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Abstract
Starting from a deterministic model, we propose and study a stochastic model for
human papillomavirus infection and cervical cancer progression. Our analysis shows
that the chronic infection state as random variables which have the ergodic invari-
ant probability measure is necessary for progression from infected cell population to
cervical cancer cells. It is shown that small progression rate from infected cells to pre-
cancerous cells and small microenvironmental noises associated with the progression
rate and viral infection help to establish such chronic infection states. It implicates
that large environmental noises associated with viral infection and the progression
rate in vivo can reduce chronic infection. We further show that there will be a cer-
vical cancer if the noise associated with precancerous cell growth is large enough.
In addition, comparable numerical studies for the deterministic model and stochastic
model, together with Hopf bifurcations in both deterministic and stochastic systems,
highlight our analytical results.
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1 Introduction

About a quarter of all human cancers worldwide are caused by infectious agents (Zap-
atka et al. 2020). The World Health Organization estimates that 15.4% of all cancers
are attributable to infections and 9.9% are linked to viruses (Parkin 2006; Plum-
mer 2016). There are eleven pathogens which have been identified as carcinogenic
agents in humans (Bouvard 2009). The first two are Helicobacter pylori (associated
with 770,000 cases worldwide) and human papilloma virus (HPV) (associated with
640,000 cases worldwide) (Munoz et al. 2006). Various characteristics have been pro-
posed to define human viruses that cause cancer while understanding the progression
from viral infection to cancer development is still in need (White et al. 2014; Butel
2000). As an important example, we will study the malignant progression of human
papilloma virus infection in this research.

HPVs infect epithelial cells, causing hyperproliferative lesions such as warts and
condylomas.More than100HPV types havebeen identified (deVilliers 1994).Accord-
ing to their tissue tropism, they are categorized into two major groups, the cutaneous
andmucosal HPVs. Themucosal HPVs are further grouped into high-risk and low-risk
types. Lesions caused by high-risk HPVs have a propensity to progress to malignant
tumors, most prominently cervical carcinomas. In contrast, lesions caused by low-risk
HPVs have a much lower risk for malignant progression (Shah and Howley 1996).
HPV can be sexually transmitted. Actually, it is themost common sexually transmitted
disease in the world (Frazer et al. 2006). Genital HPV, which is transmitted sexually,
is the major etiologic factor in cervical cancer worldwide (Bosch et al. 1995). Cervical
cancer is the second most common form of cancer worldwide and HPV types 16, 18,
31 account for approximately 85% of all cervical cancer cases (Clifford et al. 2003).
But, most women infected with HPV, even those infected with the types that are most
closely associated with cervical dysplasia (types 16 and 18), will not develop invasive
cervical cancer (Reingold 2000). Low-grade cervical cell abnormalities usually are
cleared spontaneously and rarely progress to cancer, while high-grade cervical cell
abnormalities have a lower probability of spontaneous clearance and a higher prob-
ability of progression to cancer (greater than 12%) (Ostor 1993). On the other hand,
at the molecular level, to initiate infection, HPVs bind basal epithelial cells in the
cervix. Following binding and entry of the cell, viral materials migrate to the nucleus
and replicate its HPV genome to 20–100 copies as multiple-copy extrachromosomal
plasmids. The viral proteins E6 and E7 are expressed by infected cells, which promote
their proliferation and deactivate cancer suppressor proteins p53 and pRb. Upon cell
division, the viral genome duplicates and divides into two daughter cells. One daughter
cell migrates away from the basal layer and starts processes of differentiation. Unlike
normal cells, HPV-infected cells undergo differentiation but remain active in the cell
cycle (White et al. 2014; Lee and Laimins 2007). At the cellular level, the presence
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and persistence of viral DNA in tumor site are necessary conditions to establish an
epidemiologically evident tumor (Hausen 2001).

Mathematical modeling is a suitable tool to study malignant progression, the
dynamics of virus infection and cancer development. Actually, most mathematical
models related to cervical cancer have been focused on epidemiology with empha-
sis on the transmission between individuals and effectiveness of HPV vaccine, for
example, (Barnabas et al. 2006; Brown and White 2011; Elbasha 2008; Goldhaber-
Fiebert et al. 2008; Kim et al. 2008; Lee and Tameru 2012; Ziyadi 2017; Bumrungthai
2023). There are two review articles about mathematical modeling of cervical can-
cer epidemiology (Ryser et al. 2017; Iskandar et al. 2022). Recently, there are three
published mathematical models related to cervical cancer at the cellular level, Asih
et al. (2016), Murtono et al. (2019) and Sierra-Rojas et al. (2022), as the authors know.
The model in Murtono et al. (2019) was based on that in Asih et al. (2016) with a
chemotherapy treatment. The model in Sierra-Rojas et al. (2022) is only about the
dynamics of HPV infection without cervical cancer development. We will focus on
the model in Asih et al. (2016) which was proposed for the dynamics of HPV infected
cells and progression to cancer at the cellular level. This model is a system of five
ordinary differential equations. There are three parameters, the progression rate from
infected cells to precancerous cells, the net death rate of infected cells, the net growth
rate of the precancerous cells, which are important for cancer establishment. A deep
insight is needed from these parameters. In the current research, we use Ito stochastic
differential equations to gain a thorough understanding about how infected epithelial
cells progress to cervical cancer cells through these parameters.

Asih et al. (2016) proposed a deterministic mathematical model that describes HPV
infection and cancer development in the cervix. This model consists of five compart-
ments, susceptible (normal) cells (S), infected cells (I ), free virus (V ), precancerous
cells (P) and cancer cells (C). It is as follows.

dS

dt
= r S

(
1 − S + I

N

)
− αSV ,

d I

dt
= αSV + a1 I − d1 I − δ I ,

dV

dt
= n1d1 I − d4V ,

dP

dt
= δ I + a2P − d2P − θ P2

K 2 + P2 ,

dC

dt
= θ P2

K 2 + P2 + a3C − d3C . (1)

For the completion, the model is briefly explained here. For the detailed explanation of
the model establishment, the reader is referred to Asih et al. (2016). In the cervix, there
are several types of cells in different layers of the epithelium which facilitate HPV
infections, for example, basal epithelial cells and squamous epithelial cells, granular
layer cells, spinous layer cells, and basal layer cells. And, these cells are distributed in
different locations of the cervix, ectocervix, squamous columnar junction, and endo-
cervix (Graham 2017). HPV can bind receptors on the basement membrane of the
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cervix and go on to infect basal layer cells of the epithelium. Division of an infected
basal epithelial cells can give rise to a transit amplifying cell that is capable of dif-
ferentiation. Viral genomes are segregated into daughter cells upon basal cell division
and can be carried into deep epithelial layers. The keratinocyte differentiation process
allows an orchestrated pattern of viral gene expression deep into epithelial layers. On
the other hand, the infection spread along basement membrane into squamous colum-
nar junction. Most cervical cancers are thought to arise from this zone (Graham 2017;
Herfs 2012). To mathematically model, the authors of Asih et al. (2016) made several
simplifications and assumptions as follows.

It is assumed that the normal cell population S(t) including basal and squamous
epithelial cells follows logistic growth with the intrinsic growth rate r and the carrying
capacity N . These cells are infected via a mass action law αS(t)V (t), and the infected
cells grow or die linearly at a net per capita rate of a1−d1. Infected cells may transit to
precancerous cells at per capita rate δ. New viruses are produced at a rate proportional
to the death rate of infected cells and decay linearly at rate d4. Once infected cells
become precancerous cells, they stop producing viral particles (Graham 2017). The
precancerous cell population grows or decays at the net per capita rate a2 − d2. These
precancerous cells can transit to cancerous cells. This transition is a rare event. There
are several ways to model rare events. The work Asih et al. (2016) chose a type III

Holling response functional
θ P2

K 2 + P2 . In this term, θ is the maximal progression rate

from precancerous cells to cancerous cells, and K is the half-saturation concentration
for the progression rate from precancerous to cancerous cells. When the population
of precancerous cells is low, there is a small risk of developing cancer cells. However,
when the precancerous cells are above half-saturation concentration (K ), it is highly
likely for cancer cells to be developed quickly and to approach a maximum rate of θ .
Once formed, cancer cells have a net per capita growth rate of a3 − d3.

The assumption of logistic growth of normal cells is a reasonable simplification
because the total number of basal epithelial cells remains approximately constant
and the squamous cells are completely replaced every 4–5 days during the infection
course (Wright and Ferenczy 2002). All other linear growth and death terms are first
approximations. The incidence of cervical cancer cells is a rare event. The type III
Holling response functional catches some character of rare events, which is acceptable.
Because precancerous cells neither produce viruses nor transit back to infected cells,
and only transit to cancer cells, these two populations are decoupled from the first
three populations (S, I, and V). And, this decoupling is manifested in their different
physical locations (Graham 2017; Herfs 2012). We note that spatial interactions or
competitions among cells play some roles during the infection process. However,
the model only considers temporal dynamics without spital dynamics. This may be
because the model if a system of ordinary differential equations (ODEs). Overall, this
model is of biological significance, which can serve as a starting point for further study.

Theoretical and numerical results of the system (1) in Asih et al. (2016) indicated
that the parameter a = d1 − a1, the net death rate of infected cells; the parameter
δ, the progression rate from infected cells to precancerous cells; and the parameter
b = a2 − d2, the net growth of precancerous cells, are three key parameters for long-
term behaviors of the deterministic system (1) as well as gaining insights into possible
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strategies for the prevention of cervical cancer development. However, as all deter-
ministic ODE systems, this model only represents mean behaviors of cells and viruses,
and it is known that the system is subject to micro-environmental fluctuations in vivo.
The system perturbed by such fluctuations may exhibit some long-term behaviors that
are different from those of the unperturbed system (Duan 2015). Obviously, three
parameters a, δ, and b are subject to micro-environmental fluctuations. It may lead
to the fact that effective treatment methods by altering these parameters to prevent
cancer development as proposed in Asih et al. (2016) does not work anymore. Hence,
in this paper, in order to understand how microenvironmental noises or uncertainties
influence the progression dynamics, we incorporate micro-environmental noises into
the ODE system (1). In addition, we may think of some noises come from spatial
variations, which may provide some complement to the ODE system.

There are several ways to incorporate environmental noise or stochastic effects into
deterministic mathematical models. Suppose X is a population, its growth or change is
modeled dX

dt = f (t, X) in the deterministic situation. To count for environmental noise
and stochastic effects, we may consider that each individual in the population makes
almost same contribution to stochastic effects and receives the same environmental
noise. Then, we may assume the environmental noise and stochastic effects of the
population is proportional to the population X . In other words, the environmental noise
and stochastic effects can be represented by τ Xξ , where ξ is the unit noise and τ can
be thought as a way to measuring an average variation of each individual. In general,
we take the noise to be white noise ξ = dW

dt , whereW = W (t) is the standard Wiener
Process. So,weobtain an Ito stochastic differential equationdX = f (t, x)dt+τ XdW .
We may call the noise added this way the linear noise (Phan and Tian 2020; Phan
et al. 2021). For the model (1), we will incorporate linear noise into the free virus

population V (t), namely τ2V
dW2

dt
. The second way to incorporate environmental

noises is perturbing parameters of interest (Phan and Tian 2022; Phan et al. 2021).
As the similar principle established based on law of large numbers for perturbing
parameters, we incorporate environmental noises into the net death rate of infected
cells a and the progression rate of precancerous cells δ by replacing the sum a+δ with

a + δ + τ1
dW1

dt
, into the net proliferation rate of precancerous cells b by replacing

b with b + τ3
dW3

dt
. We consider W1(t), W2(t), and W3(t) are mutually independent

Wiener processes. Then we obtain five dimensional Ito stochastic differential equation
system as follows.

dS =
[
r S

(
1 − S + I

N

)
− αSV

]
dt,

d I = (αSV + a1 I − d1 I − δ I )dt − τ1 I dW1,

dV = (n1d1 I − d4V )dt + τ2VdW2,

dP =
(

δ I + a2P − d2P − θ P2

K 2 + P2

)
dt + τ3PdW3,

dC =
(

θ P2

K 2 + P2 + a3C − d3C

)
dt . (2)
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In this article, we conduct a detailed analysis about this stochastic model with
numerical demonstrations, and provide biological interpretations of our analytical
results. In a sense, ergodic invariant probability measures in Ito stochastic systems
play similar roles as equilibrium solutions in deterministic systems. However, analyz-
ing stochastic systems requires more and deeper knowledge from probability theory.
To study the proposed stochastic system above, we utilize the stochastic version of
Lyapunov exponent theory (Arnold et al. 1984, 1990) and boundary analysis (Dieu
et al. 2016; Du et al. 2016; Hening and Nguyen 2018; Phan and Tian 2022). Since
our stochastic system is noise degenerated, we apply Hörmander’s theorems (Bellet
2006; Nualart 2006; Hörmander 1967) to check hypoellipticity. To study ergodic-
ity, for example, supports of invariant measures, we use geometric control theory
(Bellet 2006; Ikeda and Watanabe 1989; Jurdjevic 1996). In addition, we show Hopf
bifurcation occurs in the deterministic system (1). To compare with the determinis-
tic counterpart, we also study the occurrence of stochastic Hopf bifurcations in the
stochastic system. There are two types of stochastic bifurcations described in the book
(Arnold 1998). The first type is the phenomenological bifurcation (or P-bifurcation),
which is concerned with the change in the shape of density functions of a family of
invariant probability measures in a stochastic system as one of its parameters changes.
The second one is the dynamical bifurcation (or D-bifurcation), which is characterized
by sign changes of Lyapunov exponents of a family of invariant probability measures
in a stochastic system as one of its parameters changes. We numerically illustrate
dynamical bifurcations occur in our systems (2).

Because of the way we incorporate environmental noises, many equilibria of the
deterministic system (1) do not have their stochastic counterparts in the stochastic sys-
tem (2). However, the biological significant equilibria correspond to ergodic invariant
probability measures with different thresholds, which encode environmental uncer-
tainties and provide more insights to tumor progression. The chronic infection state or
equilibrium is a necessary condition to establish cervical cancer. In our stochastic sys-
tem, it is an ergodic invariant measure. When the noises associated with viral infection
and progression from infected cells to precancerous cells are small, the chronic infec-
tion state can be achieved. When these two noises are large, there is a great probability
to reduce chronic infection state. When the chronic infection state is established, there
is a possibility to establish a cervical cancer. The cancer is an ergodic invariant mea-
sure in our stochastic system which corresponds to an equilibrium in the deterministic
system. When the noise associated with precancerous cell growth is large enough,
there will be a cervical cancer.

The rest of the paper is organized as follows. In Sect. 2, we list our main results
and give medical interpretations or implications. In Sect. 3, we prove theorems listed
in Sect. 2. In Sect. 4, we conduct numerical studies to demonstrate our analytical
results and bifurcations for both deterministic and stochastic models. In Sect. 5, we
discuss several aspects of our research. The article ends with Appendix for the relation
between thresholds in deterministic and stochastic models.
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2 Results and interpretations

We non-dimensionalize the system (2) by setting S1 = S

N
, I1 = I

N
, P1 = P

K
,

C1 = C

K
, a = d1 − a1, b = a2 − d2, and k = d3 − a3. To reduce the number

of parameters, we set n = n1d1N , e = d4, q = N

K
, and θ = θ

K
. (It should be

noted that we do not rescale time which avoids changes of Wiener processes.) Then
dropping all the indices of the variables and all the bars over parameters, we obtain
our non-dimensionalized SDE system

dS = [r S (1 − S − I ) − αSV ] dt,

d I = (αSV − aI − δ I )dt − τ1 I dW1,

dV = (nI − eV )dt + τ2VdW2,

dP =
(

δq I + bP − θ
P2

1 + P2

)
dt + τ3PdW3,

dC =
(

θ
P2

1 + P2 − kC

)
dt, (3)

and the corresponding deterministic system of (3) is

dS

dt
= r S (1 − S − I ) − αSV ,

d I

dt
= αSV − aI − δ I ,

dV

dt
= nI − eV ,

dP

dt
= δq I + bP − θ

P2

1 + P2 ,

dC

dt
= θ

P2

1 + P2 − kC . (4)

Note that all the parameters are positive except that b might be positive or negative.
First, we present some results of the deterministic system (4). In Asih et al. (2016),
it was found that, under some certain conditions of parameter b and the basic repro-

duction number R0 := αn

e(a + δ)
, the system (4) has two positive equilibria, which

are (S∗, I ∗, V ∗, P2i ,C2i ) (i = 1, 2). The one with the lower P and C values, namely
(S∗, I ∗, V ∗, P21,C21), is locally asymptotically stable if R0 ≤ 3 and possibly for
larger values of R0. The one with higher P and C values is always unstable. However,
we found a thresholdb0 for parameterb and a threshold R∗ for the reproduction number
R0 so that a Hopf bifurcation arising from the equilibrium point (S∗, I ∗, V ∗, P21,C21)

occurs when b is below b0 and R0 passes through R∗. We summarize these results in
the following theorem in order to compare with results obtained from our stochastic
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system, where parts (i) and (i i i) are our new results and (i i) is fromAsih et al. (2016).

