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In part II, we analyze our stochastic model which incorporates microenvironmental
noises and uncertainties related to immune responses. Outcomes of the therapy
in our model are largely determined by the infectivity constant, the infection
value, and stochastic relative immune clearance rates. The infection value is a
universal critical value for immune-free ergodic invariant probability measures and
persistence in all cases. Asymptotic behaviors of the stochastic model are similar to
those of its deterministic counterpart. Our stochastic model displays an interesting
dynamical behavior, stochastic Hopf bifurcation without parameters, which is a
new phenomenon. We perform numerical study to demonstrate how stochastic Hopf
bifurcation without parameters occurs. In addition, we give biological implications
about our analytical results in stochastic setting versus deterministic setting.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In part I [23], we proposed and analyzed a basic model for virotherapy which incorporates both innate

and adaptive immune responses as following

dx

dt
= λx

(
1 −

x+ y

C

)
− βxy − k2xz2,

dy

dt
= βxy − k1yz1 − δy,

dz1

dt
= s1yz1 − c1z1,

dz2

dt
= s2yz2 − c2z2,

(1)

E-mail addresses: tphan@uidaho.edu (T.A. Phan), jtian@nmsu.edu (J.P. Tian).

https://doi.org/10.1016/j.jmaa.2022.126444
0022-247X/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jmaa.2022.126444
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://creativecommons.org/licenses/by/4.0/
mailto:tphan@uidaho.edu
mailto:jtian@nmsu.edu
https://doi.org/10.1016/j.jmaa.2022.126444
http://creativecommons.org/licenses/by/4.0/


ARTICLE IN PRESS

Please cite this article in press as: T.A. Phan, J.P. Tian, Hopf bifurcation without parameters in deterministic and stochastic
modeling of cancer virotherapy, part II, J. Math. Anal. Appl. (2022), https://doi.org/10.1016/j.jmaa.2022.126444

JID:YJMAA AID:126444 /FLA [m3L; v1.317] P.2 (1-37)

2 T.A. Phan, J.P. Tian / J. Math. Anal. Appl. ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

where x stands for the uninfected tumor population, y the infected tumor population, z1 and z2 the innate

and adaptive immune cell populations, respectively. Tumor growth is modeled by logistic patterns with the

growth rate λ and the carrying capacity C. The term δy represents the lysis rate of infected tumor cells.

Our model does not include the free virus population explicitly. Release of virions by infected tumor cells

and infection by free viruses are indirectly modeled by the term βxy. The anti-tumor adaptive immune

response kills tumor cells at a rate k2 while the innate immune response kills infected tumor cells at a rate

k1. Both innate and adaptive immune cells are stimulated through their interaction with infected tumor

cells at rates of s1 and s2, and are cleared at rates of c1 and c2, respectively. Our analysis showed that

the outcomes of the therapy are largely determined by the strength of viruses used in treatments which is

captured by the parameter β, and the balance between the innate and adaptive immune cell recruitment

ability through their interactions with infected tumor cells, which are represented by the ratios of clearance

rate ci to stimulation rate si of innate and adaptive immune cells (i = 1, 2). Specifically, the therapy can

completely fail or partially succeed. For partial successes, the outcome can be immune free (without immune

cells after a long period of time) or the outcome can have immune cells eventually. Our model also predicted

three partially successful outcomes which have only innate immune cells, only adaptive immune cells, or

have both innate and adaptive immune cells. For the outcome with tumor cells, infected tumor cells, and

both innate and adaptive immune cells, called persistent state, the model predicted interesting phenomena,

namely, Poincare-Andronov-Hopf bifurcations without parameters.

As explained in [23], we are concerned about how microenvironmental noises or uncertainties from immune

responses will influence outcomes of the therapy in our model. We, therefore, proposed a system of Ito

stochastic differential equations based on our deterministic model to incorporate microenvironmental noises

and uncertainties as follows.

dx =

[
λx

(
1 −

x+ y

C

)
− βxy − k2xz2

]
dt,

dy = (βxy − k1yz1 − δy) dt,

dz1 = (s1yz1 − c1z1) dt+ τ1z1dW1,

dz2 = (s2yz2 − c2z2) dt+ τ2z2dW2.

(2)

In this part II, we analyze this stochastic model. In some sense, ergodic invariant probability measures

in stochastic systems play similar roles as equilibrium states in deterministic systems. However, analyzing

stochastic systems requires more and deeper knowledge from probability theory and other related theories.

We use stochastic version of Lyapunov exponent theory [2,3] and boundary analysis [6,7,9]. Since our

stochastic system is noise degenerated, to check hypoellipticity, we use Hörmander’s theorems [4,10,20]. To

study ergodicity, for example, supports of invariant measures, we use geometric control theory [4,12,13].

Bifurcation theory for stochastic systems is still a developing area. In the book [1], there are two types of

stochastic bifurcations. The first type is phenomenological bifurcation (or P-bifurcation), which is concerned

with the change in the shape of density functions of a family of invariant probability measures in a stochastic

system as one of its parameter changes. The second one is dynamical bifurcation (or D-bifurcation), which

is characterized by sign changes of Lyapunov exponents of a family of invariant probability measures in a

stochastic system as one of its parameter changes. As we know, so far, there is no theory or example about

stochastic bifurcations without parameters. In general, bifurcations without parameters are ones that occur

when state variables pass some values. We find our model undergoes stochastic Hopf bifurcations without

parameters. This is the first stochastic system which has stochastic Poincare-Andronov-Hopf bifurcation

without parameters.

The dynamical behaviors of our stochastic differential equation system correspond to those of its deter-

ministic counterpart system. Particularly, the stochastic system has 5 ergodic invariant probability measures

on the boundary of its almost sure invariant domain and a collection of invariant probability measures in
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the interior of its almost sure invariant domain. In a parallel manner, the deterministic system (2.1) in [23]

has 5 equilibrium points on the boundary of its invariant domain, and a manifold of equilibria in the interior

of its invariant domain. The stochastic subsystems also correspond to their deterministic counterparts. The

stochastic model and their deterministic counterpart share similar asymptotic properties although in differ-

ent settings. However, the stochastic system reveals more intrinsic properties of the therapy, for instance, the

critical value for immune clearance rates, called the infection value, which is universal for partial successes

without immune components.

The rest of this article is organized as follows. In section 2, we list main results and provide medical

interpretations or implications. In Section 3, we present analysis to prove the main results. In section 4, we

perform numerical studies to demonstrate stochastic bifurcation without parameters and discuss how the

stochastic model helps to gain deep insights about tumor virotherapy. After Discussion, we give an Appendix

to list theorems we cited related to hypoellipticity and Hörmander’s conditions, geometric control theory,

and exponential ergodicity.

2. Notations and results

We non-dimensionalize the system (2) by setting x = Cx̄, y = Cȳ, z1 = Cz̄1, z2 = Cz̄2, r = λ
δ
, a = βC

δ
,

li = kiC
δ

, ei = siC
δ

, di = ci

δ
, and T = δt. After dropping all bars over the variables and writing T as t, the

system (2) becomes

dx = [rx(1 − x− y) − axy − l2xz2]dt,

dy = (axy − l1yz1 − y)dt,

dz1 = (e1yz1 − d1z1)dt+ τ1z1dW1,

dz2 = (e2yz2 − d2z2)dt+ τ2z2dW2.

(3)

Assume that we are working on a complete probability space (Ω,F , {Ft}t≥0,P ) with a filtration {Ft}t≥0

satisfying the usual conditions. The process given by the solution of the system (3) will be denoted by U

or U(t) = (x(t), y(t), z1(t), z2(t)), t ≥ 0. We denote the drift term and the diffusion term of the system (3),

respectively, by

f(U) =



rx(1 − x− y) − axy − l2xz2

axy − l1yz1 − y
e1yz1 − d1z1

e2yz2 − d2z2


 , and g(U) =




0 0
0 0
τ1z1 0

0 τ2z2


 .

Let L be the infinitesimal generator of the process U and, for any smooth enough functions F : R
4
+ → R,

the generator L acts as

LF (U) := FU · f(U) +
1

2
trace(g(U)g(U)TFUU )

where FU is the gradient of F and FUU is the Hessian matrix of F . We use Pu to denote the probability

law on Ω when the solution path starts at u = (x, y, z1, z2) and Eu is the expectation corresponding to Pu.

It is straightforward to verify that the non-compact region

D = {(x, y, z1, z2) : x ≥ 0, y ≥ 0, z1 ≥ 0, z2 ≥ 0, x+ y ≤ 1}

is the a.s. (almost sure) non-negative invariant domain of the system (3) (for example, see [22]). We refer

it as a global domain. To determine the dynamics, we define three biologically meaningful parameters, the
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stochastic relative innate immune clearance rate h1 := d1

e1
+

τ2

1

2e1
, the stochastic relative adaptive immune

clearance rate h2 := d2

e2
+

τ2

2

2e2
, and the infection value θ := r(a−1)

a(a+r) . Then, two Lyapunov exponents λi =

ei(θ−hi), i = 1, 2. We also define λ = θ−h which is proportional to a Lyapunov exponent when h1 = h2 =: h.

It turns out that there are three cases which we should consider as in the deterministic system.

Case 1. When h1 < h2, the adaptive immune cell population z2(t) decays to 0 a.s. as t → ∞, and so the

4-dimensional system (3) is reduced to the 3-dimensional SDE system

dx = [rx(1 − x− y) − axy]dt,

dy = (axy − l1yz1 − y)dt,

dz1 = (e1yz1 − d1z1)dt+ τ1z1dW1,

(4)

where D1 = {(x, y, z1) : x ≥ 0, y ≥ 0, z1 ≥ 0, x+ y ≤ 1} is its almost sure non-negative invariant domain.

For the system (4), we work on a complete probability space (Ω1,F1, {F1
t }t≥0,P ) (which is the projection of

the complete probability space (Ω,F , {Ft}t≥0,P ) on z2 = 0). With u1 := (x, y, z1) ∈ D◦
1 (the interior of D1),

we denote by U1 or Uu1

1 (t) := (x(t), y(t), z1(t)) the solution to the system (4) starting at u1. Our analysis

in Section 3 indicates that there are 3 ergodic invariant measures for the system (4) on the boundary ∂D1

µ̄0 = δ∗
0 × δ∗

0 × δ∗
0 , µ̄1 = δ∗

1 × δ∗
0 × δ∗

0 , and µ̄2 = δ∗
x∗

1
× δ∗

y∗

1
× δ∗

0

where x∗
1 :=

1

a
and y∗

1 :=
r(a− 1)

a(a+ r)
. Here δ∗

0 , δ∗
1 , δ∗

x∗

1

, and δ∗
y∗

1

are Dirac measures with mass at 0, 1, x∗
1, and

y∗
1 , respectively. The complete picture of the stochastic dynamics of the system (4) is determined by the

infectivity constant a and the parameter λ1, which is summarized in the following theorem.

Theorem 2.1. Under the assumption h1 < h2, the long-term behaviors of the system (3) on the invariant

domain D can be reduced to that of the system (4) on the invariant domain D1. With any initial condition

u1 = (x, y, z1) ∈ D1, the system (4) has a unique a.s. continuous solution Uu1

1 (t) that remains in D1 for all

t ≥ 0 a.s. Also, Uu1

1 (t) is a strong Markov process that possesses the Feller property.

On ∂D1, the system (4) has 3 ergodic invariant probability measures µ̄0, µ̄1, and µ̄2; in D◦
1 the system

(4) has a unique invariant probability measure µ̄3.

• µ̄0 is always a repeller for all values of a.

• If 0 < a < 1, then the system (4) has 2 ergodic invariant probability measures µ̄0 and µ̄1 on the boundary

∂D1 in which µ̄1 is a global attractor.

• If a > 1 and λ1 < 0, then the system (4) has 3 ergodic invariant probability measures µ̄0, µ̄1, and µ̄2 on

the boundary ∂D1 where µ̄0 and µ̄1 are repellers and µ̄2 is a global attractor.

• If a > 1 and λ1 > 0, then, besides µ̄0, µ̄1, and µ̄2, there exists a unique invariant probability measure

µ̄3 in D◦
1 supported by the open line segment

S1 :=

{(
l1z1 + 1

a
,
r(a− 1 − l1z1)

a(a+ r)
, z1

)
: z1 ∈

(
0,
a− 1

l1

)}

and the solution Uu1

1 (t) is exponentially ergodic with respect to µ̄3 in the sense that the transition

probability of the solution Uu1

1 (t) converges to µ̄3 exponentially in total variation norm.

Case 2. When h1 > h2, the innate immune cell population z1(t) decays to 0 a.s. as t → ∞ and so the system

(3) is reduced to the 3-dimensional SDE system
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dx = [rx(1 − x− y) − axy − l2xz2]dt,

dy = (axy − y)dt,

dz2 = (e2yz2 − d2z2)dt+ τ2z2dW2,

(5)

where D2 = {(x, y, z2) : x ≥ 0, y ≥ 0, z2 ≥ 0, x+ y ≤ 1} is its almost sure non-negative invariant domain.

For the system (5), we work on a complete probability space (Ω2,F2, {F2
t }t≥0,P ) (which is the projection

of the complete probability space (Ω,F , {Ft}t≥0,P ) on z1 = 0). With u2 := (x, y, z2) ∈ D◦
2 (the interior of

D2), we denote by U2 or Uu2

2 (t) := (x(t), y(t), z2(t)) the solution to the system (5) starting at u2. By the

analysis in Section 3, there are 3 ergodic invariant measures for the system (5) on the boundary ∂D2

µ̃0 = δ∗
0 × δ∗

0 × δ∗
0 , µ̃1 = δ∗

1 × δ∗
0 × δ∗

0 , and µ̃2 = δ∗
x∗

1
× δ∗

y∗

1
× δ∗

0 .

With the parameters a and λ2, the complete dynamics of the system (5) is stated in the following theorem.

Theorem 2.2. Assume that h1 > h2. The long-term dynamics of the system (3) on the invariant domain D is

governed by that of the system (5) on the invariant domain D2. With any initial condition u2 = (x, y, z2) ∈

D2, the system (5) has a unique a.s. continuous solution Uu2

2 (t) that remains in D2 for all t ≥ 0 a.s. Also,

Uu2

2 (t) is a strong Markov process that possesses the Feller property.

On ∂D2, the system (5) has 3 ergodic invariant probability measures µ̃0, µ̃1, and µ̃2; in D◦
2 the system

(5) has a unique invariant probability measure µ̃4.

• µ̃0 is always a repeller for all values of a.

