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In this research, we propose deterministic and stochastic models to explain
the complexity of interactions in cancer virotherapy and outcomes of current
preclinical and clinical trials of oncolytic viral treatments. In Part I, we analyze
the deterministic model. The model incorporates both innate and adaptive immune
responses which have opposite effects on the outcome of the therapy. According to
relative immune clearance rates, the model can be reduced to two subsystems, one
with only innate immunity and one with only adaptive immunity, which provide
detailed dynamical properties for the full model. The full system shows many
different asymptotic behaviors which correspond to outcomes of the therapy. It
undergoes classical Hopf bifurcation when the infectivity constant passes through
a particular value and, interestingly, it also undergoes Hopf bifurcation without
parameters when the tumor cell number passes through some particular value. We
conduct numerical simulations to demonstrate our analytical results and provide
detailed medical interpretations.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Tumor virotherapy is a promising strategy to fight against cancers [9], which makes use of oncolytic

viruses that are specific to cancer cells [14]. Upon entering the tumor, oncolytic viruses infect tumor cells

and replicate inside them while they do not attack normal cells. Through lysis of infected cancer cells, new

viruses come out and infect other cancer cells [34,22]. Oncolytic viruses can be genetically manipulated to

incorporate additional features for improving safety and efficacy [9,42]. After US Food and Drug Admin-

istration (FDA) approved oncolytic viruses for clinic trials in 2015 [37], the virotherapy has shown some

auspicious outcomes in preclinical tests and clinical trials for a number of viruses in variant of solid tumors

[3,8,25,11]. However, the virotherapy does not live up to it full potential due to the complexity of interac-

tions in the oncolytic virotherapy [21,16,24,43]. One major problem is the interaction of oncolytic viruses
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and immune systems which causes both antitumor and antivirus effects. The infected tumor cells induce

the adaptive immune response which is against tumor cells while the infected tumor cells also induce the

innate immune response which tends to limit viruses and infections [20,6,15,12]. This requires a deep study

about how to strategically manipulate the balance between antivirus and antitumor immune responses in

clinical and experiments [27,17].

Mathematical modeling is a useful tool to decipher complexities of biological and medical processes. There

are several mathematical models which have been proposed to understand the virus spreading dynamics

of oncolytic viral therapy. The early model was proposed in study [38,39], and was generalized in [10]

later on. These models were formulated with three variables: uninfected tumor cells, free viruses, and

infected tumor cells. The uninfected tumor cells were assumed to undergo logistic growth, and infected

by virus particles, which replicate rapidly with infected tumor cells. Infected tumor cells were removed

from the system due to natural or virus-inflicted death, resulting in new virus particles bursting to the

free virus population. Motivated by experimental evidence, the study [5] suggested that the forming of

syncytia by fusing of uninfected and infected tumor cells rather than the free virus particles was the physical

mechanism which drives intratumor virus spreading. The study [19] proposed and analyzed several general

mathematical formulations for oncolytic virus infection which categorized two types of virus spread, slow and

fast spread. Our work [35] proposed a simple system to describe the interactions among uninfected tumor

cells, infected tumor cells, and oncolytic viruses. Our results concluded that the oncolytic viral dynamics

is mainly determined by the viral burst size. It is known that the immune responses are one major factor

which determines the outcome of oncolytic viral treatment. There are several models which include immune

responses. For example, early models [40,13] incorporate immune responses. We proposed and studied a

model with only the innate immune response [29]. However, these models do not distinguish innate and

adaptive responses which have opposite effects on the outcomes of the therapy. To understand antivirus and

antitumor immune responses in one dynamical system, we proposed a model [36].

Our model [36] has six physical variables consisting of tumor cells, infected tumor cells, innate immune

cells, adaptive immune cells, free viruses, and necrotic cells. It is a free boundary problem of parabolic partial

differential equation system. We did numerical analysis with some chosen parameter values. However, a deep

understanding about how the two immune systems work together to influence the outcome of the therapy still

is needed. In this research, based on interactions among the physical variables proposed in our PDE model,

we propose a basic ODE model for cancer virotherapy that incorporates both innate and adaptive immune

responses. Let x(t) denote the uninfected tumor cell population, y(t) the infected tumor cell population,

z1(t) the innate immune cell population, and z2(t) the adaptive immune cell population. Our model is as

follows.

dx

dt
= λx

(
1 − x + y

C

)
− βxy − k2xz2,

dy

dt
= βxy − k1yz1 − δy,

dz1

dt
= s1yz1 − c1z1,

dz2

dt
= s2yz2 − c2z2.

(1.1)

A common logistic growth with the per capita growth rate λ and the carrying capacity C are used to model

the tumor growth. The term βxy represents the infection process, with β being the infectivity rate. Our

model does not include the free virus population explicitly. Infection by free viruses and the release of new

viruses by infected tumor cells are only indirectly modeled by the mass interaction law and the rate β that

captures virus production. The term δy represents the death rate of infected tumor cells as a consequence

of virus infection, and 1
δ represents the lytic cycle of virus reproduction. The antitumor adaptive immune
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response kills the uninfected tumor cells at a rate k2, while the antivirus innate immune response works

against the virotherapy and kills the infected tumor cells at a rate k1. Both innate and adaptive immune

cells are stimulated through their interaction with the infected tumor cells at rates of s1 and s2, and are

cleared at rates of c1 and c2, respectively.

We conduct a detailed analysis about this deterministic model. We find the dynamics or outcome of the

therapy is largely determined by the relative clearance rates of the immune responses. If the relative clearance

rate of the innate immune response is smaller than that of the adaptive immune response, the system (1.1)

is reduced to a system without the adaptive immunity; if the relative clearance rate of the innate immune

response is greater than that of the adaptive immune response, the system (1.1) is reduced to a system

without the innate immunity; if the relative clearance rate of the innate immune response is equal to that of

the adaptive immune response, there occurs Poincare-Andronov-Hopf bifurcation without parameters [23].

However, because the relative clearance rates may change due to immune cell number density and other

tumor-immune environmental factors [1,7,28] and, particularly, the case of bifurcation without parameters,

the outcome of the viral therapy seems to have a high uncertainty. To gain deep insights into viral oncolytic

processes, we would like to further study how the environmental noises influence on the outcome of the

therapy.

In recent years, several attempts have been made to characterize microenvironmental fluctuations and

noises in viral dynamics for oncolytic viral therapy using stochastic differential equations (SDEs). To un-

derstand the stochastic effects in tumor growth rate, infection process, and virus spreading, we proposed a

stochastic model [30]. In study [41], a stochastic differential equation model was derived based on a basic

deterministic viral dynamic model which was applied to HIV dynamics. The work [18] derived a SDE system

only included adaptive immune response and conducted numerical simulations. Based on infected cell fusion

model [10], stochastic models were developed and numerical simulations were carried out [32,33]. Except

our model [30], most of these stochastic models were formulated by transforming ODE systems using the

method proposed in [2]. These transformed SDE models may have some computational advantages.

There are several ways to incorporate the microenvironmental noises and uncertainties into mathematical

modeling. We briefly recall our methods to derive SDE models [30,31]. Consider P is a population and its

change is modeled as dP
dt = f(t, P ). To count for environmental noise, we assume each individual make

almost same contribution to the stochastic effects and receive the same environmental noise. Then, the

environmental noises and stochastic effects can be represented by τPξ, where ξ is a unit noise and τ is an

average variation of each individual. If we take the noise to be white noise ξ = dW (t)
dt , where W (t) is the

standard Wiener process, we obtain an Ito stochastic differential equation dP = f(t, P )dt+τPdW . Now, we

consider the innate and adaptive immune responses in our model (1.1). The innate and adaptive immune

cell population are supposed to have environmental noises and stochastic effects τ1z1
dW1

dt and τ2z2
dW2

dt ,

respectively, where W1(t) and W2(t) are independent Wiener processes. Therefore, we have the following

stochastic model based on (1.1):

dx =

[
λx

(
1 − x + y

C

)
− βxy − k2xz2

]
dt,

dy = (βxy − k1yz1 − δy) dt,

dz1 = (s1yz1 − c1z1) dt + τ1z1dW1,

dz2 = (s2yz2 − c2z2) dt + τ2z2dW2.

(1.2)

We carry out a thorough analysis about this SDE system. We find the sum of the relative immune

clearance rate and relative noise variance plays an important role in determining the dynamics of the

system. We also discover there is Poincare-Andronov-Hopf bifurcation without parameters, which is a new

phenomenon in stochastic dynamical systems.
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We will present our work as two parts. Part I is about the deterministic system and Part II is about

the stochastic system. The rest of this article is organized as follows. In Section 2, we list notations and

results, and give some medical interpretations about our results. In Section 3, we provide detailed analysis

and proof of the results. In Section 4, we provide numerical analysis and simulations to demonstrate our

analysis results and medical implications, and we also discuss some aspects of our results.

2. Results and interpretations

We non-dimensionalize the system (1.1) by setting x = Cx, y = Cy, z1 = Cz1, z2 = Cz2, r = λ
δ , a = βC

δ ,

li = kiC
δ , ei = siC

δ , di = ci

δ , and T = δt. After dropping all bars over the variables and writing T as t, the

system (1.1) becomes

dx

dt
= rx(1 − x − y) − axy − l2xz2,

dy

dt
= axy − l1yz1 − y,

dz1

dt
= e1yz1 − d1z1,

dz2

dt
= e2yz2 − d2z2.

