, expanded in vitro, and infused into the patient, usually after
lymphodepletion chemotherapy. Due to the efficacy of CAR T cell im-
munotherapy, the Food and Drug Administration has approved 6 CAR
T cell products for use in hematologic malignancies [2,3]. However,
temporary reductions in tumor burdens have been observed in patients
treated with CAR T cells although overall response rate and complete
response rate are high in many CAR T cell drug clinical trials [4]. This
requires a complete understanding of the treatment process after CAR
T cell infusion. In particular, the dynamics of CAR T cells after infusion,
and the interactions among CAR T cells, cancer cells, and other relevant
cells. Those are suitable for mathematical modeling once relevant key
factors and interactions among components are identified. It is an
opportunity for mathematical analysis and numerical simulations to
make contributions to understanding CAR T cell immunotherapy.

There are several mathematical models about CAR T cell treatment
at different levels. At the cellular and subcellular levels, mathematical
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models [5–8] have been developed to better understand the down-
stream signaling mechanisms of CAR T-cell activation. These studies
identified the competitive inhibition mechanism of CAR protein phos-
phorylation, the influence of co-stimulatory domain on overall CAR
protein phosphorylation and how the cell-to-cell heterogeneity in terms
of protein expression levels can influence the CAR T-cell activation
response. These studies may provide insight into strategies to design
novel CARs with optimized signaling. At the cell population level,
mathematical models [9–16] have been developed to analyze the com-
plex interactions among the tumor, immune cells including CAR T
cells, and microenvironmental factors. Each of these models has its
specific focus and application in studies of the therapeutic outcomes
at different patient conditions and doses. These models have limited
input of clinical data. It is known that having adequate clinical data
is a challenge for mathematical modeling, in general, in particular, for
CAR T-cell modeling, since the field is still in its infancy and there is a
lack of consensus on key factors driving therapeutic efficacy and safety.
However, this provides an opportunity for mathematical analysis and
numerical simulations to explore possible important factors at the cell
population level.

There is a mathematical framework that describes dynamics and
interactions among three cell populations [17], which are endogenous
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or normal T cells (𝑁), CAR T cells (𝐶), and tumor cells (𝐵), in order
to investigate the likelihood of successful treatment of CAR T cell
therapy under different scenarios. The framework is a combination of
a deterministic system of three ordinary differential equations and a
birth–death stochastic process model in which the deterministic system
is operated when the tumor cell population is above a certain threshold
and the stochastic process is used to update the system when the tumor
is below the threshold while the other populations are updated by the
deterministic system in parallel. The deterministic system is given by

𝑑𝑁
𝑑𝑡

= 𝑟𝑁𝑁 ln
(

𝐾𝑁
𝑁 + 𝐶

)

,

𝑑𝐶
𝑑𝑡

= 𝑟𝐶 𝐶 ln
(

𝐾𝐶
𝑁 + 𝐶

)

,

𝑑𝐵
𝑑𝑡

= 𝑟𝐵𝐵 − 𝛾𝐵𝐵
𝐶

𝑘𝐵 + 𝐶
.

(1)

To better fit the clinical data, Kimmel et al. [17] calibrated the de-
terministic model (1) by considering the growth rate of the CAR T
cell population to be functionally dependent on immune reconstitution
reduction

𝑟𝐶 ∶= 𝑟𝐶 (𝑇 ) = 𝜌𝐶 +
𝑏
(

𝑁 + 𝐶 −𝐾𝑁
)2

𝑎 (𝑁 + 𝐶)2 +
(

𝑁 + 𝐶 −𝐾𝑁
)2

, (2)

here 𝑇 = 𝑁 + 𝐶 is the total T cell count. The baseline net growth
ate 𝜌𝐶 sets the time scale at which birth and death events occur on
verage in the CAR T count. These birth and death events depend on
ignals provided by all T cells: signaling inefficiency factor 𝑎 in 𝑟𝐶 and
mmune reconstitution impact 𝑏 in 𝑟𝐶 . The deterministic system (1)
rovides a general framework in which two types of T cells compete
ith each other. CAR T cells rapidly grow at net growth rate 𝑟𝐶 (𝑇 ) but
xperience an emerging growth rate disadvantage compared to normal
cells growing at rate 𝑟𝑁 . This can be explained by a feature in immune

econstitution after lymphodepletion: both types of T cell proliferate,
ut only counts of normal T cells are supported by differentiation from
tem and progenitor cells, which leads to the fact that the carrying
apacity 𝐾𝐶 of CAR T cells is naturally lower than normal T cells’s
arrying capacity 𝐾𝑁 . Meanwhile, the tumor cells grow autonomously
t a net growth rate 𝑟𝐵 and are eradicated by CAR T cells at rate 𝛾𝐵 ,
roportional to the number of CAR T cells and inversely proportional
o killing rate saturation parameter 𝑘𝐵 . The stochastic process model
s constructed in terms of continuous time birth and death processes
f three cell populations in which a system of master equations of
ransition probabilities among three states 𝑁 , 𝐶, and 𝐵 is developed
for details of this stochastic formulation, see Supplementary Material
n [17]).

With the deterministic setting considered alone, there is no positive
quilibrium state for the deterministic system (1) and all the equilib-
ium states on the boundary, which represent tumor eradication, are
nstable. So the deterministic model alone cannot adequately capture
he events that the tumor cell population can become arbitrarily small
nd the system spends a long period of time in a regime near tumor
radication, where random cell death events could lead to the elimi-
ation of the tumor. This is the reason why the authors proposed and
nalyzed the above hybrid framework with the goal of improving the
utcomes of CAR T cell therapy. By defining cure and progression as
tochastic events, they pointed out that cure events occurred early and
ere narrowly distributed, while progression events occurred late and
ere more widely distributed in time.

The success of CAR T cell treatment may be subject to environ-
ental noises and stochastic effects that come from complicated en-

ironments within the patient’s body, fluctuations in health conditions
nd ages among individual patients, and measurement errors in col-
ecting data in patients. One of the patient’s internal environments that
lays a crucial role in influencing the behavior and effectiveness of
AR T cells and the tumor killing rate of CAR effector is the hostile
2

umor microenvironment. Solid tumors often have a dense stroma
hat physically blocks CAR T cell infiltration and trafficking into the
umor [18]. The high interstitial pressure also prevents extravasation
f CAR T cells from blood vessels into the tumor [19]. Besides the
umor microenvironment, CAR T cell proliferation can be weakened by
he low arginine microenvironment, reducing their efficacy in clinical
rials against haematological and solid malignancies [20]. Furthermore,
odifying gut microbiome environment in patients may have a great

ffect on the success of CAR T cell treatment. Specifically, antibiotics,
hose disrupting gut bacteria like piperacillin/tazobactam, before CAR
cell treatment were associated with worse outcomes [21]. In addition

o the patient’s internal environments, fluctuations in health conditions
nd ages among individual patients are also two key factors that limit
he efficacy of CAR T cell treatment. For example, the autologous

cells are starting materials used to make CAR T cells from each
ndividual patient. Differences in patients’ prior treatments, disease
tatus, age, etc. affect the quality and composition of T cells in the
tarting materials, which can impact CAR T cell manufacturing [22].
t is clear that the potency and viability of final CAR T cell product
n manufacturing heavily rely on data collection in patients, which is
ften subject to measurement errors.

These above stochastic factors may lead to variability in the out-
omes of CAR T cell treatments in that the therapy works for some
atients but not for others. To date, besides deterministic models,
ybrid models, and stochastic process models mentioned above, there is
o stochastic model using stochastic differential equations to quantify
he events such as poor product quality, disease progression, death from
oxicity in CAR T cell therapy. Stochastic differential equations (SDEs)
re suitable for numerically simulating CAR T cell treatment efficacy
nd variability in clinical trials. This is because there are two possible
nterpretations for SDE modeling. First, each solution of a SDE model
ould represent the potential response to treatment for a hypothetical
atient. When we run a SDE model for a cancer treatment 10 000 times,
or example, we could think of the 10 000 solution paths as 10 000
ifferent hypothetical patients. The stochastic factors in the model
ay capture individual variations such as genetic differences, immune

ystem responses, or other patient-specific characteristics. So a SDE
odel allows us to explore the variability in treatment outcomes across
cohort of hypothetical patients. Second, each solution path of a SDE
odel could represent a different possible trajectory for the treatment

f a single hypothetical patient. By this way, if we run a SDE model 100
imes, for instance, then we could treat the 100 solution paths as 100
reatment possibilities for one single patient. Stochasticity in the model
ay then come from sources of uncertainty in the treatment process

uch as variations in drug effectiveness. Thus, modeling a treatment
herapy allows us to unravel the uncertainty and variability in the
reatment process of a single hypothetical patient. In this paper, we will
tilize the first interpretation for our stochastic modeling and discuss
he second interpretation in the Discussion section.

Based on the hybrid model, we propose a system of Ito stochastic
ifferential equations that can capture the dynamics of three given
ell types in CAR T cell therapy. In our model, we use white noise to
epresent environmental noises and stochastic effects, and we incorpo-
ate white noise into some important parameters of the deterministic
odel. Suppose we would like to account for the variability of the
arameter 𝛼. Then we replace 𝛼 with 𝛼̄ = 𝛼 + 𝜏 𝑑𝑊

𝑑𝑡 where 𝑊 = 𝑊 (𝑡) is
standard Brownian Motion and 𝜏 stands for the noise intensity. Now,

he new parameter 𝛼̄ is no longer a constant but a stochastic process.
ithin a sufficiently small interval [0, 𝑡], we can approximate 𝑑𝑊

𝑑𝑡 by
𝑊 (𝑡)−𝑊 (0)

𝑡−0 = 𝑊 (𝑡)
𝑡 ∼ 𝑁(0, 1𝑡 ), which is the normal distribution with mean

0 and variance 1
𝑡 . To count for patient heterogeneity in simulations,

we utilize a hyperparameter 𝜎 in the following way. When we run
our model, the value of 𝛼 will be chosen from the normal distribution
𝑁(𝛼, 𝜎2𝛼2), which is independent of 𝑁(0, 1𝑡 ). Since the value of 𝑊 (𝑡)

𝑡
is chosen from 𝑁(0, 1𝑡 ), at each time 𝑡 the value of 𝛼̄ will be chosen
from 𝑁(𝛼, 𝜎2𝛼2 + 𝜏2∕𝑡). For 𝜎 = 0, we are able to generate a cohort of
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patients with the same health conditions (e.g. the same tumor growth
rates). For 𝜎 > 0, we can generate a cohort of diverse patients with
different health conditions (e.g. different tumor growth rates or CAR T
cell growth rates).

Based on our arguments above and our previous work [23–25], we
incorporate white noise into the baseline growth rate of CAR T cells
𝜌𝐶 , tumor growth rate 𝑟𝐵 , and the tumor-killing rate 𝛾𝐵 as follows.

𝜌𝐶 → 𝜌𝐶 + 𝜏1
𝑑𝑊1
𝑑𝑡

,

𝑟𝐵 → 𝑟𝐵 + 𝜏2
𝑑𝑊2
𝑑𝑡

,

𝛾𝐵 → 𝛾𝐵 + 𝜏3
𝑑𝑊3
𝑑𝑡

,

here 𝑊1, 𝑊2 and 𝑊3 are mutually independent Wiener processes,
𝜏1, 𝜏2 and 𝜏3 are intensities of corresponding noises. Then, a system of
three Ito stochastic differential equations is obtained as follows,

𝑑𝑁 = 𝑟𝑁𝑁 ln
(

𝐾𝑁
𝑁 + 𝐶

)

𝑑𝑡,

𝑑𝐶 = 𝑟𝐶𝐶 ln
(

𝐾𝐶
𝑁 + 𝐶

)

𝑑𝑡 + 𝜏1𝐶 ln
(

𝐾𝐶
𝑁 + 𝐶

)

𝑑𝑊1,

𝑑𝐵 =
(

𝑟𝐵𝐵 − 𝛾𝐵𝐵
𝐶

𝑘𝐵 + 𝐶

)

𝑑𝑡 + 𝜏2𝐵𝑑𝑊2 − 𝜏3𝐵
𝐶

𝑘𝐵 + 𝐶
𝑑𝑊3.

(3)

We conduct a detailed analysis of this system and a series of nu-
merical simulations with different treatment protocols. As we know the
deterministic system (1) has three equilibrium points (0, 0, 0), (0, 𝐾𝐶 , 0),
and (𝐾𝑁 , 0, 0) on the boundary of the invariant domain. Since those
equilibrium solutions are locally unstable, the deterministic model does
not have a cure state built in. In our stochastic model (3), it has three
ergodic invariant measures which correspond to the three equilibrium
solutions of the deterministic model. When the tumor growth rate
is smaller than a quantity of a combination of noise intensities and
carrying capacities, the two invariant ergodic measures corresponding
to equilibrium solutions (0, 0, 0) and (0, 𝐾𝐶 , 0) are attractors. When the
tumor growth rate is even smaller than its variance, the invariant
ergodic measure corresponding to the equilibrium solution (𝐾𝑁 , 0, 0)
is a global attractor. These invariant ergodic measures may represent
some cure states. However, when these conditions are not satisfied,
we perform numerical simulations with three different protocols where
simulated patient population has a size of 10000, (i) performing lym-
phodepletion and then one dose of CAR T cell infusion, (ii) performing
lymphodepletion, and the first dose of CAR T cell infusion, then the
second dose of CAR T cell infusion after 15 days, (iii) performing the
first lymphodepletion, and the first dose of CAR T cell infusion; the
second lymphodepletion after 10 days since the first dose, and the
second dose of CAR T cell infusion at day 15. It should be noticed that
second doses of CAR T cells is rarely used in clinical trials because of
immune rejection. We define two stopping times (random variables),
the time to cure - the first time that the tumor cells go below 1 cell,
the time to progress - the first time that the tumor size go to 120% of
its initial size. One set of numerical simulations shows the following
results. In the first protocol (i), 47.87% of the patients get their tumor
cell below 1 cell during 30 to 135 days after CAR T cell infusion while
52.13% of the patients get their tumor progression during 180 to 550
days after CAR T cell infusion. In the second protocol (ii), 47.28% of
the patients get their tumor cell below 1 cell during 30 to 120 days
after CAR T cell infusion while 52.72% of the patients get their tumor
progression during 180 to 540 days after CAR T cell infusion. In the
third protocol (iii), 48.33% of the patients get their tumor cell below 1
cell during 30 to 135 days after CAR T cell infusion while 51.67% of the
patients get their tumor progression during 170 to 550 days after CAR
T cell infusion. Effects of patient variability and patient heterogeneity
on probability of cure and distribution of time to cure are tested using
multiple cohorts of 100 simulated patients with different values of
hyperparameter 𝜎 and the noise intensity 𝜏3. Another set of numerical
3

simulations shows that, if the time between the first and second dose a
of CAR T cell infusions is longer, the probability of the tumor size goes
below 1 cell will be greater with the second lymphodepletion; however,
the probability of the tumor size goes below 1 cell is not increasing if
the second lymphodepletion is not administered.