Theorem 2.1 (i) Assume that R0 > 1 and αn > e2+√
e4+4e3r
2 . Then, the sub-

system (S, I , V ) of the system (4) has a unique positive equilibrium point

E∗ := (S∗, I ∗, V ∗). Let R∗ := 2√
A2−4B−A

, where A := 2αne2+2αnre+re3

α2n2
+ e2

er+αn

and B := e4

α2n2
− e2

er+αn . When R0 < R∗, E∗ is locally asymptotically stable;
when R0 > R∗, E∗ is unstable. A Hopf bifurcation occurs at R0 = R∗ and this
bifurcation gives rise to one family of periodic solutions around E∗.

(ii) Assume that the sub-system has a unique positive equilibrium point E∗ =
(S∗, I ∗, V ∗). Furthermore, we assume that 0 < b < θ

2 and θ > δq I ∗. Let

b0 := 2θ P0
(1+P2

0 )2
, where P0 :=

(
θ+2δq I ∗
2θ−2δq I ∗ +

(
(

θ+2δq I ∗
2θ−2δq I ∗ )2 + δq I ∗

θ−δq I ∗
)1/2)1/2

. When

0 < b < b0, the sub-system (P,C)has twopositive equilibria (P2i ,C2i ) (i = 1, 2)
where (P21,C21) is locally asymptotically stable and (P22,C22) is unstable. When
b0 < b < θ

2 , there is no positive equilibriumpoint for the sub-system (P,C).When
b = b0, the sub-system has a unique positive equilibrium point (P0,C0).

(iii) Assume that R0 > 1, αn > e2+√
e4+4e3r
2 , θ > δq I ∗, and 0 < b < b0. The

whole system (4) has the positive equilibriumpoint (S∗, I ∗, V ∗, P21,C21) in which
(P21,C21) is locally asymptotically stable. There occurs aHopf bifurcation around
this equilibrium point when R0 passes through the threshold R∗.

Next, we present our main results about the stochastic system (3). Similar to the
stochastic model in Phan and Tian (2020), to make analysis of the system (3) easier,

we make variable transformation, S = S, I = I , V = MI or M = V

I
, P = P ,

C = C , using Ito’s formula, then the system (3) is equivalent to the following system,

dS = [r S (1 − S − I ) − αSI M] dt,

d I = (αSM − a − δ)I dt − τ1 I dW1,

dM = (n − αSM2 + (a + δ + τ 21 − e)M)dt + τ1MdW1 + τ2MdW2,

dP =
(

δq I + bP − θ
P2

1 + P2

)
dt + τ3PdW3,

dC =
(

θ
P2

1 + P2 − kC

)
dt . (5)

Suppose there is a complete probability space (�,F , {Ft }t≥0,P) with a filtration
{Ft }t≥0 satisfying the usual condition for our system. The process given by the solution
to (5) is denoted by U or U (t) = (S(t), I (t), M(t), P(t),C(t))T , t ≥ 0. We denote
the drift term and the diffusion term of the system (5), respectively, by
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f (U ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r S(1 − S − I ) − αSI M
(αSM − a − δ)I

n − αSM2 + (a + δ + τ 21 − e)M

δq I + bP − θ
P2

1 + P2

θ
P2

1 + P2 − kC

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and g(U ) =

⎡
⎢⎢⎢⎢⎣

0 0 0
−τ1 I 0 0
τ1M τ2M 0
0 0 τ3P
0 0 0

⎤
⎥⎥⎥⎥⎦ .

Let L be the infinitesimal generator of the process U and, for any smooth enough
function F : R5+ → R, the generator L acts as

LF(U ) := FU · f (U ) + 1

2
trace

(
g(U )g(U )T FUU

)

where FU is the gradient of F and FUU is the Hessian matrix of F . We denote by
Pu the probability law on � when the solution starts at u = (s, i,m, p, c)T and
Eu the expectation corresponding to Pu . The following theorem guarantees that the
non-compact region

D :=
{
(S, I , M, P,C)T : S ≥ 0, I ≥ 0, M ≥ 0, P ≥ 0, C ≥ 0, S + I ≤ 1

}

is the a.s. (almost sure) non-negative invariant domain of the system (5) and we refer
it to be a global domain.

Theorem 2.2 For any initial value u = (s, i,m, p, c)T ∈ R
5+ where

R
5+ := {(S, I , M, P,C)T : S ≥ 0, I ≥ 0, M ≥ 0, P ≥ 0, C ≥ 0},

there exists a unique a.s. continuous solution U (t) of the system (5) that remains in
R
5+ for all times t ≥ 0 (i.e. the explosion time τe = ∞ a.s.) and U (t) is a strong

Markov process that satisfies the Feller property. Furthermore, if u ∈ D◦ in which

D◦ :=
{
(S, I , M, P,C)T ∈ R

5,◦
+ : S + I < 1

}

then U (t) ∈ D◦ for all t ≥ 0 a.s.

By boundary analysis in Sect. 3, when the solutionU (t) of the system (5) starts in

{S = 0} := {(S, I , M, P,C)T ∈ D : S = 0},
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there is a unique ergodic invariant probability measure μ0 := δ∗
0 × δ∗

0 × π1 × δ∗
0 × δ∗

0

for the system (5) provided 2(e − a − δ) > τ 21 − τ 22 and b <
τ 23

2
in which

π1 ∼ IG

(
2(e − a − δ − τ 21 )

τ 21 + τ 22
+ 1,

2n

τ 21 + τ 22

)

is an inverse gamma distribution. When the solution U (t) of the system (5) starts in

{S > 0, I = 0} := {(S, I , M, P,C)T ∈ D : S > 0, I = 0},

there exists a unique ergodic invariant probabilitymeasureμ1 := δ∗
1×δ∗

0×π2×δ∗
0×δ∗

0

for the system (5) provided b <
τ 23

2
whereπ2 ∼ GIG(	, χ,ψ) is a generalized inverse

Gaussian distribution with parameters 	 = 2(a + δ + τ 21 − e)

τ 21 + τ 22
− 1, χ = 4n

τ 21 + τ 22
,

and ψ = 4α

τ 21 + τ 22
. Now suppose the solution U (t) of the system (5) starts in

{S > 0, I > 0} := {(S, I , M, P,C)T ∈ D : S > 0, I > 0},

by Theorem 2.2, U (t) ∈ D◦ for all t ≥ 0 a.s. Define the threshold

λ :=
∫

∂D
(αSM − a − δ)dμ1 = √

αn R	(w) − a − δ − τ 21

2

where w := √
χψ = 4

√
αn

τ 21 + τ 22
and R	(w) = K	+1(w)

K	(w)
with K	(·) is the modified

Bessel function of the third kind given by

K	(φ) := 1

2

∫ ∞

0
x	−1 exp

{
−1

2
φ

(
x + 1

x

)}
dx, φ > 0.

Since the dynamics of the first three equations of the system (5) is independent of
the last two equations, and the dynamics of the last two equations can be derived once
we know the dynamics of the first three equations, we can separate the system (5) into
two subsystems

dS = [r S (1 − S − I ) − αSI M] dt,

d I = (αSM − a − δ)I dt − τ1 I dW1,

dM = (n − αSM2 + (a + δ + τ 21 − e)M)dt + τ1MdW1 + τ2MdW2, (6)
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and

dP =
(

δq I + bP − θ
P2

1 + P2

)
dt + τ3PdW3,

dC =
(

θ
P2

1 + P2 − kC

)
dt . (7)

Then the long-term behavior of the system (6) is determined by the value of λwhile the
long-term behavior of the system (7) is governed by the value of b and the dynamics
of the variable I (t). We summarize the complete picture of the system (5) based on
the dynamics of these two subsystems in the following theorems.

Theorem 2.3 Let U (t) = (U1(t),U2(t))T be the solution of the system (5) with initial
value u = (u1, u2)T ∈ D◦ in which U1(t) solves the system (6) with initial value
u1 ∈ D◦

1 := {(s, i,m)T : s > 0, i > 0, m > 0, s + i < 1} and U2(t) solves the
system (7) with initial value u2 ∈ D◦

2 := {(p, c)T : p > 0, c > 0}. Assume that

λ > 0 and 0 < b <
τ 23

2
. Then

(i) the system (6) has a unique invariant probability measure �∗
1 in D◦

1 whose
support is

supp(�∗
1) =

{(
1 − i − α

r
im, i, m

)T : im <
r

α
, i ∈ (0, 1), m > 0

}

and the solution U1(t) is exponentially ergodic with respect to �∗
1;

(ii) the system (7) has a unique invariant probability measure �∗
2 in D◦

2 whose
support is

supp(�∗
2) =

{(
p,

θ

k

p2

1 + p2

)T

: p > 0

}

and the solution U2(t) is ergodic with respect to �∗
2;

(iii) μ∗ = �∗
1 ×�∗

2 is the unique ergodic invariant probability measure of the system
(5) with the support

supp(μ∗)

=
⎧⎨
⎩
(
1 − i − α

r
im, i, m, p,

θ

k

p2

1 + p2

)T
: im <

r

α
, i ∈ (0, 1), m > 0, p > 0

⎫⎬
⎭

and for any μ∗-integrable function h and u ∈ D◦

Pu

{
lim
t→∞

1

t

∫ t

0
h(U (s))ds =

∫
D
h(U )μ∗(dU )

}
= 1.
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Theorem 2.4 Let U (t) be the solution of the system (5) with initial value u ∈ D◦.

Assume that λ < 0 and b <
τ 23

2
. Then I (t) converges to 0 a.s., S(t) converges to 1

a.s., M(t) converges weakly to π2, P(t) converges to 0 a.s., and C(t) converges to 0
a.s. Moreover,

lim
t→∞

ln I (t)

t
= λ a.s.

As a consequence, we can derive the complete dynamic picture of the stochastic
system (3) from Theorems 2.3 and 2.4 in the following theorem.

Theorem 2.5 Suppose the initial values of the solution (S(t), I (t), V (t), P(t),C(t))T

to the stochastic system (3) is in
{
(S, I , V , P,C)T ∈ R

5,◦
+ : S + I < 1

}
. Then,

according to the threshold λ and parameter b, the solution will evolve over time
as follows.

(i) If λ < 0 and b <
τ 23

2
, then the solution (S(t), I (t), V (t), P(t),C(t))T converges

to μ1 = δ∗
1 × δ∗

0 × δ∗
0 × δ∗

0 × δ∗
0 a.s.

(ii) If λ > 0 and 0 < b <
τ 23

2
, then the system (3) is stochastically persistent in

the sense that the solution (S(t), I (t), V (t), P(t),C(t))T converges weakly to a
unique invariant probability measure μ∗ supported by

supp(μ∗) =
{(

1 − i − α

r
v, i, v, p,

θ

k

p2

1 + p2

)T

: v <
r

α
, i ∈ (0, 1), v > 0, p > 0

}
.

(iii) If b >
τ 23

2
, then P(t) converges to ∞ and C(t) converges to θ

k a.s.

In order to interpret our results from the stochastic model and to understand how
environmental noises and randomness affect the dynamical behaviors of the determin-
istic system (4), we need to find the relation between the basic reproduction number R0
and the Lyapunov exponent λ. The following propositions give such relations, which
are proved in Appendix.

Proposition 2.1 The thresholdλ = √
αn R	(w)−a−δ− τ 21

2 is a decreasing function of
the progression rate δ and hence λ is an increasing function of the basic reproduction
number R0. The threshold λ as a function of noise intensities τ1 and τ2, the limit
lim(τ1,τ2)→(0,0) λ exists, and denote λ := lim(τ1,τ2)→(0,0) λ. Then, λ = 0 iff R0 = 1,
λ < 0 iff R0 < 1, and λ > 0 iff R0 > 1; in other words, λ is an increasing function
of R0.

Proposition 2.2 As the basic reproduction number R0 = αn
e(a+δ)

, the threshold λ is a
decreasing function of the progression rate δ, death rate of infected cells a, and virus
decay rate e, and λ is an increasing function of infection rate α and viral burst size n.

When a + δ − e <
τ 22
4 − 3τ 21

4 , λ is a decreasing function of noise intensities τ1 and τ2.
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Interpretation 2.1 (1) From Proposition 2.1, when the intensities of two noises τ1 and
τ2 approach zero, the threshold λ approaches λ which corresponds to R0 while
the sub-system of the first three Eq. (3) reduces to the sub-system of the first three
Eq. (4).

(2) The locally asymptotically stable equilibrium point (1, 0, 0, 0, 0) of the determin-
istic system (4) under condition b < 0 and R0 < 1 corresponds to the invariant
probability measure μ1 = δ∗

1 × δ∗
0 × δ∗

0 × δ∗
0 × δ∗

0 of the stochastic system (3).
However, the condition under which all solutions approach the invariant ergodic
distribution are λ < 0 and b < τ3

2 . These conditions are more realistic since the
net growth rate of precancerous cells is not necessarily zero.

(3) For the deterministic system (4), the positive equilibrium point
(S∗, I ∗, V ∗, P21,C21) is locally asymptotically stable when R0 > 1, αn >
e2+√

e4+4e3r
2 , θ > δq I ∗, R0 < R∗, and 0 < b < b0. This equilibrium point

corresponds to the invariant ergodic distribution μ∗ where all solutions of the

stochastic system (3) weakly approach when λ < 0 and b <
τ 23

2
. There is no

explicit restrict for virus infection αn in stochastic case. In addition, the point
(S∗, I ∗, V ∗, P21,C21) belongs to the support of this invariant measure.

(4) There are other equilibrium points, particularly, one with higher P and C value
which is unstable for the deterministic system (4), (Asih et al. 2016). However, for

the stochastic system (4), no matter which value λ takes, as long as b >
τ 23

2
, the

precancerous cell population will indefinitely grow, and cancer cell population
will approach a fixed value a.s.

(5) As in the deterministic case, we numerically verify there is stochastic Hopf bifur-
cation in the dynamical sense for the stochastic system (3) when the progression
rate δ passes some value.

Interpretation 2.2 (1) To establish a cervical cancer, there must be states of chronic
infection first. In the deterministic model, the chronic infection state is repre-

sented by (S∗, I ∗, V ∗). Three conditions R0 > 1, αn > e2+√
e4+4e3r
2 , and

R0 < R∗ guarantee that the chronic infection state exists and is stable. In
the stochastic model, the chronic infection state is represented by random vari-
ables whose distribution are an ergodic invariant distribution with support{(
1 − i − α

r v, i, v
)T : 0 < v < r

α
, i ∈ (0, 1)

}
, and the conditions λ > 0 guar-

antees its existence and stability. The noise intensities τ1, τ2, and τ3 have great
ranges to allow existence and stability of this ergodic distribution. More impor-
tantly, the threshold λ is a decreasing function of τ1 and τ2 under some condition in
Proposition 2.2, which means that even small noises associated with the progres-
sion rate and viral infection can help to establish an ergodic invariant distribution
of the chronic infection state. In other words, large noises of these two types may
help to reduce chronic infection state.

(2) Since the threshold λ is a decreasing function of the progression rate δ, the small
δ will help to establish the chronic infection state, and small noise also help
chronic infection state formation. Medically, this may explain why it take decades
to develop cervical cancer from chronic infection of HPV. On the other hand, the
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noise intensity τ1 and τ2 may not be easy to increase in vivo or reality. Therefore,
the noise in the progression from infected cells to precancerous cells and the noise
received or made by free viruses in vivo are difficult factors to treat in order to
reduce the probability of cervical cancer development.