• If 0 < a < 1, then the system (5) has 2 ergodic invariant probability measures µ̃0 and µ̃1 on the boundary

∂D2 in which µ̃1 is a global attractor.

• If a > 1 and λ2 < 0, then the system (5) has 3 ergodic invariant probability measures µ̃0, µ̃1, and µ̃2 on

the boundary ∂D2 where µ̃0 and µ̃1 are repellers and µ̃2 is a global attractor.

• If a > 1 and λ2 > 0, then, besides µ̃0, µ̃1, and µ̃2, there exists a unique invariant probability measure

µ̃4 in D◦
2 supported by the open line segment

S2 :=

{(
1

a
,
r(a− 1)

a(a+ r)
−

l2z2

a+ r
, z2

)
: z2 ∈

(
0,
r(a− 1)

al2

)}

and the solution Uu2

2 (t) is exponentially ergodic with respect to µ̃4 in the sense that the transition

probability of the solution Uu2

2 (t) converges to µ̃4 exponentially in total variation norm.

Case 3. When h1 = h2, both types of immune responses are stimulated simultaneously and coexist as

time goes by. Under certain conditions, there exists a collection of invariant probability measures in D◦

such that the solution of the system (3) is exponentially ergodic with respect to each of these measures.

This interesting property is similar to the Poincare-Andronov-Hopf bifurcation without parameters that the

deterministic counterpart system of (3) undergoes (see part I [23]). The results are stated in the following

theorem.

Theorem 2.3. Suppose that h1 = h2 =: h. On the boundary ∂D, the system (3) has 5 ergodic invariant

probability measures

µ0 = δ∗
0 × δ∗

0 × δ∗
0 × δ∗

0 , µ1 = δ∗
1 × δ∗

0 × δ∗
0 × δ∗

0 , µ2 = δ∗
x∗

1

× δ∗
y∗

1

× δ∗
0 × δ∗

0

µ3 on {z2 = 0} supported by

S(0) :=

{(
l1z1 + 1

a
,
r(a− 1 − l1z1)

a(a+ r)
, z1, 0

)
: z1 ∈

(
0,
a− 1

l1

)}
,
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µ4 on {z1 = 0} supported by

S(∞) :=

{(
1

a
,
r(a− 1)

a(a+ r)
−

l2z2

a+ r
, 0, z2

)
: z2 ∈

(
0,
r(a− 1)

al2

)}
.

The complete dynamics of the system (3) is determined by the parameters a and λ.

• µ0 is always a repeller for all values of a.

• If 0 < a < 1, then the system (3) has only 2 ergodic invariant probability measures µ0 and µ1 on ∂D in

which µ1 is a global attractor.

• If a > 1 and λ < 0, then the system (3) has only 3 ergodic invariant probability measures µ0, µ1, and

µ2 on ∂D where µ1 is a repeller and µ2 is a global attractor.

• If a > 1 and λ > 0, then, besides µ0, µ1, and µ2, there exists a collection of invariant probability

measures {π(k)}k∈[0,∞] for the system (3). For each k ∈ (0,∞), π(k) is supported by

S(k) :=

{(
l1z1 + 1

a
,
r(a− 1 − l1z1)

a(a+ r)
−
kl2z

ρ
1

a+ r
, z1, kz

ρ
1

)
: z1 ∈

(
0,
a− 1

l1

)}
,

where ρ = e2

e1
, and the solution Uu(t) of the system (3) is exponentially ergodic with respect to π(k)

whenever the initial value u is in D◦ ∩Pk; here Pk denotes the invariant surface z2 = kzρ
1 . When k = 0,

π(0) ≡ µ3 and Uu(t) is exponentially ergodic with respect to µ3 in the interior of D ∩ {z2 = 0}. When

k = ∞, π(∞) ≡ µ4 and Uu(t) is exponentially ergodic with respect to µ4 in the interior of D∩{z1 = 0}.

Interpretation 2.1. The dynamical behaviors of our stochastic differential equation system correspond to

those of its deterministic counterpart system [23] as our notations indicate. Particularly, the system (3) has

5 ergodic invariant probability measures on the boundary of its almost sure invariant domain, µ0, µ1, µ2,

µ3, µ4, and a collection of invariant probability measures {π(k)}k∈[0,∞] in the interior of its almost sure

invariant domain. In a parallel manner, the deterministic system (2.1) in [23] has 5 equilibrium points on

the boundary of its invariant domain, E0, E1, E2, E3, E4, and a manifold of equilibria M in the interior

of its invariant domain. The stochastic subsystems also correspond to their deterministic counterparts.

Importantly, the stochastic model and their deterministic counterpart share similar asymptotic properties

although in different settings.

It is reasonable that the ergodic invariant probability measures µ0, µ̄0, and µ̃0 are always repellers for

any positive parameter values. Since we only consider noises and uncertainties related to immune cells,

these uncertainties do not affect the infectivity constant a. So, as interpreted in [23], the ergodic invariant

probability measures µ1, µ̄1, and µ̃1 are global attractors when 0 < a < 1. That means the therapy completely

fails. When a > 1, our stochastic model predicts two partial successes for the virotherapy as its deterministic

counterpart, one is immune free, and another one has immune components. However, the conditions to

distinguish these two partial successes are Lyapunov exponents, which have medical implications.

The stochastic relative immune clearance rates hi = di

ei
+

τ2

i

2ei
(i = 1, 2) play the similar role as the

relative immune clearance rates di

ei
(i = 1, 2) in classifying the overall dynamics. However, the stochastic

relative immune clearance rates are the sum of the relative immune clearance rate and a term containing the

uncertainty variance τ2
i made by each immune cells or received by each immune cell from their microenvi-

ronment. This also contributes to our understanding about robustness of the virotherapy outcomes obtained

from the deterministic model. As interpretations in the deterministic model, according to the relation be-

tween two stochastic relative immune clearance rates, our stochastic model is reduced to three sub-models.

When h1 < h2, our stochastic model is reduced to a subsystem without adaptive immune cells (4). The

Lyapunov exponent λ1 < 0 is equivalent to h1 > θ. If we consider the infection value θ to be a fixed value

which is determined by the infectivity constant and tumor growth rate, then, when the stochastic relative
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innate immune clearance rate is greater than this fixed value, the innate immune cell population will eventu-

ally be cleared out. This is the case where the therapy reaches the immune-free ergodic invariant probability

measure µ̄2. The Lyapunov exponent λ1 > 0 is equivalent to h1 < θ. Therefore, the subsystem reaches the

ergodic invariant probability measure µ̄3 with innate immune components in its support. When h1 > h2, our

stochastic model is reduced to a subsystem without innate immune cells (5). Similarly, when λ2 < 0, that is,

h2 > θ, the adaptive immune cells will eventually be cleared out, and the subsystem reaches the immune-free

ergodic invariant probability measure µ̃2. When λ2 > 0, that is, h2 < θ, the sub-system reaches the ergodic

invariant probability measure µ̃4 with adaptive immune components in its support. When h1 = h2, we work

on the full system. If λ < 0, meaning that h > θ, the system will reach the immune-free ergodic invariant

probability measure µ2. If λ > 0, meaning that h < θ, the system will undergo stochastic Poincare-Andronov-

Hopf bifurcation without parameters. We can see that the infection value θ is a universal critical value for

understanding long-term behaviors and outcomes of the virotherapy. This value only is revealed in stochastic

setting.

3. Analysis of the model

This section is devoted to proving results in Section 2. Before giving the detailed proofs of the three main

Theorems 2.1, 2.2, and 2.3, at first we do boundary analysis for the system (3). The purpose of this analysis

is to investigate the set of ergodic invariant probability measures of the system (3) when its solutions start

in ∂D.

A. If x(0) = 0, then by the first equation of (3), x(t) ≡ 0 a.s. The second equation of (3) becomes dy =

(−l1yz1 − y)dt, which follows that y(t) → 0 a.s. as t → ∞. By standard arguments, the long-term behavior

of (3) is reduced to that of the following system

dz1 = −d1z1dt+ τ1z1dW1,

dz2 = −d2z2dt+ τ2z2dW2.
(6)

This system is equivalent to

z1(t) = z1(0) exp
{(

−d1 − τ2
1 /2
)
t+ τ1W1(t)

}
,

z2(t) = z2(0) exp
{(

−d2 − τ2
2 /2
)
t+ τ2W2(t)

}
.

So z1(t) → 0 a.s. and z2(t) → 0 a.s. as t → ∞. Thus, when the solution of (3) starts in {x = 0} ⊂ ∂D,

it converges to (0, 0, 0, 0) a.s. It follows that the transition probability of the solution Uu(t) starting in

{x = 0} ⊂ ∂D converges to the ergodic invariant probability measure µ0 = δ∗
0 × δ∗

0 × δ∗
0 × δ∗

0 in total

variation norm.

B. Assume that x(0) > 0. By the first equation of (3), x(t) > 0 for all t ≥ 0 a.s. If y(0) = 0, then the second

equation of (3) implies y(t) ≡ 0 a.s. Then, the last two equations of (3) become the system (6). By the same

argument as above, z1(t) → 0 a.s. and z2(t) → 0 a.s. as t → ∞. So the long-term behavior of (3) is reduced

to that of the equation dx = rx(1 − x)dt with initial condition x(0) > 0. It is easy to show that x(t) → 1

a.s. as t → ∞. So the transition probability of the solution Uu(t) starting in {y = 0} ⊂ ∂D converges to

the ergodic invariant probability measure µ1 = δ∗
1 × δ∗

0 × δ∗
0 × δ∗

0 in total variation norm.

C. Assume that x(0) > 0 and y(0) > 0. By the first two equations of (3), we get x(t) > 0 for all t ≥ 0 a.s.

and y(t) > 0 for all t ≥ 0 a.s. To study long-term behaviors of (3), we look at the following 4 cases.

C1. If z1(0) = z2(0) = 0, then the last two equations of (3) imply z1(t) ≡ 0 a.s. and z2(t) ≡ 0 a.s. The

long-term behavior of (3) is the same as that of the following system
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dx = [rx(1 − x− y) − axy]dt,

dy = (axy − y)dt.
(7)

It is straightforward that the a.s. non-negative invariant domain of this system is

∆ = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1}.

The long-term behavior of (7) in ∆◦ depends on the parameter a. If 0 < a < 1 then, by the second equation

of (7), dy ≤ (a − 1)ydt which implies that 0 ≤ y(t) ≤ y(0) exp{(a − 1)t} a.s. Since 0 < a < 1, y(t) → 0

a.s. as t → ∞. By standard arguments, the long-term behavior of (7) is reduced to that of the equation

dx = rx(1 − x)dt with initial condition x(0) > 0. Hence x(t) → 1 a.s. as t → ∞. Therefore the transition

probability of the solution Uu(t) starting in {z1 = 0, z2 = 0} ⊂ ∂D converges to µ1 in total variation norm.

If a > 1, we consider the function

V1(x, y) = x− x∗
1 − x∗

1 log
x

x∗
1

+
r + a

a

(
y − y∗

1 − y∗
1 log

y

y∗
1

)

where (x∗
1, y

∗
1) := ( 1

a
, r(a−1)

a(a+r) ) ∈ ∆◦. It is easy to check that dV1

dt
= −r(x − x∗

1)2 ≤ 0. Using Lasalle’s

principle, we can conclude that (x(t), y(t)) → (x∗
1, y

∗
1) a.s. as t → ∞. Thus, the transition probability of

the solution Uu(t) starting in {z1 = 0, z2 = 0} converges to the ergodic invariant probability measure

µ2 = δ∗
x∗

1

× δ∗
y∗

1

× δ∗
0 × δ∗

0 in total variation norm.

C2. Assume that z1(0) > 0 and z2(0) = 0. By the last two equations of (3), z1(t) > 0 for all t ≥ 0 a.s. and

z2(t) ≡ 0 a.s. This implies that the long-term behavior of (3) in D is the same as that of (4) in D1. By

boundary analysis for the system (4) on the boundary ∂D1, we obtain the following

• If the solution Uu1

1 (t) of (4) starts in {x = 0} ⊂ ∂D1, then its transition probability converges to

µ̄0 = δ∗
0 × δ∗

0 × δ∗
0 in total variation norm.

• If the solution Uu1

1 (t) of (4) starts in {y = 0} ⊂ ∂D1, then its transition probability converges to

µ̄1 = δ∗
1 × δ∗

0 × δ∗
0 in total variation norm.

• If the solution Uu1

1 (t) of (4) starts in {z1 = 0} ⊂ ∂D1, then its transition probability converges to

µ̄2 = δ∗
x∗

1

× δ∗
y∗

1

× δ∗
0 in total variation norm.

Now assume that the initial value u1 of the solution Uu1

1 (t) is in D◦
1 , the interior of D1. To investigate

the long-term behavior of the solution Uu1

1 (t) starting in D◦
1 , we compute the Lyapunov exponents of the

ergodic invariant probability measures µ̄0, µ̄1, and µ̄2 of (4) on the boundary ∂D1

λ1(µ̄0) = r, λ1(µ̄1) = 0, λ1(µ̄2) = 0,

λ2(µ̄0) = −1, λ2(µ̄1) = a− 1, λ2(µ̄2) = 0,

λ3(µ̄0) = −d1 −
τ2

1

2
, λ3(µ̄1) = −d1 −

τ2
1

2
, λ3(µ̄2) = e1y

∗
1 − d1 −

τ2
1

2
=: λ1.

Since λ1(µ̄0) > 0, µ̄0 is always a repeller in the sense that whenever the solution Uu1

1 (t) is close to the

support of µ̄0 (which is supp(µ̄0) = {(0, 0, 0)}), it goes away. If 0 < a < 1 then, from the second equation

of (4), we can easily show that y(t) → 0 a.s. as t → ∞. The behavior of the last equation of (4) is the

same as that of the equation dz1 = −d1z1dt+ τ1z1dW1, which follows that z1(t) → 0 a.s. as t → ∞. By the

first equation of (4), the behavior of x(t) is determined by the equation dx = rx(1 − x)dt. Hence x(t) → 1

a.s. as t → ∞. Thus the transition probability of the solution Uu1

1 (t) starting in D◦
1 converges to µ̄1 in

total variation norm. Next, we suppose that a > 1. Then the long-term behavior of the solution Uu1

1 (t) is
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determined by the combined parameter λ1, which is stated in the following two theorems whose proofs will

be given in Subsection 3.1.

Theorem 3.1. Let Uu1

1 (t) be the solution to the system (4) with initial condition u1 in D◦
1. Assume that a > 1

and λ1 > 0. Then

(i) There exists a unique invariant probability measure µ̄3 supported by

S1 :=

{(
l1z1 + 1

a
,
r(a− 1 − l1z1)

a(a+ r)
, z1

)
: z1 ∈

(
0,
a− 1

l1

)}
.

