
 

 

Supplemental Figure 1: Elevated extracellular K+ does not alter endosomal pH. A549 cells 

were incubated for 24 hours in either regular media or media containing 50mM K+. Cells were 

then incubated for 24 additional hours with dextran beads conjugated with the pH sensitive 

pHrodo dye (whose fluorescent intensity increases in acidic environments). To control for the 

differential phagocytosis caused by elevated K+, control beads conjugated to FiTC were also 

included. Cells were then harvested and fluorescent intensity quantified using flow cytometry. 

Increased endosomal acidification is observed as an increase in the ratio of pHrodo:FitC intensity. 

Concanamycin A (which is known to cause endosomal acidification) is shown as a control). Data 

is normalized to media controls and represents the summation of two independent experiments. 

Significance was determined using Student’s T-test (N.S. = not significant).  

  



 

Supplemental Table 1: Observed diameters of primary myxoma lesions in rabbits. Six 

susceptible Oryctolagus rabbits intradermally with 1000 FFU of MYXV and the size of the 

resulting primary lesions were measured daily for 10 days.  

 

  



Supplemental Information: Mathematical model and Numerical Method 

In this study, we propose a novel mathematical model for MYXV infection regulated by 

extracellular K+ ions released by the death of infected cells. Based on our in vitro results (Figures 

1-5), the model places three variables under K+ control: the amount of newly produced infectious 

virions, the efficiency at which virions can initiate infection of new cells, and the time it takes for 

infected cells to die. In this appendix we briefly describe our mathematical model, the parameter 

values, and the numerical method used to simulate the model. 

 

Variables. Our model describes the spatial (𝑥) and temporal (𝑡) dynamics of the following 

quantities: 

 𝐵ଵሺ𝑡, 𝑥ሻ ሺcell ⋅ mmିଷሻ, the number density of normal (uninfected and living) cells. 

 𝐵ଶሺ𝑡, 𝑥ሻ ሺcell ⋅ mmିଷሻ, the number density of infected cells. 

 𝐵ଷሺ𝑡, 𝑥ሻ ሺcell ⋅ mmିଷሻ, the number density of dead cells. 

 𝑉ሺ𝑡, 𝑥ሻ ሺvirus ⋅ mmିଷሻ, the number density of MYXV virions in the extracellular space. 

 𝑃ሺ𝑡, 𝑥ሻ ሺnmol ⋅ mmିଷሻ, the number of K+ particles above the equilibrium value 𝑃଴ in the 

extracellular space. 

Since the model involves both intracellular and extracellular concentrations of both K+ and MYXV 

virions, we incorporate a conversion factor 𝜌 between the intracellular and extracellular spaces.  

 

Equations for modeling the infection state of cells. The dynamics of cell number densities are 

governed by the following assumptions: 

 Normal cells are infected at a rate regulated by extracellular K+ and viruses; once infected, 

a normal cell becomes an infected cell. The infection rate of normal cells, as a function of 

K+ concentration, will be described by the function  𝜃෨ሺ𝑃ሻ.  



 Infected cells die at a rate that is also regulated by extracellular K+ density; once dead, an 

infected cell becomes a dead cell. The cell death rate, as a function of K+ concentration, 

will be described by the function 𝛿ሚሺ𝑃ሻ. 

Since the time scale at which normal cells die naturally is anticipated to be much longer than the 

time scale at which infected cell die, natural death of normal cells is omitted from this model. The 

dynamics of 𝐵ଵ, 𝐵ଶ and 𝐵ଷ are governed by the following system of equations (which can be 

viewed as either ordinary differential equations parameterized by the spatial coordinate or as 

partial differential equations): 

𝜕𝐵ଵ
𝜕𝑡

ൌ െ𝜃෨ሺ𝑃ሻ𝐵ଵ𝑉, 

𝜕𝐵ଶ
𝜕𝑡

ൌ 𝜃෨ሺ𝑃ሻ𝐵ଵ𝑉 െ 𝛿ሚሺ𝑃ሻ𝐵ଶ, 

𝜕𝐵ଷ
𝜕𝑡

ൌ 𝛿ሚሺ𝑃ሻ𝐵ଶ, 

Note that 𝐵ଵ ൅ 𝐵ଶ ൅ 𝐵ଷ ൌ 𝑐, a constant, so that cell incompressibility is preserved. In these 

equations,  𝜃෨ሺ𝑃ሻ ൌ 𝜃൫1 െ 𝛽ଵ𝐻ሺ𝑃ሻ൯ describes the rate of infection of normal cells as a function of 