(2.1)

All parameters are positive. It is straightforward to verify that the non-compact region

D = {(x, y, z1, z2) : x ≥ 0, y ≥ 0, z1 ≥ 0, z2 ≥ 0, x + y ≤ 1}

is the positive invariant domain for the ODE system (2.1) (see [35] and [29]). Then we refer it to be

a global domain. The dynamics of the non-dimensionalized system (2.1) is determined by the non-unit

parameter a and two ratios d1

e1
and d2

e2
. The parameter a still represents infection possibility, call it the

infectivity constant. The ratio d1

e1
represents a relative clearance rate which is relative to the stimula-

tion of the innate response by the infected tumor cells, so we call it the relative clearance rate of the

innate immune cells. Similarly, we call the ratio d2

e2
the relative clearance rate of the adaptive immune

cells. We may look at e1

d1
, this ratio measures the ability of recruiting innate immune cells into the tumor

by the infection of viruses. Similar, we may interpret e2

d2
. Under certain conditions, the system (2.1) has

the following possible equilibrium points: E0 = (0, 0, 0, 0)T , E1 = (1, 0, 0, 0)T , E2 =
(

1
a , r(a−1)

a(a+r) , 0, 0
)T

,

E3 =
(

1 − d1

e1
− ad1

re1
, d1

e1
, a

l1

(
1 − d1

e1
− ad1

re1
− 1

a

)
, 0
)T

, E4 =
(

1
a , d2

e2
, 0, r

l2

(
1 − d2

e2
− ad2

re2
− 1

a

))T

. In or-

der to state our theorems, we introduce the following notations: a2i = ei

ei−di
, a3i = r(ei−di)

di
, a4i,5i =

1
2a3i ∓ 1

2

√
a3i(a3i − 4a2i), δi = r2

(
ei

di
− 1

di
− 1
)2

− 4
(

rei

di
+ r2

di

)
, a6i,7i = 1

2r
(

ei

di
− 1

di
− 1
)

∓ 1
2

√
δi, i = 1, 2;

when d1

e1
= d2

e2
= d

e , this notation has no second subscript.

When d1

e1
< d2

e2
, adaptive immune cells get stimulated less by infected tumor cells and get cleared more

than innate immune cells. In this case, the adaptive immune cell population decays to 0 very quickly and

the 4-dimensional ODE system (2.1) is reduced to the 3-dimensional ODE system

dx

dt
= rx(1 − x − y) − axy,

dy

dt
= axy − l1yz1 − y,

dz1

dt
= e1yz1 − d1z1,

(2.2)
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where D1 = {(x, y, z1) : x ≥ 0, y ≥ 0, z1 ≥ 0, x + y ≤ 1} is its positive invariant domain. Under some

condition, this system has four equilibria: E0 = (0, 0, 0)T , E1 = (1, 0, 0)T , E2 =
(

1
a , r(a−1)

a(a+r) , 0
)T

, E3 =
(

1 − d1

e1
− ad1

re1
, d1

e1
, a

l1

(
1 − d1

e1
− ad1

re1
− 1

a

))T

. The dynamics of the system (2.2) on D1 is summarized in the

following theorem.

Theorem 2.1. Assume that d1

e1
< d2

e2
. Then the long-term behavior of the system (2.1) on the invariant domain

D is governed by the long-term behavior of the system (2.2) on the invariant domain D1. The system (2.2)

has 3 equilibria E0, E1, and E2 on ∂D1 and a unique positive equilibrium E3 in D◦

1. E0 is always unstable

for all positive values of a. E1 is globally asymptotically stable when 0 < a < 1, and unstable when a > 1. At

a = 1, E1 is locally asymptotically stable and E2 moves into the domain D1. A similar type of transcritical

bifurcation occurs with E1 and E2. When a > 1, assume that d1

e1
< 1, there are cases as follows.

(i) If (a31 ≤ 4a21) ∨ (a31 > 4a21, a ∈ (1, a41) ∪ (a51, ∞)) then E2 is globally asymptotically stable.

(ii) If a31 > 4a21 and a ∈ (a41, a51) then E2 becomes unstable, E3 enters the domain D1, and E3 is globally

asymptotically stable.

When d1

e1
> d2

e2
, adaptive immune cells become more dominated because innate immune cells get stim-

ulated less and get cleared more. Then innate immune cell population decays to 0 exponentially fast and

hence the system (2.1) can be reduced to the 3-dimensional ODE system

dx

dt
= rx(1 − x − y) − axy − l2xz2,

dy

dt
= axy − y,

dz2

dt
= e2yz2 − d2z2,

(2.3)

on the positive invariant domain D2 = {(x, y, z2) : x ≥ 0, y ≥ 0, z2 ≥ 0, x + y ≤ 1}. Under some conditions,

this system has four equilibrium solutions: Ẽ0 = (0, 0, 0)T , Ẽ1 = (1, 0, 0)T , Ẽ2 =
(

1
a , r(a−1)

a(a+r) , 0
)T

, Ẽ4 =
(

1
a , d2

e2
, 1

l2

(
r − r

a − rd2

e2
− ad2

e2

))T

. We summarize the dynamics of this reduced system in the following

theorem.

Theorem 2.2. Assume that d2

e2
< d1

e1
. Then the long-term behavior of the system (2.1) on the invariant

domain D can be reduced to that of the system (2.3) on the invariant domain D2. The system (2.3) has 3

equilibria Ẽ0, Ẽ1, and Ẽ2 on ∂D2 and a unique positive equilibrium Ẽ4 in D◦

2. Ẽ0 is always unstable for

all positive values of a. Ẽ1 is globally asymptotically stable when 0 < a < 1, and unstable when a > 1. At

a = 1, Ẽ1 is locally asymptotically stable and Ẽ2 moves into the domain D1. A similar type of transcritical

bifurcation occurs with Ẽ1 and Ẽ2. When a > 1, assume that d2

e2
< 1. There are the following cases.

(i) If (a ∈ (1, a22)) ∨ (a32 < 4a22) ∨ (a32 = 4a22, a ∈ (1, 2e2

e2−d2
) ∪ ( 2e2

e2−d2
, ∞)) ∨ (a32 > 4a22, a ∈ [a22, a42) ∪

(a52, ∞)) then Ẽ2 is globally asymptotically stable.

(ii) If a32 > 4a22 and a ∈ (a42, a52) then Ẽ2 becomes unstable, Ẽ4 enters the domain D2. Hopf bifurcation

occurs from Ẽ4 at a = a62 and a = a72.

An interesting phenomenon occurs when d1

e1
= d2

e2
. In this case, two types of immune responses, innate

and adaptive, are cleared with the same relative clearance rate. Under certain conditions, there exists a
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closed manifold of equilibria M which connects two equilibrium point E3 and E4 in the positive invariant

domain D,

M =

{
E5(ξ) : ξ ∈

[
1

a
, 1 − d

e
− ad

re

]}
,

where E5(ξ) =
(

ξ, d
e , aξ−1

l1
, r

l2

(
1 − d

e − ad
re − ξ

))T

. The system (2.1) undergoes the Poincare-Andronov-

Hopf bifurcation without parameters. The results of this case are summarized in the following theorem.

Theorem 2.3. Under the assumption d1

e1
= d2

e2
=: d

e < 1, the system (2.1) has three equilibrium points E0,

E1, E2, and the manifold of equilibria M . E0 is always unstable for all positive values of a. E1 is globally

asymptotically stable when 0 < a < 1, and unstable when a > 1. At a = 1, E1 is locally asymptotically stable

and the equilibrium point E2 enters into the positive invariant domain D, a similar type of transcritical

bifurcation occurs with E1 and E2. When a > 1, there are the following cases.

(i) If (a3 < 4a2) ∨ (a3 = 4a2, a ∈ (1, 2e
e−d ) ∪ ( 2e

e−d , ∞)) ∨ (a3 > 4a2, a ∈ (1, a4) ∪ (a5, ∞)) then E2 is globally

asymptotically stable.

(ii) If a3 > 4a2 and a ∈ (a4, a5) then E2 becomes unstable and a manifold of equilibria M moves into the

domain D. There are two cases.

– if ( e
d ≤ 1

ρd1
+ 1) ∨ ( e

d > 1
ρd1

+ 1, δ ≤ 0) ∨ ( e
d > 1

ρd1
+ 1, δ > 0, a ∈ (a4, a6) ∪ (a7, a5)) then M◦ is locally

stable.

– if e
d > 1

ρd1
+ 1, δ > 0, and a ∈ (a6, a7), then the system (2.1) undergoes the Poincare-Andronov-Hopf

bifurcation without parameters.

Medical interpretations 2.1. The equilibrium points E0, E0, Ẽ0 are unstable for any positive parameter

values in their systems. This is reasonable since the tumor always grows when it starts.

For the infectivity constant a = βC
δ , the tumor carrying capacity C is a fixed quantity for a specific

tumor, while the infection rate β and the lytic cycle of the virus 1
δ depend on a specific type of virus. When

this constant is smaller than 1, that is, β
δ < 1

C , this inequality biologically means that, within a period of

virus reproduction or one run of an infected tumor cell, the possibility that each infected tumor cell infects

one uninfected tumor cell is smaller than one cell as a portion in the full tumor. Under this condition, it

is obvious that viral therapy completely fails because it is necessary to infect each tumor cell in order to

destroy the tumor. This is biological interpretation of the statement that the equilibrium points E1, E1, Ẽ1

are globally asymptotically stable when 0 < a < 1 in their systems. Similarly, it is easy to interpret that

E1, E1, Ẽ1 are unstable when a > 1. It should be noticed that “unstable” just means the therapy does not

completely fail, and it might be partially successful.