(ii) There are a γ > 0 and a positive function H(u1) : D◦
1 → R+ such that

‖P (t, u1, ·) − µ̄3(·)‖T V ≤ H(u1) e−γt

for all t ≥ 0 and for all u1 ∈ D◦
1 in which ‖ · ‖T V is the total variation norm and P (t, u1, ·) is the

transition probability of the solution Uu1

1 (t). That is, Uu1

1 (t) is exponentially ergodic with respect to µ̄3.

(iii) Furthermore, for all µ̄3-integrable function f and for all u1 ∈ D◦
1 we get

lim
t→∞

1

t

t∫

0

f(Uu1

1 (s))ds =

∫

D◦

1

f(u1)µ̄3(du1) a.s.

This is called the strong law of large number for µ̄3.

Theorem 3.2. Let Uu1

1 (t) be the solution to the system (4) with initial condition u1 in D◦
1. Assume that a > 1

and λ1 < 0. Then Uu1

1 (t) → (x∗
1, y

∗
1 , 0) a.s. as t → ∞. Furthermore,

lim
t→∞

log z1(t)

t
= λ1 < 0 a.s.

for any initial condition u1 ∈ D◦
1.

C3. Suppose that z1(0) = 0 and z2(0) > 0. By the last two equations of (3), z1(t) ≡ 0 a.s. and z2(t) > 0

for all t ≥ 0 a.s. This follows that the long-term behavior of (3) in D is the same as that of (5) in D2. By

analyzing the system (5) on the boundary ∂D2, we obtain the following

• If the solution Uu2

2 (t) of (5) starts in {x = 0} ⊂ ∂D2, then its transition probability converges to

µ̃0 = δ∗
0 × δ∗

0 × δ∗
0 in total variation norm.

• If the solution Uu2

2 (t) of (5) starts in {y = 0} ⊂ ∂D2, then its transition probability converges to

µ̃1 = δ∗
1 × δ∗

0 × δ∗
0 in total variation norm.

• If the solution Uu2

2 (t) of (5) starts in {z2 = 0} ⊂ ∂D2, then its transition probability converges to

µ̃2 = δ∗
x∗

1

× δ∗
y∗

1

× δ∗
0 in total variation norm.

Now suppose that the initial value u2 of the solution Uu2

2 (t) is in D◦
2 , the interior of D2. To look into

the long-term behavior of the solution Uu2

2 (t) starting in D◦
2 , we calculate the Lyapunov exponents of the

ergodic invariant probability measures µ̃0, µ̃1, and µ̃2 of (5) on the boundary ∂D2

λ1(µ̃0) = r, λ1(µ̃1) = 0, λ1(µ̃2) = 0,

λ2(µ̃0) = −1, λ2(µ̃1) = a− 1, λ2(µ̃2) = 0,
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λ3(µ̃0) = −d2 −
τ2

2

2
, λ3(µ̃1) = −d2 −

τ2
2

2
, λ3(µ̃2) = e2y

∗
1 − d2 −

τ2
2

2
=: λ2.

Since λ1(µ̃0) > 0, µ̃0 is always a repeller in the sense that whenever the solution Uu2

2 (t) gets close to the

support of µ̃0 (which is supp(µ̃0) = {(0, 0, 0)}), it repels away from the boundary ∂D2. If 0 < a < 1 then,

by the same arguments as in C2, the transition probability of the solution Uu2

2 (t) starting in D◦
2 converges

to µ̃1 in total variation norm. Next, we suppose that a > 1. Then the long-term behavior of the solution

Uu2

2 (t) is determined by the combined parameter λ2, which is summarized in the following two theorems

whose proofs will be given in Subsection 3.2.

Theorem 3.3. Let Uu2

2 (t) be the solution to the system (5) with initial condition u2 in D◦
2. Assume that a > 1

and λ2 > 0. Then

(i) There exists a unique invariant probability measure µ̃4 supported by

S2 :=

{(
1

a
,
r(a− 1)

a(a+ r)
−

l2z2

a+ r
, z2

)
: z2 ∈

(
0,
r(a− 1)

al2

)}
.

(ii) There are a η > 0 and a positive function H(u2) : D◦
2 → R+ such that

‖P (t, u2, ·) − µ̃4(·)‖T V ≤ H(u2) e−ηt

for all t ≥ 0 and for all u2 ∈ D◦
2 in which ‖ · ‖T V is the total variation norm and P (t, u2, ·) is the

transition probability of the solution Uu2

2 (t). That is, Uu2

2 (t) is exponentially ergodic with respect to µ̃4.

(iii) Furthermore, for all µ̃4-integrable function f and for all u2 ∈ D◦
2 we get

lim
t→∞

1

t

t∫

0

f(Uu2

2 (s))ds =

∫

D◦

2

f(u2)µ̃4(du2) a.s.

This is called the strong law of large number for µ̃4.

Theorem 3.4. Let Uu2

2 (t) be the solution to the system (5) with initial condition u2 in D◦
2. Assume that a > 1

and λ2 < 0. Then Uu2

2 (t) → (x∗
1, y

∗
1 , 0) a.s. as t → ∞. Furthermore,

lim
t→∞

log z2(t)

t
= λ2 < 0 a.s.

for any initial condition u2 ∈ D◦
2.

C4. If z1(0) > 0 and z2(0) > 0 then we get z1(t) > 0 for all t ≥ 0 a.s. and z2(t) > 0 for all t ≥ 0 a.s. due to

the last two equations of (3). Again, from these last two equations, using Ito’s formula gives

d(log z1) =

(
e1y − d1 −

τ2
1

2

)
dt+ τ1dW1,

d(log z2) =

(
e2y − d2 −

τ2
2

2

)
dt+ τ2dW2.

These equations follow that

e1

e2
d(log z2) = d(log z1) + e1

(
d1

e1
+

τ2
1

2e1
−
d2

e2
−

τ2
2

2e2

)
+ d

(
e1

e2
τ2W2 − τ1W1

)
.
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Integrate both sides from 0 to t, we get

log

(
z2(t)

e1

e2

z1(t)

)
= log

(
z2(0)

e1

e2

z1(0)

)
+

[
e1

(
d1

e1
+

τ2
1

2e1
−
d2

e2
−

τ2
2

2e2

)
+
e1τ2

e2

W2(t)

t
− τ1

W1(t)

t

]
t.

Thus for a.s.

z2(t)
e1

e2 = Cz1(t) exp

{[
e1

(
d1

e1
+

τ2
1

2e1
−
d2

e2
−

τ2
2

2e2

)
+
e1τ2

e2

W2(t)

t
− τ1

W1(t)

t

]
t

}

where C := log

(
z2(0)

e1

e2

z1(0)

)
. Consider 3 cases.

C41. If
d1

e1
+

τ2
1

2e1
<
d2

e2
+

τ2
2

2e2
, that is h1 < h2, then, by the same arguments as in the ODE analysis (see

[23]), we can easily show that z2(t) → 0 a.s. as t → ∞. Hence the long-term behavior of the system (3) is

reduced to that of the system (4) in which the complete dynamics of the system (4) is obtained in C2.

C42. If h1 > h2 then, by the same reasons as in the ODE analysis (see [23]), it can be shown that z1(t) → 0

a.s. as t → ∞. Hence the long-term behavior of the system (3) is reduced to that of the system (5) in which

the complete dynamics of the system (5) is obtained in C3.

C43. Assume that h1 = h2. Then, let ρ =
e2

e1
, for k ∈ [0,∞] we get

z2(t) = kz1(t)ρ exp{τ2W2(t) − ρτ1W1(t)} a.s. (8)

Notice that, when k = 0, z2(t) ≡ 0 a.s. So the system (3) is reduced to the system (4). When k = ∞,

z1(t) ≡ 0 a.s. Thus the system (3) is reduced to the system (5). Now we suppose that 0 < k < ∞. Then

the long-term behavior of the system (3) is determined by the parameter a and the combined parameter

λ := y∗
1 − h where h := h1 = h2. From the boundary analysis of the system (3) in A, B, C1, C2, and C3,

the system (3) has 5 ergodic invariant probability measures on the boundary ∂D of D which are

µ0 = δ∗
0 × δ∗

0 × δ∗
0 × δ∗

0 on {x = 0} with supp(µ0) = {(0, 0, 0, 0)},

µ1 = δ∗
1 × δ∗

0 × δ∗
0 × δ∗

0 on {y = 0} with supp(µ1) = {(1, 0, 0, 0)},

µ2 = δ∗
x∗

1

× δ∗
y∗

1

× δ∗
0 × δ∗

0 on {z1 = 0, z2 = 0} with supp(µ2) = {(x∗
1, y

∗
1 , 0, 0)},

µ3 on {z2 = 0} with

supp(µ3) =

{(
l1z1 + 1

a
,
r(a− 1)

a(a+ r)
−

rl1z1

a(a+ r)
, z1, 0

)
: z1 ∈

(
0,
a− 1

l1

)}
,

µ4 on {z1 = 0} with

supp(µ4) =

{(
1

a
,
r(a− 1)

a(a+ r)
−

l2z2

a+ r
, 0, z2

)
: z2 ∈

(
0,
r(a− 1)

al2

)}
.

Note that the invariant probability measure µ̄3 of the system (4) in D◦
1 is the projection of µ3 onto {z2 = 0}

and the invariant probability measure µ̃4 of the system (5) in D◦
2 is the projection of µ4 onto {z1 = 0}. To

study the long-term behavior of the system (3) starting in the interior D◦ of D, we compute the Lyapunov

exponents of the ergodic invariant probability measures µ0, µ1, and µ2 as we did in C2 and C3. Since

λ1(µ0) = r > 0, µ0 is always a repeller. If 0 < a < 1, then the same arguments as in C2 and C3 imply µ1

is global attractor. If a > 1, then the dynamics of the system (3) is determined by the combined parameter

λ, which is summarized in the following two theorems whose proofs will be given in Subsection 3.3.



ARTICLE IN PRESS

Please cite this article in press as: T.A. Phan, J.P. Tian, Hopf bifurcation without parameters in deterministic and stochastic
modeling of cancer virotherapy, part II, J. Math. Anal. Appl. (2022), https://doi.org/10.1016/j.jmaa.2022.126444

JID:YJMAA AID:126444 /FLA [m3L; v1.317] P.12 (1-37)

12 T.A. Phan, J.P. Tian / J. Math. Anal. Appl. ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Theorem 3.5. Suppose that h := h1 = h2. Let Uu(t) be the solution to the system (3) with initial condition

u in D◦. Assume that a > 1 and λ > 0. Then

(i) There exists a collection of invariant probability measures {π(k)}k∈(0,∞) where each π(k) is supported

by

S(k) :=

{(
l1z1 + 1

a
,
r(a− 1)

a(a+ r)
−

rl1z1

a(a+ r)
−
l2kz

ρ
1

a+ r
, z1, kz

ρ
1

)
: z1 ∈

(
0,
a− 1

l1

)}
.

(ii) For each k ∈ (0,∞), the transition probability P (t, u, ·) of the solution Uu(t) starting in {z2 = kzρ
1}

converges to π(k) exponentially fast in total variation norm. In other words, for each k ∈ (0,∞), when

starting in {z2 = kzρ
1}, the solution Uu(t) is exponentially ergodic with respect to π(k).

(iii) Moreover, for all π(k)-integrable function f and for all u ∈ D◦ we get

lim
t→∞

1

t

t∫

0

f(Uu(s))ds =

∫

D◦

f(u)π(k)(du) a.s.

This is called the strong law of large number for each π(k).

Theorem 3.6. Suppose that h := h1 = h2. Let Uu(t) be the solution to the system (3) with initial condition

u in D◦. Assume that a > 1 and λ < 0. Then Uu(t) → (x∗
1, y

∗
1 , 0, 0) a.s. as t → ∞. Furthermore,

lim
t→∞

log z1(t)

t
= e1λ < 0 a.s. and lim

t→∞

log z2(t)

t
= e2λ < 0 a.s.

for any initial condition u ∈ D◦.

3.1. Proof of Theorem 2.1

To complete the proof of Theorem 2.1, we give the detailed proofs of Theorem 3.1 and Theorem 3.2 in

this subsection. Notice that we always assume a > 1.

First of all, since the noises of the system (4) are degenerate, we need to show the hypoellipticity (see

Appendix A.1) of the solution U1(t) to the system (4), which makes sure that any positive solution state

can move close to any other positive solution state in a finite time. In other words, there are sufficient noises

in the system (4) that can locally push its dynamics in all directions. Indeed, we rewrite the system (4) in

the Stratonovich form

dx = [rx(1 − x− y) − axy]dt,

dy = (axy − l1yz1 − y)dt,

dz1 =

(
e1y − d1 −

τ2
1

2

)
z1dt+ τ1z1 ◦ dW1.

(9)

Let

A =

(
A1(u1)
A2(u1)
A3(u1)

)
=



rx(1 − x− y) − axy
axy − l1yz1 − y

e1yz1 − d1z1 − 1
2τ

2
1 z1


 and B =

(
B1(u1)
B2(u1)
B3(u1)

)
=

(
0
0
τ1z1

)
.

From Appendix A.1, the solutions U1(t) to the system (4) are said to satisfy Hörmander’s condition if the

set of vector fields B, [A,B], [A, [A,B]], [B, [A,B]], · · · spans R
3 at every point u1 = (x, y, z1) ∈ D◦

1 where

[ · , · ] is the Lie Bracket defined by [A,B] = ([A,B]1, [A,B]2, [A,B]3)T where, for j = 1, 2, 3,
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[A,B]j :=

(
A1

∂Bj

∂x
−B1

∂Aj

∂x

)
+

(
A2

∂Bj

∂y
−B2

∂Aj

∂y

)
+

(
A3

∂Bj

∂z1
−B3

∂Aj

∂z1

)
.

By computation,

C := [A,B] =

(
0

τ1l1yz1

0

)
and D := [A, [A,B]] = [A,C] =




τ1l1(r + a)xyz1

τ1l1yz1(e1y − d1 − 1
2τ

2
1 )

−τ1l1e1yz
2
1


 .

Clearly, the vectors B, C, and D span R
3 for any u1 = (x, y, z1) ∈ D◦

1 . So Hörmander’s condition holds for

the solutions to the system (4). Thus we proved the following lemma.

Lemma 3.1. The solutions U1(t) = (x(t), y(t), z1(t)) to the system (4) in D◦
1 satisfy Hörmander’s condition.