K+ concentration. The parameter 𝜃 is the constant infection rate in the absence of potassium. The 

function 𝐻ሺ𝑃ሻ is given by 𝐻ሺ𝑃ሻ ൌ 1/ሺ1 ൅ 𝑒ିଶ௞ሺ௉ି௉ೞሻሻ, a smoothed Heaviside function with 

parameter 𝑘 governing the transition from 0 to 1. The parameter 𝑃௦ is a threshold of extracellular 

K+ above which virus infectivity is diminished. It is based on our empirical observations in this 

paper (Figures 1-5). The parameter 𝛽ଵ captures the extent to which infectivity is reduced by high 

K+ concentrations. Taken together, then, when K+ concentration levels are below the threshold, 

𝐻ሺ𝑃ሻ ൎ 0 and infection occurs at rate 𝜃෨ሺ𝑃ሻ ൎ 𝜃; when K+ concentration levels are above the 

threshold, 𝐻ሺ𝑃ሻ ൎ 1 so that the infection rate drops to  𝜃෨ሺ𝑃ሻ ൎ 𝜃ሺ1 െ 𝛽ଵሻ. The dynamics of cell 

death due to infection are modeled by the function 𝛿ሚሺ𝑃ሻ ൌ 𝛿൫1 െ 𝛽ଶ𝐻ሺ𝑃ሻ൯, a function of K+ 

concentration. Here, 𝛿 is the death rate of infected cells in the absence of K+ and 𝛽ଶ captures the 



extent to which the death rate of infected cells is reduced by high K+ concentrations. Thus, when 

K+ levels are below the threshold, infected cells die at rate 𝛿ሚሺ𝑃ሻ ൎ 𝛿 and when K+ levels are above 

the threshold, infected cells die at rate 𝛿ሚሺ𝑃ሻ ൎ 𝛿ሺ1 െ 𝛽ଶሻ. 

 

Equation for K+ and virus. The dynamics of extracellular K+ concentration are described by the 

following reaction-diffusion equation: 

𝜕𝑃
𝜕𝑡

ൌ 𝑎𝜌𝛿ሚሺ𝑃ሻ𝑇൛ଵ/ఋ෩ሺ௉ሻൟሾ𝐵ଶሿ ൅ 𝐷ଶ∇ଶ𝑃. 

The first term models the burst of intracellular K+ released into the extracellular space when an 

infected cell dies. This term incorporates a delay between viral infection and cell death. The time 

delay operator is 𝑇ఛሾ𝑓ሺ𝑡ሻሿ ൌ 𝑓ሺ𝑡 െ 𝜏ሻ for a given function 𝑓ሺ𝑡ሻ and delay 𝜏. The average time 

until virally infected cells burst, as a function of the K+ concentration, is 1/𝛿ሚሺ𝑃ሻ, so 𝜏 ൌ 1/𝛿෩ሺ𝑃ሻ. 

The parameter 𝑎 is the number of K+ ions contained in one cell. It is scaled by the factor 𝜌, since 

K+ ions from 𝜌 units of intracellular space are released into 1 unit of extracellular space. The 

second term describes the diffusion of extracellular K+ with diffusion coefficient 𝐷ଶ.  

 

The dynamics of extracellular viruses are governed by the following reaction-diffusion equation: 

𝜕𝑉
𝜕𝑡

ൌ 𝑏෨ሺ𝑃ሻ𝜌𝛿ሚሺ𝑃ሻ𝑇൛ଵ/ఋ෩ሺ௉ሻൟሾ𝐵ଶሿ െ 𝜃෨ሺ𝑃ሻ𝑇൛ଵ/ఋ෩ሺ௉ሻൟሾ𝐵ଵ𝑉ሿ ൅ 𝐷ଵ∇ଶ𝑉. 

The first term models the number of viruses released to the extracellular space when an infected 

cell dies, again incorporating the delay between viral infection and cell death. The function 𝑏෨ሺ𝑃ሻ ൌ

𝑏൫1 െ 𝛽ଷ𝐻ሺ𝑃ሻ൯ describes the number of unconsumed viruses released into the extracellular space 

when a cell dies. Here, 𝑏 is the burst size of the virus in the absence of K+ and 𝛽ଷ captures the 

extent to which virus production is reduced by high K+ concentrations. When K+ levels are below 

the threshold, the burst size is 𝑏෨ሺ𝑃ሻ ൎ 𝑏. When K+ levels are above the threshold, the burst size 

is 𝑏෨ሺ𝑃ሻ ൎ 𝑏ሺ1 െ 𝛽ଷሻ. Here again,  𝑏෨ሺ𝑃ሻ is scaled by the factor 𝜌, since virus from 𝜌 units of 



intracellular space are released into 1 unit of extracellular space. The second term models the 

consumption of extracellular viruses through the infection of normal cells. (See the corresponding 

term 𝜃෨ሺ𝑃ሻ𝐵ଵ𝑉 in the 𝐵ଶ equation.) The last term describes the diffusion of extracellular viruses 

with diffusion coefficient 𝐷ଵ. 