When the infectivity constant a is above 1, one partial success of the therapy is represented by the equi-

librium point E2 in the full model. There are several intervals of the infectivity constant a in which the

therapy can achieve such outcome. In the two subsystems, we have E2 and Ẽ2, which can be reached in each

sub-model under the condition of the infectivity constant within some intervals. The total tumor burden in

the equilibrium is 1
a + r(a−1)

a(a+r) = 1+r
1+a .

In oncolytic viral therapy, the innate immune system and the adaptive immune system do not compete

each other. We may regard immune cells as predators in which innate immune cells prey on infected tumor

cells and adaptive immune cells prey on tumor cells; while infected tumor cells may also be considered as

predators who prey on tumor cells. However, both the relative clearance rates di

ei
seem not directly related to

prey-predator dynamics. If we look at the reciprocal of the relative clearance rates, ei

di
= 1

ci
siC, where 1

ci
is

the average life time of cells zi, C is the cell number of the tumor carrying capacity, and si is the possibility

that one infected tumor cell stimulates one zi cell in unit time, this reciprocal may mean the possibility one
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infected tumor cell recruits C many zi cells within the zi cell average life time. These two ratios give some

classifications of our model system (2.1).

When d1

e1
< d2

e2
, the system (2.1) is reduced to the subsystem (2.2). The condition means that the possibility

one infected tumor cell recruits C many innate immune cells within the average life time of the innate

immune cells is greater than the possibility one infected tumor cell recruit C many adaptive immune cells

within the average life time of the adaptive immune cells. In this case, besides E2, there is an equilibrium

point E3 which also represents partial success of the therapy but with the innate immune cells. This case

might not be what we want if we cannot achieve complete success. This case has only one outcome E3 which

are not shared with other cases, and the tumor burden may be still high if we have numerical numbers.

When d2

e2
< d1

e1
, the system (2.1) is reduced to the subsystem (2.3). As explained above, the adaptive

immune cells are more likely recruited by infected tumor cells. Beside the equilibrium point Ẽ2, the subsystem

has the equilibrium solution Ẽ4 which represents a partial success of the therapy and the occurrence of Hopf

bifurcation arising from Ẽ4 may give more outcomes [35].

When d1

e1
= d2

e2
, the full system (2.1) has the equilibrium point E2 which is stable in several intervals

of the infectivity constant a. More importantly, when the infectivity constant a is in some interval, there

occurs Poincare-Andronov-Hopf bifurcation without parameters. The manifold of equilibria M is actually

parameterized by the first component, namely tumor cells x. When the tumor cells reach to some number,

there occurs periodic solutions. However, depending on where these solutions start (initial values), these

periodic solutions behave differently. Some solutions may set down to equilibrium, some solutions may in-

crease indefinitely, while some solutions may increase and then decrease and vice versa. This complicates

the outcomes of the therapy. If the tumor grows under the therapy, it reaches some equilibrium point in M

or suddenly tumor cells increase or decrease indefinitely.

3. Analysis of the model

This section is devoted to proving three theorems in Section 2. We mainly use Routh-Hurwitz’s criterion,

LaSalle’s Principle, Lyapunov functions, Center Manifold Theorem, Foliation of domains, etc. To be concise

and clear, we will present them in five subsections.

3.1. Equilibrium solutions

First, we analyze all possible equilibrium solutions in this subsection.

Let U = (x, y, z1, z2)T and

f(U) = (rx(1 − x − y) − axy − l2xz2, axy − l1yz1 − y, e1yz1 − d1z1, e2yz2 − d2z2)T .

Then the system (2.1) can be written as dU/dt = f(U) and we assume that U ∈ D. The equilibria are

solutions to the equation f(U) = 0; that is

x[r(1 − x − y) − ay − l2z2] = 0, (3.1)

y(ax − l1z1 − 1) = 0, (3.2)

z1(e1y − d1) = 0, (3.3)

z2(e2y − d2) = 0. (3.4)

If x = 0 then the equation (3.2) implies y(−l1z1 − 1) = 0. This follows that y = 0. So the last two equations

(3.3) and (3.4) lead to z1 = z2 = 0. Hence E0 = (0, 0, 0, 0)T is an equilibrium point. If x 6= 0 then the

equation (3.1) implies
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r(1 − x − y) = ay + l2z2. (3.5)

If y = 0 then, from the equation (3.5), we get r(1 − x) = l2z2. By (3.3) and (3.4), y = 0 implies z1 = z2 = 0,

which follows that x = 1. So E1 = (1, 0, 0, 0)T is an equilibrium point. Now we assume that y 6= 0. Then

the equation (3.2) follows

ax = l1z1 + 1. (3.6)

We consider the following cases.

Case 1. z1 = z2 = 0. The equation (3.6) implies x = 1
a . Plugging this into the equation (3.5) gives

r(1 − 1
a − y) = ay, which implies that y = r(a−1)

a(a+r) . Then we obtain the equilibrium point

E2 =

(
1

a
,

r(a − 1)

a(a + r)
, 0, 0

)T

.

This equilibrium E2 moves into the domain D provided 0 ≤ 1
a + r(a−1)

a(a+r) ≤ 1, which is equivalent to a ≥ 1.

Notice that, when a = 1, both equilibria E1 and E2 coincide.

Case 2. z1 6= 0, z2 = 0. From the equation (3.3) and z1 6= 0, we get y = d1

e1
. Combining this with (3.5)

we have r(1 − x − d1

e1
) = ad1

e1
, which implies that x = 1 − d1

e1
− ad1

re1
. Then the equation (3.6) implies

z1 = a
l1

(1 − d1

e1
− ad1

re1
− 1

a ). So we obtain an equilibrium point

E3 =

(
1 − d1

e1
− ad1

re1
,

d1

e1
,

a

l1

(
1 − d1

e1
− ad1

re1
− 1

a

)
, 0

)T

.

The equilibrium E3 will enter the domain D if 1 − d1

e1
− ad1

re1
> 0 and 1 − d1

e1
− ad1

re1
− 1

a > 0. Note that

the inequality 1 − d1

e1
− ad1

re1
> 0 is equivalent to a < a31 and d1

e1
< 1, where a31 := r(e1−d1)

d1
. If either

d1

e1
≥ 1 or d1

e1
< 1, a ≥ a31 then E3 is not in D. So we assume that d1

e1
< 1 and a < a31. The inequality

1 − d1

e1
− ad1

re1
− 1

a > 0 is the same as g1(a) := a2 − r(e1−d1)
d1

a + re1

d1
< 0. Let a21 := e1

e1−d1
, then it is easy to

compute the discriminant ∆1 = a31(a31 − 4a21) of the quadratic g1(a). If a31 ≤ 4a21 then ∆1 ≤ 0, which

follows that g1(a) ≥ 0 for all a. This means that the condition 1 − d1

e1
− ad1

re1
− 1

a > 0 does not hold and hence

E3 goes beyond the domain D. If a31 > 4a21 then ∆1 > 0 and we can compute two positive zeros of the

above quadratic function

a41 :=
1

2
a31 − 1

2

√
a31(a31 − 4a21), a51 :=

1

2
a31 +

1

2

√
a31(a31 − 4a21).

So the condition 1 − d1

e1
− ad1

re1
− 1

a > 0 is equivalent to a41 < a < a51. Since 1 < a21 < a41 < a51 < a31, E3

moves into D provided d1

e1
< 1, a31 > 4a21, and a41 < a < a51.

Case 3. z1 = 0, z2 6= 0. By (3.6), z1 = 0 implies x = 1
a . Combining this with (3.5), we have r(1 − 1

a − y) =

ay + l2z2. From the equation (3.4) and z2 6= 0, we get y = d2

e2
. This implies that z2 = r

l2
(1 − d2

e2
− ad2

re2
− 1

a ).

Hence

E4 =

(
1

a
,

d2

e2
, 0,

r

l2

(
1 − d2

e2
− ad2

re2
− 1

a

))T

is an equilibrium point. E4 will enter the domain D if 1
a + d2

e2
≤ 1 and r − r

a − rd2

e2
− ad2

e2
> 0. Note that the

inequality 1
a + d2

e2
≤ 1 is equivalent to a ≥ a22 and d2

e2
< 1 where a22 := e2

e2−d2
. If either d2

e2
≥ 1 or d2

e2
< 1,

a < a22 then E4 is not in D. So we assume that d2

e2
< 1 and a ≥ a22. The inequality r − r

a − rd2

e2
− ad2

e2
> 0
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is the same as g2(a) := a2 − r(e2−d2)
d2

a + re2

d2
< 0. Let a32 := r(e2−d2)

d2
, then it is easy to compute the

discriminant ∆2 = a32(a32 − 4a22) of the quadratic g2(a). By the same argument as in Case 2, E4 moves

into D provided d2

e2
< 1, a32 > 4a22, and a42 < a < a52 where

a42 :=
1

2
a32 − 1

2

√
a32(a32 − 4a22), a52 :=

1

2
a32 +

1

2

√
a32(a32 − 4a22).