(3) When the chronic infection state is established, there is a possibility to establish
a cervical cancer. In the deterministic model, it is represented by an equilibrium
point (P21,C21) under the conditions θ > δq I ∗ and 0 < b < b0. In the stochastic
model, the cancer is represented by an ergodic invariant distribution with support{
(p, θ

k
p2

1+p2
), p > 0

}
under condition 0 < b <

τ 23

2
. So, the noise associated with

precancerous cell growth rate suppresses other conditions in deterministic model.
If this noise is large enough, there is always cervical cancer; as it is even larger,
precancerous cell population will grow indefinitely.

3 Analysis of themodel

This section is devoted to proving Theorems 2.1, 2.2, 2.3 and 2.4 in Sect. 2. We
organize the section into four subsections. In the first subsection, we give a brief
proof of Theorem 2.1 by using Routh–Hurwitz’s criterion and a theorem of Hopf
bifurcation in Hassard et al. (1981). In the second subsection, we give a detailed
proof of Theorem 2.2. In the third subsection, we conduct boundary analysis for the
system (5). The purpose of this analysis is to investigate the set of ergodic invariant
probability measures of the system (5) when its solutions start in ∂D. Finally, the last
subsection provides detailed proofs of Theorems 2.3 and 2.4 by using control theory,
support theorem of diffusion processes, and some results of ergodicity in the theory
of homogeneous Markov processes.

3.1 Proof of Theorem 2.1

(i) Consider the sub-system (S, I , V ) of the system (4) and its positive equilibrium
point E∗ = (S∗, I ∗, V ∗). The Jacobian matrix of the system (S, I , V ) at E∗ has the
form

J1 =
⎡
⎣r − 2r S∗ − r I ∗ − αV ∗ −r S∗ −αS∗

αV ∗ −a − δ αS∗
0 n −e

⎤
⎦ ,

and its corresponding characteristic polynomial is

p(λ) = λ3 + a1λ
2 + a2λ + a3

where a1 = r S∗+e+a+δ, a2 = r S∗(e+a+δ+αV ∗), and a3 = αS∗V ∗(αn+er). By
Routh–Hurwitz’s criterion, p(λ) has three roots with negative real parts iff a1a2−a3 >
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0. This inequality is equivalent to

(e + a + δ)2 + (r S∗ + αV ∗)(e + a + δ) + αr S∗V ∗ − αV ∗

r
(αn + er) > 0. (8)

Since S∗ = 1

R0
, V ∗ = rn

re + αn

(
1 − 1

R0

)
, and I ∗ = re

re + αn

(
1 − 1

R0

)
, we

obtain

r S∗ + αV ∗ = r
1

R0
+ rαn

re + αn

(
1 − 1

R0

)
, αr S∗V ∗

= r2αn

re + αn

1

R0

(
1 − 1

R0

)
,

−αV ∗

r
(αn + er) = −αn

(
1 − 1

R0

)
, and e + a + δ = e + αn

e

1

R0
.

Then (8) is equivalent to

1

R2
0

+
(
2αne2 + 2αnre + re3

α2n2
+ e2

er + αn

)
1

R0
+ e4

α2n2
− e2

er + αn
> 0. (9)

Let A := 2αne2 + 2αnre + re3

α2n2
+ e2

er + αn
and B := e4

α2n2
− e2

er + αn
. Since

αn >
e2 + √

e4 + 4e3r

2
, using the quadratic formula, we have B < 0. This implies

that R∗ := 2√
A2 − B − A

> 0. Then (9) is equivalent to R0 < R∗. In other words,

all the eigenvalues of J1 have negative real parts iff R0 < R∗.
To study the Hopf bifurcation that may occur from the equilibrium point E∗ as R0

changes and passes through the threshold R∗, we look into the roots of p(λ) = 0 when
its coefficients a1, a2, and a3 are considered as functions of R0. And

p(λ) = λ3 + a1λ
2 + a2λ + a3

where

a1 = a1(R0) = r
1

R0
+ e + αn

e

1

R0
,

a2 = a2(R0) = r
1

R0

[
e + αn

e

1

R0
+ rαn

re + αn

(
1 − 1

R0

)]
,

a3 = a3(R0) = rαn
1

R0

(
1 − 1

R0

)
.
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Now suppose p(λ) = 0 has a pair of complex roots λ = u ± iv and one real root
λ = λ0. Then

(λ2 − 2uλ + u2 + v2)(λ − λ0) = λ3 + a1λ
2 + a2λ + a3.

Expanding the left-hand side and then equating both sides, we get a1 = −(λ0 + 2u),
a2 = u2+v2+2uλ0, anda3 = −(u2+v2)λ0. It implies thata1a2−a3 = −2u(λ20+a2).
So p(λ) = 0 has a pair of pure imaginary roots iff u = 0 and v �= 0 iff a1a2 − a3 = 0
and a2 > 0.When p(λ) = 0 has pure imaginary roots, these imaginary roots are given
by λ = ±i

√
a2 while the real root is given by λ = −a1 with a1a3 > 0.

Next, suppose λ(R0) = α(R0) ± iβ(R0) are two complex roots of the polynomial
p(λ). When R0 = R∗, a1a2 − a3 = 0 and a2 > 0. This follows that α(R∗) = 0
and β(R∗) �= 0. Now we claim that dα

dR0

∣∣
R0=R∗ �= 0. To show this, we use proof by

contradiction. Suppose that α′(R∗) := dα
dR0

∣∣
R0=R∗ = 0. Differentiating both sides of

p(λ) = 0 with respect to R0, evaluating at R∗, and applying α(R∗) = α′(R∗) = 0,
and finally equating the real part and imaginary part to zero, we obtain

− a′
1β

2 − 2a1ββ ′ + a′
3 = 0,

− 3β2β ′ + a′
2β + a2β

′ = 0,

in which a′
i = dai

dR0

∣∣
R0=R∗ (i = 1, 2, 3), β ′ = dβ

dR0

∣∣
R0=R∗ , and β = β(R∗). Solving

these equations for β ′, we get

a′
2β

3β2 − a2
= a′

3 − a′
1β

2

2a1β
,

which infers that, since β2 = a2 = a3
a1
,

a′
2a3 = a2(a

′
3 − a′

1a2). (10)

Let H(R0) = a1(R0)a2(R0) − a3(R0). Then, by above computation,

H(R0) = 1

R3
0

+ A
1

R2
0

+ B
1

R0
,

which implies that

H ′(R∗) = − 1

(R∗)2

(
2

(R∗)2
+ A

R∗

)
< 0.

However, by (10), we also have

H ′(R∗) = a′
1a2 + a1a

′
2 − a′

3 = a1a
′
2 − (a′

3 − a′
1a2) = a1a

′
2 − a′

2
a3
a2

= a1a
′
2 − a′

2a1 = 0
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which is a contradiction. Therefore dα
dR0

∣∣
R0=R∗ �= 0.

In summary, at E∗ the characteristic polynomial p(λ) of the Jacobian matrix J1 has
one negative real root λ = λ0 and a pair of complex roots λ = α(R0) ± iβ(R0). We

assume that R0 > 1 and αn > e2+√
e4+4e3r
2 . With the threshold R∗, we have shown

that

• when R0 < R∗, α(R0) < 0;
• when R0 = R∗, α(R∗) = 0, β(R∗) �= 0, and α′(R∗) �= 0;
• when R0 > R∗, α(R0) > 0.

Hence the real part α(R0) of the complex roots of p(λ) changes sign when R0
passes through R∗. Therefore the system (S, I , V ) of the system (4) undergoes Hopf
bifurcation at R0 = R∗. This completes the proof of part (i).
(ii) When the system (S, I , V ) has a unique positive equilibrium E∗ = (S∗, I ∗, V ∗),
positive equilibria (P,C := θ

k
P
2

1+P
2 ) of the system (P,C) depends on the solutions

to the equation f (P) = g(P) where f (P) = δq I ∗ + bP and g(P) = θ P
2

1+P
2 . Since

0 < b < θ
2 and θ > δq I ∗, there are 3 cases:

• The equation f (P) = g(P) has a unique positive solution P0. Then P0 can be
found by solving the system f (P) = g(P) and f ′(P) = g′(P). This system leads
to the following equation

(θ − δq I ∗)P4 − (θ + 2δq I ∗)P2 − δq I ∗ = 0.

It is easy to see that this equation has unique positive solution

P = P0 :=
⎛
⎝ θ + 2δq I ∗

2θ − 2δq I ∗ +
((

θ + 2δq I ∗

2θ − 2δq I ∗

)2

+ δq I ∗

θ − δq I ∗

)1/2
⎞
⎠

1/2

.

So, when b = b0 := 2θ P0
(1+P2

0 )2
, the equation f (P) = g(P) has unique positive

solution P0. Clearly P0 > 1, which implies that b0 < θ
2 .

• When b0 < b < θ
2 , the straight line f (P) lies above the curve g(P) and so there

is no positive solution.
• When 0 < b < b0, there are exactly 2 intersections between f (P) and g(P).
Hence f (P) = g(P) has exactly 2 positive solutions P21 < P0 < P22.

At (P,C) the Jacobian matrix of the (P,C) system is of the form

J4 =
⎡
⎣b − 2θ P

(1+P
2
)2

0

2θ P

(1+P
2
)2

−k

⎤
⎦

and its eigenvalues are real and of the form λ1 = b − 2θ P

(1+P
2
)2

and λ2 = −k. When

0 < b < b0 and P = P21, λ1 = b− 2θ P21
(1+P2

21)
2 = f ′(P21)− g′(P21) < 0 which follows
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that (P21,C21) is locally asymptotically stable. When 0 < b < b0 and P = P22,
λ1 = b − 2θ P22

(1+P2
22)

2 = f ′(P22) − g′(P22) > 0 and so (P22,C22) is unstable. This

completes the proof of part (ii).
(iii) This part can be easily derived from part (i) and part (ii).

3.2 Proof of Theorem 2.2

Since f (U ) and g(U ) are locally Lipschitz continuous on R
5, there is a unique local

a.s. continuous solution U (t) of the system (5) up to the explosion time

τe := inf{t > 0 : min{S(t), I (t), M(t), P(t),C(t)} = −∞
max{S(t), I (t), M(t), P(t),C(t)} = ∞}.

and, furthermore, U (t) is a strong Markov process that possesses the Feller property.
By the first equation and the second equation of the system (5), for all t ∈ (0, τe)

S(t) = s exp

{∫ t

0
[r(1 − S(s) − I (s)) − α I (s)M(s)]ds

}
a.s. and

I (t) = i exp

{∫ t

0

[
αS(s)M(s) − a − δ − τ21

2

]
ds − τ1W1(t)

}
a.s.

If s = 0 then S(t) = 0 for all t ∈ (0, τe) a.s. and if s > 0 then S(t) > 0 for all
t ∈ (0, τe) a.s. If i = 0 then I (t) = 0 for all t ∈ (0, τe) a.s. and if i > 0 then I (t) > 0
for all t ∈ (0, τe) a.s. The third equation of the system (5) implies for all t ∈ (0, τe)

M(t) = φ(t)

[
m +

∫ t

0
nφ−1(s)ds

]
a.s.

where

φ(t) = exp

{∫ t

0

[
−αS(s)M(s) + a + δ + τ21

2
− τ22

2
− e

]
ds + τ1W1(t) + τ2W2(t)

}
.

If m ≥ 0 then M(t) > 0 for all t ∈ (0, τe) a.s. From the fourth equation of the system
(5), for all t ∈ (0, τe)

P(t) = ψ(t)

[
p +

∫ t

0
δq I (s)ψ−1(s)ds

]
a.s.

where

ψ(t) = exp

{∫ t

0

[
b − θ

P(s)

1 + P(s)2
− τ 23

2

]
ds + τ3W3(t)

}
.
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If i = 0 and p = 0 then I (t) = 0 for all t ∈ (0, τe) a.s. which follows that P(t) = 0
for all t ∈ (0, τe) a.s. If (i ≥ 0 and p > 0) ∨ (i > 0 and p = 0) then P(t) > 0 for
all t ∈ (0, τe) a.s. The last equation of the system (5) follows, for all t ∈ (0, τe),

C(t) = exp{−kt}
[
c +

∫ t

0

θ P(s)

1 + P(s)2
exp{ks}ds

]
a.s.

If i = 0, p = 0, and c = 0 then P(t) ≡ 0 a.s. which implies that C(t) = 0 for all
t ∈ (0, τe) a.s. If (i ≥ 0, p > 0, c ≥ 0) ∨ (i > 0, p = 0, c ≥ 0) then C(t) > 0
for all t ∈ (0, τe) a.s. Thus, we have shown that if u = (s, i,m, p, c)T ∈ R

5+ then
U (t) ∈ R

5+ a.s.
Next, we show that if s > 0, i > 0, m ≥ 0, p ≥ 0, c ≥ 0, and s + i < 1 then

S(t)+ I (t) < 1 for all t ∈ (0, τe) a.s. (Note that if s + i = 1 then by the first equation

of the system (5)
dS

dt
(0) = −αsim ≤ 0 which means that, after some time t > 0, S(t)

decreases a.s. Hence without loss of generality we can assume that s + i < 1 in the
first place.) We consider the function

V1(s, i,m, p, c) = 2 − s − i − ln(1 − s − i).

By Ito’s formula,

LV1 = −rs(1 − s − i) + αsim + rs(1 − s − i)

1 − s − i
− αsim

1 − s − i
− αsim

+ (a + δ)i + αsim

1 − s − i
− (a + δ)

i

1 − s − i
+ τ 21

2

(
i

1 − s − i

)2

= rs(s + i) + (a + δ)i − (a + δ)
i

1 − s − i
+ τ 21

2

(
i

1 − s − i

)2

= rs(s + i) − (a + δ)
(s + i)i

1 − s − i
+ τ 21

2

(
i

1 − s − i

)2

.

Since s + i < 1, there is a h > 0 large enough so that s +
(
1 + 1

h

)
i < 1 which

implies that
i

1 − s − i
< h. Hence for s > 0, i > 0, and s + i < 1

LV1(s, i,m, p, c) ≤ r(s + i) + h2τ 21
2

≤ K1V1(s, i,m, p, c)

for some suitable positive constant K1. Let

ξk = inf{t ∈ [0, τe) : V1(U (t)) ≥ k}, k ∈ N.
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Fix t ∈ (0, τe), applying Ito’s formula for V1(U (ξk ∧ t)) gives

EuV1(U (ξk ∧ t)) = V1(u) + Eu

∫ ξk∧t

0
LV1(U (s))ds

= V1(u) +
∫ t

0
EuLV1(U (ξk ∧ s))ds.

Since ξk ∧ s < ξk for all s ∈ (0, ξk ∧ t), V1(U (ξk ∧ s)) < k < ∞ which implies
that ln(1 − S(ξk ∧ s) − I (ξk ∧ s)) < ∞ and so S(ξk ∧ s) + I (ξk ∧ s) < 1 for all
s ∈ (0, ξk ∧ t). By the argument above, for all s ∈ (0, ξk ∧ t)

LV1(U (ξk ∧ s)) ≤ K1V1(U (ξk ∧ s)).

So

EuV1(U (ξk ∧ t)) ≤ V1(u) + K1

∫ t

0
EuV1(U (ξk ∧ s))ds.

By Gronwall’s inequality (see Theorem 8.1, p. 45 in Mao 1997)

EuV1(U (ξk ∧ t)) ≤ V1(u) exp{K1t}.

But

EuV1(U (ξk ∧ t)) =
∫

�

V1(U (ξk ∧ t))dPu ≥
∫

{ξk≤t}
V1(U (ξk))dPu ≥ kPu{ξk ≤ t},

which follows that for all k ≥ 1

Pu{ξk > t} = 1 − Pu{ξk ≤ t} ≥ 1 − V1(u)eK1t

k
.

On the other hand, ξk > t implies V1(U (s)) < k for all s ∈ [0, t]. Thus, for all k ≥ 1

Pu{V1(U (s)) < k ∀ s ∈ [0, t]} ≥ 1 − V1(u)eK1t

k
.

Letting k → ∞ yields

Pu{V1(U (s)) < ∞ ∀ s ∈ [0, t]} = 1.

As V1(U (s)) < ∞ implies S(s) + I (s) < 1 for all s ∈ [0, t], so

Pu{S(s) + I (s) < 1 ∀ s ∈ [0, t]} = 1.