The rest of this article is organized as follows. In Section 2, we
present main results of our study and give some medical interpre-
tations. In Section 3, we give detailed proofs about our analytical
results. In Section 4, we conduct numerical simulations to validate
our analytical results and test outcomes of three different treatment
protocols. We close our presentation with some discussion in Section 5.

2. Results and interpretations

We begin with ensuring that the noises are incorporated appro-
priately, which means the system possesses realistically reasonable
solutions. Since all cell populations are always non-negative and lym-
phocyte counts cannot exceed their carrying capacities, we consider the
invariant domain

𝐷 = {(𝑁,𝐶,𝐵)⊺ ∣ 0 ≤ 𝑁 ≤ 𝐾𝑁 , 0 ≤ 𝐶 ≤ 𝐾𝐶 , 𝐵 ≥ 0}

for the stochastic system (3). Assume that we are working on a com-
plete probability space

(

𝛺,F, {F𝑡}𝑡≥0,P
)

with the filtration {F𝑡}𝑡≥0 sat-
isfying the usual condition. Let 𝑈 (𝑡) = (𝑁(𝑡), 𝐶(𝑡), 𝐵(𝑡))⊺ , 𝑡 ≥ 0, be the
process given by solution of the system (3). We use L to denote the
infinitesimal operator of the process 𝑈 , and P𝑢 and E𝑢 to denote the
probability law and expectation on 𝛺, respectively, when the solution
path starts at 𝑢 = (𝑛, 𝑐, 𝑏)⊺.

For simplicity, we let 𝑑𝑊 = (𝑑𝑊1, 𝑑𝑊2, 𝑑𝑊3)⊺ and denote the drift
term and the diffusion term of the system (3) by

𝑓 (𝑈 ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑟𝑁𝑁 ln
(

𝐾𝑁
𝑁 + 𝐶

)

𝑟𝐶𝐶 ln
(

𝐾𝐶
𝑁 + 𝐶

)

𝑟𝐵𝐵 − 𝛾𝐵𝐵
𝐶

𝑘𝐵 + 𝐶

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

𝑔(𝑈 ) =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0

𝜏1𝐶 ln
(

𝐾𝐶
𝑁 + 𝐶

)

0 0

0 𝜏2𝐵 −𝜏3𝐵
𝐶

𝑘𝐵 + 𝐶

⎤

⎥

⎥

⎥

⎥

⎦

,

then, we can rewrite the system (3) into its matrix form

𝑑𝑈 = 𝑓 (𝑈 )𝑑𝑡 + 𝑔(𝑈 )𝑑𝑊 .

he following theorem certifies the rationality of the SDE system (3) in
hich its solution globally stays in the domain 𝐷 for any initial value

n 𝐷.

heorem 2.1. For any initial value

(0) = 𝑢 = (𝑛, 𝑐, 𝑏)⊺ ∈ R3
+ ∶=

{

(𝑁,𝐶,𝐵)⊺ ∣ 𝑁 ≥ 0, 𝐶 ≥ 0, 𝐵 ≥ 0
}

,

here exists almost surely continuous solution 𝑈 (𝑡) to the system (3) that
emains in R3

+ for all time 𝑡 ≥ 0, and 𝑈 (𝑡) is a strong Markov process that
atisfies Feller property. Furthermore, if

(0) ∈ 𝐷◦ = {(𝑁,𝐶,𝐵)⊺ ∣ 0 < 𝑁 < 𝐾𝑁 , 0 < 𝐶 < 𝐾𝐶 , 𝐵 > 0},

hen 𝑈 (𝑡) ∈ 𝐷◦ for all 𝑡 ≥ 0 almost surely.

Since the ODE system (1) has 3 equilibrium points (0, 0, 0)⊺,
0, 𝐾𝐶 , 0)⊺, (𝐾𝑁 , 0, 0)⊺ that all stay on the boundary of the domain 𝐷,
o investigate the cell dynamics in long-term treatment, we perform
oundary analysis for the system (3) in Section 3. Note that both
ypes of T cells proliferate and expand, but only normal T cells get
upported in reconstitution from stem cells. As a result, CAR T cells
re outcompeted by normal T cells in the long term, resulting in
ower adapting ability. Therefore, we proceed our analysis under the

ssumption of 𝐾𝑁 > 𝐾𝐶 . Besides, it can be seen that the tumor cell
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population completely depends on the population size of CAR T cells,
while normal T cells and CAR T cells compete each other; thus, we can
focus on investigating cell kinetics from the first two equations of the
system (3), and then apply the results to the last equation in (3) to
derive the dynamics of tumor cell population.

When the initial total lymphocyte count is zero, that is, 𝑁(0) = 0
and 𝐶(0) = 0, the solution 𝑈 (𝑡) of the system (3) approaches a.s. (0, 0, 0)
provided that 𝑟𝐵 < 1

2 𝜏
2
2 . This means that there is a unique ergodic

nvariant probability measure 𝜇0 = 𝛿∗0 × 𝛿∗0 × 𝛿∗0 for the system (3) on
the boundary 𝜕𝐷 if 𝑟𝐵 < 1

2 𝜏
2
2 .

When there are only CAR T cells in the initial lymphocyte count,
.e. 𝑁(0) = 0 and 0 < 𝐶(0) < 𝐾𝐶 , the system (3) possesses two
rgodic invariant probability measures 𝜇0 and 𝜇1 = 𝛿∗0 × 𝛿∗𝐾𝐶

× 𝛿∗0 on
he boundary 𝜕𝐷 in which the solution 𝑈 (𝑡) either converges weakly
o 𝜇0 with positive probability or converges weakly to 𝜇1 with positive
robability provided 𝑟𝐵 < 𝛾𝐵𝐾𝐶

𝑘𝐵+𝐾𝐶
+ 1

2 𝜏
2
2 + 1

2 𝜏
2
3

𝐾2
𝐶

(𝑘𝐵+𝐾𝐶 )2
.

When there are only initially normal T cells in the lymphocyte
ount, i.e. 0 < 𝑁(0) < 𝐾𝑁 and 𝐶(0) = 0, the solution 𝑈 (𝑡) converges
eakly to the unique ergodic invariant probability measure 𝜇2 = 𝛿∗𝐾𝑁

×
∗
0 × 𝛿∗0 provided that 𝑟𝐵 < 1

2 𝜏
2
2 .

When there are both normal T cells and CAR T cells in initial
ymphocyte count, i.e. 0 < 𝑁(0) < 𝐾𝑁 and 0 < 𝐶(0) < 𝐾𝐶 , assuming
hat 𝑟𝐵 < 1

2 𝜏
2
2 , then three ergodic invariant probability measures on

the boundary 𝜇0, 𝜇1, 𝜇2 exist. Both 𝜇0 and 𝜇1 are repellers while 𝜇2 is
local attractor. The following theorem guarantees that 𝜇2 is actually
global attractor and, as a consequence, there is no positive invariant
robability measure for the system (3) in 𝐷◦.

heorem 2.2. Assume 𝐾𝑁 > 𝐾𝐶 , for any initial value (𝑛, 𝑐)⊺ ∈ (0, 𝐾𝑁 )×
0, 𝐾𝐶 ), the solution (𝑁(𝑡), 𝐶(𝑡))⊺ to the subsystem consisting of the first two
quations of (3) converges a.s. to (𝐾𝑁 , 0)⊺.

For the study of numerical simulations, we define two random
ariables, the time to cure - the first time that the tumor cells go below
cell, the time to progress - the first time that tumor size progresses to
20% of its initial size. We numerically simulate the protocols of CAR
cell treatments in the current practice and summarize the results of

umerical simulations as follows.

n-silicon 2.1. Using parameter values estimated from clinical data [17],
he model predicts long-term and transient dynamics of CAR T cells, endoge-
ous T cells, and tumor cells. With 10 000 simulated patients, three different
rotocols of the treatments have similar outcomes, 47.28% to 48.33% of the
atients get their tumor reduced to below 1 cell first time during 30 to 135
ays after CAR T cell infusion, while 51.67% to 52.72% of the patients
ave their tumor progressed to 120% of the initial size first time during 170
o 550 days after CAR T cell infusion; the time between the first and second
ose of CAR T cell infusion positively impacts the probability of cure.

nterpretation 2.1. Our stochastic model has three ergodic invariant
robability measures, 𝜇0 = 𝛿∗0 × 𝛿∗0 × 𝛿∗0 , 𝜇1 = 𝛿∗0 × 𝛿∗𝐾𝐶

× 𝛿∗0 , and 𝜇2 =
∗
𝐾𝑁

×𝛿∗0 ×𝛿∗0 , which correspond to equilibrium solutions of the deterministic
ystem. For the deterministic system, the three equilibrium solutions are
nstable while for our stochastic system, there are conditions under which
hose invariant probabilities are attractors. There are two critical values
or the tumor growth rate, denoted by 𝑅1 = 1

2 𝜏
2
2 and 𝑅2 = 𝛾𝐵𝐾𝐶

𝑘𝐵+𝐾𝐶
+

1
2 𝜏

2
2 + 1

2 𝜏
2
3

𝐾2
𝐶

(𝑘𝐵+𝐾𝐶 )2
. When 𝑅1 < 𝑟𝐵 < 𝑅2, 𝜇0 and 𝜇1 are local attractors.

When 𝑟𝐵 < 𝑅1, 𝜇0 and 𝜇1 are repellers, and 𝜇2 is a global attractor. It
is interesting that the long-term behavior of the solutions is determined by
the tumor growth rate, and two critical values of the tumor growth rate
are given by its noise intensity, the CAR T cell carrying capacity, CAR T
cell king rate and its noise intensity. If the tumor grows too slow that its
growth rate is small comparing with its noise, then endogenous T cells take
over and the tumor is eradicated. If the tumor growth rate is smaller than a
4

combination of its noise intensity, CAR T cell carrying capacity, and CAR T
cell killing rate, then CAR T cell may take over and the tumor is eradicated.
This case seems reasonable since the tumor growth is controlled by CAR T
cells. However, if the tumor growth rate does not satisfy these conditions,
the system demonstrates transient behaviors. The transient dynamics is also
of significance, which is used to numerically simulate different treatment
protocols.

The patient variability and patient heterogeneity are encoded as noises
and a hyperparameter, respectively, in our stochastic model. It should be
noticed that noises, or patient variability, account for the deviation of
observations in clinical dataset from the central tendency (such as mean
or median) while the hyperparameter, or patient heterogeneity, refers to the
diversity or differences within a clinical dataset. The results from numerical
simulations when changing noises are different from those when changing
the hyperparameter (see Fig. 5). Those results do not follow any pattern,
which are totally different from results of the hybrid model in [17] where
increases in patient heterogeneity will drop probability of cure but drastically
increase the range of possible times to cure.

3. Mathematical analysis of the stochastic model

In this section, we give a detailed proof of Theorem 2.1 in Sec-
tion 3.1. Then we conduct a detailed boundary analysis for the system
(3) in Section 3.2. Finally, proof of Theorem 2.2 is given in Section 3.3
by using control theory and support theorem of diffusion processes.

3.1. Proof of Theorem 2.1

Since the drift term 𝑓 (𝑈 ) and the diffusion term 𝑔(𝑈 ) of the sys-
em (3) are continuously differentiable and hence locally Lipschitz
ontinuous functions on

(𝑁,𝐶)⊺ ∣ 𝑁 + 𝐶 > 0,−𝑘𝐵 < 𝐶 < ∞} × R,

there exists a unique locally almost surely continuous solution 𝑈 (𝑡) to
system (3) up to the explosion time. The explosion time is defined as
follows

𝜏𝑒 ∶= inf
{

𝑡 > 0 ||
|

min
{

𝑁(𝑡), 𝐶(𝑡), 𝑁(𝑡) ln
[

𝐾𝑁
𝑁(𝑡) + 𝐶(𝑡)

]

,

𝐶(𝑡) ln
[

𝐾𝐶
𝑁(𝑡) + 𝐶(𝑡)

]

,
𝐶(𝑡)

𝑘𝐵 + 𝐶(𝑡)
, 𝐵(𝑡)

}

= −∞

or max
{

𝑁(𝑡), 𝐶(𝑡), 𝑁(𝑡) ln
[

𝐾𝑁
𝑁(𝑡) + 𝐶(𝑡)

]

,

𝐶(𝑡) ln
[

𝐾𝐶
𝑁(𝑡) + 𝐶(𝑡)

]

,
𝐶(𝑡)

𝑘𝐵 + 𝐶(𝑡)
, 𝐵(𝑡)

}

= ∞
}

.

owever, notice that 𝐶(𝑡) ln
[

𝐾𝐶
𝑁(𝑡)+𝐶(𝑡)

]

→ −∞ happens if and only if
𝑁(𝑡) + 𝐶(𝑡) → 0 and −∞ < 𝐶(𝑡) < 0. It implies that 𝑁(𝑡) + 𝐶(𝑡) → 0 and
< 𝑁(𝑡) < ∞, i.e. 𝑁(𝑡) ln

[

𝐾𝑁
𝑁(𝑡)+𝐶(𝑡)

]

→ ∞. Following similar argument,

it can be checked that 𝐶(𝑡) ln
[

𝐾𝐶
𝑁(𝑡)+𝐶(𝑡)

]

→ ∞ occurs at the same time

with 𝑁(𝑡) ln
[

𝐾𝑁
𝑁(𝑡)+𝐶(𝑡)

]

→ −∞. Therefore, we can simplify the definition
of the explosion time to

𝜏𝑒 ∶= inf
{

𝑡 > 0 ||
|

min
{

𝑁(𝑡), 𝐶(𝑡), 𝐶(𝑡) ln
[

𝐾𝐶

𝑁(𝑡) + 𝐶(𝑡)

]

,
𝐶(𝑡)

𝑘𝐵 + 𝐶(𝑡)
, 𝐵(𝑡)

}

= −∞

or max
{

𝑁(𝑡), 𝐶(𝑡), 𝐶(𝑡) ln
[

𝐾𝐶

𝑁(𝑡) + 𝐶(𝑡)

]

,
𝐶(𝑡)

𝑘𝐵 + 𝐶(𝑡)
, 𝐵(𝑡)

}

= ∞
}

.

lso, the local Lipschitz continuity of 𝑓 (𝑈 ) and 𝑔(𝑈 ) implies that the
olution 𝑈 (𝑡), 𝑡 ∈ (0, 𝜏𝑒) is a strong Markov process that satisfies Feller
roperties. Now, we will first show that if the process starts with any
onnegative initial value, then it remains nonnegative almost surely for
p to the explosion time. We denote 𝑢 ∶= 𝑈 (0) = (𝑛, 𝑐, 𝑏)⊺ as the initial
alues of 𝑈 (𝑡). By the first equation of (3), we can solve for

(𝑡) = 𝑛 exp
{ 𝑡

𝑟𝑁 ln
[

𝐾𝑁
]

𝑑𝑠
}

𝑎.𝑠.
∫0 𝑁(𝑠) + 𝐶(𝑠)
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The second equation of (3) implies

𝐶(𝑡) = 𝑐 exp
{

∫

𝑡

0

[

𝑟𝐶 ln
[

𝐾𝑁
𝑁(𝑠) + 𝐶(𝑠)

]

− 1
2
𝜏21

(

ln
[

𝐾𝐶
𝑁(𝑠) + 𝐶(𝑠)

])2
]

𝑑𝑠

+𝜏1 ∫

𝑡

0
ln
[

𝐾𝐶
𝑁(𝑠) + 𝐶(𝑠)

]

𝑑𝑊1(𝑠)

}

𝑎.𝑠.