Case 4. z1 6= 0, z2 6= 0. If d1

e1
6= d2

e2
then there is no positive value y that satisfies both (3.3) and (3.4). Hence,

in this case, the system (2.1) does not have any positive equilibrium in the interior of the domain D. Now

we consider three cases. First assume that d1

e1
< d2

e2
. The last two equations of the system (2.1) imply

dz1

z1
=

e1

e2

dz2

z2
+ Kdt,

where K = e1(d2

e2
− d1

e1
) > 0. It follows that

z2(t)e1/e2 = Cz1(t)e−Kt, (3.7)

where C = z1(0)z2(0)−e1/e2 . From the third equation of (2.1),

z1(t) = z1(0) exp{e1

t∫

0

y(s)ds − d1t},

so limt→∞ z1(t) exists. By way of contradiction, we suppose that limt→∞ z1(t) = ∞. Then

limt→∞

1
t

∫ t

0
z1(s)ds = ∞. By the second equation of (2.1), we get

ln y(t) − ln y(0)

t
=

1

t

t∫

0

ax(s)ds − 1

t

t∫

0

l1z1(s)ds − 1,

which implies that limt→∞

ln y(t)
t = −∞. Hence limt→∞ y(t) = 0. But then, from the third equation of (2.1),

we can easily show that limt→∞ z1(t) = 0. This is a contradiction. Thus limt→∞ z1(t) < ∞. By (3.7), we

obtain limt→∞ z2(t) = 0 exponentially fast. So the system (2.1) can be reduced to the system (2.2) on the

boundary {z2 = 0} ⊆ ∂D. It is easy to see that

E3 =

(
1 − d1

e1
− ad1

re1
,

d1

e1
,

a

l1

(
1 − d1

e1
− ad1

re1
− 1

a

))T

is the unique positive equilibrium of (2.2) on the invariant domain

D1 = {(x, y, z1) : x ≥ 0, y ≥ 0, z1 ≥ 0, x + y ≤ 1}.

Clearly, E3 corresponds to the equilibrium E3 of the system (2.1). Also, on ∂D1, the system (2.2) has 3

equilibria E0 = (0, 0, 0)T , E1 = (1, 0, 0)T , and E2 = ( 1
a , r(a−1)

a(a+r) , 0)T . These 3 equilibria correspond to the

equilibria E0, E1, and E2 of the system (2.1), respectively. By the same reasoning as in Case 3, E3 enters

D1 iff d1

e1
< 1, a31 > 4a21, and a ∈ (a41, a51).

Second, we assume that d2

e2
< d1

e1
. By the completely similar argument as above, limt→∞ z1(t) = 0

exponentially fast. Then we reduce the system (2.1) to the system (2.3) on the boundary {z1 = 0} ⊆ ∂D.

The invariant domain of (2.3) is
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D2 = {(x, y, z2) : x ≥ 0, y ≥ 0, z2 ≥ 0, x + y ≤ 1}.

The system (2.3) also has 3 equilibria Ẽ0 = (0, 0, 0)T , Ẽ1 = (1, 0, 0)T , and Ẽ2 = ( 1
a , r(a−1)

a(a+r) , 0)T on ∂D2.

These equilibria correspond to the equilibria E0, E1, and E2 of the system (2.1), respectively. The unique

positive equilibrium of (2.3) on D2 is

Ẽ4 =

(
1

a
,

d2

e2
,

1

l2

(
r − r

a
− rd2

e2
− ad2

e2

))T

,

which enters D2 iff d2

e2
< 1, a32 > 4a22, and a ∈ (a42, a52).

Lastly, we assume that d1

e1
= d2

e2
=: d

e . Clearly, the equations (3.3) and (3.4) follow y = d
e . Plugging this

into equations (3.5) and (3.6) yields rx + l2z2 = r
(
1 − d

e

)
− ad

e and ax − l1z1 = 1. Solving these equations

for z1 and z2 in terms of x, z1 = ax−1
l1

and z2 = r
l2

(1 − d
e − ad

re − x). Let x = ξ, then we obtain a line of

equilibria (depending on ξ)

E5(ξ) =

(
ξ,

d

e
,

aξ − 1

l1
,

r

l2

(
1 − d

e
− ad

re
− ξ

))T

.

Since d1

e1
= d2

e2
, we get a2 := a2i, a3 := a3i, a4 := a4i, and a5 := a5i for i = 1, 2. The same reasoning as in

Case 2 shows that E5(ξ) moves into D provided d
e < 1, a3 > 4a2, a4 < a < a5, and 1

a < ξ < 1 − d
e − ad

re .

Notice that, when ξ = 1
a , E5 coalesces into E4 and, when ξ = 1 − d

e − ad
re , E5 merges into E3. Thus we can

incorporate two equilibria E3 and E4 into the line segment of equilibria E5(ξ) with ξ ∈ [ 1
a , 1 − d

e − ad
re ].

Our equilibrium analysis above can be summarized as follows.

1. If d1

e1
< d2

e2
then limt→∞ z2(t) = 0 and so the long-term behavior of the system (2.1) on the invariant

domain D is governed by the long-term behavior of the system (2.2) on the invariant domain D1. When

a ≤ 1, the system (2.2) has only two equilibria E0 and E1. When a > 1, E2 enters the domain D1. Assume

that d1

e1
< 1 and then we have 2 cases.

(a1) If (a31 ≤ 4a21) ∨ (a31 > 4a21, a ∈ (1, a41) ∪ (a51, ∞)) then there are only 3 equilibria for the system

(2.2) which are E0, E1, and E2.

(b1) If a31 > 4a21 and a ∈ (a41, a51) then the positive equilibrium E3 moves into D1 besides E0, E1, and

E2.

2. If d2

e2
< d1

e1
then limt→∞ z1(t) = 0 and so the long-term behavior of the system (2.1) on the invariant

domain D is governed by the long-term behavior of the system (2.3) on the invariant domain D2. When

a ≤ 1, the system (2.3) has only two equilibria Ẽ0 and Ẽ1. When a > 1, Ẽ2 enters the domain D2. Assume

that d2

e2
< 1 and then we have 2 cases.

(a2) If (a ∈ (1, a22)) ∨ (a32 ≤ 4a22) ∨ (a32 > 4a22, a ∈ [a22, a42) ∪ (a52, ∞)) then there are only 3 equilibria

for the system (2.2) which are Ẽ0, Ẽ1, and Ẽ2.

(b2) If a32 > 4a22 and a ∈ (a42, a52) then the positive equilibrium Ẽ4 moves into D2 besides Ẽ0, Ẽ1, and

Ẽ2.

3. Assume that d1

e1
= d2

e2
=: d

e . When a ≤ 1, the system (2.1) has only two equilibria E0 and E1. When

a > 1, the equilibrium E2 enters the positive domain D. Suppose that d
e < 1. We have the following cases.

(a3) If (a3 ≤ 4a2)∨ (a3 > 4a2, a ∈ (1, a4)∪ (a5, ∞)) then there are only three equilibria for the system (2.1)

which are E0, E1, and E2.
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(b3) If a3 > 4a2 and a ∈ (a4, a5) then a line segment of equilibria

E5(ξ) =

(
ξ,

d

e
,

aξ − 1

l1
,

r

l2

(
1 − d

e
− ad

re
− ξ

))T

,

with 1
a ≤ ξ ≤ 1 − d

e − ad
re , moves into the domain D besides E0, E1, and E2.

3.2. Stability of E0 and E1

In this subsection, we study the stability of the equilibrium solutions E0 and E1, which automatically

includes E0, E1, Ẽ0, and Ẽ1.

The variational matrix of the system (2.1) is given by

Df(U) =




r − 2rx − ry − ay − l2z2 −rx − ax 0 −l2x
ay ax − l1z1 − 1 −l1y 0
0 e1z1 e1y − d1 0
0 e2z2 0 e2y − d2


 .

At the equilibrium E0, the variational matrix is Df(E0) = diag(r, −1, −d1, −d2). Then the eigenvalues

are r, −1, −d1 and −d2. So E0 is always unstable.

At the equilibrium E1, the variational matrix is

Df(E1) =




−r −r − a 0 −l2
0 a − 1 0 0
0 0 −d1 0
0 0 0 −d2


 .

Then the eigenvalues are λ1 = −r, λ2 = a − 1, λ3 = −d1 and λ4 = −d2. Hence E1 is locally asymptotically

stable if a < 1 and unstable if a > 1. In fact, we can show E1 is globally asymptotically stable if a < 1. By

changing of variables x = 1 − x, y = y, z1 = z1, and z2 = z2, we get the following system after dropping all

the bars over variables

dx

dt
= (1 − x)(ry + ay + l2z2 − rx),

dy

dt
= a(1 − x)y − l1yz1 − y,

dz1

dt
= e1yz1 − d1z1,

dz2

dt
= e2yz2 − d2z2.

(3.8)

The domain D is translated into

D = {(x, y, z1, z2) : 0 ≤ x ≤ 1, 0 ≤ x − y ≤ 1, z1 ≥ 0, z2 ≥ 0}.

The equilibrium E1 becomes E′

1 = (0, 0, 0, 0). The second equation of (3.8) implies

dy

dt
= y(a − ax − l1z1 − 1) ≤ (a − 1)y,

which follows that 0 ≤ y(t) ≤ y(0) exp{(a − 1)t} → 0 as t → ∞ since a < 1. Therefore y(t) → 0 as t → ∞.

Choose ǫ > 0 such that ǫ < min{ d1

e1
, d2

e2
}, then there exists T > 0 so that t ≥ T implies y(t) < ǫ. For t > T

and i = 1, 2 we get
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ei

t∫

0

y(s)ds − dit ≤ ei

T∫

0

y(s)ds + (ǫei − di)t.