As a consequence of Lemma 3.1 (see Theorem 1 in Appendix A.1), the transition probability P (t, u10, · )

of the solutions U1(t) has density p(t, u10, u1) which is smooth in (u10, u1) ∈ D◦
1 ×D◦

1 .

Next, we consider the control system corresponding to the system (9)

ẋφ = rxφ(1 − xφ − yφ) − axφyφ,

ẏφ = axφyφ − l1yφz1φ − yφ,

ż1φ =

(
e1yφ − d1 −

τ2
1

2
+ τ1φ

)
z1φ,

(10)

where φ = φ(t) is from the set of piecewise continuous real-valued functions defined on R+. Let

(xφ(t, u1), yφ(t, u1), z1φ(t, u1)) be the solution to the system (10) with control φ and initial value u1 =

(x, y, z1) ∈ D◦
1 .

To study the ergodic properties of the process Uu1

1 (t), we utilize the ideas in geometric control theory

(see [13]) to investigate reachable sets of the control system (10). Roughly speaking, starting with initial

point u10 = (x0, y0, z10) in D◦
1 , the collection of all points

u1 = (x1, y1, z11) = (xφ(t, u10), yφ(t, u10), z1φ(t, u10))

under all piecewise continuous controls φ(·), where time t is fixed, forms a reachable set of u10. In view of the

support theorem (see Theorem 2 in Appendix A.2), we can obtain the desired properties of the transition

probability P (t, u10, · ) and invariant probability measures of the system (4) by looking into the reachable

sets of different initial values. For convenience, we let

f1(xφ, yφ, z1φ) := rxφ(1 − xφ − yφ) − axφyφ,

f2(xφ, yφ, z1φ) := axφyφ − l1yφz1φ − yφ,

f3(xφ, yφ, z1φ) :=

(
e1yφ − d1 −

τ2
1

2

)
z1φ,

then the system (10) is equivalent to

ẋφ = f1(xφ, yφ, z1φ),

ẏφ = f2(xφ, yφ, z1φ),

ż1φ = f3(xφ, yφ, z1φ) + τ1φz1φ.

The results of the dynamics of the system (10) are given in the following claims.
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Claim 3.1. Let (x0, y0, z10) ∈ D◦
1 and z11 ∈ (0,∞). Then, for any ǫ > 0, there are a control φ(·) and a time

T > 0 such that

|xφ(T, x0, y0, z10) − x0| < ǫ,

|yφ(T, x0, y0, z10) − y0| < ǫ, and

z1φ(T, x0, y0, z10) = z11.

Remark. Claim 3.1 indicates that we can control the solution of the system (10) to move back and forth along

the positive z1-direction while the other directions of the solution still remain within a small neighborhood

of their initial values.

Proof of Claim 3.1. Let u10 := (x0, y0, z10) and suppose z10 < z11. Let

ρ1 = sup {|f1(x, y, z1)|, |f2(x, y, z1)|, |f3(x, y, z1)| : |x− x0| ≤ ǫ, |y − y0| ≤ ǫ, z10 ≤ z ≤ z11} .

We choose φ(t) ≡ ρ2 such that 0 < z11 −z10 < ǫ
(

τ1ρ2z10

ρ1
− 1
)

. This implies that τ1ρ2z10 −ρ1 > 0 and hence

ż1φ(0, u10) = f3(u10) + τ1ρ2z10 ≥ τ1ρ2z10 − ρ1 > 0. After time 0, z1φ is increasing from z10. Now suppose

that there were the first time t ∈ (0, ǫ
ρ1

) so that |xφ(t, u10) − x0| > ǫ. Then, by mean value theorem, we

would have

ǫ < |xφ(t, u10) − x0| = |ẋφ(η, u10)|t = |f1(Uu10

1 (η))|t ≤ ρ1 ·
ǫ

ρ1
= ǫ,

for some η ∈ (0, t), which is a contradiction. Thus |xφ(t, u10) − x0| ≤ ǫ for all t ∈ (0, ǫ
ρ1

). By similar

arguments, |yφ(t, u10) − y0| ≤ ǫ for all t ∈ (0, ǫ
ρ1

). Next, if for all t ∈ (0, ǫ
ρ1

) we had z1φ(t, u10) < z11 then it

would imply that z1φ( ǫ
ρ1
, u10) = limt→ ǫ

ρ1

z1φ(t, u10) ≤ z11. But then, by mean value theorem,

ǫ

ρ1
(τ1ρ2z10 − ρ1) > z11 − z10 ≥ z1φ

(
ǫ

ρ1
, u10

)
− z1φ(0, u10)

= ż1φ(η̄, u10)
ǫ

ρ1
≥ (τ1ρ2z10 − ρ1)

ǫ

ρ1

for some η̄ ∈ (0, ǫ
ρ1

), which is a contradiction. Therefore, there is a time T ∈ (0, ǫ
ρ1

) such that z1φ(T, u10) =

z11. In the case z10 > z11, the control φ(·) is constructed similarly. So the proof is completed. 2

Claim 3.2. Let (x0, y0) ∈ ∆◦ = {(x, y) : x > 0, y > 0, x+ y < 1} and z10 ∈ (0,∞). Suppose a > 1 such that

(x∗, y∗) := ( l1z10+1
a

, r(a−1−l1z10)
a(a+r) ) ∈ ∆◦ and let z∗ = a−1

l1
. Then we have the following

(i) If z10 ∈ (0, z∗) then for all ǫ > 0 there are a control φ(·) and a time T > 0 such that

|xφ(T, x0, y0, z10) − x∗| < ǫ,

|yφ(T, x0, y0, z10) − y∗| < ǫ, and

z1φ(t, x0, y0, z10) = z10 ∀ t ∈ [0, T ].

(ii) If z10 ≥ z∗ then for all ǫ > 0 there exist a control φ(·) and a time T > 0 such that

1 − xφ(T, x0, y0, z10) < ǫ,

yφ(T, x0, y0, z10) < ǫ, and

z1φ(t, x0, y0, z10) = z10 ∀ t ∈ [0, T ].
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Remark. Claim 3.2 shows that if we hold the z-direction of the solution of the system (10) then both the

x- and y- directions will end up within a small neighborhood of a fixed point after a finite time. In other

words, when the solution of the system (10) starts in D◦
1 , it will concentrate around a line segment in D1

as time goes by. This claim helps us to describe exactly the support S1 of the invariant probability measure

µ̄3 of the system (4) in D◦
1 .

Proof of Claim 3.2. Let u10 = (x0, y0, z10) ∈ D◦
1 where z10 ∈ (0,∞). Consider the ODE system

ẋ = rx(1 − x− y) − axy,

ẏ = axy − l1yz1 − y,

ż1 = 0,

(11)

with initial condition u10. The last equation of (11) implies z1(t) ≡ z10. So the system (11) is reduced to

2-dim ODE system

ẋ = rx(1 − x− y) − axy,

ẏ = axy − l1yz10 − y,
(12)

with initial condition (x0, y0) ∈ ∆◦. Consider 2 cases:

(i) If z10 ∈ (0, z∗) then it is clear that (x∗, y∗) ∈ ∆◦ is the unique positive equilibrium point of (12). Using

the Lyapunov function

V2(x, y) = x− x∗ − x∗ log
x

x∗ +
r + a

r

(
y − y∗ − y∗ log

y

y∗

)

and Lasalle’s principle, we can prove that (x∗, y∗) is globally asymptotically stable. Let (x̄(t), ȳ(t), z̄1(t))

be the solution to (11) with initial condition u10 ∈ ∆◦ × (0, z∗). Then z̄1(t) ≡ z10 and (x̄(t), ȳ(t)) →

(x∗, y∗) as t → ∞. With the feedback control φ1(·) satisfying e1ȳ(t) − d1 −
τ2

1

2 + τ1φ1(t) ≡ 0, we have

(xφ1
(t), (yφ1

(t), (z1φ1
(t)) = (x̄(t), ȳ(t), z̄1(t)) ∀ t ≥ 0

where (xφ1
(t), (yφ1

(t), (z1φ1
(t)) is the solution to (10) with the control φ1(·) above and initial condition

u10 ∈ ∆◦ × (0, z∗). Therefore the result follows.

(ii) If z10 ≥ z∗ then, from the second equation of (11), ẏ = axy− l1yz10 − y ≤ axy− ay. Let (x̃(t), ỹ(t)) be

the solution to

ẋ = rx(1 − x− y) − axy,

ẏ = axy − ay,
(13)

with initial condition (x̃(0), ỹ(0)) = (x0, y0) ∈ ∆◦. Use the Lyapunov function V3(x, y) = x − 1 −

log x + r+a
a
y and Lasalle’s principle, can show that (1, 0) is globally asymptotically stable equilibrium

of (13). It follows that (x̃(t), ỹ(t)) → (1, 0) as t → ∞. Let (x(t), y(t), z1(t)) be the solution to (11)

with initial condition u10 ∈ ∆◦ × [z∗,∞). Clearly, z1(t) ≡ z10. By comparison theorem for ODEs, since

1 > x(t) ≥ x̃(t) and 0 < y(t) ≤ ỹ(t), letting t → ∞ yields (x(t), y(t)) → (1, 0). Then the result follows

by choosing the feedback control φ2(·) satisfying e1y(t) − d1 − τ2
1 /2 + τ1φ2(t) ≡ 0. 2

Claim 3.3. For any u1 = (x, y, z1) ∈ D◦
1, we can find a point (x∗

2, y
∗
2 , z

∗
1) ∈ D◦

1 with the following properties:

if 0 < δ < min
{
x∗

2, y
∗
2 ,

1√
2
(x∗

2 + y∗
2), z∗

1

}
and let
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Vδ := (x∗
2 − δ, x∗

2 + δ) × (y∗
2 − δ, y∗

2 + δ) × (z∗
1 − δ, z∗

1 + δ), then

(i) there are a control φ(·) and a time T > 0 so that (xφ(T, u1), yφ(T, u1), z1φ(T, u1)) ∈ Vδ,

(ii) there exist a neighborhood Sδ ⊂ Vδ and a control φ(·) such that Sδ is invariant under (10), that is, for

all t ≥ 0 and u1 ∈ Sδ, (xφ(t, u1), yφ(t, u1), z1φ(t, u1)) ∈ Sδ.

Claim 3.4. For any u1 = (x, y, z1) ∈ D◦
1 and for any 0 < δ < min

{
x∗

1, y
∗
1 ,

1√
2
(x∗

1 + y∗
1)
}

, there are a control

φ(·) and a time T > 0 such that

(xφ(T, u1), yφ(T, u1), z1φ(T, u1)) ∈ Wδ := (x∗
1 − δ, x∗

1 + δ) × (y∗
1 − δ, y∗

1 + δ) × (0, δ).

Remark. Claim 3.3 will be used in the proofs of Lemma 3.2 (see below) and Theorem 3.1 which establish the

persistence for the system (4), while Claim 3.4 will be utilized in the proof of Theorem 3.2 which establishes

the extinction of the system (4). Proofs of these two claims directly follow from Claim 3.1 and Claim 3.2.

To prove Theorem 3.1, we use Theorem 3 and Theorem 4 in Appendix A.3. Theorem 4 guarantees that

there exists a unique invariant probability measure µ̄3 in D◦
1 for the solution U1(t) and, no matter where

the solution U1(t) starts in D◦
1 , once it gets into a neighborhood of the support of µ̄3 it will get trapped

there forever. So Theorem 4 helps prove part (i) and part (ii) of Theorem 3.1. Since the unique existence of

invariant probability measure µ̄3 implies the boundedness in probability on average of U1(t), we can apply

Theorem 3 to obtain part (iii) of Theorem 3.1. Thus, to utilize Theorem 3 and Theorem 4 in Appendix A.3,

we need the following lemma.

Lemma 3.2. The solution process Uu1

1 (t) of the system (4) is a T -process. Moreover, every compact set

K ⊂ D◦
1 is petite for the Markov chain (x(n), y(n), z1(n)), n ∈ N.

Proof of Lemma 3.2. Due to Lemma 3.1, the transition probability P (t, u1, · ) of the process Uu1

1 (t) has a

smooth density function p(t, ·, ·) on D◦
1 × D◦

1 . By standard arguments, it can be shown that the resolvent

kernel

R(u1, A) =

∞∫

0

e−tP (t, u1, A)dt

is continuous function in u1 for each A ∈ B(D◦
1). With the probability measure a(dt) = e−tdt on R+,

R(u1, A) is its own continuous component (see Theorem 3.3 p498 in [18]). Hence Uu1

1 (t) is a T -process.

Next, consider the point (x∗
2, y

∗
2 , z

∗
1) ∈ D◦

1 as in Claim 3.3. As D◦
1 is invariant under the system (4), so

P (1, (x∗
2, y

∗
2 , z

∗
1), D◦

1) = 1. Hence, for some (x3, y3, z3) ∈ D◦
1 , p(1, (x∗

2, y
∗
2 , z

∗
1), (x3, y3, z3)) > 0. In view

of Claim 3.3(ii) and the smoothness of the density p(1, ·, ·) on D◦
1 × D◦

1 , there are a neighborhood Sδ

of (x∗
2, y

∗
2 , z

∗
1) in D◦

1 , which is invariant under the system (10) with some control φ(·), and an open set

G ∋ (x3, y3, z3) in D◦
1 such that

p(1, (x, y, z1), (x′, y′, z′
1)) ≥ m′ > 0 (14)

for all (x, y, z1) ∈ Sδ and (x′, y′, z′
1) ∈ G. Now suppose K is any compact set in D◦

1 . Then, for any u1 ∈ K,

it follows from Claim 3.3(i) that there are a control φ(·) and a time T > 0 such that

(xφ(T, u1), yφ(T, u1), z1φ(T, u1)) ∈ Sδ.
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Let nu1
∈ Z+ such that nu1

> T . By Claim 3.3(ii), we can extend the control φ(·) after time T so that

(xφ(nu1
, u1), yφ(nu1

, u1), z1φ(nu1
, u1)) ∈ Sδ.

In light of the support theorem (see Theorem 2 in Appendix A.2),

P (nu1
, u1, Sδ) =: 2ρu1

> 0.