Since t ∈ (0, τe) is arbitrary, S(t) + I (t) < 1 for all t ∈ (0, τe) a.s.
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Finally, we prove that τe = ∞ a.s. Consider the function

V2(S, I , M, P,C) = S + I + ln(1 + M) + ln(1 + P) + C .

Then, by Ito’s formula, for all t ∈ (0, τe)

LV2(U (t)) = r S(t)[1 − S(t) − I (t)] − αS(t)I (t)M(t) + αS(t)I (t)M(t)

− (a + δ)I (t) + n

1 + M(t)
− α

S(t)M(t)2

1 + M(t)
+ (a + δ + τ21 − e)

M(t)

1 + M(t)

−
(

τ21
2

+ τ22
2

)(
M(t)

1 + M(t)

)2
+ δq

I (t)

1 + P(t)
+ b

P(t)

1 + P(t)

− θ P(t)2

(1 + P(t))(1 + P(t)2)
− τ23

2

(
P(t)

1 + P(t)

)2
+ θ

P(t)2

1 + P(t)2

− kC(t) ≤ K2

for some suitable positive constant K2. Let

τk = inf{t ∈ (0, τe) : M(t) > k or P(t) > k or C(t) > k}.

Then τk increases to τ∞ as k → ∞ where

τ∞ = inf{t ∈ (0, τe) : M(t) = ∞ or P(t) = ∞ or C(t) = ∞}.

Since τ∞ ≤ τe a.s., it suffices to prove that τ∞ = ∞ a.s. Fix t > 0, applying Ito’s
formula for V2(U (τk ∧ t)) gives

EuV2(U (τk ∧ t)) = V2(u) + Eu

∫ τk∧t

0
LV2(U (s))ds

≤ K3 + K2 Eu(τk ∧ t) ≤ K3 + K2t,

where K3 = V2(u). On the other hand,

EuV2(U (τk ∧ t)) ≥
∫

{τk≤t}
V2(U (τk))dPu ≥ (k ∧ ln(1 + k))Pu{τk < t}.

Thus

Pu{τk < t} ≤ K3 + K2t

k ∧ ln(1 + k)
→ 0 as k → ∞.

Since t > 0 is arbitrary, Pu{τ∞ < ∞} = 0. Therefore τ∞ = ∞ a.s.
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3.3 Boundary analysis

A. Suppose that the solutionU (t) of the system (5) starts in {S = 0}, that is, S(0) = 0.
Then, by the first equation of the system (5), S(t) ≡ 0 a.s. So the second equation of
the system (5) becomes

d I = (−a − δ)I dt − τ1 I dW1 (11)

which implies that

I (t) = I (0) exp

{(
−a − δ − τ 21

2

)
t − τ1W1(t)

}
.

Hence I (t) converges to 0 a.s. for any initial value I (0) ∈ [0, 1]. Furthermore, S(t) ≡ 0
implies, by the third equation of the system (5), that

dM = [n + (a + δ + τ 21 − e)M]dt + τ1MdW1 + τ2MdW2 (12)

To study the long-term behavior of the solution of the Eq. (12), we consider for α1 > 0
fixed

s(M) =
∫ M

α1

exp

{
−
∫ y

α1

2n + 2(a + δ + τ 21 − e)z

(τ 21 + τ 22 )z2
dz

}
dy

= C1

∫ M

α1

y

2(e−a−δ−τ21 )

τ21+τ22 exp

{
2n

τ 21 + τ 22

1

y

}
dy.

Since the integrand can be written as

y

2(e−a−δ−τ21 )

τ21+τ22

[
1 + 2n

τ 21 + τ 22

1

y
+ 1

2!
4n2

(τ 21 + τ 22 )2

1

y2
+ · · ·

]
,

there exists a positive natural number k so that
2(e − a − δ − τ 21 )

τ 21 + τ 22
−k < −1. It implies

that s(0+) := lim
M→0+ s(M) = −∞. On the other hand, the behavior of s(∞) =

lim
M→∞ s(M) depends upon the sign of

2(e − a − δ − τ 21 )

τ 21 + τ 22
+1. If

2(e − a − δ − τ 21 )

τ 21 + τ 22
+

1 < 0 then s(∞) < ∞. By item 2 of Theorem 3.1, p. 447 in Ikeda and Watanabe

(1989), M(t) converges to ∞ a.s. If
2(e − a − δ − τ 21 )

τ 21 + τ 22
+ 1 < 0, which is equivalent

to 2(e−a−δ) > τ 21 −τ 22 , then s(∞) = ∞. By item 1 of Theorem 3.1, p. 447 in Ikeda
and Watanabe (1989), there exists a unique ergodic invariant probability measure π1
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for the Eq. (12) whose density p1(m) is the solution to the associated Fokker–Planck
equation of (12)

− d

dm
[(n + (a + δ + τ 21 − e)m)p1(m)] + d2

dm2

[
1

2
(τ 21 + τ 22 )m2 p1(m)

]
= 0.

Solving this equation (see Sect. 5.2 in Phan et al. 2021) yields p1(m) =
β

α∗∗
�(α∗)

m−α∗−1e−β∗/m in which α∗ := 2(e − a − δ − τ 21 )

τ 21 + τ 22
+ 1, β∗ := 2n

τ 21 + τ 22
, and

�(·) is the Gamma function. Since any measure whose density is of the form of p1(m)

is the inverse gamma distribution with parameters α∗ and β∗, π1 ∼ IG(α∗, β∗). Hence
M(t) converges weakly to π1 for any initial value M(0) ≥ 0. Next, as I (t) converges
to 0 a.s., the long-term behavior of the fourth equation of the system (5) is the same
as that of the equation

d P̃ =
(
bP̃ − θ

P̃2

1 + P̃2

)
dt + τ3 P̃dW3 (13)

with P̃(0) = P(0) ≥ 0. The Eq. (13) can rewritten as

P̃(t) = P(0) exp

{∫ t

0

[
b − θ

P̃(s)

1 + P̃(s)2
− τ 23

2

]
ds + τ3W3(t)

}
. (14)

If P(0) = 0 then P̃(t) ≡ 0 a.s. By the last equation of the system (5), C(t) converges
to 0 a.s. Now assume that P(0) > 0. Then, by (14), P̃(t) > 0 for all t > 0 a.s. and
the long-term behavior of P̃(t) depends upon the value of b. Consider the following
cases.
Case 1. If b ≤ 0 then, by (14), P̃(t) converges to 0 a.s. Hence the long-term behavior

of the last equation of the system (5) is the same as that of the equation
dC̃

dt
= −kC̃ ,

which follows that C̃(t) converges to 0 a.s.

Case 2. If b >
θ

2
+ τ 23

2
then, since

P̃(s)

1 + P̃(s)2
≤ 1

2
for all s ≥ 0,

b − θ
P̃(s)

1 + P̃(s)2
− τ 23

2
≥ b − θ

2
− τ 23

2
> 0.

This shows that P̃(t) converges to ∞ a.s. Hence the last equation of the system (5)
implies C(t) converges to θ a.s.

Case 3. Assume that 0 < b ≤ θ

2
+ τ 23

2
. It is clear that δ∗

0 is an ergodic invariant

probability measure for the Eq. (13). Suppose that P̃(t) is close to a neighborhood of
0 for a long time. Then, by strong law of large numbers, the Lyapunov exponent of δ∗

0
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can be computed as

λ(δ∗
0) := lim

t→∞
1

t
ln P̃(t) = lim

t→∞
1

t

∫ t

0

[
b − θ

P̃(s)

1 + P̃(s)2
− τ 23

2

]
ds

=
∫

{0}

[
b − θ

P̃

1 + P̃2
− τ 23

2

]
δ∗
0(d P̃) = b − τ 23

2
.

We consider two cases:

Case 3.1. If 0 < b <
τ 23

2
then, since

b − θ
P̃(s)

1 + P̃(s)2
− τ 23

2
≤ b − τ 23

2
< 0,

it follows from the Eq. (14) that P̃(t) converges to 0 a.s. and henceC(t) converges
to 0 a.s.

Case 3.2. If b >
τ 23

2
then λ(δ∗

0) > 0 which means that P̃(t) will be repelled away

from 0 if it gets close to 0. To study the long-term behavior of the solution P̃(t)
of the Eq. (13), we consider for α2 > 0 fixed

s(P̃) =
∫ P̃

α2

exp

⎧⎨
⎩−

∫ y

α2

2bz − 2θ z2

1+z2

τ 23 z
2

⎫⎬
⎭ dy = C2

∫ P̃

α2

y
− 2b

τ23 exp

{
2θ

τ 23
tan−1 y

}
dy.

Since lim
y→0+ exp

{
2θ

τ 23
tan−1 y

}
= 1, for any ε > 0 there is a η > 0 so that

0 < y < η, we have 1 − ε < exp

{
2θ

τ 23
tan−1 y

}
< 1 + ε. Thus, for 0 < P̃ < η,

(1 − ε)C2

∫ P̃

α2

y
− 2b

τ23 dy ≤ s(P̃) ≤ (1 + ε)C2

∫ P̃

α2

y
− 2b

τ23 dy.

Because −2b

τ 23
+ 1 < 0, we have

∫ P̃

α2

y
− 2b

τ23 dy = P̃
− 2b

τ23
+1 − α

− 2b
τ23

+1

2

− 2b
τ 23

+ 1
→ −∞ as P̃ → 0+
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which implies that s(0+) = −∞. As lim
y→∞ exp

{
2θ

τ 23
tan−1 y

}
= exp

{
θπ

τ 23

}
,

there exists aM1 > α2 so that y > M1 implies exp

{
2θ

τ 23
tan−1 y

}
< exp

{
θπ

τ 23

}
+

ε. Then, for P̃ > M1, we get

∫ P̃

M1

y
− 2b

τ23 exp

{
2θ

τ 23
tan−1 y

}
dy ≤

(
exp

{
θπ

τ 23

}
+ ε

)∫ P̃

M1

y
− 2b

τ23 dy

=
(
exp

{
θπ

τ 23

}
+ ε

)
P̃

− 2b
τ23

+1 − M
− 2b

τ23
+1

1

− 2b
τ 23

+ 1
.

It follows that for P̃ > M1

s(P̃) = C2

∫ M1

α2

y
− 2b

τ23 exp

{
2θ

τ23

tan−1 y

}
dy + C2

∫ P̃

M1

y
− 2b

τ23 exp

{
2θ

τ23

tan−1 y

}
dy

≤ M2 + C2

(
exp

{
θπ

τ23

}
+ ε

)
P̃

− 2b
τ23

+1
− M

− 2b
τ23

+1

1

− 2b
τ 23

+ 1

where M2 := C2

M1∫
α2

y
− 2b

τ23 exp

{
2θ

τ 23
tan−1 y

}
dy. Thus

s(∞) ≤ M2 +
C2(exp

{
θπ

τ 23

}
+ ε)M

− 2b
τ23

+1

1

2b
τ 23

− 1
< ∞.

By item 2 of Theorem 3.1, p. 447 in Ikeda and Watanabe (1989), P̃(t) converges
to ∞ a.s. and so C(t) converges to θ/k a.s.

Therefore we have proved that if the solution U (t) of the system (5) starts in {S = 0}
and if 2(e − a − δ) > τ 21 − τ 22 and b <

τ 23

2
then S(t) ≡ 0 a.s., I (t) converges to 0

a.s., M(t) converges weakly to π1, P(t) converges to 0 a.s., and C(t) converges to
0 a.s. In other words, μ0 = δ∗

0 × δ∗
0 × π1 × δ∗

0 × δ∗
0 is the unique ergodic invariant

probability measure for the system (5) on the boundary {S = 0} ⊆ ∂D provided that

2(e − a − δ) > τ 21 − τ 22 and b <
τ 23

2
.

B. Suppose that the solution U (t) of the system (5) starts in {S > 0, I = 0}, that is,
S(0) > 0 and I (0) = 0. Since I (0) = 0, the second equation of the system (5) implies
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I (t) ≡ 0 a.s. But then the first equation of the system (5) becomes dS = r S(1− S)dt ,

which follows that S(t) = Cert

1 + Cert
whereC = S(0)

1 − S(0)
> 0. Hence S(t) converges

to 1 a.s. Then the long-term behavior of the third equation of the system (5) is the
same as that of the equation

d M̃ = [n − αM̃2 + (a + δ + τ 21 − e)M̃]dt + τ1M̃dW1 + τ2M̃dW2 (15)

To study the long-term behavior of the solution M̃ of the Eq. (15), we consider, for a
fixed α3 > 0,

s(M̃) =
∫ M̃

α3

exp

{
−
∫ y

α3

2n − 2αz2 + 2(a + δ + τ 21 − e)z

(τ 21 + τ 22 )z2
dz

}
dy

= C3

∫ M̃

α3

y
− 2(a+δ+τ21 −e)

τ21+τ22 exp

{
2n

τ 21 + τ 22

1

y
+ 2α

τ 21 + τ 22
y

}
.

Since integrand can be rewritten as

y
− 2(a+δ+τ21 −e)

τ21+τ22

[
1 +

(
2n

τ 21 + τ 22

1

y
+ 2α

τ 21 + τ 22
y

)

+ 1

2!

(
2n

τ 21 + τ 22

1

y
+ 2α

τ 21 + τ 22
y

)2

+ · · ·
⎤
⎦ ,

there exists a positive natural number k1 such that −2(a + δ + τ 21 − e)

τ 21 + τ 22
− k1 <

−1 and so s(0+) = −∞. As there is a positive natural number k2 such that

−2(a + δ + τ 21 − e)

τ 21 + τ 22
+ k2 > −1, so s(∞) = ∞. By item 1 of Theorem 3.1, p. 447 in

Ikeda andWatanabe (1989), there is a unique ergodic invariant probability measure π2
for the system (5) whose density p2(m) is the solution to the associated Fokker–Planck
equation of (15)

− d

dm
[(n − αm2 + (a + δ + τ 21 − e)m)p2(m)] + d2

dm2

[
1

2
(τ 21 + τ 22 )m2 p2(m)

]
= 0.

Solving this equation (see Sect. 3.2 in Phan and Tian 2020) yields

p2(m) = (α/n)	/2

2K	

(
4
√

αn
τ 21 +τ 22

)m	−1 exp

{
−1

2
(χm−1 + ψm)

}
, m ∈ (0,∞),
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where 	 := 2(a + δ + τ 21 − e)

τ 21 + τ 22
− 1, χ := 4n

τ 21 + τ 22
, ψ := 4α

τ 21 + τ 22
, and K	 is the

modified Bessel function of the third kindwith index	. Anymeasure whose density is
of the form of p2(m) is the generalized inverse Gaussian distribution with parameters
	, χ , and ψ . Hence π2 ∼ GIG(	, χ,ψ) and thus M(t) converges weakly to π2.
Furthermore, the first moment of π2 can be computed as

∫ ∞

0
mπ2(dm) = R	(w)

√
n

α
=: m∗ (16)

where R	(w) = K	+1(w)

K	(w)
and w = 4

√
αn

τ 21 + τ 22
. Finally, since I (t) ≡ 0 a.s., the same

argument as in part A implies that P(t) approaches 0 a.s. and so C(t) converges to 0

a.s. provided b <
τ 23

2
. Therefore we have proved that if the solutionU (t) of the system

(5) starts in {S > 0, I = 0} and if b <
τ 23

2
then S(t) converges to 1 a.s., I (t) ≡ 0 a.s.,

M(t) converges weakly to π2, P(t) converges to 0 a.s., and C(t) converges to 0 a.s. In
other words, μ1 = δ∗

1 × δ∗
0 × π2 × δ∗

0 × δ∗
0 is the unique ergodic invariant probability

measure for the system (5) on the boundary {S > 0, I = 0} ⊆ ∂D provided that

b <
τ 23

2
.

C. Now assume that the solution U (t) of the system (5) starts in {S > 0, I > 0},
that is, S(0) > 0 and I (0) > 0. By Theorem 2.2, U (t) ∈ D◦ for all t > 0 a.s. From
the third equation of the system (5), P(t) ≥ P̃(t) a.s. where P̃(t) is the solution to

the Eq. (13) with P(0) = P̃(0) ≥ 0. By the arguments in part A, if b >
τ 23

2
then

P̃(t) → ∞ a.s. and so P(t) → ∞ a.s. So from now on we assume that b <
τ 23

2
. Then

the dynamics of the system (5) depends on the threshold

λ := √
αn R	(w) − a − δ − τ 21

2
.