From the last two equations of (3.8), for i = 1, 2

0 ≤ zi(t) = zi(0) exp



ei

t∫

0

y(s)ds − dit



 ≤ zi(0) exp



ei

T∫

0

y(s)ds



 exp{(ǫei − di)t}.

Letting t → ∞ yields zi(t) → 0. Lastly, since 1 − x ≤ 1, the first equation of (3.8) implies dx
dt ≤ ry + ay +

l2z2 − rx. Hence

0 ≤ x(t) ≤ x(0)e−rt + e−rt

t∫

0

[ry(s) + ay(s) + l2z2(s)]ersds.

By L’Hospital Rule,

lim
t→∞

e−rt

t∫

0

[ry(s) + ay(s) + l2z2(s)]ersds = lim
t→∞

[ry(t) + ay(t) + l2z2(t)]ert

rert
= 0.

Thus x(t) → 0 as t → ∞. In other words, E′

1 is globally asymptotically stable and so is E1.

When a = 1, the linearized system at E′

1 has one zero eigenvalue and three negative eigenvalues. To

determine its stability, we will use the center manifold theorem to reduce the system (3.8) into a center

manifold and examine the stability of E′

1 based on the reduced system. First, we start with the matrix

corresponding to the linear part of the system (3.8), which is

L =




−r r + 1 0 l2
0 0 0 0
0 0 −d1 0
0 0 0 −d2


 .

Without loss of generality, we can assume that r 6= d2 since for r = d2 the argument is completely the

same. Then L has eigenvalues −r, 0, −d1, and −d2. The eigenvalue −r has an associated eigenvector

U1 = (1, 0, 0, 0)T , the zero eigenvalue has an associated eigenvector U2 = (r+1, r, 0, 0)T , and the eigenvalues

−d1 and −d2 has U3 = (0, 0, 1, 0)T and U4 = (l2, 0, 0, r − d2)T as the respective eigenvectors. Set the

transformation matrix to be T = (U1, U2, U3, U4). The system (3.8) can be written as dU
dt = LU + F , where

F = (rx2 − (1 + r)xy − l2xz2, −xy − l1yz1, eyz1, eyz2)T .

Denote U = TY , then we get dY
dt = T −1LTY + T −1F , where T −1LT = diag(−r, 0, −d1, −d2) and Y =

(y1, y2, y3, y4)T . Notice that x = y1 + (1 + r)y2 + l2y4, y = ry2, z1 = y3, and z2 = (r − d2)y4. Denote

T −1F = (f1, f2, f3, f4)T , then by computation we have

f1 = A11y2
1 + A22y2

2 + A44y2
4 + A12y1y2 + A14y1y4 + A23y2y3 + A24y2y4,

A11 = r, A22 = A12 = (r + 1)2, A44 = d2l2
2, A14 = l2(r + d2),

A23 = l1(r + 1), A24 = l2(1 + d2 + r + d2r − e2r),

f2 = B22y2
2 + B12y1y2 + B23y2y3 + B24y2y4,
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B22 = −r − 1, B12 = −1, B23 = −l1, B24 = −l2,

f3 = C23y2y3, C23 = e1r,

f4 = D24y2y4, D24 = e2r.

Then the transformed system can be rewritten as

dZ

dt
= BZ + (f1, f3, f4)T ,

dy2

dt
= Ay2 + f2,

where B = diag (−r, −d1, −d2), A = (0), and Z = (y1, y3, y4)T . It is clear that A has zero eigenvalue,

B has negative eigenvalues, and the functions fk, k = 1, 2, 3, 4, are C2 differentiable functions satisfying

fk(0, 0, 0, 0) = 0 and Dfk(0, 0, 0, 0) = 0 where Dfk is the first derivative of the function fk. By the Center

Manifold Theorem, there is a center manifold given by Z = h(y2) = (y1, y3, y4)T = (h1(y2), h3(y2), h4(y2))T

such that h(0) = 0, Dh(0) = 0, and it satisfies

Bh(y2) +




f1(h(y2), y2)
f3(h(y2), y2)
f4(h(y2), y2)


 = Dh(y2)(Ay2 + f2(h(y2), y2)).

Since h(0) = Dh(0) = 0, we can assume that h1(u) = m2u2 + m3u3 + o(u3), h3(u) = n2u2 + n3u3 + o(u3),

and h4(u) = p2u2 + p3u3 + o(u3). Here we use variable u instead of y2 for simplicity. Then the equation on

the center manifold becomes

(−r 0 0
0 −d1 0
0 0 −d2

)


m2u2 + m3u3 + o(u3)
n2u2 + n3u3 + o(u3)
p2u2 + p3u3 + o(u3)


+




f1(h(u), u)
f3(h(u), u)
f4(h(u), u)




=




2m2u + 3m3u2 + o(u2)
2n2u + 3n3u2 + o(u2)
2p2u + 3p3u2 + o(u2)


 f2(h(u), u).

Substitute fk, k = 1, 2, 3, 4, into the above equation and compare the coefficients on the both sides of the

equation, we get

− rm2 + A22 = 0, −dn2 = −dp2 = 0,

− rm3 + A12m2 + A23n2 + A24p2 = 2m2B22,

− dn3 + C23n2 = 2n2B22,

− dp3 + D24p2 = 2p2B22.

Solving these equations, we obtain m2 = (r+1)2

r , n2 = p2 = 0, m3 = (r+1)3(r+3)
r2 , n3 = p3 = 0. Now we

reduce the system (3.8) to its center manifold, which is a single equation of y2

dy2

dt
= f2(h(y2), y2) = −(r + 1)y2

2 − (r + 1)2

r
y3

2 + o(y3
2).

Hence the trivial solution y2 = 0 of the above equation is locally asymptotically stable. This implies that

E1 is locally asymptotically stable.
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3.3. Stability of E2 and E3

From now on, we assume that a > 1. Then the equilibrium E2 moves into the domain D. To analyze the

behavior of the system (2.1) when a > 1, we consider 3 cases. In this subsection, we analyze the stability of

the equilibrium solution E2 and E3 in the subsystem (2.2).

First, we assume d1

e1
< d2

e2
, then z2 decays to 0 exponentially fast. The system (2.1) is reduced to the

system (2.2) and the behavior of E2 is the same as that of E2. Denote U1 = (x, y, z1)T and f1(U1) =

(rx(1 − x − y) − axy, axy − l1yz1 − y, e1yz1 − d1z1)T . The variational matrix of (2.2) at E2 is

Df1(E2) =




− r
a − r

a − 1 0
r(a−1)

a+r 0 − l1r(a−1)
a(a+r)

0 0 e1r(a−1)
a(a+r) − d1


 .

Then the eigenvalues of Df1(E2) are λ1 = re1(a−1)
a(a+r) − d1 and λ2,3 where λ2,3 are solutions to the equation

λ2 + r
a λ + r

a (a − 1) = 0. By Routh-Hurwitz criterion, since r
a > 0 and r

a (a − 1) > 0, the real parts of λ2,3

are always negative. Notice that λ1 < 0 iff g1(a) > 0, λ1 = 0 iff g1(a) = 0, and λ1 > 0 iff g1(a) < 0. When

a31 − 4a21 < 0, g1(a) > 0 which implies that λ1 < 0 and hence E2 is locally asymptotically stable. When

a31 − 4a21 = 0, g1(a) = (a − 1
2a31)2. In this case, a41 = a51 = 1

2a31. Since a31 = 4a21, r = 4e1d1

(e1−d1)2 and

so 1
2a31 = 2e1

e1−d1
. It implies that, when a ∈ (1, 2e1

e1−d1
) ∪ ( 2e1

e1−d1
, ∞), g1(a) > 0 and hence λ1 < 0. Thus

E2 is locally asymptotically stable when a31 − 4a21 = 0 and 2e1

e1−d1
6= a > 1. When a31 − 4a21 > 0 and

a ∈ (1, a41) ∪ (a51, ∞), g1(a) > 0 and hence E2 is locally asymptotically stable. When a31 − 4a21 > 0 and

a ∈ (a41, a51), E3 comes into the domain D1 and, since g1(a) < 0, E2 is unstable.

In fact, we can show a stronger result that, when g1(a) ≥ 0, E2 is globally asymptotically stable. Consider

the function

V1(x, y, z1) = x − x∗

1 − x∗

1 ln
x

x∗

1

+
r + a

a

(
y − y∗

1 − y∗

1 ln
y

y∗

1

)
+

l1(r + a)

ae1
z1

where x∗

1 := 1
a , y∗

1 := r(a−1)
a(a+r) . By computation,

dV1

dt

∣∣∣
(2.2)

= −r(x − x∗

1)2 +
l1r

a

(
1 − d1

e1
− ad1

re1
− 1

a

)
z1.