For each u1 ∈ K, since Uu1

1 (t) is a Feller process, there exists an open set Vu1
∋ u1 such that for all u′

1 ∈ Vu1

we have P (nu1
, u′

1, Sδ) ≥ ρu1
. Since K is compact, there is a finite number of such open sets Vui

1
(i = 1, ..., l)

that satisfies K ⊂
l⋃

i=1

Vui
1
. Let ρK = min

i=1,...,l
ρui

1
, then, for each u1 ∈ K, there is a nui

1
∈ Z+ such that

P (nui
1
, u1, Sδ) ≥ ρK . (15)

By (14) and (15), for any u1 ∈ K and u′
1 ∈ G, there exists a nui

1
∈ Z+ such that

p(nui
1

+ 1, u1, u
′
1) =

∫

D◦

1

p(nui
1
, u1, u

′′
1) p(1, u′′

1 , u
′
1)du′′

1

≥

∫

Sδ

m′p(nui
1
, u1, u

′′
1)du′′

1 = m′P (nui
1
, u1, Sδ),

which implies that

p(nui
1

+ 1, u1, u
′
1) ≥ m′ρK . (16)

Define the probability measure a on N as follows

a(n) =





1

l
if n = nui

1
+ 1 (i = 1, ..., l),

0 otherwise,

and define the kernel, for u1 ∈ K and Q ∈ B(D◦
1),

Ka(u1, Q) =

∞∑

n=0

P (n, u1, Q)a(n) =
1

l

l∑

i=0

P (nui
1

+ 1, u1, Q).

Then it follows from (16) that, for all Q ∈ B(D◦
1),

Ka(u1, Q) =
1

l

l∑

i=0

∫

Q

p(nui
1

+ 1, u1, u
′
1)du′

1 ≥
1

l

l∑

i=0

∫

G∩Q

p(nui
1

+ 1, u1, u
′
1)du′

1 ≥ ρKm
′µ(G ∩Q)

where µ is the Lebesgue measure on B(D◦
1). Let ψ(Q) := ρKm

′µ(G∩Q) for Q ∈ B(D◦
1) then it is clear that

ψ is a nontrivial measure on D◦
1 and Ka(u1, Q) ≥ ψ(Q) for all u1 ∈ K and for all Q ∈ B(D◦

1). By definition,

the compact set K is petite for the 1-skeleton Markov chain Uu1

1 (n), n ∈ N. This completes the proof of

Lemma 3.2. 2

Now we have enough preparations to give the proofs of Theorem 3.1 and Theorem 3.2.
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Proof of Theorem 3.1. From the system (4), it is not difficult to show that lim
t→∞

z1(t) exists and is finite a.s.

We claim that lim
t→∞

z1(t) > 0 a.s. Indeed, if there were an ω ∈ Ω such that lim
t→∞

z1(t, ω) = 0 then it would

be easy to see that lim
t→∞

y(t, ω) = y∗
1 . So, for any ǫ ∈ (0, λ1), there exists a T > 0 so that t ≥ T implies

y(t, ω) − y∗
1 > − ǫ

e1
. But then, for all t ≥ T ,

z1(t, ω) = z1(T, ω) exp





t∫

T

e1(y(s, ω) − y∗
1)ds+ λ1(t− T ) + τ1(W1(t, ω) −W1(T, ω))





≥ z1(T, ω) exp {(λ1 − ǫ)(t− T ) + τ1(W1(t, ω) −W1(T, ω))} ,

which follows that lim
t→∞

z1(t, ω) > 0. This is a contradiction. Thus there is a δ∗ > 0 such that

lim
t→∞

z1(t) ≥ δ∗ a.s. (17)

Since λ1 = e1y
∗
1 − d1 − 1

2τ
2
1 > 0, it is clear that e1 > d1 and there is a q ∈ (0, 1) small enough so that

e1y
∗
1 − d1 − 1

2τ
2
1 (q + 1) > 0. Now consider the system (4) in the invariant domain

M1 = {(x, y, z1) ∈ D◦
1 : z1 ≥ δ∗}.

Denote by L the generator of the diffusion corresponding to (4). For (x, y, z1) ∈ M1, let

V4(x, y, z1) =
e1

l1
y + z−q

1 + z1 + 1,

since lim
z1→∞

V4(x, y, z1) = ∞, V4 is a positive norm-like function on M1. Furthermore,

LV4 = − qz−q
1

[
e1y

∗
1 − d1 −

1

2
τ2

1 (q + 1)

]
− d1z1 −

e1

l1
y

+
ae1

l1
xy + qz−q

1 e1(y∗
1 − y) ≤ −θ1V4 + θ2 (18)

where θ1 := min{q[e1y
∗
1 −d1 − 1

2τ
2
1 (q+ 1)], d1, 1} > 0 and θ2 := θ1 + ae1

l1
+ qδ∗−qe1y

∗
1 < ∞. By Theorem 4 in

Appendix A.3, it follows from Lemma 3.2 and (18) that the process Uu1

1 (t) has a unique invariant probability

measure µ̄3 in M1 such that for some H0 > 0 and γ > 0 we get

‖P (t, u1, · ) − µ̄3(·)‖T V ≤ H0[V4(u1) + 1]e−γt (19)

for all t ≥ 0 and u1 = (x, y, z1) ∈ M1. Moreover, by the support theorem, we obtain from Claims 3.1 and

3.2 that the support of µ̄3 is S1, which proves Theorem 3.1(i). To show Theorem 3.1(ii), first we can easily

get the estimate

LV4(x, y, z1) ≤ θ3V4(x, y, z1)

for all (x, y, z1) ∈ D◦
1 and for some θ3 > 0. Then, by standard arguments, we can show that there exist

H1 > 0 and γ1 > 0 such that for all t > 0 and u1 = (x, y, z1) ∈ D◦
1

EV4(x(t, u1), y(t, u1), z1(t, u1)) ≤ H1V4(u1)eγ1t. (20)

By (17), for any u10 ∈ D◦
1 , there is a non-random time t0 = t0(u10) > 0 such that (x(t, u10), y(t, u10),

z1(t, u10)) ∈ M1 for all t ≥ t0 a.s. Thus, from (19) and (20), we obtain the following estimate
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‖P (t+ t0, u10, ·) − µ̄3(·)‖T V =

∥∥∥∥∥∥

∫

M1

P (t0, u10, du1)P (t, u1, ·) −

∫

M1

P (t0, u10, du1)µ̄3(·)

∥∥∥∥∥∥
T V

≤

∫

M1

P (t0, u10, du1)‖P (t, u1, ·) − µ̄3(·)‖T V

≤

∫

M1

p(t0, u10, u1)H0[V4(u1) + 1]e−γtdu1

= H0e
−γt



∫

M1

p(t0, u10, u1)V4(u1)du1 +

∫

M1

p(t0, u10, u1)du1




= H0e
−γt [EV4(Uu10

1 (t0)) + 1]

≤ H0

[
H1V4(u10)eγ1t0 + 1

]
e−γt ∀ t ≥ 0.

Then Theorem 3.1(ii) is shown. Theorem 3.1(iii) is derived from Theorem 3 in Appendix A.3 since the

convergence in total variation norm implies the boundedness in probability on average. 2

Proof of Theorem 3.2. The detailed proof is carried out in the following steps.

(I) Use Lyapunov function method to show (x∗
1, y

∗
1 , 0) is an asymptotically stable in probability equilibrium

of the system (4).

(II) Show the process Uu1

1 (t) is recurrent relative to some compact set K̃ in D◦
1 . Then use Claim 3.4

and the support theorem to show that when the solution Uu1

1 (t) starts in K̃ it will get into a small

neighborhood of (x∗
1, y

∗
1 , 0) after a finite time with positive probability.

(III) Use the strong Markov property of Uu1

1 (t) and the support theorem to prove that once the solution

Uu1

1 (t) enters a small neighborhood of (x∗
1, y

∗
1 , 0) it will get trapped there forever. So we obtain the

desired result.

First, we show for any ǫ > 0 there is a δ > 0 such that

Pu1

{
lim

t→∞
(x(t), y(t), z1(t)) = (x∗

1, y
∗
1 , 0)

}
≥ 1 − ǫ (21)

for any u1 = (x, y, z1) ∈ (x∗
1 − δ, x∗

1 + δ) × (y∗
1 − δ, y∗

1 + δ) × [0, δ).

Since λ1 = e1y
∗
1 − d1 − 1

2τ
2
1 < 0, there are 0 < δ < min

{
x∗

1, y
∗
1 ,

1√
2
(x∗

1 + y∗
1)
}

and p ∈ (0, 1) so that

e1(y∗
1 +δ)−d1− 1

2τ
2
1 (1−p) < 0. Consider the Lyapunov function V5(x, y, z1) = zp

1 , which is twice differentiable

in (x, y, z1) ∈ D◦
1 . Then

LV5 = p

[
e1(y − y∗

1) + e1y
∗
1 − d1 −

1

2
τ2

1 (1 − p)

]
zp

1 .

If z1 = 0 then z1(t) ≡ 0 a.s. It is straightforward to show that (x(t), y(t)) → (x∗
1, y

∗
1) as t → ∞ a.s.

for any (x(0), y(0)) ∈ ∆◦. Thus (21) is true. Hence we only need to show (21) for (x, y, z1) ∈ Wδ where

Wδ = (x∗
1 − δ, x∗

1 + δ) × (y∗
1 − δ, y∗

1 + δ) × (0, δ). Since y − y∗
1 ≤ |y − y∗

1 | < δ, LV5 ≤ θ4V5 for any

u1 = (x, y, z1) ∈ Wδ with θ4 := e1(y∗
1 + δ) −d1 − 1

2τ
2
1 (1 −p) < 0. By Theorem 2.3 p112 in [17], for any ǫ > 0,

there is a δ > 0 such that for any u1 ∈ Wδ we have Pu1
{limt→∞ z1(t) = 0} ≥ 1 − ǫ. From the ODE analysis

in [23], we can easily show that if lim
t→∞

z1(t, ω) = 0 for any ω ∈ Ω then lim
t→∞

(x(t, ω), y(t, ω)) = (x∗
1, y

∗
1).

Therefore (21) holds for any u1 ∈ Wδ. So part (I) is proved.
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For part (II), use Theorem 3.9 p89 in [15], we construct a nonnegative twice differentiable function

V6 = V6(x, y, z1) and a compact set K̃ in D◦
1 such that LV6 < 0 for all (x, y, z1) ∈ K̃c. Indeed, con-

sider V6(x, y, z1) = x+ y+ l1

e1
z1, then LV6 = rx(1 − x− y) − y− l1d1

e1
z1 ≤ r− l1d1

e1
z1. Let R = re1

l1d1
+ 1, then

set K̃ := {(x, y, z1) ∈ D◦
1 : x + y + z1 ≤ R}. So for (x, y, z1) ∈ K̃c we have x + y + z1 > R which follows

that z1 > R− x− y ≥ R− 1 = re1

l1d1
. Thus LV6 < 0.

Next, by Claim 3.4, for any u1 = (x, y, z1) ∈ K̃ we can choose a control φ(·) and a time Tu1
> 0 such that

(xφ(Tu1
, u1), yφ(Tu1

, u1), z1φ(Tu1
, u1)) ∈ Wδ.

In light of the support theorem, for any u1 ∈ K̃, there exists a Tu1
> 0 so that

Pu1
{(x(Tu1

), y(Tu1
), z1(Tu1

)) ∈ Wδ} = 2ρu1 > 0.

Using the Markov-Feller property of (x(t), y(t), z1(t)), there exists a neighborhood Vu1
∋ u1 so that for all

u′
1 ∈ Vu1

Pu′

1
{(x(Tu1

), y(Tu1
), z1(Tu1

)) ∈ Wδ} > ρu1 .

Since K̃ is compact, there is a finite number of such neighborhoods Vui
1

(i = 1, ..., n) so that K̃ ⊂
n⋃

i=1

Vui
1
.

Put T ∗ = max
i=1,...,n

Tui
1

and ρ∗ = min
i=1,...,n

ρui
1 . For u1 ∈ D◦

1 , set

τu1

δ = inf {t > 0 : Uu1

1 (t) ∈ Wδ} .

Then, for any u1 ∈ K̃, since the event τu1

δ < T ∗ is followed from the fact that there exists a ui
1 such that

Uu1

1 (Tui
1
) ∈ Wδ,

P{τu1

δ < T ∗} ≥ P{Uu1

1 (Tui
1
) ∈ Wδ} ≥ ρ∗ > 0. (22)

Since Uu1

1 (t) is recurrent relative to K̃, we define a sequence of finite stopping times

ζ0 = 0, ζ1 = inf
{
t > T ∗ : Uu1

1 (t) ∈ K̃
}
, · · · ,

ζk = inf
{
t > ζk−1 + T ∗ : Uu1

1 (t) ∈ K̃
}
,

ζk+1 = inf
{
t > ζk + T ∗ : Uu1

1 (t) ∈ K̃
}
, · · ·

Consider the event

Ak = {Uu1

1 (t) /∈ Wδ ∀ t ∈ [ζk, ζk + T ∗]} , k ∈ N.

It follows from (22) that Pu1
(Ac

k) = P{τ ū1

δ < T ∗} ≥ ρ∗ for all k ∈ N where ū1 = Uu1

1 (ζk) ∈ K̃. So

Pu1
(Ak) ≤ 1 − ρ∗ for all k ∈ N. Using the strong Markov property of Uu1

1 (t), we get

Pu1
(A1 ∩A2) = Pu1

(A1)PU
u1
1

(ζ2)(A2) ≤ (1 − ρ∗)2

and, by induction, we obtain

Pu1

(
n⋂

k=1

Ak

)
≤ (1 − ρ∗)n → 0 as n → ∞.
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As a result, Pu1

( ∞⋂
k=1

Ak

)
= 0. In other words,

Pu1
(τu1

δ < ∞) = 1. (23)

Again, by the strong Markov property of Uu1

1 (t), (21) and (23) imply that, for any u1 ∈ D◦
1 ,

P

{
lim

t→∞
Uu1

1 (t) = (x∗
1, y

∗
1 , 0)

}
≥ 1 − ǫ.

Letting ǫ → 0 gives

P

{
lim

t→∞
Uu1

1 (t) = (x∗
1, y

∗
1 , 0)

}
= 1 for all u1 ∈ D◦

1 .

Moreover, by the last equation of (4),

log z1(t)

t
=

log z1

t
+

1

t

t∫

0

(
e1y(s) − d1 −

1

2
τ2

1

)
ds+ τ1

W1(t)

t
.

Thus

lim
t→∞

log z1(t)

t
= λ1 < 0 a.s.

This completes the proof. 2

3.2. Proof of Theorem 2.2

Proof of Theorem 2.2 is similar to proving Theorem 2.1. Because there are several modifications needed,

we will state without proofs all lemmas and claims that are necessary for the proofs of Theorem 3.3 and

Theorem 3.4. Finally, we only sketch the main points of these two theorems’ proofs and the details are left

to reader. Notice that we always suppose that a > 1.