To understand why the combined parameter λ determines the long-term behavior of
the system (5), we investigate the set of ergodic invariant probability measures of the
system (5) on the boundary ∂D, denoted by M, and then compute their Lyapunov

exponents. By arguments in part A and part B, since b <
τ 23

2
, M = {μ0, μ1} if

2(e − a − δ) > τ 21 − τ 22 and M = {μ1} if 2(e − a − δ) ≥ τ 21 − τ 22 .
Forμ0 = δ∗

0 ×δ∗
0 ×π1×δ∗

0 ×δ∗
0 , the Lyapunov exponents ofμ0 along the I , M , P ,

and C component are equal to zero, that is, λ2(μ0) = λ3(μ0) = λ4(μ0) = λ5(μ0) =
0. Intuitively, this is because the components I , M , P , and C are inside the support of
μ0 which is

supp(μ0) = {S = 0} = {(S, I , M, P,C)T ∈ D : S = 0} ⊆ ∂D
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and so they are at an “equilibrium state”. Hence the solution does not decay or grow
along these components. Since the Lyapunov exponent of μ0 along the S component
is

λ1(μ0) = lim
t→∞

ln S(t)

t
= lim

t→∞
1

t

∫ t

0
[r(1 − S(s) − I (s)) − α I (s)M(s)]ds

=
∫

{S=0}
[r(1 − S − I ) − α I M]dμ0 = r > 0,

μ0 is always a repeller.
For μ1 = δ∗

1 × δ∗
0 × π2 × δ∗

0 × δ∗
0 , we have λ1(μ1) = λ3(μ1) = λ4(μ1) =

λ5(μ1) = 0 since the components S, M , P , and C are inside the support of μ1 which
is {S > 0, I = 0}. The Lyapunov exponent of μ1 along the I component is

λ2(μ1) = lim
t→∞

ln I (t)

t
= lim

t→∞
1

t

∫ t

0

[
αS(s)M(s) − a − δ − τ 21

2

]
ds

=
∫

{S>0, I=0}

[
αSM − a − δ − τ 21

2

]
dμ1 = λ.

The combined parameter λ provides us with the rate of convergence of the I com-
ponent when I (t) is getting close to 0 for a long time. Theorem 2.4 guarantees that
if λ < 0 then μ1 is a global attractor in the sense that, for any initial value in D◦,
I (t) converges to 0 a.s., S(t) converges to 1 a.s., M(t) converges weakly to π2, P(t)
converges to 0 a.s., and C(t) converges to 0 a.s.

If λ > 0 then μ1 becomes a repeller. When the I component is getting close to 0, it
will be repelled away from 0 and then wanders around between 0 and 1. This makes
sure that the solution will be positive recurrent and finally end up at an equilibrium
state, which is characterized by an ergodic invariant probability measure μ∗ in D◦.
This fact is ensured by Theorem 2.3.

Before ending this subsection, we state and prove the following proposition that
will be utilized in proof of Theorems 2.3 and 2.4.

Proposition 3.1 Let U (t) = (S(t), I (t), M(t), P(t), C(t))T be the solution to the
system (5) with initial value u ∈ D◦. If I (t) converges to 0 a.s. then S(t) converges to
1 a.s., M(t) converges weakly to π2, P(t) converges to 0 a.s., and C(t) converges to
0 a.s.

Proof of Proposition 3.1 Since I (t) converges to 0 a.s., for any ε > 0 there exists a
non-random time T1 > 0 so that t ≥ T1 implies 0 < I (t) < ε a.s. Since n − αSM2 +
(a + δ + τ 21 − e)M → −∞ as M → ∞, there is an A > 0 large enough so that
M > A implies L(M) = n − αSM2 + (a + δ + τ 21 − e)M < −M . Then, by
Theorem 3.1 in Meyn and Tweedie (1993b), Pu{M(t) → ∞} = 0. In other words,
lim supt→∞ M(t) < ∞ a.s. Then there is an Ā > 0 so that M(t) ≤ Ā for all t ≥ 0
a.s. By the first equation of the system (5), it is easy to see that limt→∞ S(t) exists
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and is finite a.s. Furthermore, for t ≥ T1 we have

r S(1 − S) ≥ dS

dt
≥ r S

[
1 − S − ε(1 + α Ā)

]
a.s. (17)

Let Sε(t) satisfy

dSε

dt
= r Sε[1 − ε(1 + α Ā) − Sε]

with initial value Sε(0) = S(0) > 0. Clearly, Sε(t) converges to 1 − ε(1 + α Ā)

a.s. Notice that ε is chosen so that ε <
1

1 + α Ā
. By comparison theorem for ODEs,

(17) implies, for all t ≥ T1, that Sε(t) ≤ S(t) ≤ 1 a.s. Letting t → ∞ yields
1 − ε(1 + α Ā) ≤ limt→∞ S(t) ≤ 1 a.s. So letting ε ↓ 0 gives limt→∞ S(t) = 1
a.s. Then, for any ε > 0, there is a non-random time T2 > 0 so that t ≥ T2 implies
1 − ε < S(t) < 1 a.s. By the third equation of the system (5), we obtain for t ≥ T2

M̃(t) ≤ M(t) ≤ Mε(t) a.s. (18)

where M̃(t) solves the Eq. (15)with M̃(0) = M(0) > 0 andMε(t) solves the equation

dMε = [n − α(1 − ε)M2
ε + (a + δ + τ 21 − e)Mε]dt

+τ1MεdW1 + τ2MεdW2 (19)

with Mε(0) = M(0) > 0. By the same argument as in B, we know that Mε(t)
converges weakly to π2ε ∼ GIG(	, χ,ψε) where 	 and χ are defined as in B

and ψε = 4α(1 − ε)

τ 21 + τ 22
. Let P̃(t, M(0), ·), P(t, M(0), ·), and Pε(t, M(0), ·) be the

transition probability functions of M̃(t), M(t), and Mε(t), respectively. Due to (18),
for any m̄ > 0,

Pε(t, M(0), (0, m̄)) ≤ P(t, M(0), (0, m̄)) ≤ P̃(t, M(0), (0, m̄)).

Since an open set in R
◦+ = (0,∞) is the union of at most countably many disjoint

open intervals in R◦+ and B(R◦+) is generated by the collection of open sets in R
◦+, it

implies that for all B ∈ B(R◦+)

Pε(t, M(0), B) ≤ P(t, M(0), B) ≤ P̃(t, M(0), B). (20)

If we denote by pε(m) the density ofπ2ε then it is straightforward that limε↓0 pε(m) =
p(ε) due to continuity of exponential functions. It follows that for any B ∈ B(R◦+)

lim
ε↓0 π2ε(B) = lim

ε↓0

∫
B
pε(m)dm =

∫
B
p(m)dm = π2(B)
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and hence as ε ↓ 0

‖π2ε(·) − π2(·)‖T V = 2 sup
B∈B(R◦+)

|π2ε(B) − π2(B)| → 0.

Since ‖Pε(t, M(0), ·) − π2ε(·)‖T V → 0 and ‖P̃(t, M(0), ·) − π2(·)‖T V → 0 as
t → ∞,

lim
ε↓0 lim

t→∞ ‖Pε(t, M(0), ·) − P̃(t, M(0), ·)‖T V = 0.

Thus, by (20), ‖P(t, M(0), ·) − π2(·)‖T V → 0 as t → ∞. In other words, M(t)
converges weakly to π2. Next, the fourth equation of the system (5) implies for t ≥ T1

P̃(t) ≤ P(t) ≤ Pε(t) a.s. (21)

where P̃(t) solves the Eq. (13) with P̃(0) = P(0) > 0 and Pε(t) is the solution to the
equation

dPε = (δqε + bPε)dt + τ3PεdW3 (22)

with Pε(0) = P(0) > 0. Fix α4 > 0 and consider

s(Pε) =
∫ Pε

α4

exp

{
−
∫ y

α4

2δqε + 2bz

τ 23 z
2

dz

}
dy = C4

∫ Pε

α4

y
− 2b

τ23 exp

{
2δqε

τ 23 y

}
dy.

The integrand can be rewritten as

y
− 2b

τ23

⎡
⎣1 + 2δqε

τ 23

1

y
+ 1

2!

(
2δqε

τ 23

)2
1

y2
+ · · ·

⎤
⎦ .

As there is a positive natural number k so that−2b

τ 23
−k < −1, so s(0+) = −∞. Since

b <
τ 23

2
,−2b

τ 23
+1 > 0which implies that s(∞) = ∞. Thus, by item 1 of Theorem 3.1,

p. 447 in Ikeda andWatanabe (1989), there exists a unique ergodic invariant probability
measure πε

3 for the Eq. (22) which is the inverse gamma distribution πε
3 ∼ IG(β1, β

ε
2 )

where β1 = −2b

τ 23
+1 and βε

2 = 2δqε

τ 23
. Then Pε(t) converges weakly to πε

3 . But, since

βε
2 → 0 as ε → 0, the density of πε

3
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fε(p) = (βε
2 )

β1

�(β1)
p−β1−1 exp

{
−βε

2

p

}
→ 0 as ε → 0.

It implies that πε
3 converges weakly to 0 as ε → 0. Hence limε↓0 limt→∞ Pε(t) = 0

a.s. Thus, by (21), P(t) converges to 0 a.s. Finally, by the last equation of the system
(5),

C(t) = C(0)e−kt + e−kt
∫ t

0
θ

P(s)2

1 + P(s)2
eksds.

It follows from L’Hospital’s Rule that

lim
t→∞C(t) = lim

t→∞
θ

k

P(t)2

1 + P(t)2
= 0.

��

3.4 Proofs of Theorems 2.3 and 2.4

In order to prove Theorems 2.3 and 2.4, first of all we need to check whether the
system (5) has sufficient noises that can locally push its dynamics in all directions
or not. This can be achieved by proving the solutions of the system (5) starting in
D◦ satisfies Hörmander’s condition (Bellet 2006; Nualart 2006; Hörmander 1967).
Indeed, we rewrite the system (5) in the Stratonovich form

dS = [r S (1 − S − I ) − αSI M] dt,

d I =
(

αSM − a − δ − τ 21

2

)
I dt − τ1 I ◦ dW1,

dM =
(
n − αSM2 +

(
a + δ + τ 21

2
− τ 22

2
− e

)
M

)
dt + τ1M ◦ dW1

+ τ2M ◦ dW2,

dP =
(

δq I +
(
b − τ 23

2

)
P − θ

P2

1 + P2

)
dt + τ3P ◦ dW3,

dC =
(

θ
P2

1 + P2 − kC

)
dt . (23)

Let
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f̄ (U ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r S(1 − S − I ) − αSI M(
αSM − a − δ − τ 21

2

)
I

n − αSM2 +
(
a + δ + τ 21

2
− τ 22

2
− e

)
M

δq I +
(
b − τ 23

2

)
P − θ

P2

1 + P2

θ
P2

1 + P2 − kC

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

g1(U ) = [0, −τ1 I , τ1M, 0, 0]T , g2(U ) = [0, 0, τ2M, 0, 0]T , and g3(U ) =
[0, 0, 0, τ3P, 0]T . By definition, the solutionU (t) of the system (5) is said to satisfy
Hörmander’s condition if the set of vector fields

g1, g2, g3, [ f̄ , g1], [ f̄ , g2], [ f̄ , g3], [ f̄ , [ f̄ , g1]], . . .

spans R5 at every point u = (s, i,m, p, c)T ∈ D◦ where [A, B] is the Lie Bracket of
two vector fields A = (A1, A2, A3, A4, A5)

T and B = (B1, B2, B3, B4, B5)
T defined

by

[A, B] = ([A, B]1 [A, B]2, [A, B]3, [A, B]4, [A, B]5)T and for j = 1, 2, 3, 4, 5

[A, B] j :=
(
A1

∂Bj

∂s
− B1

∂A j

∂s

)
+
(
A2

∂Bj

∂i
− B2

∂A j

∂i

)
+
(
A3

∂Bj

∂m
− B3

∂A j

∂m

)

+
(
A4

∂Bj

∂ p
− B4

∂A j

∂ p

)
+
(
A5

∂Bj

∂s
− B5

∂A j

∂c

)
.

By computation,

[ f̄ , g1] =

⎡
⎢⎢⎢⎢⎣

−τ1rsi − 2τ1αims
τ1αims

−τ1n − τ1αm2s
−τ1iδq

0

⎤
⎥⎥⎥⎥⎦ , [ f̄ , g2] =

⎡
⎢⎢⎢⎢⎣

τ2αims
−τ2αims

τ2n + τ2αm2s
0
0

⎤
⎥⎥⎥⎥⎦ , and

[ f̄ , g3] =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0

τ3δqi + τ3θ
p2(1−p2)
(1+p2)2

−2τ3θ
p2

(1+p2)2

⎤
⎥⎥⎥⎥⎥⎦

.
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Clearly, the vectors g1, g2, g3, [ f̄ , g2], and [ f̄ , g3] span R
5 for any u ∈ D◦. So

Hörmander’s condition holds for the solutions of the system (5) in D◦. As a conse-
quence, the transition probability function P(t, u, ·) of the solutionsU (t) has density
p(t, u, ū) which is smooth in (u, ū) ∈ D◦ × D◦.

Next, we consider the control system corresponding to the system (23)

Ṡφ = r Sφ

(
1 − Sφ − Iφ

)− αSφ IφMφ,

İφ =
(

αSφMφ − a − δ − τ 21

2

)
Iφ − τ1 Iφφ1,

Ṁφ = n − αSφM
2
φ +

(
a + δ + τ 21

2
− τ 22

2
− e

)
Mφ + τ1Mφφ1 + τ2Mφφ2,

Ṗφ = δq Iφ +
(
b − τ 23

2

)
Pφ − θ

P2
φ

1 + P2
φ

+ τ3Pφφ3,

Ċφ = θ
P2

φ

1 + P2
φ

− kCφ. (24)

where φ = (φ1, φ2, φ3)
T is from the set of piecewise continu-

ous vector functions taking values in R
3 and defined on R+. Let

(Sφ(t, u), Iφ(t, u), Mφ(t, u), Pφ(t, u), Cφ(t, u))T be the solution to the system
(24) with control φ and initial value u = (s, i, m, p, c)T ∈ D◦. We define a
reachable set of u ∈ D◦ as the collection of

(Sφ(t, u), Iφ(t, u), Mφ(t, u), Pφ(t, u), Cφ(t, u))T

under all piecewise continuous controls φ(·) (time t is fixed). By investigating the
reachable sets of different initial values in D◦ and using support theorem, we can
obtain the desired properties of invariant probability measures of the system (5). For
convenience, let

f1(Uφ) := r Sφ

(
1 − Sφ − Iφ

)− αSφ IφMφ,

f2(Uφ) :=
(

αSφMφ − a − δ − τ 21

2

)
Iφ,

f3(Uφ) := n − αSφM
2
φ +

(
a + δ + τ 21

2
− τ 22

2
− e

)
Mφ,

f4(Uφ) := δq Iφ +
(
b − τ 23

2

)
Pφ − θ

P2
φ

1 + P2
φ

,

f5(Uφ) := θ
P2

φ

1 + P2
φ

− kCφ,
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where we denote Uφ = (Sφ, Iφ, Mφ, Pφ, Cφ)T . Then the system (24) is equivalent
to

Ṡφ = f1(Uφ),

İφ = f2(Uφ) − τ1 Iφφ1,

Ṁφ = f3(Uφ) + τ1Mφφ1 + τ2Mφφ2,

Ṗφ = f4(Uφ) + τ3Pφφ3,

Ċφ = f5(Uφ).

The dynamics of the system (24) is presented in the following claims.

Claim 3.1 Let u0 := (s0, i0, m0, p0, c0)T ∈ D◦ and (i1, m1, p1)T ∈ (0, 1) ×
(0,∞) × (0,∞). Then for any ε > 0, there are a control φ(·) and a time T > 0 such
that

∣∣Sφ(T , u0) − s0
∣∣ < ε,

Iφ(T , u0) = i1,

Mφ(T , u0) = m1,

Pφ(T , u0) = p1, and∣∣Cφ(T , u0) − c0
∣∣ < ε.