 

Parameters and estimated values  

The parameters used for modeling are as follows: 

1. 𝜃 = 0.5x10-9 mm3 h−1virus-1. This is the infection rate of the normal cells per virus density. 

It is estimated based on the empirically observed expansion of myxomatosis lesions in 

rabbits which were obtained from a re-analysis of our previously published studies (22). 

The specific lesion sizes used to calculate 𝜃 are included in the current manuscript as 

supplemental table 1.  

2. 𝛿 = 0.08 h-1. This is the death rate of infected cells without K+ effects, whose reciprocal is 

the average time until virally infected cells burst. It is estimated based on the empirically 

observed time it takes to produce new infectious MYXV particles (based on data shown in 

Figure 3F).  

3. 𝛽ଵ ൌ 0.75, 𝛽ଶ ൌ 0.5, 𝛽ଷ ൌ 0.5 represent reduction coefficients of high K+ concentration on 

viral infectivity, infected cell death, and virus production, respectively.  These are 

dimensionless and estimated by empirical analysis of the magnitude through which 

elevated K+ impacts MYXV infection (based on data shown in Figure 1A, Figure 3F, and 

Figure 1C respectively).   

4. D2 = 0.1 mm2h-1. This is the diffusion rate of extracellular K+ in the interstitial fluid. It is 

estimated based on previously reported data (30, 31).  

5. k = 4.0 nmol-1mm3. This is a number that allows the smoothed Heaviside function to 

approximate the Heaviside function as close as possible while not creating numerical 



issues. In particular, computing the smoothed Heaviside function requires evaluating 

𝑒ିଶ௞ሺ௉ି௉ೞሻ, which at early stages equals 𝑒ଶ௞௉ೞ since 𝑃 ൎ 0. In a double-precision system, 

most widely adopted for scientific computing today, the largest real number that can be 

represented is approximately 10ଷ଴଼ ൎ 𝑒଻଴ଽ.ଶ; hence, to compute 𝑒ଶ௞௉ೞ properly one needs 

𝑘 ≲ 709.2/ሺ2𝑃ௌሻ ൎ 14. Thus, the chosen value allows us to get a reasonable 

approximation to a Heaviside function while maintaining numerical feasibility when the 

number is involved in various numerical procedures such as Newton solves. 

6. Ps = 25 nmolmm-3. This is the threshold value at which K+ begins to impact viral infection. 

This corresponds to a threshold of 25-50 nmolmm-3 which is estimated based on the 

empirically observed threshold at which K+ begins to inhibit MYXV infection (based on 

data shown in Figure 1D)  

7. α = 5.0625x10-4 nmolcell-1. This is the number of K+ ions released per cell when a cell 

dies. It is based on previously reported literature indicating that the K+ concentration inside 

a living cell is 150 nmolmm-3 (10) and the volume of a single cell is 3.375×10−6mm3 (32). 

8. D1 = 1.0x10-2 mm2h-1. This is the rate of spread of MYXV from cell to cell. It is estimated 

based on the empirically observed spread of MYXV in vitro (based on data shown in Figure 

2E).  

9. b = 300 viruscell-1. This is the burst size of MYXV from rabbit cells. It is estimated based 

on the empirically observed production of new infectious progeny from rabbit RK13 cells 

(based on data shown in Figure 3F in which ~3.1x107 FFU of MYXV can be recovered 

from 1x105 cells at 24 hours.  

10. v0 = 105𝜌 virusmm-1. This is the number of initial viruses used to start the infection. It is 

based on the number of viruses typically used to induce myxomatosis in rabbits (22) and 

the extracellular-to-intracellular volume ratio 𝜌 ൌ 10. 

We summarize these parameters and their estimated values in supplemental table 2.  



Numerical method. We assume the lesion to be radially symmetric, as typically seen at early 

stage of infection in vivo. Thus, we cast the problem in the radial coordinate ሺ𝑟, 𝑡ሻ, where 𝑟 ൌ ‖𝑥‖, 

and the governing equations are as follows for all 𝑟 ∊ ሾ0,𝑅ሿ and 𝑡 ൒ 0: 