First, we rewrite the system (5) in the Stratonovich form

dx = [rx(1 − x− y) − axy − l2xz2]dt,

dy = (axy − y)dt,

dz2 =

(
e2y − d2 −

τ2
2

2

)
z2dt+ τ2z2 ◦ dW2.

(24)

Let

Ā =



Ā1(u2)
Ā2(u2)
Ā3(u2)


 =



rx(1 − x− y) − axy − l2xz2

axy − y
e2yz2 − d2z2 − 1

2τ
2
2 z2


 and B̄ =



B̄1(u2)
B̄2(u2)
B̄3(u2)


 =

(
0
0
τ2z2

)
.

By computation, we can check that B̄, [Ā, B̄], and [Ā, [Ā, B̄]] span R
3 for every point u2 ∈ D◦

2 . Hence we

get the following lemma.

Lemma 3.3. The solution Uu2

2 (t) to the system (5) in D◦
2 satisfies Hörmander’s condition. Therefore its

transition probability P (t, u20, ·) has density p(t, u20, u2) which is smooth in (u20, u2) ∈ D◦
2 ×D◦

2.
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Next we consider the control system corresponding to the system (24)

ẋφ = rxφ(1 − xφ − yφ) − axφyφ − l2xφz2φ,

ẏφ = axφyφ − yφ,

ż2φ =

(
e2yφ − d2 −

τ2
2

2
+ τ2φ

)
z2φ,

(25)

where φ = φ(t) is from the set of piecewise continuous real-valued functions defined on R+. Let

(xφ(t, u2), yφ(t, u2), z2φ(t, u2)) be the solution to the system (25) with control φ and initial value u2 =

(x, y, z2) ∈ D◦
2 . The dynamics of the system (25) is listed in the following claims in which the first two

claims help determine exactly the support of the unique invariant probability measure µ̃4 of the system (5)

in D◦
2 while the last two claims are used in the proofs of Theorem 3.3 and Theorem 3.4.

Claim 3.5. Let (x0, y0, z20) ∈ D◦
2 and z21 ∈ (0,∞). Then, for any ǫ > 0, there are a control φ(·) and a time

T > 0 such that

|xφ(T, x0, y0, z20) − x0| < ǫ,

|yφ(T, x0, y0, z20) − y0| < ǫ, and

z2φ(T, x0, y0, z20) = z21.

Claim 3.6. Let (x0, y0) ∈ ∆◦ and z20 ∈ (0,∞).

(i) If z20 ∈ (0, z∗∗), where z∗∗ := r(a−1)
al2

, then for any ǫ > 0 there exist a control φ(·) and a time T > 0 so

that

|xφ(T, x0, y0, z20) − x∗∗| < ǫ,

|yφ(T, x0, y0, z20) − y∗∗| < ǫ, and

z2φ(t, x0, y0, z20) = z20 ∀ t ∈ [0, T ]

in which x∗∗ := 1
a

and y∗∗ := y∗
1 − l2z20

a+r
.

(ii) If z20 ∈ [z∗∗, r
l2

) then for each ǫ > 0 there are a control φ(·) and a time T > 0 such that

|xφ(T, x0, y0, z20) − x̂| < ǫ,

yφ(T, x0, y0, z20) < ǫ, and

z2φ(t, x0, y0, z20) = z20 ∀ t ∈ [0, T ]

where x̂ := r−l2z20

r
.

(iii) If z20 ≥ r
l2

then for each ǫ > 0 there are a control φ(·) and a time T > 0 such that

xφ(T, x0, y0, z20) < ǫ,

yφ(T, x0, y0, z20) < ǫ, and

z2φ(t, x0, y0, z20) = z20 ∀ t ∈ [0, T ].

Claim 3.7. For any u2 = (x, y, z2) ∈ D◦
2, there is a point (x∗

3, y
∗
3 , z

∗
2) ∈ D◦

2 with the following properties: if

0 < δ < min
{
x∗

3, y
∗
3 ,

1√
2
(x∗

3 + y∗
3), z∗

2

}
and let
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V ′
δ := (x∗

3 − δ, x∗
3 + δ) × (y∗

3 − δ, y∗
3 + δ) × (z∗

2 − δ, z∗
2 + δ), then

(i) there are a control φ(·) and a time T > 0 so that (xφ(T, u2), yφ(T, u2), z2φ(T, u2)) ∈ V ′
δ ,

(ii) there exist a neighborhood S′
δ ⊂ V ′

δ and a control φ(·) such that S′
δ is invariant under the system (25),

that is, for all t ≥ 0 and u2 ∈ S′
δ, (xφ(t, u2), yφ(t, u2), z2φ(t, u2)) ∈ S′

δ.

Claim 3.8. For any u2 = (x, y, z2) ∈ D◦
2 and for any 0 < δ < min

{
x∗

1, y
∗
1 ,

1√
2
(x∗

1 + y∗
1)
}

, there are a control

φ(·) and a time T > 0 such that

(xφ(T, u2), yφ(T, u2), z2φ(T, u2)) ∈ Wδ := (x∗
1 − δ, x∗

1 + δ) × (y∗
1 − δ, y∗

1 + δ) × (0, δ).

To prove Theorem (3.3), we also need the following lemma.

Lemma 3.4. The solution process Uu2

2 (t) of the system (5) is a T -process. Moreover, every compact set

K ⊂ D◦
2 is petite for the Markov chain (x(n), y(n), z2(n)), n ∈ N.

The proof of Lemma 3.4 is completely similar to that of Lemma 3.2. The first conclusion follows from

Lemma 3.3 while we can use Claim 3.7 to derive the second one. Now we map out key points in the proofs

of Theorem 3.3 and Theorem 3.4.

Proof of Theorem 3.3. First, since λ2 = e2y
∗
1 − d2 − 1

2τ
2
2 > 0, there is a q ∈ (0, 1) such that e2y

∗
1 − d2 −

1
2τ

2
2 (q+ 1) > 0. Next, we show that there exists a δ∗∗ > 0 such that lim

t→∞
x(t) ≥ δ∗∗ a.s. and lim

t→∞
z2(t) ≥ δ∗∗

a.s. Then consider the system (5) in the invariant domain M2 = {(x, y, z2) ∈ D◦
2 : x ≥ δ∗∗ and z2 ≥ δ∗∗}

and consider the function V7 on M2 defined by

V7(x, y, z2) =
e2

l2δ∗∗x+ z−q
2 + z2 + 1.

It is easy to show that V is a positive norm-like function on M2 that satisfies LV7 ≤ θ5V7 + θ6 for some

θ5 < 0 and θ6 < ∞. By Lemma 3.4, applying Theorem 4 in Appendix A.3 together with Claims 3.5, 3.6,

and 3.7 gives part (i) and part (ii) of Theorem 3.3. Part (iii) follows from Lemma 3.4 and Theorem 3 in

Appendix A.3. 2

Proof of Theorem 3.4. The proof can be carried out in 3 main steps.

(I) Show (x∗
1, y

∗
1 , 0) is an asymptotically stable in probability equilibrium for the system (5) using Lya-

punov function method.

(II) Prove Uu2

2 (t) is recurrent relative to some compact set K in D◦
2 by considering the function V8 on D◦

2

given by V8(x, y, z2) = 1
R
x+ y + 1

e2
log(1 + z2) where R is chosen so that d2

e2
− r

R
> 0. Then it is easy

to show that LV8 < 0 for any (x, y, z2) ∈ K
c

in which K =
{

(x, y, z2) ∈ D◦
2 : y +

(
d2

e2
− r

R

)
z2 ≤ r

R

}
.

(III) Use the strong Markov property of Uu2

2 (t), the support theorem, and Claim 3.8 to derive the desired

result. 2

3.3. Proof of Theorem 2.3

As in subsection 3.2, we present all lemmas and claims without their proofs that are necessary for proving

Theorem 3.5 and Theorem 3.6. Since the proof of Theorem 3.6 is similar as that of Theorem 3.2, we skip

details and only sketch main points in the proof of Theorem 3.5. Note that we always assume a > 1.
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First, we rewrite the system (3) in the Stratonovich form

dx = [rx(1 − x− y) − axy − l2xz2]dt,

dy = (axy − l1yz1 − y)dt,

dz1 =

(
e1y − d1 −

τ2
1

2

)
z1dt+ τ1z1 ◦ dW1,

dz2 =

(
e2y − d2 −

τ2
2

2

)
z2dt+ τ2z2 ◦ dW2.

(26)

Let

f̄ =




rx(1 − x− y) − axy − l2xz2

axy − l1yz1 − y
e1yz1 − d1z1 − 1

2τ
2
1 z1

e2yz2 − d2z2 − 1
2τ

2
2 z2


 , g1 =




0
0

τ1u1

0


 and g2 =




0
0
0

τ2u2


 .

By computation, we can check that g1, g2, [f̄ , g1], and [f̄ , g2] span R
4 for every point u = (x, y, z1, z2) ∈ D◦.

Hence we get the following lemma.

Lemma 3.5. The solution Uu(t) to the system (3) in D◦ satisfies Hörmander’s condition. Therefore its

transition probability P (t, u0, ·) has density p(t, u0, u) which is smooth in (u0, u) ∈ D◦ ×D◦.

Next we consider the control system corresponding to the system (26)

ẋφ = rxφ(1 − xφ − yφ) − axφyφ − l2xφz2φ,

ẏφ = axφyφ − l1yφz1φ − yφ,

ż1φ =

(
e1yφ − d1 −

τ2
1

2
+ τ1φ1

)
z1φ,

ż2φ =

(
e2yφ − d2 −

τ2
2

2
+ τ2φ2

)
z2φ,

(27)

where φ = φ(t) = (φ1(t), φ2(t)) is from the set of piecewise continuous functions defined on R+ taking values

on R
2. Let (xφ(t, u), yφ(t, u), z1φ(t, u), z2φ(t, u)) be the solution to the system (27) with control φ = (φ1, φ2)

and initial value u = (x, y, z1, z2) ∈ D◦.

Now we assume that
d1

e1
+

τ2
1

2e1
=
d2

e2
+

τ2
2

2e2
. From the last two equations of (27), we get

ż2φ

z2φ

=
e2

e1

ż1φ

z1φ

+ e2

(
d1

e1
+

τ2
1

2e1
−
d2

e2
−

τ2
2

2e2

)
+ τ2φ2 −

e2

e1
τ1φ1.

Set ρ =
e2

e1
, then we obtain

ż2φ

z2φ

= ρ
ż1φ

z1φ

+ τ2φ2 − ρτ1φ1. Integrating both sides from 0 to t gives

z2φ(t) = kzρ
1φ(t) exp





t∫

0

[τ2φ2(s) − ρτ1φ1(s)]ds



 ,

where k := z2φ(0)/(zρ
1φ(0)). Given φ1, we choose the control φ2 such that φ2 ≡ ρ

τ1

τ2
φ1. Then z2φ(t) = kzρ

1φ(t)

for all t ≥ 0. Thus, with the choice of control φ2 above, for each k ∈ (0,∞) fixed the system (27) is reduced

to a 3-dim control system with one control φ1
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ẋφ = rxφ(1 − xφ − yφ) − axφyφ − kl2xφz
ρ
1φ,

ẏφ = axφyφ − l1yφz1φ − yφ,

ż1φ =

(
e1yφ − d1 −

τ2
1

2
+ τ1φ1

)
z1φ.

(28)

We denote by (xφ(t, u), yφ(t, u), z1φ(t, u)) the solution of the system (28) with control φ1 and initial value

u = (x, y, z1) ∈ D◦
1 . The dynamics of the system (28) is presented in the following claims in which the first

two claims determine exactly the supports of the collection of invariant probability measures {π(k)}k∈(0,∞)

of the system (3) in D◦ while the last two claims are used in the proofs of Theorem 3.5 and Theorem 3.6.

Claim 3.9. Let (x0, y0, z10) ∈ D◦
1 and z11 ∈ (0,∞). Then, for any ǫ > 0, there are a control φ1(·) and a time

T > 0 such that

|xφ(T, x0, y0, z10) − x0| < ǫ,

|yφ(T, x0, y0, z10) − y0| < ǫ,

z1φ(T, x0, y0, z10) = z11.

Claim 3.10. Let (x0, y0) ∈ ∆◦ and z10 ∈ (0,∞). Let

Θ :=

{
z10 ∈ (0,∞) : l1z10 +

kal2
r
zρ

10 < a− 1

}
.

(i) If z10 ∈ Θ then for any ǫ > 0 there exist a control φ1(·) and a time T > 0 so that

|xφ(T, x0, y0, z10) −X∗(k, z10)| < ǫ,

|yφ(T, x0, y0, z10) − Y ∗(k, z10)| < ǫ,

z1φ(t, x0, y0, z10) = z10 ∀ t ∈ [0, T ],

where X∗(k, z10) :=
1 + l1z10

a
and Y ∗(k, z10) := y∗

1 −
rl1z10

a(a+ r)
−
kl2z

ρ
10

a+ r
.

(ii) Assume that z10 /∈ Θ. Then

(iia) if
(
z10 ≥ z∗, kzρ

10 <
r
l2

)
∨
(
z10 < z∗, z∗∗ ≤ kzρ

10 <
r
l2

)
then for each ǫ > 0 there are a control

φ1(·) and a time T > 0 such that

|xφ(T, x0, y0, z10) − x̄| < ǫ,

yφ(T, x0, y0, z10) < ǫ,

z1φ(t, x0, y0, z10) = z10 ∀ t ∈ [0, T ],

where x̄ = 1 − kl2z
ρ
1

r
.

(iib) if kzρ
10 ≥ r

l2
then for each ǫ > 0 there are a control φ1(·) and a time T > 0 such that

xφ(T, x0, y0, z10) < ǫ,

yφ(T, x0, y0, z10) < ǫ,

z1φ(t, x0, y0, z10) = z10 ∀ t ∈ [0, T ].
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Claim 3.11. For any u = (x, y, z1) ∈ D◦
1, there is a point (x∗

4, y
∗
4 , z

∗
3) ∈ D◦

1 with the following properties: if

0 < δ < min
{
x∗

4, y
∗
4 ,

1√
2
(x∗

4 + y∗
4), z∗

3

}
and let

V ′′
δ := (x∗

4 − δ, x∗
4 + δ) × (y∗

4 − δ, y∗
4 + δ) × (z∗

3 − δ, z∗
3 + δ), then

(i) there are a control φ1(·) and a time T > 0 so that (xφ(T, u), yφ(T, u), z1φ(T, u)) ∈ V ′′
δ ,

(ii) there exist a neighborhood S′′
δ ⊂ V ′′

δ and a control φ1(·) such that S′′
δ is invariant under the system (28),

that is, for all t ≥ 0 and u ∈ S′′
δ , (xφ(t, u), yφ(t, u), z1φ(t, u)) ∈ S′′

δ .