Remark This claim indicates that we can control the solution of the system (24) to
move back and forth along the I -direction, M-direction, and P-direction; while the
other directions still remain within a small neighborhood of their initial values.

Proof of Claim 3.1 Suppose that i0 < i1, m0 < m1, and p0 < p1. (The other cases are
treated similarly.) Let

ρ := sup
j∈{1,2,3,4,5}

{| f j (u)| : |s − s0|

≤ ε, |c − c0| ≤ ε, (i,m, p)T ∈ [i0, i1] × [m0,m1] × [p0, p1]
}

where u = (s, i, m, p, c)T . We choose φ1(t) ≡ −ρ1 with ρ1 > 0 such that

0 < i1 − i0 < ε

(
τ1ρ1i0

ρ
− 1

)
.

Then τ1ρ1i0 − ρ > 0 and so İφ(0, u0) = f2(u0) + τ1ρ1i0 ≥ −ρ + τ1ρ1i0 > 0. By
continuity of İφ , there exists a t1 > 0 so that İφ(t, u0) > 0 for all t ∈ (0, t1). In other
words, Iφ is increasing on (0, t1). Next, we choose φ2(t) ≡ ρ2 > 0 such that

0 < m1 − m0 < ε

(
τ2ρ2m0 − τ1ρ1m0

ρ
− 1

)
.
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Then Ṁφ(0, u0) = f3(u) + (τ2ρ2 − τ1ρ1)m0 ≥ τ2ρ2m0 − τ1ρ1m0 − ρ > 0. It
implies that there is a t2 > 0 such that Mφ is increasing on (0, t2). Finally, we choose
φ3(t) ≡ ρ3 > 0 so that

0 < p1 − p0 < ε

(
τ3ρ3 p0

ρ
− 1

)
.

Then Ṗφ(0, u0) = f4(u0)+τ3ρ3 p0 ≥ τ3ρ3 p0−ρ > 0 which follows that there exists
a t3 > 0 such that Pφ is increasing on (0, t3). Now let t0 = min{t1, t2, t3} and choose
ε < ρt0. Suppose that there were the first time t ∈ (0, ε

ρ
) so that |Sφ(t, u0)− s0| > ε.

Then, by Mean Value Theorem, we would have

ε <
∣∣Sφ(t, u0) − s0

∣∣ = ∣∣Ṡφ(η, u0)
∣∣ t, for some η ∈ (0, t)

= ∣∣ f1(Uφ(η, u0))
∣∣ t ≤ ρ

ε

ρ
= ε,

which is a contradiction. Hence for all t ∈ (0, ε
ρ
) we get

∣∣Sφ(t, u0) − s0
∣∣ ≤ ε. By the

same argument,
∣∣Cφ(t, u0) − s0

∣∣ ≤ ε for all t ∈ (0, ε
ρ
). Next, if for all t ∈ (0, ε

ρ
) we

had Iφ(t, u0) < i1 then it would imply that Iφ( ε
ρ
, u0) = limt→ ε

ρ
I (t, u0) ≤ i1. But

then, by Mean Value Theorem,

ε

ρ
(τ1ρ1i0 − ρ) > i1 − i0 ≥ Iφ

(
ε

ρ
, u0

)
− Iφ(0, u0)

= İφ(η̄, u0)
ε

ρ
for some η̄ ∈ (0,

ε

ρ
)

≥ (τ1ρ1i0 − ρ)
ε

ρ
,

which is a contradiction. Thus, there is a time T1 ∈ (0, ε
ρ
) such that Iφ(T1, u0) = i1.

By the same reasonings, there are a time T2 ∈ (0, ε
ρ
) such that Mφ(T2, u0) = m1

and a time T3 > 0 ∈ (0, ε
ρ
) such that Pφ(T3, u0) = p1. If T1 = T2 = T3 then

take φ̄ ≡ (−ρ1, ρ2, ρ3) and we’re done. If T1, T2, and T3 are different, for example,
T1 < T2 < T3 then we can choose

φ1(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ρ1 if t ∈ [0, T1],
1
τ1

(
α S̄(t)M̄(t) − a − δ − τ 21

2

)
if t ∈ (T1, T2],

1
τ1

(
αS(t)M(t) − a − δ − τ 21

2

)
if t > T2,

φ2(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ2 if t ∈ [0, T1],
− 1

τ2

(
α S̄(t)M̄(t) − a − δ − τ 21

2

)
+ ρ2 − τ1

τ2
ρ1 if t ∈ (T1, T2],

− 1
τ2
M(t)−1 f3(U (t)) − τ1

τ2
φ1(t) if t > T2,
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and φ3(t) ≡ ρ3 for all t ≥ 0, where Ū (t) = (S̄(t), Ī (t), M̄(t), P̄(t), C̄(t))T solves
the system

Ṡ = f1(U ),

İ = 0,

Ṁ = f3(U ) + (τ2ρ2 − τ1ρ1)M,

Ṗ = f4(U ) + τ3ρ3P,

Ċ = f5(U ),

with initial value
(
Sφ̄ (T1), i1, Mφ̄(T1), Pφ̄ (T1), Cφ̄(T1)

)T
and U (t) =

(S(t), I (t), M(t), P(t), C(t))T solves the system

Ṡ = f1(U ),

İ = 0,

Ṁ = 0,

Ṗ = f4(U ) + τ3ρ3P,

Ċ = f5(U ),

with initial value
(
S̄(T2), i1, m1, P̄(T2), C̄(T2)

)T
. ��

Claim 3.2 Suppose u0 = (s0, i0, m0, p0, c0)T ∈ D◦ such that i0m0 <
r

α
. Let

S∗ := 1 − i0 − α

r
i0m0 and C∗ := θ

k

p20
1 + p20

.

Then for any ε > 0 there are a control φ(·) and a time T > 0 so that

∣∣Sφ(T , u0) − S∗
∣∣ < ε,

Iφ(t, u0) = i0, ∀ t ∈ [0, T ],
Mφ(t, u0) = m0, ∀ t ∈ [0, T ],
Pφ(t, u0) = p0, ∀ t ∈ [0, T ], and∣∣Cφ(T , u0) − C∗

∣∣ < ε.

Remark Claim 3.2 states that if we hold the I -direction, M-direction, and P-direction
of the solution to the system (24) then the S-direction and C-direction will end up
within a small neighborhood of a fixed point in finite time. This helps us to describe
exactly the support of the invariant probability measure μ∗ of the system (5) in D◦.

Proof of Claim 3.2 Consider the ODE system

Ṡ = r S(1 − S − I ) − αSI M,
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İ = 0,

Ṁ = 0,

Ṗ = 0,

Ċ = θ
P2

1 + P2 − kC, (25)

with initial value u0 ∈ D◦ where i0m0 <
r

α
. The second, the third, and the fourth

equations imply I (t) ≡ i0, M(t) ≡ m0, and P(t) ≡ p0. So the system (25) is reduced
to 2-dim ODE system

Ṡ = r S(1 − S − i0) − αSi0m0,

Ċ = θ
p20

1 + p20
− kC,

with initial condition (s0, c0)T . It is straightforward that S(t) converges to S∗ and
C(t) converges to C∗ as t → ∞. Let Ū (t) = (S̄(t), Ī (t), M̄(t), P̄(t), C̄(t))T be
the solution to the system (25) with initial value u0. With the feedback control φ =
(φ1, φ2, φ3)

T satisfying

φ1(t) ≡ 1

τ1

(
α S̄(t)M̄(t) − a − δ − τ 21

2

)
,

φ2(t) ≡ − 1

τ2
M̄(t)−1 f3(Ū (t)) − τ1

τ2
φ1(t), and

φ3(t) ≡ θ

τ3

P̄(t)

1 + P̄(t)2
− δq

τ3

Ī (t)

P̄(t)
− b

τ3
+ τ3

2
,

we have Uφ(t) = Ū (t) for all t ≥ 0 where Uφ(t) is the solution of the system (24)

with control φ(·) above and initial value u0 ∈ D◦ with i0m0 <
r

α
. This completes the

proof. ��
By Claims 3.1 and 3.2, we can easily derive the following claims that will be used

in proofs of Theorems 2.3 and 2.4.

Claim 3.3 For any u = (s, i, m, p, c)T ∈ D◦, we can find a point
(S∗∗, I∗, M∗, P∗,C∗∗)T in D◦ with the following properties: if 0 < ζ <

min
{
S∗∗, I∗, 1√

2
(S∗∗ + I∗), M∗, P∗,C∗∗

}
and let

Vζ := (S∗∗ − ζ, S∗∗ + ζ ) × (I∗ − ζ, I∗ + ζ ) × (M∗ − ζ, M∗ + ζ )

×(P∗ − ζ, P∗ + ζ ) × (C∗∗ − ζ,C∗∗ + ζ ),

then

(i) there are a control φ(·) and a time T > 0 so that Uφ(T , u) ∈ Vζ ;
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(ii) there are a neighborhood V̄ ζ ⊆ Vζ and a control φ(·) so that V̄ ζ is invariant
under the system (24), that is, for all t ≥ 0 and u ∈ V̄ ζ we have Uφ(t, u) ∈ V̄ ζ .

Claim 3.4 For any u = (s, i, m, p, c)T ∈ D◦ and for any 0 < ζ < min{m∗, 1},
there are a control φ(·) and a time T > 0 such that

Uφ(T , u) ∈ Wζ := (0, 1) × (0, ζ ) × (m∗ − ζ,m∗ + ζ ) × (0,∞) × (0,∞),

where m∗ is defined by (16).

Now we recall some technical concepts and results in the theory of homogeneous
Markov processes in Meyn and Tweedie (1993a, b). Let X be a locally compact and
separable metric space and B(X) the Borel σ -algebra on X . Let � = {φt : t ≥ 0} be
a homogeneous Markov process with state space (X ,B(X)) and transition probability
function P(t, x, ·). Suppose that � is defined on a probability space (�̃, F̃ , {Px }x∈X )

where

Px {φt ∈ A} = P(t, x, A) for all x ∈ X , t ≥ 0, A ∈ B(X).

Furthermore, assume that � is a Feller process. For a probability measure a on R+,
we define a sampled Markov transition function Ka of � by

Ka(x, B) =
∫ ∞

0
P(t, x, B)a(dt).

Ka is said to possess a nowhere-trivial continuous component if there is a kernel
T : (X ,B(X)) → R+ satisfying

• for all B ∈ B(X), T (·, B) is lower semicontinuous, that is, for each x ∈ X
lim inf y→x T (y, B) ≥ T (x, B) for all B ∈ B(X);

• for each x ∈ X , T (x, ·) is a nontrivial measure satisfying Ka(x, B) ≥ T (x, B)

for all B ∈ B(X).

� is called a T -process if, for some probabilitymeasure a, the corresponding transition
function Ka admits a nowhere-trivial continuous component. A subset A ∈ B(X) is
called petite for the δ-skeleton chain {φnδ, n ∈ N} of� if there is a probabilitymeasure
a on N and a nontrivial measure ψ(·) on X such that for all x ∈ A and B ∈ B(X)

Ka(x, B) =
∞∑
n=1

P(nδ, x, B)a(n) ≥ ψ(B).

We extract the following theorem from Meyn and Tweedie (1993a, b), which is the
combination of Theorem 8.1 in Meyn and Tweedie (1993a) and Theorem 6.1 in Meyn
and Tweedie (1993b).

Theorem 3.1 Suppose � = {φt : t ≥ 0} is a T -process with generator L.
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(i) If� is bounded in probability on average, that is, for each x ∈ X and ε > 0, there
is a compact set Cε,x satisfying

lim inf
t→∞

1

t

∫ t

0
P(s, x,Cε,x )ds > 1 − ε,

then for any x ∈ X and f ∈ L1(X ,B(X), π∗) we get

lim
t→∞

1

t

∫ t

0
f (φs)ds =

∫
X
f dπ∗

where π∗ is an invariant probability measure of �.
(ii) If all compact sets are petite for some skeleton chain and there exists a positive

norm-like function V (·) : X → R+ such thatLV (x) ≤ −cV (x)+d for all x ∈ X
and for some constants c > 0, d ∈ R, then there is a unique invariant probability
measure π∗ and � is exponentially ergodic with respect to π∗, that is, for some
constants b1>0 and b2 > 0

‖P(t, x, ·) − π∗(·)‖T V ≤ b1(V (x) + 1)e−b2t for all x ∈ X , t ≥ 0,

where ‖ · ‖T V is the total variation norm.

Wewill use Theorem 3.1 to prove our main Theorem 2.3. Before doing so, we need
the following lemma.

Lemma 3.1 The solution U (t) = (S(t), I (t), M(t), P(t), C(t))T to the system (5)
is a T -process. Moreover, every compact set K ⊆ D◦ is petite for the Markov chain
U (n), n ∈ N.

Proof of Lemma 3.1 From the argument above, we know that the transition probability
function P(t, u, ·) of the solutionU (t) to the system (5) has a smooth density function
p(t, ·, ·) on D◦ × D◦. By standard argument, we can show that the resolvent kernel

R(u, A) =
∫ ∞

0
e−t P(t, u, A)dt

is continuous function in u for each A ∈ B(D◦).With the probabilitymeasure a(dt) =
e−t dt on R+, R(u, A) is its own nowhere-trivial continuous component. Hence U (t)
is a T -process.

Next, consider the point U∗ := (S∗∗, I∗, M∗, P∗,C∗∗)T as in Claim 3.3. Since
D◦ is invariant under the system (5), P(1,U∗, D◦) = 1. So for some u2 :=
(s2, i2, m2, p2, c2) ∈ D◦ we get p(1,U∗, u2) > 0. By Claim 3.3(ii) and the smooth-
ness of the density p(1, ·, ·) on D◦ × D◦, there are a neighborhood V̄ ζ of U∗ in D◦,
which is invariant under the system (24) with some control φ(·), and an open set
G � u2 in D◦ such that p(1, u, u′) ≥ m′ > 0 for all u ∈ V̄ ζ and u′ ∈ G. Now
suppose K is a compact set in D◦. Then, for any u ∈ K , it follows from Claim 3.3(i)
that there exists a control φ(·) and a time T > 0 such that Uφ(T , u) ∈ V̄ ζ . Let
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nu ∈ Z+, where Z+ is the set of positive natural numbers, such that nu > T . Due to
Claim 3.3(ii), we can extend the control φ(·) after time T so that Uφ(nu, u) ∈ V̄ ζ .
Then the support theorem implies P(nu, u, V̄ ζ ) = 2ρu > 0. AsU (t) is Feller, so there
is an open set Vu � u such that P(nu, u′, V̄ ζ ) ≥ ρu for all u′ ∈ Vu . By compactness
of K , there exists a finite number of such open sets Vui (i = 1, . . . , l) that satisfies
K ⊆⋃l

i=1 Vui . Let ρK = min1≤i≤l ρui , then for each u ∈ K there exists a nui ∈ Z+
so that P(nui , u, V̄ ζ ) ≥ ρK . So for u ∈ K and u′ ∈ G we get

p(nui , u, u′) =
∫
D◦

p(nui , u, u′′) p(1, u′′, u′)du′′

≥ m′
∫
V̄ ζ

p(nui , u, u′′)du′′ = m′P(nui , u, V̄ ζ )

which follows that p(nui+1, u, u′) ≥ m′ρK . Define the probability measure a on N

by

a(n) =
{

1
l if n = nui + 1 (i = 1, . . . , l),

0 otherwise,

and define the kernel, for u ∈ K and Q ∈ B(D◦),

Ka(u, Q) :=
∞∑
n=0

P(n, u, Q)a(n) = 1

l

l∑
i=1

P(nui+1, u, Q).