And the last equation of (3) follows

𝐵(𝑡) = 𝑏 exp
{

∫

𝑡

0

[

𝑟𝐵 − 𝛾𝐵
𝐶(𝑠)

𝑘𝐵 + 𝐶(𝑠)
− 1

2
𝜏22 − 1

2
𝜏23

(

𝐶(𝑠)
𝑘𝐵 + 𝐶(𝑠)

)2
]

𝑑𝑠

+𝜏2𝑊2(𝑡) − 𝜏3 ∫

𝑡

0

𝐶(𝑠)
𝑘𝐵 + 𝐶(𝑠)

𝑑𝑊3(𝑠)

}

𝑎.𝑠.

It is easy to see that for all 𝑡 ∈ (0, 𝜏𝑒), if 𝑛, 𝑐, and 𝑏 are zero, so are 𝑁(𝑡),
(𝑡), and 𝐵(𝑡) correspondingly. And if these initial values 𝑛, 𝑐, and 𝑏 are
ositive, then 𝑁(𝑡) > 0, 𝐶(𝑡) > 0, and 𝐵(𝑡) > 0 almost surely. Note that
he scenario of 𝑛 = 0 and 𝑐 = 0 can happen at the same initial time,
ecause (𝑛, 𝑐) → (0, 0) in R2

+ is equivalent to 𝑛 + 𝑐 → 0, we can check
that

lim
(𝑛,𝑐)→(0,0)

𝑐 ln
(

𝐾𝐶
𝑛 + 𝑐

)

= 0 and lim
(𝑛,𝑐)→(0,0)

𝑛 ln
(

𝐾𝑁
𝑛 + 𝑐

)

= 0,

hich implies that these terms cannot blow up. From all arguments
bove, we conclude that if (𝑛, 𝑐, 𝑏)⊺ ∈ R3

+ then (𝑁(𝑡), 𝐶(𝑡), 𝐵(𝑡))⊺ ∈ R3
+

for all 𝑡 ∈ (0, 𝜏𝑒).
Next, we show that if 𝑢 ∈ 𝐷◦, then 𝑈 (𝑡) ∈ 𝐷◦ for all 𝑡 ∈ (0, 𝜏𝑒).

onsider equation 𝑑𝑁̃ = 𝑟𝑁 𝑁̃ ln
(

𝐾𝑁

𝑁̃

)

𝑑𝑡 with initial value 𝑁̃(0) =

= 𝑁(0) ∈ (0, 𝐾𝑁 ). We can solve explicitly this equation for

̃ (𝑡) = 𝐾𝑁

(

𝐾𝑁
𝑛

)−𝑒−𝑟𝑁 𝑡

< 𝐾𝑁 .

oreover, by first equation of (3) and the comparison theorem for ODE,
e have 0 < 𝑁(𝑡) ≤ 𝑁̃(𝑡) < 𝐾𝑁 for all 𝑡 ∈ (0, 𝜏𝑒) almost surely. Now

consider the function with 0 < 𝑐 < 𝐾𝐶

𝑉1(𝑛, 𝑐, 𝑏) = 𝐾𝐶 − 𝑐 − ln(𝐾𝐶 − 𝑐).

Note that
𝜕𝑉1
𝜕𝑐

= −1 + 1
𝐾𝐶 − 𝑐

and
𝜕2𝑉1
𝜕𝑐2

= 1
(𝐾𝐶 − 𝑐)2

. Then, by Ito’s
formula, we have

L𝑉1 =
(

−1 + 1
𝐾𝐶 − 𝑐

)

𝑟𝐶 𝑐 ln
(

𝐾𝐶
𝑛 + 𝑐

)

+ 1
2
𝜏21 𝑐

2 ln2
(

𝐾𝐶
𝑛 + 𝑐

)

1
(𝐾𝐶 − 𝑐)2

= −𝑟𝐶 𝑐 ln
(

𝐾𝐶
𝑛 + 𝑐

)

+ 𝑟𝐶 𝑐
ln𝐾𝐶 − ln(𝑛 + 𝑐)

𝐾𝐶 − 𝑐

+ 1
2
𝜏21 𝑐

2 ln2
(

𝐾𝐶
𝑛 + 𝑐

)

1
(𝐾𝐶 − 𝑐)2

≤ −𝑟𝐶 𝑐 ln
(

𝐾𝐶
𝑛 + 𝑐

)

+ 𝑟𝐶 𝑐
ln𝐾𝐶 − ln 𝑐
𝐾𝐶 − 𝑐

+ 𝑘1
1
2
𝜏21 𝑐

2
(

ln𝐾𝐶 − ln 𝑐
𝐾𝐶 − 𝑐

)2
,

here 𝑘1 > 0 is a constant satisfying ln2
(

𝐾𝐶
𝑛 + 𝑐

)

≤ 𝑘1
(

ln𝐾𝐶 − ln 𝑐
)2.

Recall that 𝑟𝐶 = 𝜌𝐶 +
𝑏
(

𝑛 + 𝑐 −𝐾𝑁
)2

𝑎 (𝑛 + 𝑐)2 +
(

𝑛 + 𝑐 −𝐾𝑁
)2

; thus, for 𝑐 ∈ (0, 𝐾𝐶 ),

we have 𝑟𝐶 ≤ 𝜌𝐶 + 𝑏. Moreover, by Mean Value Theorem, there exists
a value 𝑐 ∈ (𝑐, 𝐾𝐶 ) that satisfies ln𝐾𝐶 − ln 𝑐 = 1

𝑐
(𝐾𝐶 − 𝑐). It follows that

L𝑉1 ≤ (𝜌𝐶 + 𝑏)𝐾𝐶 ln
(

𝐾𝑁 +𝐾𝐶
𝐾𝐶

)

+ (𝜌𝐶 + 𝑏) 𝑐
𝑐
+ 1

2
𝑘1𝜏

2
1

( 𝑐
𝑐

)2

≤ (𝜌𝐶 + 𝑏)𝐾𝐶 ln
(

𝐾𝑁 +𝐾𝐶
𝐾𝐶

)

+ 𝜌𝐶 + 𝑏 + 1
2
𝑘1𝜏

2
1 .

Here, let us have some quick discussions about continuous function
𝑓 (𝑢) = 𝑢 − 1 − ln 𝑢 with 𝑢 > 0. It can be checked that on (0,∞), the
function 𝑓 (𝑢) gets its minimum value of 0 when 𝑢 = 1; hence, 𝑢−ln 𝑢 ≥ 1
for all 𝑢 > 0. Following from this calculus result, for 𝑐 ∈ (0, 𝐾 ), we have
5

𝐶

𝑉1(𝑛, 𝑐, 𝑏) ≥ 1. Furthermore, if we let 𝐾1 = (𝜌𝐶 + 𝑏)𝐾𝐶 ln
(

𝐾𝑁 +𝐾𝐶
𝐾𝐶

)

+

𝜌𝐶 + 𝑏 + 1
2
𝑘1𝜏21 , then it yields L𝑉1 ≤ 𝐾1𝑉1.

On the other hand, consider 𝜉𝑘 = inf{𝑡 ∈ (0, 𝜏𝑒) ∣ 𝑉1 (𝑈 (𝑡)) ≥ 𝑘}, 𝑘 ∈
. By applying Ito’s formula to 𝑉1

(

𝑈 (𝜉𝑘 ∧ 𝑡)
)

, for fixed 𝑡 ∈ (0, 𝜏𝑒), we
ave

𝑢𝑉1(𝑡) ∶= E𝑢𝑉1
(

𝑈 (𝜉𝑘 ∧ 𝑡)
)

= 𝑉1(𝑢) + E𝑢 ∫

𝜉𝑘∧𝑡

0
L𝑉1 (𝑈 (𝑠)) 𝑑𝑠

≤ 𝑉1(𝑢) +𝐾1 ∫

𝜉𝑘∧𝑡

0
E𝑢𝑉1 (𝑈 (𝑠)) 𝑑𝑠.

ince 𝜉𝑘∧𝑠 < 𝜉𝑘 for all 𝑠 ∈ (0, 𝜉𝑘∧𝑡), 𝑉1(𝑈 (𝜉𝑘∧𝑠)) < 𝑘 < ∞ which implies
hat ln(𝐾𝐶 − 𝐶(𝜉𝑘 ∧ 𝑠)) < ∞ and so 𝐶(𝜉𝑘 ∧ 𝑠) < 𝐾𝐶 for all 𝑠 ∈ (0, 𝜉𝑘 ∧ 𝑡).
y above argument, for all 𝑠 ∈ (0, 𝜉𝑘 ∧ 𝑡)

𝑉1(𝑈 (𝜉𝑘 ∧ 𝑠)) ≤ 𝐾1𝑉1(𝑈 (𝜉𝑘 ∧ 𝑠)).

o

𝑢𝑉1(𝑈 (𝜉𝑘 ∧ 𝑡)) ≤ 𝑉1(𝑢) +𝐾1 ∫

𝑡

0
E𝑢𝑉1(𝑈 (𝜉𝑘 ∧ 𝑠))𝑑𝑠.

y Gronwall’s inequality (see Theorem 8.1 p.45 in [26]), we have
𝑢𝑉1(𝑡) ≤ 𝑉1(𝑢)𝑒𝐾1𝑡. Moreover,

𝑢𝑉1(𝑡) = ∫𝛺
𝑉1

(

𝑈 (𝜉𝑘 ∧ 𝑡, 𝜔)
)

𝑑P𝑢(𝜔) ≥ ∫{𝜉𝑘≤𝑡}
𝑉1

(

𝑈 (𝜉𝑘)
)

𝑑P𝑢

≥ 𝑘P𝑢{𝜉𝑘 ≤ 𝑡}.

herefore, for any 𝑘 ∈ N, P{𝜉𝑘 ≤ 𝑡} ≤ 𝑉1(𝑢)
𝑒𝐾1𝑡

𝑘
. It follows that

P{𝜉𝑘 > 𝑡} ≥ 1 − 𝑉1(𝑢)
𝑒𝐾1𝑡

𝑘
.

Furthermore, since 𝜉𝑘 > 𝑡 implies 𝑉1 (𝑈 (𝑠)) < 𝑘 for all 𝑠 ∈ (0, 𝑡), it implies
hat

𝑢
{

𝑉1 (𝑈 (𝑠)) < 𝑘, 𝑠 ∈ (0, 𝑡)
}

≥ P𝑢
{

𝜉𝑘 > 𝑡
}

≥ 1 − 𝑉1(𝑢)
𝑒𝐾1𝑡

𝑘
.

This result holds for all 𝑘 ≥ 1. Thus, we can let 𝑘 → ∞ and obtain

𝑢
{

𝑉1 (𝑈 (𝑠)) < ∞, 𝑠 ∈ (0, 𝑡)
}

= 1.

ince 𝑉1 (𝑈 (𝑠)) < ∞ implies 𝐶(𝑠) < 𝐾𝐶 for all 𝑠 ∈ (0, 𝑡), it follows that

𝑢
{

𝐶(𝑠) < 𝐾𝐶 , 𝑠 ∈ (0, 𝑡)
}

= 1.

ote that we have worked with arbitrary 𝑡 ∈ (0, 𝜏𝑒); thus, it yields
(𝑡) < 𝐾𝐶 for all 𝑡 ∈ (0, 𝜏𝑒) almost surely.