Since g1(a) ≥ 0, 1 − d1

e1
− ad1

re1
− 1

a ≤ 0 and hence dV1

dt ≤ 0 along solutions to (2.2). If g1(a) < 0, then dV1

dt = 0

iff x = x∗

1 and z1 = 0. It follows that the maximal compact invariant set in the set where dV1

dt = 0 is the

singleton {E2 = (x∗

1, y∗

1 , 0)T }. By LaSalle’s principle, E21 is globally asymptotically stable. If g1(a) = 0 then
dV1

dt = 0 iff x = x∗

1. Let E1 be the set of all points (x, y, z1)T ∈ D1 such that dV1

dt

∣∣
(2.2)

(x, y, z1) = 0. Then E1

is the set of points in D1 having the form (x∗

1, y, z1)T . Let M1 be the set of all solutions (x(t), y(t), z1(t))T

to the system (2.2) that start in E1 and remain in E1 for all t > 0. Now let (x(t), y(t), z1(t))T ∈ M1 then

x(t) = x∗

1 for all t > 0. The system (2.2) becomes

dx∗

1

dt
= [r(1 − x∗

1 − y) − ay]x∗

1 = 0,

dy

dt
= (ax∗

1 − l1z1 − 1)y,

dz1

dt
= (e1y − d1)z1.
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The first equation implies that r(1 − x∗

1 − y(t)) − ay(t) = 0 for all t > 0 and hence y(t) = y∗

1 for all t > 0.

By the second equation, ax∗

1 − l1z1(t) − 1 = 0 for all t > 0 and so z1(t) = 0 for all t > 0. Thus M1 = {E2}.

The LaSalle principle follows that E2 is globally asymptotically stable.

Next, we assume that a31 − 4a21 > 0 and a ∈ (a41, a51). We claim that E3 is globally asymptotically

stable. Indeed, the variational matrix of (2.2) at E3 is

Df1(E3) =




−r(1 − d1

e1
− ad1

re1
) −(r + a)(1 − d1

e1
− ad1

re1
) 0

ad1

e1
0 − l1d1

e1

0 ae1

l1
(1 − d1

e1
− ad1

re1
− 1

a ) 0


 .

The characteristic polynomial of this matrix is given by −p1(λ) = −(λ3 + b1λ2 + b2λ + b3) where

b1 := r(1 − d1

e1
− ad1

re1
), b2 := ad1

[(
1 +

r

e1
+

a

e1

)(
1 − d1

e1
− ad1

re1

)
− 1

a

]
, and

b3 := ard1

(
1 − d1

e1
− ad1

re1

)(
1 − d1

e1
− ad1

re1
− 1

a

)
.

Since a ∈ (a41, a51), b1 > 0, b2 > 0, and b3 > 0. Furthermore, by computation,

b1b2 − b3 = ard1

(
1 − d1

e1
− ad1

re1

)2(
r

e1
+

a

e1

)
> 0.

All the roots of p1(λ) always have negative real parts. Hence E3 is locally asymptotically stable. Next,

consider the function

V2(x, y, z1) = x − x∗

2 − x∗

2 ln
x

x∗

2

+
r + a

a

(
y − y∗

2 − y∗

2 ln
y

y∗

2

)
+

l1(r + a)

ae1

(
z1 − z∗

1 − z∗

1 ln
z1

z∗

1

)

where x∗

2 := 1 − d1

e1
− ad1

re1
, y∗

2 := d1

e1
, and z∗

1 := a
l1

(1 − d1

e1
− ad1

re1
− 1

a ). By computation,

dV2

dt

∣∣∣
(2.2)

= −r(x − x∗

2)2 ≤ 0.

Then dV2

dt

∣∣
(2.2)

= 0 iff x = x∗

2. Let E2 be the set of all points (x, y, z1)T ∈ D1 such that dV2

dt

∣∣
(2.2)

(x, y, z1) = 0.

Then E2 is the set of points in D1 having the form (x∗

2, y, z1)T . Let M2 be the set of all solu-

tions (x(t), y(t), z1(t))T to the system (2.2) that start in E2 and remain in E2 for all t > 0. Now let

(x(t), y(t), z1(t))T ∈ M then x(t) = x∗

2 for all t > 0. The system (2.2) becomes

dx∗

2

dt
= [r(1 − x∗

2 − y) − ay]x∗

2 = 0,

dy

dt
= (ax∗

2 − l1z1 − 1)y,

dz1

dt
= (e1y − d1)z1.

The first equation implies that r(1 − x∗

2 − y(t)) − ay(t) = 0 for all t > 0 and hence y(t) = y∗

2 for all

t > 0. By the second equation, ax∗

2 − l1z1(t) − 1 = 0 for all t > 0 and so z1(t) = z∗

1 for all t > 0. Thus

M2 = {E3}. The LaSalle principle follows that E3 is globally asymptotically stable. Hence, combining

Section 3.2, Theorem 2.1 is proved.
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3.4. Stability of Ẽ2 and Ẽ4

In this subsection, we study the subsystem (2.3).

We assume that d2

e2
< d1

e1
. Then the solution component z1 of the system (2.1) decays to 0 exponentially

fast. Studying the behavior of the system (2.1) is equivalent to studying the behavior of the reduced system

(2.3). Now fix all parameters except a > 1 and we will examine the behaviors of equilibria Ẽ2 and Ẽ4 as a

is varied. Denote U2 = (x, y, z2)T and f2(U2) = (rx(1 − x − y) − axy − l2xz2, axy − y, e2yz2 − d2z2)T . Then

the variational matrix of (2.3) at Ẽ2 is

Df2(Ẽ2) =




− r
a − r

a − 1 − l2

a
r(a−1)

a+r 0 0

0 0 e2r(a−1)
a(a+r) − d2


 .

By the same argument as in the case d1

e1
< d2

e2
, when a32 < 4a22 or a32 = 4a22, a ∈ (1, 2e2

e2−d2
) ∪ ( 2e2

e2−d2
, ∞)

or a32 > 4a22, a ∈ (1, a42) ∪ (a52, ∞), Ẽ2 is locally asymptotically stable. In fact, we can claim that Ẽ2 is

globally asymptotically stable under one of these assumptions, which is equivalent to d2

e2
− r(a−1)

a(a+r) > 0. Indeed,

by comparison theorem for ODEs, since l2xz2 ≥ 0, the first equation of (2.3) implies dx
dt ≤ rx(1−x−y)−axy.

Let (x̃(t), ỹ(t), z̃2(t)) be the solution to

dx

dt
= rx(1 − x − y) − axy,

dy

dt
= axy − y,

dz2

dt
= e2yz2 − d2z2,

(3.9)

with initial condition x̃(0) = x(0) > 0, ỹ(0) = y(0) > 0, z̃2(0) = z2(0), and x̃(0)+ ỹ(0) < 1. Then x(t) ≤ x̃(t)

and so, by the second equation of (2.3), y(t) ≤ ỹ(t). Using the Lyapunov function

V3(x̃, ỹ) = x̃ − x∗

1 − x∗

1 ln
x̃

x∗

1

+
r + a

a

(
ỹ − y∗

1 − y∗

1 ln
ỹ

y∗

1

)

and LaSalle’s principle, we can easily show that (x̃(t), ỹ(t)) → (x∗

1, y∗

1) as t → ∞. Then, for all 0 < ǫ <
d2

e2
− r(a−1)

a(a+r) , there is a T > 0 such that t ≥ T implies |ỹ(t) − y∗

1 | < ǫ. So the third equation of (3.9) implies

dz̃2

dt
=

[
e2(ỹ(t) − y∗

1) +
e2r(a − 1)

a(a + r)
− d2

]
z̃2

≤
[
e2

(
r(a − 1)

a(a + r)
+ ǫ

)
− d2

]
z̃2

which follows that

0 ≤ z̃2(t) ≤ z̃2(T ) exp

{[
e2

(
r(a − 1)

a(a + r)
+ ǫ

)
− d2

]
(t − T )

}
.

Thus z̃2(t) → 0 as t → ∞. By the third equation of (2.3), since y(t) ≤ ỹ(t), 0 ≤ z2(t) ≤ z̃2(t) and, therefore,

z(t) → 0 as t → ∞. Then, for any ǫ > 0, there exists a T > 0 such that 0 < z2(t) < ǫ for all t ≥ T . The first

equation of (2.3) follows dx
dt ≥ rx(1 − x − y) − axy − l2ǫx. Let (x̃ǫ(t), ỹǫ(t), z̃2ǫ(t)) be the solution to
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dx

dt
= rx(1 − x − y) − axy − l2ǫx,

dy

dt
= axy − y,

dz2

dt
= e2yz2 − d2z2,

(3.10)

with initial condition x̃ǫ(0) = x(0) > 0, ỹǫ(0) = y(0) > 0, z̃2ǫ(0) = z2(0), and x̃ǫ(0) + ỹǫ(0) < 1. Let x∗

1ǫ = 1
a

and y∗

1ǫ = r(a−1)
a(a+r) − l2ǫ. Using the Lyapunov function

V4(x̃ǫ, ỹǫ) = x̃ǫ − x∗

1ǫ − x∗

1ǫ ln
x̃ǫ

x∗

1ǫ

+
r + a

a

(
ỹǫ − y∗

1ǫ − y∗

1ǫ ln
ỹǫ

y∗

1ǫ

)

and LaSalle’s principle, we can easily show that (x̃ǫ(t), ỹǫ(t)) → (x∗

1ǫ, y∗

1ǫ) as t → ∞. It is straightforward

that x̃ǫ(t) ≤ x(t) ≤ x̃(t), ỹǫ(t) ≤ y(t) ≤ ỹ(t), and z̃2ǫ(t) ≤ z2(t) ≤ z̃2(t). Letting t → ∞ and then ǫ → 0, we

obtain (x(t), y(t), z2(t)) → (x∗

1, y∗

1 , 0) as t → ∞ for any initial condition (x(0), y(0), z2(0)) ∈ D◦

2 .