Then for Q ∈ B(D◦)

Ka(u, Q) = 1

l

l∑
i=1

∫
Q
p(nui+1, u, u′)du′ ≥ 1

l

l∑
i=1

∫
G∩Q

p(nui+1, u, u′)du′

≥ ρKm
′μ(G ∩ Q),

where μ is the Lebesgue measure on B(D◦). Let ψ(Q) := ρKm′μ(G ∩ Q) for
Q ∈ B(D◦) then it is clear thatψ is a nontrivialmeasure on D◦ and Ka(u, Q) ≥ ψ(Q)

for all u ∈ K and Q ∈ B(D◦). By definition, K is petite for the 1-skeleton chainU (n),
n ∈ N. ��

Proof of Theorem 2.3 First, we claim that lim inf t→∞ I (t) > 0 a.s. Indeed, suppose
�1 = {ω ∈ � : lim inf t→∞ I (t, ω) = 0} has positive probability. Let ω ∈ �1,
then lim inf t→∞ I (t, ω) = 0 which means that there is an increasing sequence of real
numbers tk ↑ ∞ as k → ∞ such that I (tk, ω) → 0 as k → ∞. By proof of Proposi-
tion 3.1, limk→∞ S(tk, ω) = 1. So by letting �2 = {ω ∈ � : limk→∞ S(tk, ω) = 1}
we have �1 ⊆ �2 and hence P(�2) > 0. Again from proof of Proposition 3.1 we can
show that M(tk) converges weakly to π2, P(tk) converges to 0, and C(tk) converges
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to 0 on �2. In other words, the family of occupation measures

{
�

U (tk)
tk (·) := 1

tk

∫ tk

0
PU (tk ){U (s) ∈ ·}ds

}

is tight on ∂D and converges weakly to μ1 on �2. But then, by Lemma 3.4 in Hening
and Nguyen (2018), for any ω ∈ �2

lim
k→∞

ln I (tk, ω)

tk
= lim

k→∞
1

tk

∫ tk

0

[
αS(s, ω)M(s, ω) − a − δ − τ 21

2

]
ds

=
∫

∂D

[
αSM − a − δ − τ 21

2

]
μ1(dU ) = λ > 0,

which implies that limk→∞ I (tk, ω) > 0. So lim inf t→∞ I (t) > 0 on �1, which is
a contradiction. Therefore there is a constant η∗

1 > 0 so that lim inf t→∞ I (t) ≥ η∗
1

a.s. Second, if lim inf t→∞ S(t) = 0 on some positive set �3 then it would imply that
there is an increasing sequence of real numbers tk ↑ ∞ such that limk→∞ S(tk) = 0
on �3. But then, by the second equation of the system (5), limk→∞ I (tk) = 0 on �3
which contradicts the fact that lim inf t→∞ I (t) > 0 a.s. Hence there exists a constant
η∗
2 > 0 such that lim inf t→∞ S(t) ≥ η∗

2 a.s.
Now we will focus on the system (6) and prove the existence and uniqueness of

�∗
1. Indeed, as λ = αm∗ − a − δ − τ 21

2 > 0, so there is a γ ∈ (0, 1) such that

αm∗ − a − δ − τ 21
2 (γ + 1) > 0. Consider the system (6) on the invariant domain

M1 := {(s, i,m)T ∈ D◦
1 : s ≥ η∗

2, i ≥ η∗
1}.

For (s, i,m)T ∈ M1, let V3(s, i,m) = s + i−γ + i + 1 + m. Since V3 → ∞ as
m → ∞, V3 is a positive norm-like function on M1. Furthermore,

LV3 = rs(1 − s − i) − αims − γ i−γ (αms − a − δ) + 1

2
τ 21 γ (γ + 1)i−γ

+ αsim − (a + δ)i + n − αsm2 + (a + δ + τ 21 − e)m

= −γ

[
αm∗ − a − δ − τ 21

2
(γ + 1)

]
i−γ − (a + δ)i − s − em + (r + 1)s

− rs(s + i) + n − αsm2 + (a + δ + τ 21 )m + γαm∗i−γ − γαsi−γm

≤ −γ

[
αm∗ − a − δ − τ 21

2
(γ + 1)

]
i−γ − (a + δ)i − s − em

+ r + 1 + n + γαm∗(η∗
1)

−γ − αη∗
2

[
m2 − a + δ + τ 21

αη∗
2

m

]
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≤ −γ

[
αm∗ − a − δ − τ 21

2
(γ + 1)

]
i−γ − (a + δ)i − s − em

+ r + 1 + n + γαm∗(η∗
1)

−γ + (a + δ + τ 21 )2

αη∗
2

which implies that for any (s, i,m)T ∈ M1

LV3(s, i,m) ≤ −θ1V3(s, i,m) + θ2 (26)

in which

θ1 := min

{
γ

[
αm∗ − a − δ − τ 21

2
(γ + 1)

]
, a + δ, 1, e

}
> 0

and

θ2 := θ1 + s + 1 + n + γαm∗(η∗
1)

−γ + (a + δ + τ 21 )2

αη∗
2

.

By Theorem 3.1(ii), it follows from Lemma 3.1 and (26) that the solutionU1(t) of the
system (6) has a unique invariant probability measure �∗

1 in M1 such that for some
b1 > 0 and b2 > 0 we get

‖P1(t, u1, ·) − �∗
1(·)‖T V ≤ b1(V3(u1) + 1)e−b2t

for all t ≥ 0 and for all u1 ∈ M1. (Note that P1(t, u1, ·) denotes the transition
probability function of the solution U1(t).) Moreover, due to Claims 3.1 and 3.2,
using the support theorem we obtain the support of �∗

1 as

supp(�∗
1) =

{(
1 − i − α

r
im, i,m

)T : im <
r

α
, i ∈ (0, 1), m > 0

}
.

Next, we can easily have the estimate

LV3(s, i,m) ≤ θ3V3(s, i,m)

for any (s, i,m) ∈ D◦
1 and some θ3 > 0. By standard argument, we can prove that

there are a H1 > 0 and b3 > 0 such that for all t > 0 and u1 = (s, i,m)T ∈ D◦
1

EV3(U1(t, u1)) ≤ H1 V3(u1)e
b3t .

As lim inf t→∞ I (t) ≥ η∗
1 a.s. and lim inf t→∞ S(t) ≥ η∗

2 a.s., so for u10 ∈ D◦
1 there

is a non-random time t0 = t0(u10) > 0 such that U1(t, u10) ∈ M1 for all t ≥ t0 a.s.
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Therefore we get the following estimate

‖P1(t + t0, u10, ·) − �∗
1‖T V =

∥∥∥∥
∫
M1

P1(t0, u10, du1) [P1(t, u1, ·) − �∗
1(·)]

∥∥∥∥
T V

≤
∫
M1

p1(t0, u10, u1)‖P1(t, u1, ·) − �∗
1(·)‖T V du1

≤
∫
M1

p1(t0, u10, u1)b1[V3(u1) + 1]e−b2t du1

= b1[EV3(U1(t0, u10)) + 1]e−b2t

≤ b1[H1V3(u10)e
b3t0 + 1]e−b2t for all t ≥ 0.

Thus U1(t) is exponentially ergodic with respect to �∗
1. Hence Theorem 2.3(i) is

proved.
Second, we turn to the system (7). We claim that lim inf t→∞ P(t) > 0 a.s. Indeed,

assume that �4 = {ω ∈ � : lim inf t→∞ P(t) = 0} has positive probability. Then
there is an increasing sequence of real numbers tk ↑ ∞ such that limk→∞ P(tk) = 0
on �4. Since lim inf t→∞ I (t) ≥ η∗

1 a.s., there is a non-random time T2 > 0 so that
t ≥ T2 implies I (t) ≥ η∗

1 a.s. Hence, by the first equation of the system (7), t ≥ T2
implies P(t) ≥ P˜(t) a.s. where P˜(t) solves the equation

dP˜ =
[
δqη∗

1 + bP˜ − θ
P˜2

1 + P˜2

]
dt + τ3P˜dW3.

By the same argument as in proof of Proposition 3.1, we can show that P˜(t) converges
weakly to an ergodic invariant probabilitymeasure on (0,∞). However, since P(tk) ≥
P˜(tk) ≥ 0 for tk > T2 on �4, limk→∞ P˜(tk) = 0 on �4 with P(�4) > 0, which is a
contradiction. Thus there is a constant η∗

3 > 0 such that lim inf t→∞ P(t) ≥ η∗
3 a.s.

Now we consider the first equation of the system (7) on the invariant domain
M2 = {p : p ≥ η∗

3}. For p ∈ M2, let V4(p) = ln p − ln η∗
3. As V4 → ∞ as

p → ∞, so V4 is a positive norm-like onM2. Moreover,

LV4 = δqi

p
+ b − τ 23

2
− θ

p

1 + p2
≤ δq

p
+ b − τ 23

2
.

Since b − τ 23

2
< 0, we can choose p∗ > 0 large enough so that

δq

p∗ + b − τ 23

2
< 0.

Then LV4 ≤ δq

p∗ + b − τ 23

2
for any p ≥ p∗. By Theorem 4.1, p. 108, Theorem 4.2,

p. 110, and Corollary p. 112 in Khasminskii (2012), there is a unique ergodic invariant
probability measure π∗

p for the first equation of the system (7) on (0,∞) and P(t) is
ergodic with respect to π∗

p . By the second equation of the system (7),

C(t) = C(0)e−kt + e−kt
∫ t

0
θ

P(s)2

1 + P(s)2
eksds.
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It follows from L’Hospital’s Rule that

lim
t→∞C(t) = lim

t→∞
θ

k

P(t)2

1 + P(t)2
.

Thus C(t) converges weakly to a unique ergodic invariant probability measure π∗
c on

(0,∞). Therefore, the system (7) has a unique invariant probability measure �∗
2 =

π∗
p × π∗

c in D◦
2 and U2(t) is ergodic with respect to �∗

2. By Claims 3.1 and 3.2, using
the support theorem gives

supp(�∗
2) =

{(
p,

θ

k

p2

1 + p2

)T

: p > 0

}
.

Hence Theorem 2.3(ii) is shown. Finally, Theorem 2.3(iii) can be derived from Theo-
rem 3.1, Lemma 3.1, and the fact that convergence in total variation norm implies the
boundedness in probability on average. ��
Proof of Theorem 2.4 First, we consider the system (6) on the invariant domain D◦

1.

We will show that if λ < 0 and b <
τ 23

2
then I (t) → 0 a.s. Indeed, since λ =

αm∗ − a − δ − τ 21

2
, there are a ζ > 0 and γ ∈ (0, 1) such that θ4 := α(m∗ + ζ )− a −

δ − τ 21

2
(1 − γ ) < 0. Consider the positive definite decrescent function V5(u1) = iγ ,

which is twice differentiable on W ζ := (0, 1) × (0, ζ ) × (m∗ − ζ,m∗ + ζ ). For any
u1 = (s, i,m)T ∈ W ζ , since m − m∗ ≤ |m − m∗| < ζ , we obtain LV5 ≤ θ4V5. By
Theorem 2.3, p. 112 in Mao (1997), for any ε > 0 and for any u1 ∈ W ζ

Pu1

{
lim
t→∞ I (t) = 0

}
≥ 1 − ε. (27)

Next, we construct a compact set K̃ so that the solutionU1(t) is recurrent relative to K̃ ,
i.e., as the solutionU1(t) starts in D◦

1 it will visit K̃ infinitelymany times in finite times
with probability 1. By using Theorem 3.9, p. 89 in Khasminskii (2012), we construct
a non-negative twice differentiable function V6(s, i,m) and a compact set K̃ in D◦

1
such thatLV6 < 0 for any (s, i,m)T ∈ K̃ c. Indeed, consider V6(s, i,m) = s+ i +m.
Then

LV6 = rs(1 − s − i) − (a + δ)i + n − αsm2 + (a + δ + τ 21 − e)m.

Since there exists an A > r large enough so that n−αsm2+ (a+δ+τ 21 −e)m ≤ −m
for m > A, letting K̃ := {(s, i,m)T ∈ D◦

1 : m ≤ A} we have LV6 ≤ r − m <

r − A < 0 for any (s, i,m)T ∈ K̃ c.

Now consider the control system corresponding to the system (6), which is exactly
the system of the first three equations of (24). Denote by U1φ(t, u1) the solution of
this control system with control (φ1, φ2)

T and initial value u1. For clarity, we denote
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by U1(t, u1) the solution to the system (6) with initial value u1. We use P to denote
the probability law on � for the solution U1(t, u1) and sometimes we use Pu1(A) to
denote the probability of an event A that involves the solution U1 when the solution
U1 starts at u1.

By Claim 3.4, for any u1 ∈ K̃ we can choose a control (φ1, φ2)
T and a time Tu1 > 0

such that U1φ(Tu1 , u1) ∈ W ζ . Due to the support theorem (Theorem 8.1 in Ikeda and
Watanabe 1989), for any u1 ∈ K̃ , there is Tu1 > 0 so that

P
{
U1(Tu1 , u1) ∈ W ζ

} = 2ρu1 > 0.

Using the Markov–Feller property of U1(t), there is a neighborhood Vu1 � u1 so that
for any u′

1 ∈ Vu1 we get

P
{
U1(Tu1 , u

′
1) ∈ W ζ

}
> ρu1 .

Since K̃ is compact, there exists a finite number of such neighborhoods Vui1
(i =

1, . . . , l) so that K̃ ⊆ ⋃l
i=1 Vui1

. Put T ∗ = max
i=1,...,l

Tui1
and ρ∗ = min

i=1,...,l
ρui1 . For

u1 ∈ D◦
1, set

τ
u1
ζ = inf

{
t > 0 : U1(t, u1) ∈ W ζ

}
.

Then, for any u1 ∈ K̃ , the event τ
u1
ζ < T ∗ is followed from the fact that there exists

an i ∈ {1, . . . , l} such that U1(Tui1
, u1) ∈ W ζ . Hence

P{τ u1ζ < T ∗} ≥ ρ∗ for all u1 ∈ K̃ . (28)

As U1(t, u1) is recurrent relative to K̃ , we define a sequence of finite stopping times

ζ0 = 0, ζ1 = inf{t > T ∗ : U1(t, u1) ∈ K̃ }, . . .
ζk = inf{t > ζk−1 + T ∗ : U1(t, u1) ∈ K̃ }, k = 2, 3, . . .

Consider the event

Ak = {U1(t, u1) /∈ W ζ ∀ t ∈ [ζk, ζk + T ∗]} , k ∈ N.

It follows from (28) that, for all k ∈ N, Pu1(A
c
k) = P{τ ū1ζ < T ∗} ≥ ρ∗ where

ū1 = U1(ζk, u1) ∈ K̃ . So Pu1(Ak) ≤ 1 − ρ∗ for all k ∈ N. By the strong Markov
property of U1(t, u1), we get

Pu1(A1 ∩ A2) = Pu1(A1)PU1(ζ2,u1)(A2) ≤ (1 − ρ∗)2.

123



   85 Page 46 of 57 T. A. Phan et al.

Then, by induction,

Pu1

(
n⋂

k=1

Ak

)
≤ (1 − ρ∗)n → 0 as n → ∞.

As a result, Pu1

(⋂∞
k=1 Ak

) = 0. It implies that

P{τ u1ζ < ∞} = 1 for any u1 ∈ D◦
1 . (29)

Again, using the strong Markov property of U1(t, u1), it follows from (27) and (29)
that, for any u1 ∈ D◦

1,

Pu1

{
lim
t→∞ I (t) = 0

}
≥ 1 − ε.

Since ε > 0 is arbitrary, I (t) converges to 0 a.s. for any initial value u1 ∈ D◦
1. By

Proposition 3.1, S(t) converges to 1 a.s.,M(t) converges weakly toπ2, P(t) converges
to 0 a.s., andC(t) converges to 0 a.s. Furthermore, by the second equation of the system
(6), using strong law of large numbers yields

lim
t→∞

ln I (t)

t
= lim

t→∞
1

t

∫ t

0

[
αS(s)M(s) − a − δ − τ 21

2

]
ds

=
∫

∂D

[
αSM − a − δ − τ 21

2

]
(δ∗

1 × δ∗
0 × π2)(dSd IdM) = λ a.s.