Claim 3.12. For any u = (x, y, z1) ∈ D◦
1 and for any 0 < δ < min

{
x∗

1, y
∗
1 ,

1√
2
(x∗

1 + y∗
1)
}

, there are a control

φ1(·) and a time T > 0 such that

(xφ(T, u), yφ(T, u), z1φ(T, u)) ∈ Wδ := (x∗
1 − δ, x∗

1 + δ) × (y∗
1 − δ, y∗

1 + δ) × (0, δ).

Now we sketch the proof of Theorem 3.5 with key points.

Proof of Theorem 3.5. Since
d1

e1
+

τ2
1

2e1
=

d2

e2
+

τ2
2

2e2
, the last two equations of (3) imply (8). For each

k ∈ (0,∞) fixed, due to (8) the long-term behavior of (3) is reduced to that of the following 3-dim SDE

system

dx = [rx(1 − x− y) − axy − kl2xz
ρ
1e

τ2W2−ρτ1W1 ]dt,

dy = (axy − l1yz1 − y)dt,

dz1 = (e1yz1 − d1z1)dt+ τ1z1dW1,

(29)

with the a.s. invariant domainD1. Let Uu3

3 (t) = (x(t), y(t), z1(t)) be the solution to (29) with initial condition

u3 = (x, y, z1) ∈ D◦
1 . With the same reasoning as in the proof of Lemma 3.2, Uu3

3 (t) is a T -process and

every compact set in D◦
1 is petite for the Markov chain Uu3

3 (n) (n ∈ N). Next, we can show that Uu3

3 (t) is

recurrent relative to some compact set in D◦
1 by looking at the positive function V9(x, y, z1) = x+ y+ l1

e1
z1.

Lastly, since λ = y∗
1 − h > 0, e1y

∗
1 − d1 − 1

2τ
2
1 > 0. So, with the same reasoning as in Theorem 3.1, we can

derive all the conclusions of Theorem 3.5. 2

4. Numerical study and discussion

4.1. Numerical demonstrations of stochastic bifurcations without parameters

From our analysis, our stochastic model has a collection of invariant probability measures indexed by

a real number between 0 and ∞ for which each invariant probability measure is supported by an open

line segment in 4-dimensional space. It suggests that our stochastic model should undergo some kind of

stochastic bifurcation that is similar to the Poincare-Andronov-Hopf bifurcation without parameters in our

deterministic setting [23]. In the book [1], there are two types of stochastic bifurcations that are studied so

far. The first type is phenomenological bifurcation (or P-bifurcation) which is concerned with the change in

the shape of density functions of a family of invariant probability measures in a stochastic system as one of its

parameter changes. The second one is dynamical bifurcation (or D-bifurcation) which is characterized by sign

changes of Lyapunov exponents of a family of invariant probability measures in a stochastic system as one of

its parameters changes. To study a P-bifurcation, we compute the density functions of invariant probability

measures of the stochastic system by solving the corresponding Fokker-Planck equations, and observe their

shape change when one of the system parameters changes. If the density functions’ shape switches from
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one peak into crater, then the stochastic system admits a stochastic Hopf bifurcation in phenomenological

sense [1,11]. For a D-bifurcation, we can verify it by computing the system’s Lyapunov exponents. If there

is a stochastic Hopf bifurcation in dynamical sense, then it is necessary that one Lyapunov exponent has to

pass through zero [14]. Furthermore, if one of the invariant probability measures of the stochastic system

loses its stability and becomes unstable, and the global attractors of the stochastic system change from a

single-point set into a random topological disk, then the stochastic Hopf bifurcation in dynamical sense is

admitted [11].

Due to the high dimensionality of our stochastic system, solving its corresponding Fokker-Planck system

explicitly is almost impossible, and the collection of invariant probability measures in Theorem 2.3 can not

be found explicitly. Thus, in this subsection, we aim to demonstrate numerically stochastic Hopf bifurcations

without parameters for our stochastic system in both phenomenological and dynamical point of views. To do

so, we consider the non-dimensionalized stochastic system (3) and assume that
d1

e1
+

τ2
1

2e1
=
d2

e2
+

τ2
2

2e2
=: h.

Notice that λ = 0 is equivalent to m(a) := a2 + r(1 − 1
h

)a + r
h

= 0. If h < 1 and r > 4h
(1−h)2 then the

discriminant of m(a) is positive and hence m(a) = 0 has 2 positive roots

a1,2 :=
1

2
r

(
1

h
− 1

)
∓

1

2

√

r2

(
1

h
− 1

)2

−
4r

h

with 1 < a1 < a2. Hence λ = 0 is equivalent to either a = a1 or a = a2. From now on, we fix all parameters

of the stochastic system (3) such that h < 1, r > 4h
(1−h)2 , and a ∈ (a1, a2). This makes sure that λ > 0

and, by Theorem 3.5, the system (3) has a collection of exponentially ergodic invariant probability measures

{π(k)}k∈(0,∞) in which each π(k) is supported by

S(k) :=

{(
l1z1 + 1

a
,
r(a− 1)

a(a+ r)
−

rl1z1

a(a+ r)
−
l2kz

ρ
1

a+ r
, z1, kz

ρ
1

)
: z1 ∈

(
0,
a− 1

l1

)}
.

We utilize some data from our previous research [27] to simulate our stochastic system. After non-

dimensionalization, the parameters of the stochastic system (3) are r = 0.36, a = 5, l1 = l2 = 0.48,

e1 = e2 = 10, d1 = d2 = 0.4, and τ1 = τ2 = 0.01. By computation, we obtain h = 0.04 < 1,

r − 4h
(1−h)2 = 0.1864 > 0, a1 = 1.2116, a2 = 7.4273, and λ = 0.0137 > 0. Hence all the conditions for

the existence of the collection of invariant probability measures π(k) are guaranteed. Since we conduct

numerical simulations based on the non-dimensionalized system (3), the units of two types of tumor cells

and two types of immune cells are not absolute number densities but relative numbers. So the quantities

such as x and y are the percentage of the number densities of uninfected tumor cells and infected tumor

cells, respectively. While the quantities such as z1 and z2 are the portion of the number densities of innate

immune cells and adaptive immune cells over the tumor carrying capacity, respectively, and so we indicate

them as relative innate and adaptive immune cells. For the time, it can be considered as relative time since

T = δt. In all the figures below, the solution paths of the stochastic system (3) are simulated with initial

values (0.5, 0.5, 0.01k, 0.01) for different values of k in [0.01, 10].

To demonstrate a stochastic Hopf P-bifurcation without parameters, we approximate stationary distribu-

tions of exponentially ergodic invariant probability measures {π(k)} for the system (3) by computing single

trajectories for a long time with different values of k. Note that the initial value of each single trajectory

depends on k and, for each k, the transition probability of each single trajectory converges weakly to an

ergodic invariant probability measure π(k). Then, by strong law of large numbers, for A ∈ B(D) we get

P



 lim

t→∞

1

t

t∫

0

1A(Uu(s))ds = π(k)(A)



 = 1.
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Fig. 1. The xy-component solution path is simulated within a long time interval [0, 2000] when it starts at (0.5, 0.5, 0.01k, 0.01)
with parameters a = 5, r = 0.36, l1 = l2 = 0.48, e1 = e2 = 10, d1 = d2 = 0.4, and τ1 = τ2 = 0.01.

This means that, as time t is large enough, the relative occupation time of one single trajectory will ap-

proximate the density of the stationary distribution of π(k). Fig. 1 shows the xy-component projections of

the solution paths within a long time interval [0, 2000] with 4 different values of k. Fig. 2 shows the corre-

sponding histograms of these xy-component projections, which typically represent the densities of ergodic

invariant measures π(k) with 4 different values of k. When k = 0.01, the shape of the invariant probability

measure π(k) is one-peak mountain which means that the solution spends a lot of time around a small

neighborhood of this peak. When we increase k to 2.5, the shape of π(k) looks like a crater. It explains

that the solutions wander around some big region without ending up at one point. If we keep increasing

k to 5, it is difficult to figure out that the shape of π(k) is one peak or crater-like mountain in Fig. 2(c)

but, looking at Fig. 1(c), the behavior of the solution path is similar to that as k = 2.5. The solution path

wanders around a small region without approaching a single point. When k = 9, we again obtain the one

peak mountain shape of π(k). This demonstrates that the stochastic system (3) undergoes the stochastic

Hopf P-bifurcation without parameters.

Next, to demonstrate a stochastic D-bifurcation without parameters, we numerically compute the Lya-

punov exponents of all solution components of the system (3) when k changes between 0.01 and 10. Notice

that, for each k ∈ [0.01, 10], when the solution path of the system (3) gets close to the support S(k), it will

concentrate around this support for a long time. Hence the Lyapunov exponents with respect to π(k) can

be computed as



ARTICLE IN PRESS

Please cite this article in press as: T.A. Phan, J.P. Tian, Hopf bifurcation without parameters in deterministic and stochastic
modeling of cancer virotherapy, part II, J. Math. Anal. Appl. (2022), https://doi.org/10.1016/j.jmaa.2022.126444

JID:YJMAA AID:126444 /FLA [m3L; v1.317] P.29 (1-37)

T.A. Phan, J.P. Tian / J. Math. Anal. Appl. ••• (••••) •••••• 29

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Fig. 2. The solution path is simulated within a long time interval [0, 2000] when it starts at (0.5, 0.5, 0.01k, 0.01) with parameters
a = 5, r = 0.36, l1 = l2 = 0.48, e1 = e2 = 10, d1 = d2 = 0.4, and τ1 = τ2 = 0.01. Four above figures are the corresponding
histograms as a projection onto the xy components of the solution.

λ1(π(k)) ≈
ln x(t)

t
, λ2(π(k)) ≈

ln y(t)

t
, λ3(π(k)) ≈

ln z1(t)

t
, and λ4(π(k)) ≈

ln z2(t)

t
(30)

for t large enough with the initial value (0.5, 0.5, 0.01k, 0.01).

Fig. 3 shows the behavior of Lyapunov exponents λi(π(k)) (i = 1, 2, 3, 4) of the four components of the

solution to the system (3) when k runs through between 0.01 and 10. We see that three Lyapunov exponents

λ1(π(k)), λ2(π(k)), and λ4(π(k)) are always below zero. However, the exponent λ3(π(k)), the blue curve,

crosses zero several times at various values of k between 2 and 4. Then, it goes below zero until it hits zero

again at some value of k between 6 and 8. Afterwards it lies above zero. This means that the invariant

probability measure π(k) loses its stability and becomes unstable when k increases from 0.01 to 10. It shows

that a stochastic Hopf D-bifurcation without parameters occurs in our stochastic setting.

To simulate numerically the non-dimensionalized system (2) with given initial values as in Fig. 1 and

Fig. 2, we utilize the algorithm of stochastic Runge-Kutta method of strong order 1 proposed by Rößler
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Fig. 3. The Lyapunov exponents λi (i = 1, 2, 3, 4) of the corresponding component x, y, z1, and z2 of the solution are numerically
computed as k changes from 0.01 to 10. The parameters are a = 5, r = 0.36, l1 = l2 = 0.48, e1 = e2 = 10, d1 = d2 = 0.4, and
τ1 = τ2 = 0.01. The initial values are (0.5, 0.5, 0.01k, 0.01). (For interpretation of the colors in the figure(s), the reader is referred
to the web version of this article.)

(2010) [24]. Recall that an algorithm for simulating a stochastic differential equation (SDE) system can

be derived from stochastic Taylor expansion of that SDE system by applying Ito’s formula to its drift

term and diffusion term. The expansion includes four stochastic double integrals. If we cut off these four

double integrals in that expansion then we obtain Euler-Maruyama (EM) method by discretizing the time

interval and formulating the SDE system as a recursive algorithm. This method has strong convergence order

1/2 and weak convergence order 1. When we keep applying the Ito’s formula to the integrand of the last

stochastic double integral, we obtain an expansion which includes one term with iterated Ito’s integral, three

stochastic double integrals, and two stochastic triple integrals. If we discard these three double integrals and

two triple integrals then we get the so-called Milstein method for the SDE system. The Milstein method

has strong convergence order 1 and weak convergence order 1 (see Chapter 10 in [16]). However, to utilize

this method, we have to compute all closed-form partial derivatives as well as iterated and cross-term Ito’s

integrals arising from stochastic Taylor expansion. This makes the computation extremely expensive. Rößler

(2010) developed a general class of stochastic Runge-Kutta schemes of strong order 1 in which computing

these partial derivatives and the iterated Ito’s integrals are avoided in the scheme formulation and these

Ito’s integrals only appear in the supporting values. We used a particular case from the general class to

solve numerically our stochastic model (2). Furthermore, to make this algorithm more robust, we utilized

EM method to simultaneously approximate all the four iterated Ito’s integrals in the formulation of the

algorithm with sufficient accuracy. Also, we developed an algorithm of simulating the Lyapunov exponent

for each solution component based on (30) when the value of k changes to produce Fig. 3. The details of

these two algorithms and their Matlab codes can be found in the Supplemental Materials.
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4.2. Discussion

In this part II of our research, we analyze our stochastic model. Stochasticities of our system come from

immune cells and their microenvironments as the way we construct the model. For the parameters which

are not affected by these stochasticities, for example, the virus infectivity constant a, they still play similar

roles in overall dynamics of the stochastic system as in the deterministic counterpart. For 0 < a < 1, the

ergodic invariant probability measures µ1, µ̄1, and µ̃1 are global attractors, which means the treatments fail

completely. For a > 1, these stochasticities or uncertainties come to play roles. Instead the relative immune

clearance rates di

ei
in the deterministic model, the stochastic relative immune clearance rates hi = di

ei
+

τ2

i

2ei

classify overall dynamics into three cases, the system with only innate immune response, the system with

only adaptive immune response, and the system with both innate and immune responses. Because hi is a sum

of two positive terms, one is the relative immune clearance rate and one contains uncertainty variances, this

provides some ranges for estimated parameter values of immune clearance rate ci and immune stimulation

rates si. In this sense, the classification of overall dynamics of our deterministic model is stable or robust

with respect to microenvironmental noises and uncertainties from immune responses.