When a32 > 4a22 and a ∈ (a42, a52), Ẽ2 is unstable and Ẽ4 moves into the invariant domain D2. The

variational matrix of (2.3) at Ẽ4 is

Df2(Ẽ4) =




− r
a − r

a − 1 − l2

a
ad2

e2
0 0

0 re2

l2
(1 − d2

e2
− ad2

re2
− 1

a ) 0


 .

The corresponding characteristic polynomial is given by −p2(λ) = −(λ3 + b̃1(a)λ2 + b̃2(a)λ + b̃3(a)) where

b̃1 := b̃1(a) =
r

a
, b̃2 := b̃2(a) =

ad2

e2

( r

a
+ 1
)

, and b̃3 := b̃3(a) = rd2

(
1 − d2

e2
− ad2

re2
− 1

a

)
.

Since a ∈ (a42, a52), b̃1 > 0, b̃2 > 0, and b̃3 > 0. Since b̃3 > 0, p2(0) > 0 and so p2(λ) has at least one

negative real root, say λ̃0 < 0. Let λ̃(a) := α̃(a) + iβ̃(a) and λ̃(a) be the two remaining roots of p2(λ). Then

the eigenvalues of the variational matrix Df2(Ẽ4) are λ̃0, λ̃(a), and λ̃(a). By computation,

b̃1b̃2 − b̃3 = rd2

(
1 +

r

e2
+

a

e2

)(
1

a
− x∗

)

where x∗ :=
1−

d2

e2
−

ad2

re2

1+ r
e2

+ a
e2

. Clearly, x∗ < 1 − d2

e2
− ad2

re2
for all a ∈ (a42, a52). By Routh-Hurwitz’s criterion,

b̃1b̃2 − b̃3 < 0 iff x∗ > 1
a iff α̃(a) > 0, b̃1b̃2 − b̃3 = 0 iff x∗ = 1

a iff α̃(a) = 0, and b̃1b̃2 − b̃3 > 0 iff x∗ < 1
a iff

α̃(a) < 0. Let h2(a) := a2 − r( e2

d2
− 1

d2
− 1)a + re2

d2
+ r2

d2
. It is easy to see that h2(a) < 0 iff x∗ > 1

a , h2(a) = 0

iff x∗ = 1
a , and h2(a) > 0 iff x∗ < 1

a . Since a is varied between a42 and a52, Ẽ4 depends on a. So in order

to investigate the behavior of Ẽ4 we need to study how the sign of b̃1b̃2 − b̃3 changes as a changes between

a42 and a52. Let δ2 := r2
(

e2

d2
− 1

d2
− 1
)2

− 4
(

re2

d2
+ r2

d2

)
. Consider 2 cases. (i) If e2 ≤ d2 + 1 then h2(a) > 0

for all a ∈ (a42, a52) which implies that x∗ < 1
a and hence b̃1b̃2 − b̃3 > 0. So Ẽ4 is locally asymptotically

stable. (ii) If e2 > d2 + 1 then e2

d2
− 1

d2
− 1 > 0 and let’s look at the discriminant δ2 of h2(a). When δ2 < 0,

h2(a) > 0 for all a ∈ (a42, a52) which follows that x∗ < 1
a and hence Ẽ4 is locally asymptotically stable.

When δ2 = 0, then r = 4e2d2

(e2−d2−1)2−4d2
and so h2(a) = (a − a)2 where a := 2e2(e2−d2−1)

(e2−d2−1)2−4d2
. It is clear to see

that a ∈ (a42, a52). Hence h2(a) > 0 for all a ∈ (a42, a) ∪ (a, a52). In this case, Ẽ4 is locally asymptotically

stable for any a ∈ (a42, a52) except a = a. When δ2 > 0, h2(a) has two distinct real roots
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a62,72 :=
1

2
r

(
e2

d2
− 1

d2
− 1

)
∓ 1

2

√
δ2.

It is straightforward that a42 < a62 < a72 < a52. If a ∈ (a42, a62) ∪ (a72, a52) then h2(a) > 0 which implies

that α̃(a) < 0, hence Ẽ4 is locally asymptotically stable. If a ∈ (a62, a72) then h2(a) < 0 which follows that

α̃(a) > 0, thus Ẽ4 is unstable. When either a = a62 or a = a72, h2(a) = 0 and so α̃(a) = 0. We have shown

that as a passes through a62, α̃(a) changes its sign from negative to positive and, as a passes through a72,

α̃(a) changes its sign from positive to negative. Furthermore, using Lemma 3.11 and Theorem 3.12 in [35],

we can show that α̃′(a62) 6= 0 and α̃′(a72) 6= 0. Hence, Hopf bifurcation arises from Ẽ4 at a = a62 and

a = a72. Therefore, combining Section 3.2, the proof of Theorem 2.2 is completed.

3.5. Stability of E2 and manifold of equilibria M

In this subsection, we study the full system, particularly, the stability of the equilibrium solution E2

and the manifold of equilibria M , and show the system undergoes the Poincare-Andronov-Hopf bifurcation

without parameters.

We assume that d1

e1
= d2

e2
=: d

e . We first look at the stability of the equilibrium E2. Then the variational

matrix of the system (2.1) at this equilibrium is

Df(E2) =




− r
a − r

a − 1 0 − l2

a
r(a−1)

a+r 0 − l1r(a−1)
a(a+r) 0

0 0 e1r(a−1)
a(a+r) − d1 0

0 0 0 e2r(a−1)
a(a+r) − d2




.

The characteristic polynomial is given by

[
re1(a − 1)

a(a + r)
− d1 − λ

] [
re2(a − 1)

a(a + r)
− d2 − λ

](
λ2 +

r

a
λ +

r

a
(a − 1)

)
.

Then the eigenvalues of Df(E2) are λ1,2 =
re1,2(a−1)

a(a+r) −d1,2 and λ3,4 where λ3,4 are solutions to the equation

λ2 + r
a λ + r

a (a − 1) = 0. By Routh-Hurwitz criterion, since r
a > 0 and r

a (a − 1) > 0, the real parts of

λ3,4 are always negative. Notice that the sign of λ1,2 is the opposite to that of the quadratic function

g(a) := a2 − r( e
d − 1)a + re

d . There are four cases.

Case 1. a3 − 4a2 < 0. Then g(a) > 0, which is equivalent to λ1,2 < 0. Hence E2 is locally asymptotically

stable.

Case 2. a3 − 4a2 = 0. Then g(a) = (a − 1
2a3)2. Notice that, in this case, a4 = a5 = 1

2a3. Since a3 = 4a2,

r = 4ed
(e−d)2 and so 1

2a3 = 2e
e−d . It implies that, when a ∈ (1, 2e

e−d ) ∪ ( 2e
e−d , ∞), g(a) > 0 and hence λ1,2 < 0.

Thus E2 is locally asymptotically stable when 2e
e−d 6= a > 1.

Case 3. a3 −4a2 > 0 and a ∈ (1, a4)∪(a5, ∞). There is no new equilibrium point that moves into the domain

D and g(a) > 0. Hence E2 is locally asymptotically stable.

By the same arguments as in proving the global stability of Ẽ2, in three cases above, we can show that

E2 is globally asymptotically stable.

Case 4. a3 − 4a2 > 0 and a ∈ (a4, a5). A line segment of equilibria E5(ξ), ξ ∈ [ 1
a , 1 − d

e − ad
re ], moves into

the domain D and g(a) < 0, which implies that E2 is unstable.

Finally, we study the stability of the line segment of equilibria E5(ξ) under the assumptions that a3−4a2 >

0 and a ∈ (a4, a5). Consider the manifold of equilibria

M :=

{
E5(ξ) : ξ ∈

[
1

a
, 1 − d

e
− ad

re

]}
.
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From the last two equations of (2.1), since d1

e1
= d2

e2
, we get dz2

z2
= ρdz1

z1
where ρ := e2

e1
, which implies

that z2 = kzρ
1 for some constant k ≥ 0. These equations z2 = kzρ

1 represent invariant hypersurfaces (3

dimensional manifolds) of the system (2.1) for arbitrary nonnegative constant k. Clearly, these hypersurfaces

foliate completely the positive invariant domain D, that is, through each point in D there passes one and

only one hypersurface of the family z2 = kzρ
1 . For each value of k, consider the restriction of the system

(2.1) to the invariant hypersurface parameterized by x, y, z1.

dx

dt
= rx(1 − x − y) − axy − kl2xzρ

1 ,

dy

dt
= axy − l1yz1 − y,

dz1

dt
= e1yz1 − d1z1.

(3.11)

The positive invariant domain of the reduced system (3.11) is also denoted by

D = {(x, y, z1) : x ≥ 0, y ≥ 0, z1 ≥ 0, x + y ≤ 1}.

Let ξ ∈
[

1
a , 1 − d

e − ad
re

]
such that E5(ξ) = M ∩ {z2 = kzρ

1}. Then ξ is a unique solution to

r

l2

(
1 − d

e
− ad

re
− ξ

)
= k

(
aξ − 1

l1

)ρ

. (3.12)

It is straightforward to see that ξ depends continuously on k. If there is no danger of confusion, the short

notation ξ := ξ(k) will be used. Notice that ξ(k) ∈ [ 1
a , 1 − d

e − ad
re ] for any value of k ≥ 0. Furthermore,

limk→0 ξ(k) = 1 − d
e − ad

re and limk→∞ ξ(k) = 1
a . It can be shown from (3.12) that the value of ξ = ξ(k)

decreases from 1 − d
e − ad

re to 1
a as k increases from 0 to ∞.