Finally, to complete this proof, it remains to show that 𝜏𝑒 = ∞. Since
e showed that 𝐶 and 𝑁 are bounded, only the explosion of 𝐵 does
atter. Thus, we can proceed with claiming that 𝜏𝑒 = 𝜏∞ ∶= inf{𝑡 ∈

0, 𝜏𝑒) ∣ 𝐵(𝑡) = ∞} = ∞. We consider

2(𝑁,𝐶,𝐵) = ln(1 + 𝐵) on (0, 𝐾𝑁 ) × (0, 𝐾𝐶 ) × (0,∞).

y using Ito’s formula, we have

𝑉2(𝑡) ∶= L𝑉2 (𝑈 (𝑡)) =
(

𝑟𝐵 − 𝛾𝐵
𝐶(𝑡)

𝑘𝐵 + 𝐶(𝑡)

)

𝐵(𝑡)
1 + 𝐵(𝑡)

− 1
2
𝜏22

(

𝐵(𝑡)
1 + 𝐵(𝑡)

)2

− 1
2
𝜏23

(

𝐵(𝑡)
1 + 𝐵(𝑡)

)2 ( 𝑐(𝑡)
𝑘𝐵 + 𝐶(𝑡)

)2

≤
(

𝑟𝐵 − 𝛾𝐵
𝐶(𝑡)

𝑘𝐵 + 𝐶(𝑡)

)

𝐵(𝑡)
1 + 𝐵(𝑡)

≤ 𝐾2, for some positive constant 𝐾2.

et 𝜏𝑘 = inf{𝑡 ∈ (0, 𝜏𝑒) ∣ 𝐵(𝑡) > 𝑘}, it is clearly that 𝜏𝑘 increases to 𝜏∞.
ecall that we proved that if 𝑏 = 𝐵(0) ≥ 0 then 𝐵(𝑡) ≥ 0 for 𝑡 ∈ (0, 𝜏𝑒)
lmost surely. Therefore, for 𝐵(0) ≥ 0, we have 𝜏𝑒 = 𝜏∞. Now, we fix
> 0 and apply Ito’s formula to get

𝑢𝑉2(𝜏𝑘 ∧ 𝑡) ∶= E𝑢𝑉2
(

𝑈 (𝜏𝑘 ∧ 𝑡)
)

= 𝑉2(𝑢) + E𝑢 ∫

𝜏𝑘∧𝑡

0
L𝑉2 (𝑈 (𝑠)) 𝑑𝑠

≤ 𝐾 +𝐾 (𝜏 ∧ 𝑡) ( suppose 𝑉 (𝑢) = 𝐾 )
3 2 𝑘 2 3
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M

𝑡
𝜇

s

W
0
t

(

𝑆

f

𝑦

c
s
𝑟
b
e

𝑑

I

e

𝑟

𝑑

a
b
𝐵
0
𝜇

𝑟

≤ 𝐾3 +𝐾2𝑡.

oreover, E𝑢𝑉2(𝜏𝑘 ∧ 𝑡) ≥ ∫{𝜏𝑘≤𝑡}
𝑉2

(

𝑈 (𝜏𝑘)
)

𝑑P𝑢 ≥ ln(1 + 𝑘)P
{

𝜏𝑘 < 𝑡
}

.

Thus, as 𝑘 → ∞

P𝑢
{

𝜏𝑘 < 𝑡
}

≤
E𝑢𝑉2(𝜏𝑘 ∧ 𝑡)
ln(1 + 𝑘)

≤
𝐾3 +𝐾2𝑡
ln(1 + 𝑘)

→ 0 almost surely.

Since it works for arbitrary 𝑡 > 0, we can conclude that P𝑢{𝜏∞ < ∞} = 0.
Thus, 𝜏𝑒 = 𝜏∞ = ∞ almost surely. This completes the proof.

3.2. Boundary analysis

We consider three cases for boundary analysis.
⋄Case 1. Suppose 𝑁(0) = 0, 𝐶(0) = 0. By using the results proved

in Theorem 2.1, it follows that 𝑁(𝑡) = 0 and 𝐶(𝑡) = 0 for all 𝑡 > 0
almost surely. As a result, the last equation of (3) implies that 𝑑𝐵 =
𝑟𝐵𝐵𝑑𝑡 + 𝜏2𝐵𝑑𝑊2. Apply Ito’s formula, we obtain

𝐵(𝑡) = 𝐵(0) exp
{(

𝑟𝐵 − 1
2
𝜏22
)

𝑡 + 𝑡2𝑊2(𝑡)
}

.

If 𝑟𝐵 < 1
2
𝜏22 then lim

𝑡→∞

(

𝑟𝐵 − 1
2
𝜏22 + 𝜏2

𝑊2(𝑡)
𝑡

)

𝑡 = −∞. This leads to
lim
→∞

𝐵(𝑡) = 0 almost surely. Otherwise, 𝐵(𝑡) → ∞ as 𝑡 → ∞. Therefore,
0 ∶= 𝛿∗0 × 𝛿∗0 × 𝛿∗0 is an ergodic invariant probability measure for the
ystem (3) provided 𝑟𝐵 < 1

2
𝜏22 .

⋄Case 2. Suppose 𝑁(0) = 0 and 0 < 𝐶(0) < 𝐾𝐶 . It follows that
𝑁(𝑡) = 0 almost surely and the second equation of (3) yields

𝑑𝐶 =
(

𝜌𝐶 +
𝑏(𝐶 −𝐾𝑁 )2

𝑎𝐶2 + (𝐶 −𝐾𝑁 )2

)

𝐶 ln
(

𝐾𝐶
𝐶

)

𝑑𝑡 + 𝜏1𝐶 ln
(

𝐾𝐶
𝐶

)

𝑑𝑊1. (4)

For 𝛼 ∈ (0, 𝐾𝐶 ) fixed, we consider

𝑆 (𝐶) = ∫

𝐶

𝛼
exp

{

−∫

𝑦

𝛼
2
[

𝜌𝐶 +
𝑏(𝜇 −𝐾𝑁 )2

𝑎𝜇2 + (𝜇 −𝐾𝑁 )2

]

𝜇 ln
𝐾𝐶

𝜇
𝑑𝜇

/

𝜏21𝜇
2 ln2

𝐾𝐶

𝜇

}

𝑑𝑦

= ∫

𝐶

𝛼
exp

{

−∫

𝑦

𝛼

2
𝜏21

[

𝜌𝐶 +
𝑏(𝜇 −𝐾𝑁 )2

𝑎𝜇2 + (𝜇 −𝐾𝑁 )2

]

⋅
1
𝜇

⋅
1

ln𝐾𝐶 − ln𝜇
𝑑𝜇

}

𝑑𝑦

e can observe the behavior of 𝑆(𝐶) when 𝐶 is getting close to either
or 𝐾𝐶 . First, if 𝐶 is in a neighborhood of 𝐾𝐶 such that 𝛼 < 𝐶 < 𝐾𝐶 ,

hen the dummy variable 𝑦 in the right-hand side of 𝑆(𝐶) will be in

𝛼,𝐾𝐶 ). So, for 𝜇 ∈ (𝛼, 𝑦), since 𝜌𝐶 +
𝑏(𝜇 −𝐾𝑁 )2

𝑎𝜇2 + (𝜇 −𝐾𝑁 )2
≥ 𝜌𝐶 , we obtain

(𝐶) ≤ ∫

𝐶

𝛼
exp

{

−∫

𝑦

𝛼

2𝜌𝐶
𝜏21

⋅
1
𝜇
⋅

1
ln𝐾𝐶 − ln𝜇

𝑑𝜇

}

𝑑𝑦

= 𝐶1 ∫

𝐶

𝛼
(ln𝐾𝐶 − ln𝜇)2𝜌𝐶∕𝜏

2
1 𝑑𝜇

or some constant 𝐶1 > 0, which implies that lim𝐶→𝐾𝐶
𝑆(𝐶) < ∞.

Second, if 𝐶 is in a neighborhood of 0 such that 0 < 𝐶 < 𝛼, then the
dummy variable 𝑦 in the right-hand side of 𝑆(𝐶) is in (0, 𝛼). Hence, for

𝜇 ∈ (𝑦, 𝛼), since 𝜌𝐶+
𝑏(𝜇 −𝐾𝑁 )2

𝑎𝜇2 + (𝜇 −𝐾𝑁 )2
≤ 𝜌𝐶+𝑏, we get for some constant

𝐶2 > 0

𝑆(𝐶) ≥ ∫

𝐶

𝛼
exp

{

−∫

𝑦

𝛼

2(𝜌𝐶 + 𝑏)
𝜏21

⋅
1
𝜇
⋅

1
ln𝐾𝐶 − ln𝜇

𝑑𝜇

}

𝑑𝑦

= 𝐶2 ∫

𝐶

𝛼
(ln𝐾𝐶 − ln𝜇)2(𝜌𝐶+𝑏)∕𝜏

2
1 𝑑𝜇.

To obtain the behavior of the last integral above as 𝐶 is close to 0, we
need to compare the integrand (ln𝐾𝐶 − ln𝜇)2(𝜌𝐶+𝑏)∕𝜏

2
1 with 𝑦1∕2 when 𝑦

is getting close to 0. So we look at the following limit

lim
𝑦→0+

ln

[

𝑦1∕2
(

ln𝐾𝐶 − ln 𝑦
)

2(𝜌𝐶+𝑏)
𝜏21

]

= lim
+

[

1 ln 𝑦 +
2(𝜌𝐶 + 𝑏)

2
ln
(

ln𝐾𝐶 − ln 𝑦
)

]

6

𝑦→0 2 𝜏1
= lim
𝑦→0+

[

1
2
+

2(𝜌𝐶 + 𝑏)
𝜏21

⋅
ln
(

ln𝐾𝐶 − ln 𝑦
)

ln 𝑦

]

ln 𝑦.

By L’Hospital rule, we get

lim
𝑦→0+

ln
(

ln𝐾𝐶 − ln 𝑦
)

ln 𝑦
= lim

𝑦→0+

−1
𝑦
(

ln𝐾𝐶 − ln 𝑦
)

1
𝑦

= lim
𝑦→0+

−1
ln𝐾𝐶 − ln 𝑦

= 0,

it follows that lim𝑦→0+ ln

[

𝑦1∕2
(

ln𝐾𝐶 − ln 𝑦
)

2(𝜌𝐶+𝑏)
𝜏21

]

= −∞, i.e.

lim
→0+

𝑦1∕2
(

ln𝐾𝐶 − ln 𝑦
)

2(𝜌𝐶+𝑏)
𝜏21 = 0. Thus, there exists 0 < 𝛿 < 𝛼 such

that for any 0 < 𝑦 < 𝛿, we have
(

ln𝐾𝐶 − ln 𝑦
)

2(𝜌𝐶+𝑏)
𝜏21 < 1

𝑦1∕2
. Hence, for

any 0 < 𝐶 < 𝛿, as 𝐶 → 0+,

𝑆(𝐶) = 𝐶2 ∫

𝐶

𝛼

(

ln𝐾𝐶 − ln 𝑦
)

2(𝜌𝐶+𝑏)
𝜏21 𝑑𝑦 ≥ 𝐶2 ∫

𝐶

𝛼

1
√

𝑦
𝑑𝑦

= 2𝐶2

(
√

𝐶 −
√

𝛼
)

→ −2𝐶2
√

𝛼.

Therefore, lim
𝐶→0+

𝑆(𝐶) > −∞. Then, by item 3 of Theorem 3.1 p.447
in [27], we can conclude that lim

𝑡→∞
𝐶(𝑡) exists a.s. and

P
{

lim
𝑡→∞

𝐶(𝑡) = 0
}

+ P
{

lim
𝑡→∞

𝐶(𝑡) = 𝐾𝐶

}

= 1.

Hence, the solution to Eq. (4) is not recurrent. It may either approach
0 or approach 𝐾𝐶 with positive probability. If the solution 𝐶(𝑡) of (4)
onverges to 0 then the same argument as in Case 1 implies that the
ystem (3) has the ergodic invariant probability measure 𝜇0 provided
𝐵 < 1

2 𝜏
2
2 . When the solution 𝐶(𝑡) of (4) approaches 𝐾𝐶 then 𝐵(𝑡)

ehaves the same as the long-term behavior of the solution to the
quation

𝐵 =
(

𝑟𝐵𝐵 − 𝛾𝐵𝐵
𝐾𝐶

𝑘𝐵 +𝐾𝐶

)

𝑑𝑡 + 𝜏2𝐵𝑑𝑊2 − 𝜏3𝐵
𝐾𝐶

𝑘𝐵 +𝐾𝐶
𝑑𝑊3,

which follows that

𝐵(𝑡) = 𝐵(0) exp
{[

𝑟𝐵 − 𝛾𝐵𝐵
𝐾𝐶

𝑘𝐵 +𝐾𝐶
− 1

2
𝜏22 − 1

2
𝜏23

(

𝐾𝐶
𝑘𝐵 +𝐾𝐶

)2
]

𝑡

+ 𝜏2𝑊2(𝑡) − 𝜏3
𝐾𝐶

𝑘𝐵 +𝐾𝐶
𝑊3(𝑡)

}

.

f 𝑟𝐵 ≤ 𝛾𝐵𝐵
𝐾𝐶

𝑘𝐵 +𝐾𝐶
+ 1
2
𝜏22 +

1
2
𝜏23

(

𝐾𝐶
𝑘𝐵 +𝐾𝐶

)2
, then 𝐵(𝑡) → 0 as 𝑡 → ∞.

Otherwise, 𝐵(𝑡) → ∞ as 𝑡 → ∞. Thus the system (3) possesses the
rgodic invariant probability measure 𝜇1 ∶= 𝛿∗0 × 𝛿∗𝐾𝐶

× 𝛿∗0 provided

𝐵 ≤ 𝛾𝐵𝐵
𝐾𝐶

𝑘𝐵 +𝐾𝐶
+ 1

2
𝜏22 + 1

2
𝜏23

(

𝐾𝐶
𝑘𝐵 +𝐾𝐶

)2
.

⋄Case 3. Suppose 𝐶(0) = 0 and 0 < 𝑁(0) < 𝐾𝑁 . It follows
that 𝐶(𝑡) = 0 almost surely, and the first equation of (3) becomes

𝑁 = 𝑟𝑁𝑁 ln
(

𝐾𝑁
𝑁

)

𝑑𝑡 which yields 𝑁(𝑡) = 𝐾𝑁

(

𝑁(0)
𝐾𝑁

)𝑒−𝑟𝑁 𝑡

→ 𝐾𝑁

s 𝑡 → ∞. Then the long-term behavior of 𝐵(𝑡) is the same as the
ehavior of the solution to equation 𝑑𝐵 = 𝑟𝐵𝐵𝑑𝑡 + 𝜏2𝐵𝑑𝑊2, and so
(𝑡) = 𝐵(0)exp

{(

𝑟𝐵 − 1
2
𝜏22
)

𝑡 + 𝜏2𝑊2(𝑡)
}

. If 𝑟𝐵 < 1
2
𝜏22 , then lim

𝑡→∞
𝐵(𝑡) =

almost surely. Otherwise, 𝐵(𝑡) → ∞ as 𝑡 → ∞. Hence, we have
2 ∶= 𝛿∗𝐾𝑁

×𝛿∗0 ×𝛿
∗
0 is an ergodic invariant probability measure provided

𝐵 < 1
2
𝜏22 .