In each case or stochastic sub-model, there is a quantity, called the infection value θ, which determines

long-term outcomes of the model. This quantity is actually the infected tumor cell component of the immune-

free equilibrium state in the deterministic model. For example, when the stochastic relative immune clearance

rates dominate θ in three cases with only innate immune response, with only adaptive immune response, and

with both innate and adaptive immune responses, the immune-free ergodic invariant probability measure

in each case is globally attractive in its domain; when the stochastic relative immune clearance rates are

below θ in each of these three cases, each of three sub-models shows persistence in the sense that all cell

populations never die out. We see that this quantity of the infection value θ is universal in the sense that

it serves as a critical value to classify asymptotical behaviors of two stochastic sub-models and full model.

Therefore, this quantity should indicate some intrinsic property of oncolytic viral therapy. The medical

implications may be that, we should make the infection value θ as small as possible, so we can reduce the

total tumor burden although we cannot completely eradicate the tumor. A simple analysis of the infection

value shows that it is related to viral burst size [26]. Viral burst sizes can be genetically changed [5]. Hence,

changing the infection value is medically feasible. This is one aspect that the stochastic model can provide

more insights and medical implications.

Our stochastic model also displays some new mathematical features. One is what we called stochastic

Hopf bifurcation without parameters. As we mentioned in part I, there is no common physical mechanism

for Hopf bifurcation without parameters in deterministic systems. In cancer viral therapy, we might regard

immune cells as predators where innate immune cells prey on infected tumor cells and adaptive immune cells

prey on tumor cells. We may also consider infected tumor cells to be predators who prey on tumor cells. It

is well known that there exist periodic solutions or interactions in predator-prey systems when the system

parameters satisfy some conditions. We also know that immune clearance rates are not fixed constants and

they change according to on-site immune cell density and cellular signals [8,21]. This gives some possibilities

for parameter changes in viral therapy. From our stochastic model, it seems to be easier to explain why

viral therapy has many outcomes. Both innate and adaptive immune cells may have different clearance rates

and stimulation rates and, furthermore, they are subject to influences from microenvironmental noises and

uncertainties. Thus, stochastic periodic solutions appear when these rates change. This may provide some

explanations for occurrences of Hopf bifurcations without parameters in both deterministic and stochastic

models.

It is obvious that there are many microenvironmental noises and uncertainties in cancer virotherapy such

as uncertainties related to tumor cells, uncertainties related to interactions between tumor cells and viruses,

etc. These require further studies. We will consider them in the future.
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Appendix A

We review some technical concepts and results in the theory of Markov processes, extracted from [4,10,

18–20], that are used in Section 3.

A.1. Hypoellipticity and Hörmander’s condition

Let X(t) = (X1(t), ..., Xn(t))T be the solution to the Stratonovich SDE system

dX = f(X)dt+ g(X) ◦ dW (31)

where f(x) = (f1(x), ..., fn(x))T and g(x) = (gij(x))n×m are C∞ and such that (31) has global solutions

(i.e. solutions of (31) exist for all time t ≥ 0). Notice that W = (W1, ...,Wm)T is a standard m-dimensional

Brownian Motion. We equip (31) with a complete filtered probability space (Ω,F , {Ft}t≥0,P ). The transition

probability function of the solution X(t) to the system (31)

P (t, x, ·) = P{X(t) ∈ · |X(0) = x} =: Px{X(t) ∈ · }

induces a family of operators Tt given by

Ttf(x) =

∫

Rn

P (t, x, dy)f(y) = Ex[f(X(t))]

Denote by Cb(Rn) the space of bounded continuous functions on R
n. If the operator Tt maps Cb(Rn) to

Cb(Rn) then the transition probability function P (t, x, ·) is called Feller. Then we say that the solution

X(t) has the Feller property. If Tt maps the space of bounded measurable functions on R
n to Cb(Rn) then

we say that the solution X(t) has the strong Feller property.

By Chapman-Kolmogorov’s equation, Tt+s = TtTs for all t > 0 and s > 0. Hence Tt is a semigroup

on Cb(Rn). The generator of the semigroup Tt is given, on sufficiently smooth functions, by the 2nd-order

differential operator

LV (x) =
∑

i

fi(x)
∂V (x)

∂xi

+
1

2

∑

i,j

aij(x)
∂2V (x)

∂xi∂xj

= f(x) · Vx +
1

2
trace(g(x)Vxxg(x)T )

where aij(x) = (g(x)g(x)T )ij . The adjoint operator L
∗ of L is given by

L
∗V (x) = −

∑

i

∂

∂xi

(V (x)fi(x)) +
1

2

∑

i,j

∂2

∂xi∂xj

(V (x)aij(x))

which is called the Fokker-Planck operator. Now we write
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P (t, x, dy) = p(t, x, y)dy (32)

Even though, in general, P (t, x, dy) does not necessarily have a density with respect to the Lebesgue measure,

(32) can be understood in the sense of distribution. The density p(t, x, y) in (32) satisfies the Fokker-Planck

equation

∂

∂t
p(t, · , y) = L

∗p(t, · , y). (33)

We say that the system (31) is non-degenerate if the generator L corresponding to (31) is elliptic, that is,

the matrix A(x) = (aij(x)) is positive definite. It is well-known that if L is elliptic and hence L
∗ is also

elliptic, then the equation (33) has a smooth solution. In other words, P (t, x, · ) has C∞ density p(t, x, y).

However, in many interesting physical applications, the generator fails to be elliptic. There is a theorem

due to Hörmander which gives a useful criterion to obtain the regularity of p(t, x, y). Note that the system

(31) can be written as

dX = g0(X)dt+

m∑

i=1

gi(x) ◦ dWi

where g0(x) = f(x) and gi(x) is the ith column of the matrix g(x). We say that the solution X(t) to the

system (31) is said to satisfy Hörmander’s condition [10] if the set of vector fields

{gi}
m
i=1, {[gi, gj ]}

m

i,j=0 , {[gi, [gj , gk]]}
m

i,j,k=0 , ...

spans R
n at every point x in which the operator [·, ·] is the Lie Bracket defined as follows: if A =

(A1(x), ..., An(x))T and B = (B1(x), ..., Bn(x))T are 2 vector fields in R
n then

[A,B] = ([A,B]1, ..., [A,B]n)T where [A,B]j =
n∑

k=1

(
Ak

∂Bj

∂xk

−Bk

∂Aj

∂xk

)

for j = 1, ..., n. Then the generator corresponding to the system (31) that has solution satisfying Hörman-

der’s condition is called hypoelliptic. The following theorem (see [25], [4], and [20]) is used in the proof of

Theorem 2.1.

Theorem 1 (A version of Hörmander Theorem). If the generator of the solutions X(t) to the system (31) is

hypoelliptic (i.e. the solutions X(t) satisfies Hörmander’s condition) then the transition probability P (t, x, · )

of X(t) has density p(t, x, y) which is C∞ function of (t, x, y) and the semigroup Tt is strong Feller.

A.2. Control theory and support theorem

Let X(t) = (X1(t), ..., Xn(t))T be the solution to the Ito SDE system

dX = f(X)dt+ g(X)dW, X(0) = x, (34)

where f(x) = (f1(x), ..., fn(x))T and g(x) = (g1(x), ..., gn(x))T with gi(x) = (gi1(x), ..., gim(x)) are such that

the system (34) has global solutions. W = (W1, ...,Wm)T is a standard m-dimensional Brownian Motion.

To study the ergodic property of X(t), we need to establish which sets can be reached by X(t) from a point

x in time t, that is, determine when P (t, x, A) > 0 for some Borel set A in R
n. Now replace the Brownian

Motion W = W (t) by a piecewise polygonal approximation



ARTICLE IN PRESS

Please cite this article in press as: T.A. Phan, J.P. Tian, Hopf bifurcation without parameters in deterministic and stochastic
modeling of cancer virotherapy, part II, J. Math. Anal. Appl. (2022), https://doi.org/10.1016/j.jmaa.2022.126444

JID:YJMAA AID:126444 /FLA [m3L; v1.317] P.34 (1-37)

34 T.A. Phan, J.P. Tian / J. Math. Anal. Appl. ••• (••••) ••••••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

W
(N)
t = W

(
k

N

)
+N

(
t−

k

N

)(
W

(
k + 1

N

)
−W

(
k

N

))
,

k

N
≤ t ≤

k + 1

N
.

Then its derivative
dW

(N)
t

dt
is piecewise constant. It can be shown that the solutions X(N) = X(N)(t) to the

Ito SDE system

dX(N) = f(X(N))dt+ g(X(N))dW
(N)
t , X(N)(0) = x, (35)

converge a.s. to X̄ uniformly on any compact interval [t1, t2] where X̄ = X̄(t) is the solution to the Ito SDE

system

dX =

[
f(X) +

1

2
c(X)

]
dt+ g(X)dW (36)

where c(X) = (c1(X), ..., cn(X))T and ci(X) =
n∑

j=1

∂gi(X)

∂Xj

gj(X)T (i = 1, ..., n). The system (36) is equiva-

lent to the Stratonovich SDE system

dX = f(X)dt+ g(X) ◦ dW. (37)

Since any piecewise continuous function can be approximated by a sequence of piecewise constant functions,

the system (35) can be approximated by the following ODE system when N is large enough

Ẋ = f(X) + g(X)u (38)

in which u = u(t) = (u1(t), ..., um(t))T is a piecewise continuous on R+ and takes values in R
m. This is an

ordinary non-autonomous differential equation system. The function u is called a control and the system

(38) a control system corresponding to the system (37). So we can derive several properties of the system

(37) by studying the control system (38).

Denote by S
[0,t]
x the support of the diffusion X(t) of the system (37), i.e., S

[0,t]
x is the smallest closed (in

the uniform topology) subset of {h ∈ C([0, t],Rn) : h(0) = x} such that

P

{
X(s) ∈ S [0,t]

x ∀ s ∈ [0, t]
}

= 1.

Next, denote by U the set of all piecewise continuous functions u. We say that a point y is accessible from x

in time t if there exists a control u ∈ U such that the solution X(t, u) to the system (38) satisfies X(0, u) = x

and X(t, u) = y. Let At(x) be the set of all points y ∈ R
n such that y is accessible from x in time t and

C
[0,t]
x (U) the set of all solutions X(t, u) to the system (38) starting at x with control u ∈ U . It is clear that

C
[0,t]
x (U) is a subset of {h ∈ C([0, t],Rn) : h(0) = x}. The following theorem, generally called the support

theorem (see [4] and [12]), helps connect the properties of solutions to the Stratonovich SDE system (37)

and solutions to the corresponding control system (38).

Theorem 2 (Stroock-Varadhan support theorem).

S [0,t]
x = C

[0,t]
x (U)

where the bar indicates the closure in the uniform topology.

As a consequence, if we denote by suppµ the support of a measure µ on R
n then we obtain

suppP (t, x, · ) = At(x).
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A.3. Exponential ergodicity

Let X be a locally compact separable metric space, and B(X) the Borel σ-algebra on X. Let Φ = {Φt : t ≥

0} be a non-explosive homogeneous Markov process with state space (X,B(X)) and P (t, x, · ) its transition

probability. Consider the process Φ on a probability space (Ω,F , {Px}x∈X) where the probability measure

Px satisfies Px{Φt ∈ A} = P (t, x, A) for all x ∈ X, t ≥ 0, and A ∈ B(X). Suppose further that Φ is a

Feller process. For a probability measure a on R+, define a sampled Markov transition function Ka of Φ by

Ka(x,B) =

∞∫

0

P (t, x,B)a(dt).

Ka is said to possess an everywhere nontrivial continuous component if there is a kernel T : (X,B(X)) → R+

satisfying

• For each B ∈ B(X) fixed, the function T ( · , B) is lower semi-continuous, that is, for all x ∈ X

lim inf
y→x

T (y,B) ≥ T (x,B).

• For each x ∈ X fixed, T (x, · ) is a nontrivial measure (i.e. T (x,X) > 0) satisfying Ka(x,B) ≥ T (x,B)

for all B ∈ B(X).

The process Φ is called a T -process if for some probability measure a, Ka admits an everywhere nontrivial

continuous component. A subset A ∈ B(X) is said to be petite for the δ-skeleton {Φnδ : n ∈ N} of Φ if

there exists a probability measure b on N and a nontrivial measure ψ( · ) on X such that for all x ∈ A and

B ∈ B(X)

Kb(x,B) :=

∞∑

n=1

P (nδ, x,B)b(n) ≥ ψ(B).

The process Φ is called bounded in probability on average if for all x ∈ X and ǫ > 0, there is a compact set

Cǫ,x satisfying

lim inf
t→∞

1

t

t∫

0

P (s, x, Cǫ,x)ds ≥ 1 − ǫ.

We say that Φ is ergodic with respect to an invariant probability measure π if the transition probability

P (t, x, · ) of Φ converges to π in total variation norm, that is,

‖P (t, x, · ) − π( · )‖T V → 0 as t → ∞.

We say that Φ is exponentially ergodic with respect to an invariant probability measure π if there exist a

constant β ∈ (0, 1) and a finite-valued function B(x) : X → R+ such that for all t > 0 and x ∈ X

‖P (t, x, · ) − π( · )‖T V ≤ B(x)βt

where ‖ · ‖T V is the total variation norm on X.

Finally, we state two theorems that are used in the proof of Theorem 3.1.
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Theorem 3 (see Theorem 8.1 in [18]). Suppose that Φ is bounded in probability on average and Φ is a T -

process. If π is an invariant probability measure for Φ then for any π-integrable function f and x ∈ X we

have

Px



 lim

t→∞

1

t

t∫

0

f(Φs)ds =

∫

X

f dπ



 = 1.

Theorem 4 (A criterion for exponential ergodicity, see Theorem 6.1 in [19]). Suppose that all compact sets

are petite for some skeleton chain and there exists a positive norm-like function V (x) : X → R+ such that

LV (x) ≤ −cV (x) + d for all x ∈ X and for some constants c > 0, d < ∞. Then there is a unique invariant

probability measure π and Φ is exponentially ergodic with respect to π.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmaa.

2022.126444.
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Appendix B. Supplementary material

The following is the Supplementary material related to this article.
begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent begin ecomponent

Label: MMC

caption: Numerical algorithms and MATLAB codes for solving the stochastic model.

link: APPLICATION : mmc1

end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent end ecomponent
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Highlights

• Infection value is a universal criterion for long-term behaviors of virotherapy.

• Five ergodic invariant probability measures on the boundary of the invariant domain.

• Family of ergodic invariant measures supported by curves in an invariant surface.

• Stochastic Hopf bifurcations without parameters occur with immunes cleared equally.
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