𝜕𝐵ଵ
𝜕𝑡

ൌ െ𝜃෨ሺ𝑃ሻ𝐵ଵ𝑉, 

𝜕𝐵ଶ
𝜕𝑡

ൌ 𝜃෨ሺ𝑃ሻ𝐵ଵ𝑉 െ 𝛿ሚሺ𝑃ሻ𝐵ଶ, 

𝜕𝑉
𝜕𝑡

ൌ 𝑏෨ሺ𝑃ሻ𝜌𝛿ሚሺ𝑃ሻ𝑇ଵ/ఋ෩ሺ௉ሻሾ𝐵ଶሿ െ 𝜃෨ሺ𝑃ሻ𝑇ଵ/ఋ෩ሺ௉ሻሾ𝐵ଵ𝑉ሿ ൅ 𝐷ଵ
1
𝑟
𝜕
𝜕𝑟
൬𝑟
𝜕𝑉
𝜕𝑟
൰, 

𝜕𝑃
𝜕𝑡

ൌ 𝑎𝜌𝛿ሚሺ𝑃ሻ𝑇ଵ/ఋ෩ሺ௉ሻሾ𝐵ଶሿ ൅ 𝐷ଶ
1
𝑟
𝜕
𝜕𝑟
൬𝑟
𝜕𝑃
𝜕𝑟
൰, 

with the boundary conditions: 

𝜕𝑉ሺ0, 𝑡ሻ
𝜕𝑟

ൌ
𝜕𝑉ሺ𝑅, 𝑡ሻ
𝜕𝑟

ൌ 0,
𝜕𝑃ሺ0, 𝑡ሻ
𝜕𝑟

ൌ
𝜕𝑃ሺ𝑅, 𝑡ሻ
𝜕𝑟

ൌ 0. 

Note that the homogeneous condition at 𝑟 ൌ 0 is due to radial symmetry. 

Here 𝑅 ൌ 100 ሺ𝑚𝑚ሻ is chosen a constant radius that is much larger than any lesion size of 

interest. To avoid dealing with the singularity in the diffusion terms, we adopt a finite volume 

approach to discretize the equations. In particular, let the computational domain ሾ0,𝑅ሿ be divided 

into 𝑁௥ uniform sub-intervals ሾ𝑟௜ିଵ, 𝑟௜ሿ, 1 ൑ 𝑖 ൑ 𝑁௥, where 𝑟௜ ൌ 𝑖∆𝑟 and ∆𝑟 ൌ 𝑅/𝑁௥ is the uniform 

interval size. Then our numerical method seeks approximations to averaged quantities on each 

interval. For example, the potassium concentration solutions are given by: 

𝑃௜ିଵ/ଶ 
௡ ൎ

1
𝑟௜ିଵ/ଶ∆𝑟

න 𝑟𝑃ሺ𝑟, 𝑡௡ሻ𝑑𝑟
௥೔

௥೔షభ

, 𝑟௜ିଵ/ଶ ൌ ൬𝑖 െ
1
2
൰ ∆𝑟, 𝑡௡ ൌ 𝑛∆𝑡, 

where ∆𝑡 is a fixed time step size. 

The details of the discretization method except for the time-delayed terms can be found in (36). 

Overall, the major components of the method are summarized below: 



 Central difference is used to discretize all spatial derivatives, which provide second-order 

accuracy in space. 

 The backward Euler method is chosen to integrate the equations in time (i.e., updating 

solutions from 𝑡௡ିଵ to 𝑡௡). Because the time-integrator is unconditionally stable, the 

chosen method is stable regardless of the choice of the size of ∆𝑡. 

 To handle the time-delayed terms, numerical solutions at previous time steps are stored 

and they're used to interpolate the required data at an earlier time. For example, 

computing 𝑇ଵ/ఋ෩ሺ௉ሻൣ𝐵ଶ,௜ିଵ/ଶ
௡ ൧ requires approximation to 𝐵ଶሺ𝑟௜ିଵ/ଶ,𝑡௡ െ 1/𝛿ሚሺ𝑃ሻሻ, and it is 

computed by first finding 𝑚 such that ሺ𝑚 െ 1ሻ∆𝑡 ൑ 𝑡௡ െ 1/𝛿ሚሺ𝑃ሻ ൏ 𝑚∆𝑡, and then 

approximating 𝐵ଶሺ𝑟௜ିଵ/ଶ,𝑡௡ െ 1/𝛿ሚሺ𝑃ሻሻ by interpolation in time as a linear combination 

between 𝐵ଶ,௜ିଵ/ଶ
௠ିଵ  and 𝐵ଶ,௜ିଵ/ଶ

௠ . 

All numerical simulations presented in this paper are conducted using 𝑁௥ ൌ 160 and ∆𝑡 ൌ

0.125 ሺℎ𝑜𝑢𝑟ሻ. These numbers are chosen after careful convergence study so that the numerical 

solutions do not change significantly by further refining the grids either in space or in time. 

  



 

Supplemental Table 2: Explanation of parameters used in mathematical modeling.  

 

 