3.3. Proof of Theorem 2.2

From now on, we assume that 0 < 𝑁(0) < 𝐾𝑁 , 0 < 𝐶(0) < 𝐾𝐶 , and
𝐵(0) > 0. Furthermore, suppose that 𝐾𝑁 > 𝐾𝐶 and 𝑟𝐵 < 1

2 𝜏
2
2 . Then

all three invariant probability measures on the boundary 𝜇0, 𝜇1, and
𝜇2 exist. Before giving a detailed proof of Theorem 2.2, we prove the
following lemma.
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Lemma 3.1. Both measures 𝜇0 and 𝜇1 are repellers, while 𝜇2 is a local
ttractor.

roof. Since 𝑁(0) > 0 and 𝐶(0) > 0, it follows that 𝑁(𝑡) > 0 and 𝐶(𝑡) >
for all 𝑡 > 0 almost surely. We assume that 𝑈 (𝑡) = (𝑁(𝑡), 𝐶(𝑡), 𝐵(𝑡))⊺

tays in a small neighborhood of (0, 0, 0)⊺ for a long time. Since 𝜇0 is
rgodic, by strong law of large number, we can compute the Lyapunov
xponents of 𝜇0 along the solution components

1(𝜇0) = lim
𝑡→∞

1
𝑡
ln 𝑁(𝑡) = lim

𝑡→∞
1
𝑡 ∫

𝑡

0
𝑟𝑁 ln

[

𝐾𝑁
𝑁(𝑠) + 𝐶(𝑠)

]

𝑑𝑠

= ∫𝜕𝐷
𝑟𝑁 ln

(

𝐾𝑁
𝑁 + 𝐶

)

𝜇0(𝑑𝑁𝑑𝐶𝑑𝐵).

As 𝑁 +𝐶 is really small and close to 0, ln
(

𝐾𝑁
𝑁 + 𝐶

)

> 0 almost surely.
herefore, 𝜆1(𝜇0) > 0 almost surely. Similarly,

2(𝜇0) = ∫𝜕𝐷

[

𝑟𝐶 ln
(

𝐾𝐶
𝑁 + 𝐶

)

− 1
2
𝜏21 ln

2
(

𝐾𝐶
𝑁 + 𝐶

)]

× 𝛿∗0 (𝑑𝑁)𝛿∗0 (𝑑𝐶)𝛿∗0 (𝑑𝐵) < 0,

𝜆3(𝜇0) = ∫𝜕𝐷

[

𝑟𝐵 − 𝛾𝐵
𝐶

𝑘𝐵 + 𝐶
− 1

2
𝜏22 − 1

2
𝜏23

(

𝐶
𝑘𝐵 +𝐾𝐶

)2
]

× 𝛿∗0 (𝑑𝑁)𝛿∗0 (𝑑𝐶)𝛿∗0 (𝑑𝐵)

= 𝑟𝐵 − 𝛾𝐵
0

𝑘𝐵 + 0
− 1

2
𝜏22 − 1

2
𝜏23

(

0
𝑘𝐵 + 0

)2
= 𝑟𝐵 − 1

2
𝜏22 < 0.

hus 𝜇0 is a repeller. Follow the same fashion, we can check the
yaponov exponents of 𝜇1 along the solution components

1(𝜇1) = ∫𝜕𝐷
𝑟𝑁 ln

(

𝐾𝑁
𝑁 + 𝐶

)

𝛿∗0 (𝑑𝑁)𝛿∗𝐾𝐶
(𝑑𝐶)𝛿∗0 (𝑑𝐵) = 𝑟𝑁 ln

𝐾𝑁
𝐾𝐶

> 0,

2(𝜇1) = ∫𝜕𝐷

[

𝑟𝐶 ln
(

𝐾𝐶
𝑁 + 𝐶

)

− 1
2
𝜏21 ln

2
(

𝐾𝐶
𝑁 + 𝐶

)]

× 𝛿∗0 (𝑑𝑁)𝛿∗𝐾𝐶
(𝑑𝐶)𝛿∗0 (𝑑𝐵)

=
⎡

⎢

⎢

⎣

𝜌𝐶 +
𝑏
(

𝐾𝐶 −𝐾𝑁
)2

𝑎𝐾2
𝐶 +

(

𝐾𝐶 −𝐾𝑁
)2

⎤

⎥

⎥

⎦

ln
(

𝐾𝐶
0 +𝐾𝐶

)

− 1
2
𝜏21 ln

2
(

𝐾𝐶
0 +𝐾𝐶

)

= 0,

𝜆3(𝜇1) = ∫𝜕𝐷

[

𝑟𝐵 − 𝛾𝐵
𝐶

𝑘𝐵 + 𝐶
− 1

2
𝜏22 − 1

2
𝜏23

(

𝐶
𝑘𝐵 + 𝐶

)2
]

× 𝛿∗0 (𝑑𝑁)𝛿∗𝐾𝐶
(𝑑𝐶)𝛿∗0 (𝑑𝐵)

= 𝑟𝐵 − 𝛾𝐵
𝐾𝐶

𝑘𝐵 +𝐾𝐶
− 1

2
𝜏22 − 1

2
𝜏23

(

𝐾𝐶
𝑘𝐵 +𝐾𝐶

)2
< 0.

Hence, 𝜇1 is a repller. Finally, the Lyaponov exponents of 𝜇2 along the
solution components are

𝜆1(𝜇2) = ∫𝜕𝐷
𝑟𝑁 ln

(

𝐾𝑁
𝑁 + 𝐶

)

𝛿∗𝐾𝑁
(𝑑𝑁)𝛿∗0 (𝑑𝐶)𝛿∗0 (𝑑𝐵) = 𝑟𝑁 ln

(

𝐾𝑁
𝐾𝑁 + 0

)

= 0,

𝜆2(𝜇2) = ∫𝜕𝐷

[

𝑟𝐶 ln
(

𝐾𝐶
𝑁 + 𝐶

)

− 1
2
𝜏21 ln

2
(

𝐾𝐶
𝑁 + 𝐶

)]

× 𝛿∗𝐾𝑁
(𝑑𝑁)𝛿∗0 (𝑑𝐶)𝛿∗0 (𝑑𝐵)

= 𝜌𝐶 ln
(

𝐾𝐶
𝐾𝑁 + 0

)

− 1
2
𝜏21 ln

2
(

𝐾𝐶
𝐾𝑁 + 0

)

= 𝜌𝐶 ln
(

𝐾𝐶
𝐾𝑁

)

− 1
2
𝜏21 ln

2
(

𝐾𝐶
𝐾𝑁

)

< 0,

𝜆3(𝜇2) = ∫𝜕𝐷

[

𝑟𝐵 − 𝛾𝐵
𝐶

𝑘𝐵 + 𝐶
− 1

2
𝜏22 − 1

2
𝜏23

(

𝐶
𝑘𝐵 + 𝐶

)2
]

× 𝛿∗𝐾𝑁
(𝑑𝑁)𝛿∗0 (𝑑𝐶)𝛿∗0 (𝑑𝐵)

= 𝑟𝐵 − 𝛾𝐵
0

𝑘𝐵 + 0
− 1

2
𝜏22 − 1

2
𝜏23

(

0
𝑘𝐵 + 0

)2
= 𝑟𝐵 − 1

2
𝜏22 < 0.

ence, 𝜇 is a local attractor. □
7

2

Now we give a full proof of Theorem 2.2.

roof of Theorem 2.2. We restrict ourselves to the system of the first
wo equations of (3)

𝑁 = 𝑟𝑁𝑁 ln
(

𝐾𝑁
𝑁 + 𝐶

)

𝑑𝑡,

𝑑𝐶 =

[

𝜌𝐶 +
𝑏
(

𝑁 + 𝐶 −𝐾𝑁
)2

𝑎 (𝑁 + 𝐶)2 +
(

𝑁 + 𝐶 −𝐾𝑁
)2

]

𝐶 ln
(

𝐾𝐶
𝑁 + 𝐶

)

𝑑𝑡

+ 𝜏1𝐶 ln
(

𝐾𝐶
𝑁 + 𝐶

)

𝑑𝑊1,

(5)

and show that its equilibrium point (𝐾𝑁 , 0)⊺ is globally stochastically
asymptotically stable. We define 𝑉 (𝑡, 𝑣) = (𝑁(𝑡, 𝑣), 𝐶(𝑡, 𝑣))⊺ is the so-
ution to the system (5) with initial value 𝑣 = (𝑛, 𝑐)⊺. First of all, we
rove that as the solution 𝑉 (𝑡, 𝑣) starts close to (𝐾𝑁 , 0)⊺ it will approach
𝐾𝑁 , 0)⊺ with large probability, i.e. (𝐾𝑁 , 0)⊺ is a locally stochasti-
ally asymptotically stable. Indeed, by computing partial derivatives of

1(𝑛, 𝑐) ∶= 𝑟𝑁𝑛 ln
(

𝐾𝑁
𝑛 + 𝑐

)

at the equilibrium point (𝐾𝑁 , 0)⊺, we get

𝜕𝑓1
𝜕𝑛

|

|

|(𝐾𝑁 ,0)⊺
=
(

𝑟𝑁 ln
(

𝐾𝑁
𝑛 + 𝑐

)

− 𝑟𝑁
𝑛

𝑛 + 𝑐

)

|

|

|(𝐾𝑁 ,0)⊺
= −𝑟𝑁 ,

𝜕𝑓1
𝜕𝑐

|

|

|(𝐾𝑁 ,0)⊺
=
(

−𝑟𝑁
𝑛

𝑛 + 𝑐

)

|

|

|(𝐾𝑁 ,0)⊺
= −𝑟𝑁 .

Thus, since 𝑓1(𝐾𝑁 , 0) = 0, the Taylor expansion of 𝑓1(𝑛, 𝑐) in a small
neighborhood of (𝐾𝑁 , 0)⊺ is

𝑓1(𝑛, 𝑐) = −𝑟𝑁 (𝑛 −𝐾𝑁 ) − 𝑟𝑁 𝑐 + 𝑜
(
√

(𝑛 −𝐾𝑁 )2 + 𝑐2
)

,

here lim(𝑛,𝑐)⊺→(𝐾𝑁 ,0)⊺
𝑜
(

√

(𝑛−𝐾𝑁 )2+𝑐2
)

√

(𝑛−𝐾𝑁 )2+𝑐2
= 0. On the other hand, by proof

of Lemma 3.1,

𝜆2(𝜇2) = 𝜌𝐶 ln
(

𝐾𝐶
𝐾𝑁

)

− 1
2
𝜏21 ln

2
(

𝐾𝐶
𝐾𝑁

)

< 0,

so we can find a sufficiently small 𝑝 > 0 such that

𝜃1 ∶= 𝜌𝐶 ln
(

𝐾𝐶
𝐾𝑁

)

− 1
2
𝜏21 (1 − 𝑝) ln2

(

𝐾𝐶
𝐾𝑁

)

< 0.

e consider the function 𝑉3(𝑛, 𝑐) = (𝑛−𝐾𝑁 )2+𝑐𝑝. It can be seen that 𝑉3
s a positive-definite decrescent function on (0, 𝐾𝑁 )×(0, 𝐾𝐶 ). Moreover,

by Ito’s formula,

L𝑉3 = 2(𝑛 −𝐾𝑁 )
[

−𝑟𝑁 (𝑛 −𝐾𝑁 ) − 𝑟𝑁 𝑐 + 𝑜
(
√

(𝑛 −𝐾𝑁 )2 + 𝑐2
)]

+ 𝑝𝑐𝑝
[

𝜌𝐶 +
𝑏
(

𝑛 + 𝑐 −𝐾𝑁
)2

𝑎 (𝑛 + 𝑐)2 +
(

𝑛 + 𝑐 −𝐾𝑁
)2

]

ln
(

𝐾𝐶
𝑛 + 𝑐

)

− 1
2
𝜏21𝑝(1 − 𝑝)𝑐𝑝 ln2

(

𝐾𝐶
𝑛 + 𝑐

)

≤ −2𝑟𝑁 (𝑛 −𝐾𝑁 )2 − 2𝑟𝑁 𝑐(𝑛 −𝐾𝑁 ) + 𝑜
(

(𝑛 −𝐾𝑁 )2 + 𝑐2
)

+ 𝑝𝑐𝑝
[

𝜌𝐶 ln
(

𝐾𝐶
𝐾𝑁

)

− 1
2
𝜏21 (1 − 𝑝) ln2

(

𝐾𝐶
𝐾𝑁

)

+ ln
(

𝑛 + 𝑐
𝐾𝑁

)

(

1
2
𝜏21 (1 − 𝑝) ln

(

𝐾2
𝐶

𝐾𝑁 (𝑛 + 𝑐)

)

− 𝜌𝐶

)

+
𝑏
(

𝑛 + 𝑐 −𝐾𝑁
)2

𝑎 (𝑛 + 𝑐)2 +
(

𝑛 + 𝑐 −𝐾𝑁
)2

ln
(

𝐾𝐶
𝑛 + 𝑐

)

]

.