��

4 Numerical Simulation

In this section, we will perform several numerical simulations to demonstrate Hopf
bifurcation occurrence of the deterministic system (4) in Theorem 2.1 as well as the
long-term dynamics of the stochastic system (3) in Theorem 2.5 including extinction,
persistence, and stochastic Hopf bifurcations. We fix the following baseline parameter
values: r = 0.02, α = 0.0003, a = 0.1, n = 105, e = 5, q = 13.44, θ = 2.5,
k = 1.01, τ1 = 0.01, τ2 = 0.2, and τ3 = 0.15. Parameters δ and b are varied to obtain
different dynamical behaviors of the deterministic system (4) and the stochastic system
(3). In these two systems, because of non-dimensionalization, the units of normal cells,
infected cells, precancerous cells, and cancerous cells are not absolute number of cells
but relative number of cells. So the quantities S and I represent the percentage of the
cell number of normal cells and infected cells, respectively. While the quantities P
and C are the portions of the cell number of precancerous cells and cancerous cells
over the half-saturation concentration for rate of progression from precancerous to
cancerous, and so we indicate them as relative precancerous and cancerous cells. The
unit of the time is measured in days. In all the figures below, the solution paths of
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Fig. 1 Dynamics of the deterministic system (4) with the parameters r = 0.02, α = 0.0003, a = 0.1,
δ = 0.25, n = 105, e = 5, q = 13.44, θ = 2.5, b = 0.01, k = 1.01, and the initial value
(0.05, 0.003, 63, 0.06, 0.01). The parameter set is taken to satisfy the assumptions of Theorem 2.1(i) and
(iii). A, B, and C represent the periodic solutions of relative normal cells, relative infected cells, and viruses,
respectively, arising around the equilibrium point E∗ = (0.0583, 0.0031, 62.5692). D represents the peri-
odic solutions of relative precancerous cells and relative cancerous cells arising from the stable equilibrium
point (P21,C21) = (0.0618, 0.0094)

the deterministic system (4) and the stochastic system (3) are simulated with different
initial values and different values of δ and b.

For the deterministic system (4), we used the algorithm of the fourth order Runge–
Kutta method, which can be easily implemented by ode45 in Matlab, to produce
Figs. 1 and 2. For the stochastic system (3), we utilized the algorithm of stochastic
Runge–Kutta method of strong order 1 to produce Figs. 3, 4 and 5. The details of
this algorithm can be found in the supplementary material of our previous work (Phan
and Tian 2022). Based on the algorithm, we developed an algorithm of simulating the
Lyapunov exponent along each solution component to produce Fig. 6 and check if a
stochastic Hopf bifurcation occurs in the stochastic system (3).

To illustrate the occurrence of Hopf bifurcation of the deterministic system (4) as
the basic reproduction number R0 changes and passes through the threshold R∗, we
first take δ = 0.25 and b = 0.01. From computation, we obtain R0 = 17.1429, R∗ =
18.7818, one positive stable equilibrium (0.0583, 0.0031, 62.5692, 0.0670, 0.0111),
and one positive unstable equilibrium (0.0583, 0.0031, 62.5692, 248.9448, 2.4752).
In this case, the behavior of the system (4) depends on where it starts. Figure1
shows the periodic solutions arising from Hopf bifurcation when the solution starts
close to the positive stable equilibrium. In Fig. 2, when the solution starts close to

123



   85 Page 48 of 57 T. A. Phan et al.

Fig. 2 Dynamics of the deterministic system (4) with the parameters r = 0.02, α = 0.0003, a = 0.1,
δ = 0.25, n = 105, e = 5, q = 13.44, θ = 2.5, b = 0.01, k = 1.01, and the initial value
(0.05, 0.003, 63, 250, 0.01). A, B, and C represent the periodic solutions of relative normal cells, relative
infected cells, and viruses, respectively, arising from the equilibriumpoint E∗ = (0.0583, 0.0031, 62.5692).
D shows the relative precancerous cell population (the blue curve) grows without bound when it starts near
P22 = 249.1067 while the relative cancerous cell population (the magenta curve) attains its peak (color
figure online)

the positive unstable equilibrium, the precancerous cells blow up and the cancer-
ous cells reach its maximum value even though we obtain the periodic solutions
of normal cells, infected cells, and viruses. If we take δ = 0.21 and b = 0.01
then, by computation, we get R0 = 19.3548, R∗ = 18.7818, one positive sta-
ble equilibrium (0.0517, 0.0032, 63.0122, 0.0618, 0.0094), and one positive unstable
equilibrium (0.0517, 0.0032, 63.0122, 249.1067, 2.4752). For this case, the system
(4) behaves similarly to Fig. 1 when it starts near the positive stable equilibrium and
similarly to Fig. 2 when it starts close to the positive unstable one.

Next, we demonstrate numerically the extinction and persistence of the stochastic
system (3) in Theorem 2.5. First, we take δ = 0.25 and b = 0.01. By computation,

we have λ = 3.2734 > 0 and, clearly, b <
τ 23
2 . So the conditions of Theorem 2.5(ii) is

fulfilled. Figure3 shows one solution path of the stochastic system (3) when it starts
close to the positive stable equilibrium of the corresponding deterministic system
(4) and this path finally ends up at a equilibrium state which is characterized by the
ergodic invariant probability measureμ∗. Second, if we take δ = 6 and b = 0.01, then
computation gives us λ = −0.0513 < 0 and hence the conditions of Theorem 2.5(i)
is satisfied. Figure4 shows one typical solution path of the stochastic system (3) that
converges a.s. to (1, 0, 0, 0, 0). Third, if we increase the value of b to pass through
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Fig. 3 Dynamics of one solution path of the stochastic system (3)with the parameters r = 0.02,α = 0.0003,
a = 0.1, δ = 0.25, n = 105, e = 5, q = 13.44, θ = 2.5, b = 0.01, k = 1.01, noise intensities τ1 = 0.01,
τ2 = 0.2, τ3 = 0.15, and the initial value (0.05, 0.003, 63, 250, 0.01), which satisfy the assumptions of
Theorem 2.5(ii). The solution path persists for a long time and ends up at an equilibrium state μ�

τ 23
2 , then precancerous cells will blow up and cancerous cells approach its carrying
capacity no matter how large the value of λ is. Figure5 shows the situation when

λ > 0 but b >
τ 23
2 . In this figure, even though the normal cells, infected cells, and

viruses eventually wind up at an equilibrium state, precancerous cells finally reach a
very large value and cancerous cells approach its maximum value.

Finally, it is natural to expect that the stochastic system (3) would also undergo a
stochastic Hopf bifurcation as a parameter of the system changes since the determin-
istic system (4) undergoes Hopf bifurcation when the basic reproduction number R0
passes through the threshold R∗. Before studying stochastic Hopf bifurcation for the
stochastic system (3), we recall the difference betweenHopf bifurcation phenomena in
the deterministic and stochastic setting. For a deterministic system, Hopf bifurcation
occurs when a positive equilibrium point of the system has a pair of complex eigen-
values and its real part crosses zero as a parameter of the system changes. While, in
the stochastic setting, we look at the sign changes of Lyapunov exponents of invariant
probability measures, whose supports are the interior of a stochastic system’s domain,
as one of its parameters changes. Notice that an invariant probability measure of a
stochastic system plays the same role as an equilibrium point of the corresponding
deterministic system and the Lypapunov exponents of an invariant probabilitymeasure
have the same meaning as eigenvalues of an equilibrium point, which measures the
rates of convergence along solution components. So, to verify stochastic Hopf bifurca-
tion for the system (3), we compute the system’s Lyapunov exponents along solution
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Fig. 4 Dynamics of one solution path of the stochastic system (3) with the parameters r = 0.02, α =
0.0003, a = 0.1, δ = 6, n = 105, e = 5, q = 13.44, θ = 2.5, b = 0.01, k = 1.01, noise intensities
τ1 = 0.01, τ2 = 0.2, τ3 = 0.15, and the initial value (0.5, 0.5, 105, 1.5, 1), which satisfy the assumptions
of Theorem 2.5(i). A relative normal cells reach its carrying capacity 1 while relative infected cells decrease
quickly to 0. The other solution paths in B, C, and D also decrease to 0 in a short period of time

components as the parameter δ changes. If there is a stochastic Hopf bifurcation in the
dynamical sense, then it is necessary that one Lyapunov exponent has to cross zero
(Phan and Tian 2022; Keller 1996). Fig. 6 shows the behavior of Lyapunov exponents
λi (i = 1, 2, 3, 4, 5) of the five solution components (S, I , V , P,C) when the param-
eter δ runs through between 0.25 and 5. (The details of how to simulate Lyapunov
exponents can be found in Phan and Tian 2022.) Here we take the other parameter as
in Fig. 3. As the parameter δ lies between 0.25 and 5, the system (3) is always strongly
persistent due to Theorem 2.5(ii), which means that it always has a unique positive
invariant probability measure μ∗. Actually, we computed the Lyapunov exponents of
this invariant probability measure when δ varies from 2.5 to 5 to see if any of them
crosses 0. We see that all four Lyapunov exponents λ1, λ2, λ4, and λ5 are always
below zero; while the exponent λ3 crosses zero twice at some values of δ between
0.5 and 0.7. This means that the invariant probability measure μ∗ is unstable at first
and it becomes stable as δ crosses 0 for the first time. Then it loses its stability and
becomes unstable when δ increases and crosses 0 for the second time. It shows that a
stochastic Hopf bifurcation occurs in the stochastic system (3). One interesting point
here is that, with the same parameter set where the deterministic system (4) undergoes
deterministic Hopf bifurcation as δ is within a certain range, the stochastic system
(3) still undergoes stochastic Hopf bifurcation when δ lies within almost the same
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Fig. 5 Dynamics of one solution path of the stochastic system (3)with the parameters r = 0.02,α = 0.0003,
a = 0.1, δ = 0.25, n = 105, e = 5, q = 13.44, θ = 2.5, b = 0.04, k = 1.01, noise intensities τ1 = 0.01,
τ2 = 0.2, τ3 = 0.15, and the initial value (0.05, 0.003, 63, 250, 0.01), which satisfy the assumptions of
Theorem 2.5(iii). A and B show the persistence of relative normal cells, relative infected cells, and viruses.
C represents the blowup of relative precancerous cells in a short period of time while D shows the peak
reaching of relative cancerous cells

range with appropriate chosen noise intensities. From our Theorem 2.5 and Proposi-
tion 2.2, decreasing the noise intensities τ1 and τ2 while increasing the noise intensity
τ3 appropriately would not destroy Hopf bifurcation of the deterministic system.

5 Discussion

In this research, we examine a deterministic system in terms of five ordinary dif-
ferential equations through stochastic viewpoint. The system models how human
papillomaviruses infect basal epithelia cells in the cervix and how the infection pro-
gresses to a cervical cancer. The system captures basic biological characters of both
HPV infection dynamics and cancer progress process. Particularly, three parameters,
the progression rate from infected cells to precancerous cells, the net death rate of
infected cells, and the net growth of precancerous cells, are important for long-term
behaviors of the model. However, as all deterministic systems, this system only repre-
sents mean behaviors of cells and viruses, and it is known that the system is subject to
micro-environmental fluctuations in vivo. The system perturbed by such fluctuations
may exhibit some long-term behaviors that are different from those of the unperturbed
system. We incorporate three noises associated to the progression rate from infected
cells to precancerous cells, precancerous cell growth rate, and free virus population
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Fig. 6 Lyapunov exponents ofμ∗ along solution components of the stochastic system (3) as δ changes from
0.25 to 5. The parameters are taken as r = 0.02, α = 0.0003, a = 0.1, n = 105, e = 5, q = 13.44, θ = 2.5,
b = 0.01, k = 1.01, and the initial value is (0.05, 0.003, 63, 250, 0.01), which satisfy the assumptions of
Theorem 2.5(iii) satisfy when δ is between 0.25 and 5

into the deterministic system to study cervical cancer progression fromHPV infection.
The stochastic system yields some insights.

To have a cervical cancer, the chronic infection state or equilibrium must be estab-
lished first. In our stochastic system, the chronic infection state is a random variable
whose distribution is an ergodic invariant distribution. The small progression rate and
noise associated with it will be helpful to establish such chronic infection state, and
hence to develop into a cervical cancer. The small noise received or made by free
viruses is also in favor of chronic infection establishment. This may explain why it
takes decades to develop a cervical cancer from HPV infection. On the other hand,
the large of these two types of noises will help to reduce chronic infections. This
may provide some hints for medical treatments that increasing instability of cervical
microenvironment can help to reduce the probability of chronic infection establish-
ment. When the chronic infection state is established, there is a positive probability
to establish a cervical cancer. The cancer is an ergodic invariant measure or random
variable with an ergodic invariant distribution in our stochastic system, which corre-
sponds to an equilibrium in the deterministic system. When the noise associated with
precancerous cell growth is large enough, there will be a cervical cancer. It is clear
that these three noises have different effects on the progression from HPV infection
to cervical cancers.
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In the deterministic model, there is Hopf bifurcation when the basic reproduction
number passes some value, which may represent normal cells, infected cells, and
viruses interact indefinitely without settling down. In our stochastic model, we also
observe stochastic Hopf bifurcation in the dynamical sense. It is difficult to give a crite-
rionwhat deterministic Hopf bifurcation will become dynamical or phenomenological
bifurcation.

Since the stochastic system (3) is difficult to analyze, we transform it to a different
stochastic system (5). The transformation is valid as long as the denominator variable
is not zero. For the situation where the denominator variable is zero, we apply limit
procedure to give the value of the transformed variable as usual variable transforma-
tions. This transformed system has two invariant probabilitymeasures on the boundary
in that one has an inverse gamma distribution as one of its components, and another
one has a generalized inverse Gaussian distribution as one of its components. That
means, on the different parts of the boundary, the convergent rate follows different
distributions. Because one transformed variable is the ratio of two original variables
and these two variables approach delta distributions on the boundary, the two non-delta
distribution components disappear after the system is transformed back. This is very
interesting mathematical phenomenon. It reveals that there are different time scales in
the stochastic system. It may be worth for a deep study in the future.

There may be other ways to incorporate environmental noises into a deterministic
model. Our method is based on law of large numbers. It is obvious that there are other
parameters in the deterministic model which are worth to investigate. For example,
the maximum progression rate from precancerous cells to cancer cells θ is another
important parameter. We may consider this parameter and other uncertainties in the
future.

As we pointed out in the Sect. 1, spatial interactions among cells play some roles
in both HPV infection dynamics and cancer progression process. It is a limitation
for ordinary differential equation systems to incorporate spatial variations. Although
some environmental noises can be attributed to spatial variations, it is not clear how
exactly to connect them. This calls for the need to establish mathematical models in
terms of partial differential equations for cervical cancer research.
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Appendix

To comprehend how environmental noises and randomness affect the dynamical
behaviors of the deterministic system (4), we need to study how the threshold λ is
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related to the reproduction number R0. Since R0 = αn
e(a+δ)

is a decreasing function
of the parameter δ, which is the progression rate from infected cells to precancerous
cells, we can consider the threshold λ as a function of δ as well as a function of
noise intensities. Propositions 2.1 and 2.2 give the behavior of the threshold λ with
respect to system parameters and noise intensities. Because Proposition 2.2 is a direct
consequence of Proposition 2.1, so we only present the proof of Proposition 2.1

Proof of Proposition 2.1 Since
	

w
= a + δ − e

2
√

αn
+ τ 21 − τ 22

4
√

αn
, the threshold λ can be

rewritten as

λ = √
αn

[
R	(w) − 2

	

w

]
− e − τ 22

2
.

Let D	(w) := K	+1(w)K	−1(w)

K 2
	(w)

where K	(·) is the modified Bessel function

of third kind with index 	. From Jorgensen (1982) in p. 172 and p. 175, we have

D	(w) = R	(w)R−	(w) and D	(w) = R	(w)

[
R	(w) − 2

	

w

]
. Hence

λ = √
αnR−	(w) − e − τ 22

2
.

Sincew > 0, a result in p. 173 in Jorgensen (1982) implies that R	(w) is an increasing
function of 	 and thus λ is a decreasing function of 	. But, as 	 is an increasing
function of δ, so λ is a decreasing function of δ. Since R0 is a decreasing function of
δ, λ is an increasing function of R0.

Next, since λ = lim
(τ1,τ2)→(0,0)

λ and R	(w) = 	

w
+
√(

	

w

)2

+ D	(w),

λ = lim
(τ1,τ2)→(0,0)

⎧⎨
⎩
⎡
⎣	

w
+
√(

	

w

)2

+ D	(w)

⎤
⎦√

αn − a − δ − τ 21

2

⎫⎬
⎭ .

As
	

w
→ a + δ − e

2
√

αn
and D	(w) → 1 as (τ1, τ2) → (0, 0), so

λ = a + δ − e

2
+
√(

a + δ − e

2

)2

+ αn − a − δ.

It implies that λ = 0 iff R0 = 1, λ < 0 iff R0 < 1, and λ > 0 iff R0 > 1. This
completes the proof. ��
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