Let

𝜃2(𝑛, 𝑐) = ln
(

𝑛 + 𝑐
𝐾𝑁

)

(

1
2
𝜏21 (1 − 𝑝) ln

(

𝐾2
𝐶

𝐾𝑁 (𝑛 + 𝑐)

)

− 𝜌𝐶

)

+
𝑏
(

𝑛 + 𝑐 −𝐾𝑁
)2

𝑎 (𝑛 + 𝑐)2 +
(

𝑛 + 𝑐 −𝐾𝑁
)2

ln
(

𝐾𝐶
𝑛 + 𝑐

)

.
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It can be checked that lim(𝑛,𝑐)⊺→(𝐾𝑁 ,0)⊺ 𝜃2(𝑛, 𝑐) = 0. Thus, for a 𝜖1 > 0
small enough such that 𝜃1 + 𝜖1 < 0, there exists a 𝛿1 > 0 such that
(𝑛, 𝑐)⊺ ∈ (𝐾𝑁 − 𝛿1, 𝐾𝑁 ) × (0, 𝛿1) implies 𝜃2(𝑛, 𝑐) < 𝜖1. It follows that
𝜃1 + 𝜃2(𝑛, 𝑐) < 𝜃1 + 𝜖1 < 0. On the other hand, choose 𝜖2 > 0 such that
𝜖2 < min{2𝑟𝑁 ,−𝜃1 − 𝜖1}. Notice that lim(𝑛,𝑐)⊺→(𝐾𝑁 ,0)⊺

𝑜
(

(𝑛−𝐾𝑁 )2+𝑐2
)

(𝑛−𝐾𝑁 )2+𝑐2 = 0;
hus, we can find a 𝛿2 > 0 so that if (𝑛, 𝑐)⊺ ∈ (𝐾𝑁 − 𝛿2, 𝐾𝑁 ) × (0, 𝛿2) then
(

(𝑛 −𝐾𝑁 )2 + 𝑐2
)

< 𝜖2
[

(𝑛 −𝐾𝑁 )2 + 𝑐2
]

. Moreover, since 𝑐 = 0 (𝑐𝑝) for
→ 0, there exists 𝛿3 > 0 such that if 𝑐 ∈ (0, 𝛿3) then 𝑐 < 𝑝𝑐𝑝. Now

hoose 𝛿 < min{𝛿1, 𝛿2, 𝛿3} so that 𝜃1 + 𝜖1 + 2𝑟𝑁𝛿 + 𝜖2 < 0. Then, for any
𝑛, 𝑐)⊺ ∈ (𝐾𝑁 − 𝛿,𝐾𝑁 ) × (0, 𝛿),

𝑉3 ≤ −2𝑟𝑁 (𝑛 −𝐾𝑁 )2 − 2𝑟𝑁 𝑐(𝑛 −𝐾𝑁 ) + 𝑜
(

(𝑛 −𝐾𝑁 )2 + 𝑐2
)

+ 𝑝𝑐𝑝(𝜃1 + 𝜃2)

≤ −(2𝑟𝑁 − 𝜖2)(𝑛 −𝐾𝑁 )2 + 2𝑟𝑁 𝑐𝛿 + 𝜖2𝑐
2 + 𝑝𝑐𝑝(𝜃1 + 𝜃2)

≤ −(2𝑟𝑁 − 𝜖2)(𝑛 −𝐾𝑁 )2 + 𝑝𝑐𝑝(𝜃1 + 𝜖1 + 2𝑟𝑁𝛿 + 𝜖2).

Choose 𝜃3 = min{2𝑟𝑁 − 𝜖2,−
(

𝜃1 + 𝜖1 + 2𝑟𝑁𝛿 + 𝜖2
)

} > 0. It yields
𝑉3 ≤ −𝜃3𝑉3, which implies that L𝑉3 is a negative-definite function
n (𝐾𝑁 − 𝛿,𝐾𝑁 ) × (0, 𝛿). Therefore, by theorem 2.3 page 112 in [26],

the trivial solution (𝐾𝑁 , 0)⊺ to the system (5) is locally stochastically
symptotically stable, i.e. the following statement holds: For any 𝜖 > 0,
here exists a 𝛿 > 0 so that for all (𝑛, 𝑐)⊺ ∈ (𝐾𝑁 − 𝛿,𝐾𝑁 ) × (0, 𝛿),

P
{

lim
𝑡→∞

𝑉 (𝑡, 𝑣) = (𝐾𝑁 , 0)⊺
}

≥ 1 − 𝜖. (6)

Second, we construct a compact set 𝐾 ⊂ (0, 𝐾𝑁 ) × (0, 𝐾𝐶 ) so that the
solution 𝑉 (𝑡, 𝑣) is recurrent relative to 𝐾, i.e. as the solution 𝑉 (𝑡, 𝑣)
tarts in (0, 𝐾𝑁 )× (0, 𝐾𝐶 ) it will revisit 𝐾 infinitely many times in finite
imes almost surely. Indeed, consider function 𝑉4(𝑛, 𝑐) = 𝑛+ 𝑐, it can be
asily seen that 𝑉4 is nonnegative and twice differentiable function on
0, 𝐾𝑁 ) × (0, 𝐾𝐶 ). We can compute that

𝑉4 = 𝑟𝑁𝑛 ln
(

𝐾𝑁
𝑛 + 𝑐

)

+ 𝑟𝐶𝑐 ln
(

𝐾𝐶
𝑛 + 𝑐

)

.

hoose 𝐾 = {(𝑛, 𝑐)⊺ ∈ (0, 𝐾𝑁 ) × (0, 𝐾𝐶 ) ∣ 𝑛 + 𝑐 ≤ 𝐾𝑁}. Then, for any
𝑛, 𝑐)⊺ ∈ 𝐾𝑐 , we have 𝐾𝐶 < 𝐾𝑁 < 𝑛 + 𝑐, which yields ln

(

𝐾𝑁
𝑛 + 𝑐

)

< 0

and ln
(

𝐾𝐶
𝑛 + 𝑐

)

< 0; hence, 𝐿𝑉4 < 0 on 𝐾𝑐 . By theorem 3.9 page 89

in [28], it follows that 𝑉 (𝑡, 𝑣) is recurrent relative to 𝐾.
Third, we rewrite the system (5) in the Stratonovich form and we

onsider the corresponding control system

̇ 𝜙 = 𝑟𝑁𝑁𝜙 ln
(

𝐾𝑁
𝑁𝜙 + 𝐶𝜙

)

,

𝐶̇𝜙 =
⎡

⎢

⎢

⎣

𝜌𝐶 +
𝑏
(

𝑁𝜙 + 𝐶𝜙 −𝐾𝑁
)2

𝑎
(

𝑁𝜙 + 𝐶𝜙
)2 +

(

𝑁𝜙 + 𝐶𝜙 −𝐾𝑁
)2

⎤

⎥

⎥

⎦

𝐶𝜙 ln
(

𝐾𝐶
𝑁𝜙 + 𝐶𝜙

)

− 1
2
𝜏21𝐶𝜙 ln

2
(

𝐾𝐶
𝑁𝜙 + 𝐶𝜙

)

+ 𝜏1𝐶𝜙 ln
(

𝐾𝐶
𝑁𝜙 + 𝐶𝜙

)

𝜙.

(7)

We let 𝑉𝜙(𝑡, 𝑣) =
(

𝑁𝜙(𝑡, 𝑣), 𝐶𝜙(𝑡, 𝑣)
)⊺ be the solution to the system (7)

with control 𝜙 and initial value 𝑣 = (𝑛, 𝑐)⊺. We will show the following
statement: For given 𝛿 > 0, there are a control 𝜙 and a time 𝑇 > 0 such
that 𝑉𝜙(𝑇 , 𝑣) ∈ (𝐾𝑁 −𝛿,𝐾𝑁 )× (0, 𝛿) for all 𝑣 ∈ (0, 𝐾𝑁 )× (0, 𝐾𝐶 ). To prove
this statement, we need two following claims.

Claim 1. For any 𝑛0 ∈ (0, 𝐾𝑁 ) and 𝑐0, 𝑐1 ∈ (0, 𝐾𝐶 ) with 𝑐0 > 𝑐1,
there exist a control 𝜙 and a time 𝑇 > 0 such that ||

|

𝑁𝜙(𝑡, 𝑛0, 𝑐0) − 𝑛0
|

|

|

<
𝜖 and 𝐶𝜙(𝑇 , 𝑛0, 𝑐0) = 𝑐1 for all 𝑡 ∈ (0, 𝑇 ).

Indeed, let 𝑓1(𝑛, 𝑐) = 𝑟𝑁𝑛 ln
(

𝐾𝑁
𝑛+𝑐

)

and

𝑓2(𝑛, 𝑐) =

[

𝜌𝐶 +
𝑏
(

𝑛 + 𝑐 −𝐾𝑁
)2

𝑎 (𝑛 + 𝑐)2 +
(

𝑛 + 𝑐 −𝐾𝑁
)2

]

𝑐 ln
(

𝐾𝐶
𝑛 + 𝑐

)

− 1
2
𝜏21 𝑐 ln

2
(

𝐾𝐶
𝑛 + 𝑐

)

.
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We consider

𝑝1 ∶= sup
{

|𝑓1(𝑛, 𝑐)|, |𝑓2(𝑛, 𝑐)| ∶ |𝑛 − 𝑛0| ≤ 𝜖, 𝑐1 ≤ 𝑐 ≤ 𝑐0
}

,

and choose 𝜙(𝑡) ∶= 𝑝2∕ ln
𝐾𝐶

𝑁(𝑡)+𝐶(𝑡)
with 𝑝2 satisfying 0 > 𝑐1 − 𝑐0 >

𝜖
(

𝜏1𝑝2𝑐0
𝑝1

+ 1
)

in which
(

𝑁(𝑡), 𝐶(𝑡)
)⊺
solves the system

𝑁̇ = 𝑓1(𝑁,𝐶),

𝐶̇ = 𝑓2(𝑁,𝐶) + 𝜏1𝑐𝑝2.

Note that 𝜏1𝑝2𝑐0 + 𝑝1 < 0, thus 𝐶̇𝜙(0, 𝑛0, 𝑐0) = 𝑓2(𝑛0, 𝑐0) + 𝜏1𝑝2𝑐0 ≤
𝑝1 + 𝜏1𝑝2𝑐0 < 0. Moreover, as 𝐶𝜙 is continuous with respect to time, we
can find a 𝑇0 > 0 such that 𝐶̇𝜙(𝑡, 𝑛0, 𝑐0) < 0 for all 𝑡 ∈ (0, 𝑇0). It implies
that 𝐶𝜙 is decreasing from 𝑐0 over the period of time (0, 𝑇0). Now, assume
that there exists a time 𝑡 ∈

(

0, 𝜖
𝑝1

∧ 𝑇0
)

so that ||
|

𝑁𝜙(𝑡, 𝑛0, 𝑐0) − 𝑛0
|

|

|

> 𝜖.
Then, by Mean Value Theorem, for some 𝜂 ∈ (0, 𝑡) we have

𝜖 < |

|

|

𝑁𝜙(𝑡, 𝑛0, 𝑐0) − 𝑛0
|

|

|

= |

|

|

𝑁𝜙(𝑡, 𝑛0, 𝑐0) −𝑁𝜙(0, 𝑛0, 𝑐0)
|

|

|

= |𝑁̇𝜙(𝜂, 𝑛0, 𝑐0)|𝑡 = |𝑓1(𝑁𝜙(𝜂, 𝑛0, 𝑐0), 𝐶𝜙(𝜂, 𝑛0, 𝑐0))|𝑡

≤ 𝑝1 ⋅
𝜖
𝑝1

= 𝜖,

which yields a contradiction. Therefore, |

|

|

𝑁𝜙(𝑡, 𝑛0, 𝑐0) − 𝑛0
|

|

|

≤ 𝜖 for all
∈
(

0, 𝜖
𝑝1

∧ 𝑇0
)

. Next assume that 𝐶𝜙(𝑡, 𝑛0, 𝑐0) > 𝑐1 for all 𝑡 ∈
(

0, 𝜖
𝑝1

∧ 𝑇0
)

.

Then 𝐶𝜙

(

𝜖
𝑝1

∧ 𝑇0, 𝑛0, 𝑐0
)

= lim𝑡→ 𝜖
𝑝1

∧𝑇0 𝐶𝜙(𝑡, 𝑛0, 𝑐0) =∶ 𝑐2 > 𝑐1. However,

by Mean Value Theorem, for some 𝜂 ∈
(

0, 𝜖
𝑝1

∧ 𝑇0
)

𝜖
(

𝜏1𝑝2𝑐0
𝑝1

+ 1
)

< 𝑐1 − 𝑐0 ≤ 𝐶𝜙

(

𝜖
𝑝1

∧ 𝑇0, 𝑛0, 𝑐0

)

− 𝐶𝜙(0, 𝑛0, 𝑐0)

= 𝐶̇𝜙(𝜂, 𝑛0, 𝑐0)
(

𝜖
𝑝1

∧ 𝑇0

)

≤
(

𝑝1 + 𝜏1𝑝2𝑐0
) 𝜖
𝑝1

= 𝜖
(

𝜏1𝑝2𝑐0
𝑝1

+ 1
)

,

which is a contradiction. Thus, there exists a 𝑇 ∈
(

0, 𝜖
𝑝1

∧ 𝑇0

)

so that

𝜙(𝑇 , 𝑛0, 𝑐0) = 𝑐1. This completes the proof of Claim 1.

laim 2. For any 𝑛0, 𝑛1 ∈ (0, 𝐾𝑁 ) with 𝑛0 < 𝑛1, there exist a 𝑐0 ∈
0, 𝐾𝐶 ), a control 𝜙, and a time 𝑇 > 0 such that 𝑁𝜙(𝑇 , 𝑛0, 𝑐0) =
1 and 𝐶𝜙(𝑡, 𝑛0, 𝑐0) = 𝑐0 for all 𝑡 ∈ (0, 𝑇 ).
Indeed, we consider the ODE system 𝑁̇ = 𝑓1(𝑁,𝐶) and 𝐶̇ = 0 with

initial value (𝑛0, 𝑐0) where 𝑐0 will be determined later. Let (𝑁̃(𝑡), 𝐶̃(𝑡)) be
he solution to this system. It can be seen that 𝐶̃(𝑡) = 𝑐0 for all 𝑡 ≥ 0 and
̇̃ (𝑡) = 𝑟𝑁 𝑁̃(𝑡) ln

(

𝐾𝑁
𝑁̃(𝑡)+𝑐0

)

. With the feedback control 𝜙 satisfying
[

𝜌𝐶 +
𝑏(𝑁̃(𝑡) + 𝐶̃(𝑡) −𝐾𝑁 )2

𝑎(𝑁̃(𝑡) + 𝐶̃(𝑡))2 + (𝑁̃(𝑡) + 𝐶̃(𝑡) −𝐾𝑁 )2

]

𝐶̃(𝑡)

− 1
2
𝜏21 𝐶̃(𝑡) ln

(

𝐾𝐶

𝑁̃(𝑡) + 𝐶̃(𝑡)

)

+ 𝜏1𝐶̃(𝑡)𝜙(𝑡) ≡ 0,

e have
(

𝑁𝜙(𝑡, 𝑛0, 𝑐0), 𝐶𝜙(𝑡, 𝑛0, 𝑐0)
)

≡ (𝑁̃(𝑡), 𝐶̃(𝑡)) for all 𝑡 ≥ 0. Now we
hoose 𝑐0 > 0 sufficiently small so that 𝐾𝑁 > 𝑛1 + 𝑐0. It follows that

inf
0≤𝑛≤𝑛1

𝑓1(𝑛, 𝑐) ≥ 𝑟𝑁𝑛0 ln
(

𝐾𝑁
𝑛1 + 𝑐0

)

> 0.

Therefore, there exists a 𝑇 > 0 such that 𝑁𝜙(𝑇 , 𝑛0, 𝑐0) = 𝑛1 and
𝐶𝜙(𝑡, 𝑛0, 𝑐0) = 𝑐0 for all 𝑡 ∈ [0, 𝑇 ]. Hence Claim 2 is proved.

Finally, we will use the strong Markov property of the solution
𝑉 (𝑡, 𝑣) and the support theorem to prove that (𝐾𝑁 , 0)⊺ is a global
asymptotically stable equilibrium to the system (5). Let 𝑈𝛿 ∶= (𝐾𝑁 −
𝛿,𝐾𝑁 )× (0, 𝛿). For any (𝑛, 𝑐)⊺ ∈ 𝐾, due to the statement and the support
heorem of diffusion processes, there exist 𝑇𝑛,𝑐 > 0 and 𝑝𝑛,𝑐 > 0 such

that
{( )⊺ }
P 𝑁(𝑇𝑛,𝑐 , 𝑛, 𝑐), 𝐶(𝑇𝑛,𝑐 , 𝑛, 𝑐) ∈ 𝑈𝛿 > 2𝑝𝑛,𝑐 .



Mathematical Biosciences 368 (2024) 109141C. Hoang et al.

𝑇

𝑝

c
o

g

p
t
n
h
d
a
s
t
q

l
g
t
I

t
c
p
m
H
t
s
t
e
p
t
t
d
o
p
c
p

(

(

(

As the process (𝑁(𝑡), 𝐶(𝑡))⊺ has the Feller property, we can find a
neighborhood 𝑉𝑛,𝑐 of (𝑛, 𝑐)⊺ such that, for all (𝑛′, 𝑐′)⊺ ∈ 𝑉𝑛,𝑐 , we get

P
{(

𝑁(𝑇𝑛,𝑐 , 𝑛′, 𝑐′), 𝐶(𝑇𝑛,𝑐 , 𝑛′, 𝑐′)
)⊺ ∈ 𝑈𝛿

}

> 𝑝𝑛,𝑐 .

On the other hand, since 𝐾 is a compact set, there exists a finite number

of neighborhood 𝑉𝑛𝑖 ,𝑐𝑖 (𝑖 = 1,… , 𝑚) such that 𝐾 =
𝑚
⋃

𝑖=1
𝑉𝑛𝑖 ,𝑐𝑖 . Let

∗ ∶= max
{

𝑇𝑛𝑖 ,𝑐𝑖 ∶ 𝑖 ∈ {1,… , 𝑚}
}

and

∗ ∶= min
{

𝑝𝑛𝑖 ,𝑐𝑖 ∶ 𝑖 ∈ {1,… , 𝑚}
}

.

For any (𝑛, 𝑐)⊺ ∈ (0, 𝐾𝑁 ) × (0, 𝐾𝐶 ), let

𝜏𝑛,𝑐𝛿 ∶= inf
{

𝑡 > 0 ∶ (𝑁(𝑡, 𝑛, 𝑐), 𝐶(𝑡, 𝑛, 𝑐))⊺ ∈ 𝑈𝛿
}

.

It is straightforward that, for any (𝑛, 𝑐)⊺ ∈ 𝐾, the event 𝜏𝑛,𝑐𝛿 < 𝑇 ∗ is
followed from the event that there exists an 𝑖 ∈ {1,… , 𝑚} such that
(

𝑁(𝑇𝑛𝑖 ,𝑐𝑖 , 𝑛, 𝑐), 𝐶(𝑇𝑛𝑖 ,𝑐𝑖 , 𝑛, 𝑐)
)⊺

∈ 𝑈𝛿 , it follows that

P
{

𝜏𝑛,𝑐𝛿 < 𝑇 ∗} ≥ P
{(

𝑁(𝑇𝑛𝑖 ,𝑐𝑖 , 𝑛, 𝑐), 𝐶(𝑇𝑛𝑖 ,𝑐𝑖 , 𝑛, 𝑐)
)⊺

∈ 𝑈𝛿

}

> 𝑝∗ > 0.

Because the process (𝑁(𝑡, 𝑛, 𝑐), 𝐶(𝑡, 𝑛, 𝑐))⊺ is recurrent relative to 𝐾,
so we can define a sequence of finite stopping times 𝜉0 = 0, 𝜉𝑘 =
inf

{

𝑡 > 𝜉𝑘−1 + 𝑇 ∗ ∶ (𝑁(𝑡, 𝑛, 𝑐), 𝐶(𝑡, 𝑛, 𝑐))⊺ ∈ 𝐾
}

(𝑘 ≥ 1). Then we con-
sider the event 𝐴𝑘 =

{

(𝑁(𝑡, 𝑛, 𝑐), 𝐶(𝑡, 𝑛, 𝑐))⊺ ∉ 𝑈𝛿 for all 𝑡 ∈
[

𝜉𝑘,
𝜉𝑘 + 𝑇 ∗]}. It is clear that

P
(

𝐴𝑐
𝑘
)

= P
{

(𝑁(𝑡, 𝑛, 𝑐), 𝐶(𝑡, 𝑛, 𝑐))⊺ ∈ 𝑈𝛿 for some 𝑡 ∈
[

𝜉𝑘, 𝜉𝑘 + 𝑇 ∗]}

= P
(

𝜏𝑛,𝑐𝛿 < 𝑇 ∗
)

> 𝑝∗

where (𝑛, 𝑐)⊺ = (𝑁(𝜉𝑘, 𝑛, 𝑐), 𝐶(𝜉𝑘, 𝑛, 𝑐))⊺ ∈ 𝐾. Thus, P(𝐴𝑘) ≤ 1 − 𝑝∗. Next,
by using the strong Markov property of (𝑁(𝑡, 𝑛, 𝑐), 𝐶(𝑡, 𝑛, 𝑐))⊺,

P(𝑛,𝑐)⊺
(

𝐴1 ∩ 𝐴2
)

= P(𝑛,𝑐)⊺ (𝐴1) ⋅ P(𝑁(𝜉2 ,𝑛,𝑐),𝐶(𝜉2 ,𝑛,𝑐))⊺ (𝐴2) ≤ (1 − 𝑝∗)2.

By induction, it yields P

( 𝑛
⋂

𝑘=1
𝐴𝑘

)

≤ (1 − 𝑝∗)𝑛 → 0 as 𝑛 → ∞,

i.e. P
( ∞
⋂

𝑘=1
𝐴𝑘

)

= 0. It follows that P
( ∞
⋃

𝑘=1
𝐴𝑐
𝑘

)

= 1. Thus, P
(

𝜏𝑛,𝑐𝛿 < ∞
)

=

1. Again, by strong Markov property of solution 𝑉 (𝑡, 𝑣), it follows from
the fact 𝜏𝑛,𝑐𝛿 < ∞ wp1 and (6) that for any (𝑛, 𝑐)⊺ ∈ (0, 𝐾𝑁 ) × (0, 𝐾𝐶 )

P
(

lim
𝑡→∞

(𝑁(𝑡, 𝑛, 𝑐), 𝐶(𝑡, 𝑛, 𝑐))⊺ = (𝐾𝑁 , 0)⊺
)

≥ 1 − 𝜖.

Therefore this completes the proof of Theorem 2.2. □

4. Numerical simulations

In this section, we will conduct numerical simulations in details to
demonstrate the usefulness of our stochastic model in predicting the
likelihood of successful treatment of CAR T cell therapy in different
protocols. We will firstly demonstrate the long-term behaviors of our
model, and then conduct numerical simulations with three protocols.
The parameter values and initial value are taken from the previous
study [17] to simulate the dynamics of the stochastic system (3):

𝐾𝑁 = 2.50 × 1011 cells, 𝐾𝐶 = 6.96 × 1010 cells, 𝑟𝑁 = 1.70 × 10−1 day−1,

𝜌𝐶 = 2.51 × 10−2 day−1, 𝑎 = 4.23 × 10−1, 𝑏 = 5.25 × 10−1 day−1,

𝑟𝐵 = (1 ∼ 50) × 10−2 day−1, 𝛾𝐵 = 1.15 day−1, 𝑘𝐵 = 2.024 × 109 cells,

𝑁(0) = 3 × 109 cells, 𝐶(0) = 1.8 × 108 cells, 𝐵(0) = 9.486 × 1010 cells.

Units of normal T cells (𝑁), CAR T cells (𝐶), and tumor cells (𝐵)
are measured as absolute lymphocyte counts and cell numbers in all
figures below. For the time, it is counted as days right after CAR T Cell
infusion. We fix noise intensities in all simulations as follows: 𝜏1 = 0.1,
𝜏2 = 0.2, and 𝜏3 = 0.1. We also fix the hyperparameter 𝜎 = 0.05 for
9

three parameters 𝜌𝐶 , 𝑟𝐵 , and 𝛾𝐵 except in Fig. 5. For each simulation,
the values of 𝜌𝐶 , 𝑟𝐵 , and 𝛾𝐵 are drawn from the normal distribution
with standard deviation of 𝜎 of their mean values.

First of all, we demonstrate numerically the result in Theorem 2.2
that there is no positive equilibrium state for the stochastic system (3)
in two cases. For the first case, the tumor net growth rate 𝑟𝐵 is taken to
be smaller than 1

2 𝜏
2
2 , and so tumor cells are completely eradicated with

probability 1. Panels (a) and (b) of Fig. 1 show that the endogenous T
ell population gets its peak, the carrying capacity 𝐾𝑁 , around the day
f 20, and the CAR T cell population achieves its carrying capacity 𝐾𝐶

in less than 10 days and starts decaying after that time. Tumor cells
nearly get eradicated around the day of 100 due to the abundance of
CAR T cells until day of 600. In this case, as time goes by, the normal
T cell population approaches its maximum value and CAR T cells and
tumor cells both decay to 0. The second case is that when the tumor net
rowth rate 𝑟𝐵 is taken to be much larger than 1

2 𝜏
2
2 . Panels (c) and (d) in

Fig. 1 indicate that the dynamics of normal T cells and CAR T cells are
pretty much the same as those in panels (a) and (b), while tumor cells
decrease during the first 50 days and then progress right after that. This
case shows that, as time goes by, the normal T cell population achieves
its peak, CAR T cells eventually decay to 0, and tumor cells are likely
roliferate and finally blow up almost surely. We can see from these
wo cases that, besides the tumor-eliminating effect of CAR T cells,
oise also plays an important role in the dynamics of tumor cells and
ence in the success of CAR T cell therapy. In the first case, when noise
ominates the tumor net growth, it will drive tumor cells to decay in
long time period even though CAR T cells play limited role. For the

econd case, when the tumor net growth rate exceeds noise, it seems
hat noise does not help eradicate the tumor and tumor cells progress
uickly as time goes by.

In reality, it is impractical to conclude that either noise is much
arger than the tumor net growth rate so that noise suppresses tumor
rowth or noise is so small that the tumor net growth rate is greater
han noise intensity and hence drives tumor cells to rapidly proliferate.
t may happen that tumor net growth rate 𝑟𝐵 approximates more or

less 1
2 𝜏

2
2 . Especially, when 𝑟𝐵 is slightly larger that 1

2 𝜏
2
2 , the ergodic

invariant probability measures 𝜇0 and 𝜇2 do not exist. Then either
he event that tumor cells are eradicated or the event that tumor
ells progress to 120% of its initial size might occur with positive
robability. Hence, the long-term behavior of the stochastic system (3)
ay not be appropriate to study the outcome of CAR T cell therapy.
owever, like the hybrid model in [17], to test the efficacy of different

reatment strategies, we can use transient dynamics of the stochastic
ystem (3) to investigate the behavior of two random times - the first
ime that tumor cells go below 1 cell (which is considered as tumor
radication), called the time to cure, and the first time that tumor cells
rogress to 120% of initial size, called the time to progression - when
he baseline CAR T cell growth rate 𝜌𝐶 , tumor net growth rate 𝑟𝐵 , and
umor killing rate 𝛾𝐵 are chosen from normal distribution with standard
eviation of 𝜎 = 5% of their mean values. We estimate the distribution
f the time to cure and time to progress by simulating 10 000 solution
aths of the stochastic system (3) with the same initial value and then
alculating probabilities from these solution paths in three different
rotocols:

i) Performing lymphodepletion and then one dose of CAR T cell
infusion.

ii) Performing lymphodepletion, and the first dose of CAR T cell
infusion, then the second dose of CAR T cell infusion after 15
days.

iii) Performing the first lymphodepletion, and the first dose of CAR
T cell infusion; the second lymphodepletion after 10 days since
the first dose, and the second dose of CAR T cell infusion at day
15.
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Fig. 1. Transient and long-term dynamics of the stochastic system (3) in two cases: 𝑟𝐵 < 1
2
𝜏22 and 𝑟𝐵 > 1

2
𝜏22 . In panels (a) and (b), 𝑟𝐵 = 10−2; in panels (c) and (d), 𝑟𝐵 = 15 × 10−2.
Fig. 2. Panels (a) and (b) show statistics of cure and progression in the first protocol. All probabilities are computed from 10 000 stochastic simulations with the same initial
ondition and the value of 𝜎 = 0.05. Panels (c) and (d) exhibit typical tumor sample paths when cure and progression occur, respectively.
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Note that we take the median tumor net growth rate 𝑟𝐵 = 10× 10−2

or these three protocols.

In the first protocol, each patient is treated by lymphodepletion
efore day 0 and one dose of CAR T cells at day 0. We run 10 000
olution paths with the value of 𝜎 = 0.05, which represent a cohort
f 10 000 simulated patients with different health conditions, of the
tochastic system (3) with the same initial values. A patient is regarded
o be cured if the tumor sample path of that patient firstly goes below 1
ell (Fig. 2(c)) and a patient is considered to be progressed if the tumor
ample path of that patient does not go below 1 cell but firstly exceeds
.2 times of its initial tumor burden (Fig. 2(d)). Fig. 2(a) shows the
ercentage of the number of cured patients and the time it takes for
atients to be cured ranges from day 30 to day 120. Fig. 2(b) shows the
ercentage of the number of progressed patients and the time it takes
or patients to be progressed ranges from day 180 to day 550.
10
For the second protocol, each patient undergoes lymphodepletion
efore day 0 and is treated by first dose of CAR T cells at day 0, and at
ay 15, receives the second dose of CAR T cells without lymphodeple-
ion. We run 10 000 solution paths of the stochastic system (3) with the
ame initial values and the value of 𝜎 = 0.05. Note that each solution
ath, which is representative of a patient, includes a sample path of
ormal T cells, a sample path of CAR T cells, and a sample path of
umor cells. Fig. 3(c) shows a sample path of normal T cells and a
ample path of CAR T cells. For the sample path of the CAR T cell
opulation, the amount of the second dose of CAR T cells, which is the
ame as that of the first dose, is added into the CAR T cells at day 15.
e count the number of patients who are cured (meaning the sample

ath of tumor cells firstly goes below 1 cell) and the number of patients
ho progressed (meaning the sample path of tumor cells does not go
elow 1 cell but firstly exceeds 120% of its initial tumor burden) among
0 000 simulated patients. Figs. 3(a) and 3(b) show the percentage of



Mathematical Biosciences 368 (2024) 109141C. Hoang et al.

o
C
p
T
t
T
a

Fig. 3. Panels (a) and (b) show statistics of cure and progression in the second Protocol. All probabilities are calculated from 10 000 solution paths with the same initial value
and the value of 𝜎 = 0.05. A typical solution path is exhibited in panels (c) and (d), note there is no prior lymphodepletion when second CAR dose is infused at day 15.
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the number of cured patients and progressed patients, respectively, in
the second protocol.

In the third protocol, each patient is treated by lymphodepletion
before day 0 and the first dose of CAR T cells at day 0, then treated by
second lymphodepletion at day 10 and the second dose of CAR T cells
with the same amount as the first dose at day 15. We run 10 000 solution
paths of the stochastic system (3) with the same initial values and the
value of 𝜎 = 0.05. Note that each solution path, which is representative
f a patient, includes a sample path of normal T cells, a sample path of
AR T cells, and a sample path of tumor cells. Fig. 4(c) shows a sample
ath of normal T cells and a sample path of CAR T cells in which CAR
cells are eradicated to 0 by the second lymphodepletion at day 10 and

hen the second dose of CAR T cells is infused at day 15, while normal
cells are dropped dramatically by second lymphodepletion at day 10

nd recovered up to its initial value at day 15. Figs. 4(a) and 4(b) show
the percentage of the number of cured patients and progressed patients,
respectively, in the third protocol.

The probability of cure and probability of progress in Figs. 2, 3, and
4 are computed by adding all the percentages of the number of cured
patients and progressed patients, respectively.

In the first protocol, most patients are cured between days 30 and
80 (Fig. 2a). It is rare for us to find late cure events up to or after day
135. Meanwhile, the time to progression, defined as 120% of the initial
tumor burden, occurs anywhere between days 180 and 525 (Fig. 2b).
The reason for this big difference in time between two random times
is due to the time period when CAR T cells decline is longer than
the time period when CAR T cells expand. For the second protocol,
the distributions of both time to cure and time to progress look like
the same as those in the first protocol. However, the efficacy of the
second dose of CAR T cell infusion can be raised up for later time
points from day 80 to day 90 (Fig. 3a). This indicates that, without
lymphodepletion, the second dose of CAR T cell infusion could only
have a fairly measurable effect in patients which exhibit some response
but not cure. In the third protocol, we can see that it has a huge impact
on the patient survival. In Fig. 4a, the distribution of the time to cure
concentrates densely from day 35 to day 70 and then spreads out up to
day 135. It can be explained that the second lymphodepletion at day
10, after the first dose of CAR T cell infusion, kills most of normal T
cells and CAR T cells; when the second dose of CAR T cells is treated
at day 15, it takes a while for normal T cells to out-compete CAR T
cells, so the CAR T cell population has more time to get its peak and
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maintain its large amount for a while to interact and kill tumor cells
before normal T cells achieve its carrying capacity.

It is obvious that, from our simulations, both parameter 𝜎 and
noise intensities 𝜏𝑖 (𝑖 = 1, 2, 3) account for the patient heterogeneity
and patient variabilities in treatment outcomes, respectively. By our
theoretical analysis in Section 3 and numerical simulations in Fig. 1,
noise plays a crucial role in determining the success of CAR T cell
treatment. To test whether variability in timing to cure or progression
is also shaped by the hyperparameter 𝜎 and noise, we perform 100
simulations for the stochastic system (3) using the first protocol with
different values of 𝜎 and 𝜏3 both ranging from 0.001 to 0.15 and then
estimate the probability of cure and the distribution of time to cure for
each value of 𝜎 and 𝜏3 separately. Fig. 5(a) shows the probability of cure
ranges between 25% and 60% but does not show any pattern. Similarly,
Fig. 5(c) indicates that the probability of cure ranges from 40% to
62% but still does not show any pattern. In Fig. 5(b) and Fig. 5(d),
as increasing either 𝜎 or 𝜏3, the possible range of times to cure seems
unpredictable, which contrasts with results in [17]. This demonstrates
that both hyperparameter 𝜎 and noises play a key role in predicting the
success of CAR T cell treatment.

Finally, to confirm necessity of lymphodepletion for the treatment
with the second dose of CAR T cell infusion, we analyze numerically the
change in probability of cure as a function of the time of the second
dose of CAR T cell infusion with lymphodepletion 5 days before and
without lymphodepletion. Here we chose all parameter values as we
introduced at the beginning of this section except for a low tumor
killing rate 𝛾𝐵 = 0.9 since it would not almost surely lead to cure if
only one dose of CAR T cells was infused. At each time of the second
dose of CAR T cell infusion, 100 stochastic simulations (corresponding
to a cohort of 100 simulated patients) of the stochastic system (3)
re run, and then its probability of cure is computed by adding all
he percentages of the number of cured patients whose tumor sample
aths firstly go below 1 cell among 100 patients simulated under two

treatment protocols. In Fig. 6a, it can be seen that the probability of
cure nearly approaches 1 with increasing time of the second dose of
CAR T cell infusion since the first infusion. This is because of the fact
that CAR T cells have an early selective advantage against a lowered
amount of normal T cells by lymphodepletion, which leads to a second
peak of CAR T cells (Fig. 4c). On the other hand, a second infusion of
CAR T cells without lymphodepletion is able to be effective in elevating

its probability of cure from 0 to about 10%–30% (Fig. 6b). Thus, to
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Fig. 4. Panels (a) and (b) show statistics of cure and progression in the third protocol. All probabilities are computed from 10 000 solution paths with the same initial value and
the value of 𝜎 = 0.05. A typical solution path is exhibited in panels (c) and (d), note the second lymphodepletion at day 10 is followed by the second dose of CAR T cell infusion
at day 15.
improve success with a second infusion of CAR T cells, it is necessary to
reset normal T cells by lymphodepletion. This indicates that a second,
lower dose of lymphodepletion alone may be good to get maximal
benefits for patients if it does not wipe out all CAR T cells but lowers
overall T cell density. This observation suggests that lymphodepletion
is a key factor to increase the chance of successful outcomes of CAR T
cell therapy.

5. Discussion

Our stochastic model is based on the hybrid model [17]. The
hybrid model is a mixture of deterministic ODE model with birth–
death stochastic process. In general, a deterministic model is based on
understanding of mechanisms of relevant components in a system. The
hybrid model builds a competition for the total immune cell density
between endogenous T cells and CAR T cells and a saturation killing
functional relation by CAR T cells into it. It considers tumor growth
follows the linear growth pattern. For constructing stochastic models
in terms of stochastic differential equations, we consider both external
and internal noises in the system. In this study, we consider the noises
arising with CAR T cell expansion rate after infusion, tumor growth
rate, and the rate of CAR T cells killing tumor cells. Those noises
may represent variability of patients. Our stochastic model has three
invariant ergodic measures which corresponds to the three equilibrium
solutions of the deterministic model. When the tumor growth rate
is smaller than the quantity 𝑅2, the two invariant ergodic measures
corresponding to equilibrium solutions (0, 0, 0) and (0, 𝐾𝐶 , 0) are at-
tractors. When the tumor growth rate is even small, say smaller than
the quantity 𝑅1, the invariant ergodic measure corresponding to the
equilibrium solution (𝐾𝑁 , 0, 0) is a global attractor. These invariant
ergodic measures may represent some cure states from the long-term
viewpoint. The stochastic model overcomes a drawback of the hybrid
model which lacks stable cure states. However, the tumor growth rate
alone plays an important role in determining long-term outcomes of the
treatment. The killing rate by CAR T cells and capacity of CAR T cells
only indirectly impact tumor growth by the quantity 𝑅2. This provides
some rooms for further improvement of model construction.

Our numerical simulations in Section 4 have both similarities and
differences compared to those of the hybrid model in [17]. Both models
yielded similar distributions of time to cure and time to progress in the
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first protocol (see Figure 2 and Figure 4 in [17]). Both models demon-
strated that lymphodepletion is an important component of the success
of CAR T cell therapy when the second dose is administered (see Figure
6 and Supplementary Figure 5 in [17]). The difference in numerical
results between the two models lies in the patient heterogeneity and
the patient variability in treatment outcomes, which are shaped by the
hyperparameter 𝜎 and how stochasticity is incorporated into the two
models (see Figure 5 and Figure 3 in [17]). The main reason for this
difference relies on how noise is simulated in each model. The hybrid
model in [17] updates its solution at the next time point by using
a Poisson process with a random time step, which is an exponential
distribution with a rate parameter related to the solution at the previous
time point. This time step represents the minimum amount of time
for the next interaction among cell populations to occur. So there is
no controlled noise intensity for each parameter in the hybrid model
in [17]. Meanwhile, we used white noise and three different noise
intensities to capture the variability in three important parameters,
which are picked up from a normal distribution with variance changing
over time. This explains why the probability of cure and the distribution
of time to cure did not follow any pattern when we changed the
hyperparameter 𝜎 and the noise intensity 𝜏3 in Fig. 5.

As mentioned in Introduction part, two ways of interpreting the
solutions of a SDE model can be used to evaluate a cancer therapy
efficacy and variability in treatment outcomes. One can consider SDE
solutions as either treatment outcomes of different simulated patients or
different treatment possibilities of a single simulated patient. Utilizing
which interpretation is relevant depends on the specific details of the
model and how it is set up. In this study, we aimed to use the first
interpretation for several reasons. First, our stochastic model was based
on the hybrid model in [17], which also utilized the first interpretation,
and so we can compare our numerical results with theirs. Second,
running simulations for our model with the first interpretation is less
expensive than that with the second interpretation. Furthermore, in
our model, we incorporated white noises with large values of noise
intensities and a hyperparameter into three important parameters that
can account for tumor heterogeneity across a cohort of patients.

However, the second interpretation, where different solution paths
can be explained as different possible treatment outcomes for one single
patient, can be used for our model as follows. When a patient is injected

with a CAR dose, treatment outcome of this patient may vary due to
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Fig. 5. Panels (a) and (c) show the impact of the hyper parameter 𝜎 and noise intensity 𝜏3 on probability of cure while panels (b) and (d) shows the impact of the hyper
parameters 𝜎 and noise intensity 𝜏3 on the distribution of time to cure in the first protocol, respectively. The results are obtained using 100 solution paths of the stochastic system
(3) with different values of 𝜎 and 𝜏3. Other parameters and initial values are the same as in Fig. 2.

Fig. 6. Panels (a) and (b) show the influence of timing of the second CAR dose on probability of cure in two treatment strategies - second CAR without prior lymphodepletion
and second CAR with prior lymphodepletion, respectively. Parameter values and initial value are the same as in Figs. 2, 3, and 4 except for 𝛾𝐵 = 0.9.
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the baseline growth rate of CAR T cells, 𝜌𝐶 , and the rate at which
tumor is killed by CAR T cells, 𝛾𝐵 . These two parameters can represent
CAR dose effectiveness and may be subject to uncertainty. So we can
incorporate white noise with small values of noise intensities into these
two parameters to capture the variability in treatment outcomes of one
patient and use hyperparameter to catch up different tumor growth
rates among a cohort of patients. This new SDE model with the second
interpretation is worthy of future investigation.

In this study, we aim to use the transient dynamics of a stochastic
differential equation system to numerically simulate different treatment
protocols in practice because it offers some promising advantages. First,
stochastic differential equations capture the randomness and variability
inherent in biological systems, making them suitable for modeling
complex and dynamic processes. Second, transient dynamics enable the
incorporation of patient-specific variability, which is crucial in numeri-
cally simulating diverse patient populations. Third, transient dynamics
help in identifying critical time points during the course of treatment,
where certain events or changes in the system are more likely to occur.
This information can guide the timing of interventions and the moni-
toring of treatment efficacy. In addition to these advantages, we also
address some drawbacks of this framework. The first issue is the identi-
fiability of stochastic differential equations, relying on robust biological
and clinical data. Obtaining precise estimates for the parameters of a
stochastic model can be challenging, and uncertainties in parameter
values may affect the reliability of predictions. The second challenge
is validating the predictions of a transient stochastic model against
real-world clinical data, which can be a daunting task. The inherent
stochasticity and variability may make it difficult to discern whether
observed deviations from clinical data are due to model limitations or
genuine biological variability.

As demonstrated in this study, stochastic differential equations offer
a powerful framework for capturing the inherent variability and uncer-
tainties in clinical data, providing insights and understanding into the
mechanistic function of different new treatment protocols. However,
as clinical data continue to expand in the near future, this framework
would exhibit some of its limitations, such as accurate parameterization
and validating predictions against real-world clinical data, as men-
tioned above. To overcome these limitations, using machine learning
techniques, which can learn patterns from data and make accurate
predictions, can be a remedy. In a clinical context, machine learning
alone is capable of precisely predicting individual patient outcomes
from past observations using a patient database. Nevertheless, it can
potentially identify which of the existing treatments is most adequate
but is intrinsically unable to recommend new treatment protocols or
provide accurate predictions for new treatments. Stochastic differential
equations can help overcome the limitations of the machine learning
approach. Thus, the integration of stochastic differential equations
and machine learning presents a promising approach for studying the
efficacy of CAR T cell therapy as clinical data continue to increase in
the future. We will continue to study this approach in the future.
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