The unique positive equilibrium of the reduced system (3.11) is also denoted by

E5(ξ) =

(
ξ,

d

e
,

aξ − 1

l1

)T

,

where ξ ∈ ( 1
a , 1 − d

e − ad
re ). In order to study the behavior of E5(ξ), we fix all parameters with a ∈ (a4, a5)

and allow the constant k ∈ (0, ∞) to vary. We also denote U = (x, y, z1)T and f(U) = (rx(1 − x − y) −
axy − kl2xzρ

1 , axy − l1yz1 − y, e1yz1 − d1z1)T . Then the variational matrix of the system (3.11) at E5(ξ) is

Df(E5(ξ)) =




−rξ −rξ − aξ −kl2ρξ(aξ−1
l1

)ρ−1

ad
e 0 − l1d

e

0 e1

l1
(aξ − 1) 0


 .

The characteristic equation of this matrix is equivalent to p(λ) := λ3 + b1(ξ)λ2 + b2(ξ)λ + b3(ξ) = 0 where

b1 := b1(ξ) = rξ, b2 := b2(ξ) = d1(aξ − 1) +
ad

e
(r + a)ξ,

b3 := b3(ξ) = rd1ξ(aξ − 1) + ad1ρξkl2

(
aξ − 1

l1

)ρ

.

Since ξ ∈ ( 1
a , 1 − d

e − ad
re ), we get b1(ξ) > 0, b2(ξ) > 0, and b3(ξ) > 0. By computation, we obtain

b1b2 − b3 = ard1ξ

[(
r

e1
+

a

e1

)
ξ − ρ

kl2
r

(
aξ − 1

l1

)ρ]
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Using (3.12), we get

kl2
r

(
aξ − 1

l1

)ρ

= 1 − d

e
− ad

re
− ξ.

Thus

b1b2 − b3 = ard1ξρ

[(
1 +

r

ρe1
+

a

ρe1

)
ξ −

(
1 − d

e
− ad

re

)]
.

Let ξ∗ :=
1 − d

e − ad
re

1 + r
ρe1

+ a
ρe1

. Notice that ξ∗ < 1 − d
e − ad

re for any a ∈ (a4, a5) and

b1b2 − b3 = ard1ξρ

(
1 +

r

ρe1
+

a

ρe1

)
(ξ − ξ∗).

Thus b1b2 − b3 < 0 iff ξ < ξ∗, b1b2 − b3 = 0 iff ξ = ξ∗, and b1b2 − b3 > 0 iff ξ > ξ∗. Since b3 > 0, p(0) > 0

and hence p(λ) has at least one negative real root, say λ0. Let λ(ξ) = α(ξ) + iβ(ξ) and λ(ξ) be the two

remaining roots of p(λ). Then eigenvalues of the variational matrix Df(E5(ξ)) are λ0 < 0, λ(ξ), and λ(ξ).

Let h(a) = a2 − r( e
d − 1

ρd1
− 1)a + re

d + r2

ρd1
, then it is straightforward to see that h(a) < 0 iff ξ∗ > 1

a ,

h(a) = 0 iff ξ∗ = 1
a , and h(a) > 0 iff ξ∗ < 1

a . In order to investigate the behavior of the equilibrium E5(ξ),

we need to study how the sign of b1b2 − b3 changes as ξ decreases from 1 − d
e − ad

re to 1
a . This requires us to

look into the sign of the quadratic function h(a). We consider the following cases.

Case 1. e
d ≤ 1

ρd1
+ 1. Then e

d − 1
ρd1

− 1 ≤ 0 and it implies that h(a) > 0 for all a ∈ (a4, a5), which is

equivalent to ξ∗ < 1
a . Since ξ ∈ ( 1

a , 1 − d
e − ad

re ), ξ > ξ∗. This follows that b1b2 − b3 > 0. By Routh-Hurwitz’s

criterion and Lemma 3.10 in [35], α(ξ) < 0. So E5(ξ) is locally asymptotically stable. Because this is true

for each value of k ∈ (0, ∞), thus M◦ := {E5(ξ) : ξ ∈ ( 1
a , 1 − d

e − ad
re )} is locally stable in the sense that any

solution of the system (2.1) starting sufficiently close to any point E5(ξ) on M◦ will approach a point near

E5(ξ) on M◦ (see [4] or [26]).

Case 2. e
d > 1

ρd1
+ 1. This follows that e

d − 1
ρd1

− 1 > 0. Let us look at the discriminant of the quadratic

h(a), which is

δ := r2

(
e

d
− 1

ρd1
− 1

)2

− 4

(
re

d
+

r2

ρd1

)
.

There are two cases.

• If δ ≤ 0 then h(a) ≥ 0 for all a ∈ (a4, a5), which is equivalent to ξ∗ ≤ 1
a . The same argument as in Case

1 shows that M◦ is locally stable.

• If δ > 0 then h(a) has two positive roots a6,7 = 1
2r( e

d − 1
ρd1

− 1) ∓ 1
2

√
δ. Notice that a4 < a6 < a7 < a5.

When a ∈ (a4, a6) ∪ (a7, a5), h(a) > 0 which follows that ξ∗ < 1
a . By the same argument as in Case 1,

E5(ξ) is locally asymptotically stable and hence M◦ is locally stable. When a ∈ (a6, a7), h(a) < 0 which

implies that ξ∗ > 1
a . So ξ∗ ∈ ( 1

a , 1 − d
e − ad

re ). By Routh-Hurwitz’s criterion and Lemma 3.10 in [35],

b1b2 − b3 < 0 if 1
a < ξ < ξ∗, b1b2 − b3 = 0 if ξ = ξ∗, and b1b2 − b3 > 0 if ξ∗ < ξ < 1 − d

e − ad
re . Thus the

real part α(ξ) of the complex roots of the polynomial f(λ) changes sign when ξ passes through ξ∗. On

the other hand, use the standard argument as Lemma 3.11 and Theorem 3.12 in [35], we can easily show

that α′(ξ∗) 6= 0. Therefore the system (2.1) undergoes the Poincare-Andronov-Hopf bifurcation without

parameters (see Theorem 5.1 in [23]). Combining Section 3.2, we complete the proof of Theorem 2.3.



ARTICLE IN PRESS

Please cite this article in press as: T.A. Phan, J.P. Tian, Hopf bifurcation without parameters in deterministic and stochastic
modeling of cancer virotherapy, part I, J. Math. Anal. Appl. (2022), https://doi.org/10.1016/j.jmaa.2022.126278

JID:YJMAA AID:126278 /FLA [m3L; v1.316] P.21 (1-29)

T.A. Phan, J.P. Tian / J. Math. Anal. Appl. ••• (••••) •••••• 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Fig. 1. Dynamics of the system (2.1) when a = 0.75 and initial values are x = 0.5, y = 0.5, z1 = 0.01, and z2 = 0.01.

4. Numerical simulation and discussion

4.1. Numerical simulation and medical interpretations

In this section, we conduct numerical simulations based on the non-dimensionalized system (2.1) to

demonstrate the complete picture of the dynamics of the proposed model. The data of parameter values

are taken from our previous research (see Table 1 in [36] and in [29]). After non-dimensionalization, we fix

parameter values of the system (2.1) are r = 0.36, l1 = 0.48, and l2 = 0.48. The parameter a and two ratios
d1

e1
and d2

e2
are adjusted to demonstrate the analytical results in Theorem 2.1, Theorem 2.2, and Theorem 2.3.

Notice that the unit of uninfected tumor cells, infected tumor cells, innate and adaptive immune cells are

not absolute numbers but relative numbers. The quantities such that x, y, z1, and z2 are, respectively, the

portion of uninfected tumor cells, infected tumor cells, innate and adaptive immune cells over the tumor

carrying capacity. We indicate them as relative uninfected tumor cells and so on in all the figures. For the

time, it can be regarded as relative time since T = δt. Now we consider 3 cases.

Case 1. We demonstrate the situation when adaptive immunity gets stimulated less by infected tumor

cells and gets cleared more than innate immunity. We take d1 = 0.36, e1 = 10, d2 = 0.36, and e2 = 9.5. Then
d1

e1
< d2

e2
and adaptive immune cells decay to 0 very quickly. By computation, we found a21 = 1.0373 and

a31 = 9.64 which verify the condition a31 − 4a21 > 0. Then we can compute a41 = 1.1824 and a51 = 8.4576.

In this case, we simulate the trajectories of the system (2.1) with the same initial value (0.5, 0.5, 0.01, 0.01)

and different values of the parameter a. When a = 0.75, that is, 0 < a < 1, Fig. 1 shows the equilibrium

E1 = (1, 0, 0, 0) is globally asymptotically stable. When a is increased to 1.1, which is 1 < a < a41, Fig. 2

shows the equilibrium E2 = (0.9091, 0.0224, 0, 0) is globally asymptotically stable. When a = 5, which is

a41 < a < a51, Fig. 3 shows globally asymptotical stability of the equilibrium E3 = (0.464, 0.036, 2.75, 0).

With a = 9, Fig. 4 shows the equilibrium E2 = (0.1111, 0.0342, 0, 0) is globally asymptotically stable. The

pattern is quite clear: as infectivity rate a decreases, the tumor grows fast; as infectivity rate a increases,

the tumor grows slower. In particular, with a large value a = 9, the tumor load decreases in size for a long

period of time.

Case 2. We demonstrate the situation when innate immune response gets stimulated less by infected

tumor cells and gets cleared more than adaptive immune response, that is, d2

e2
< d1

e1
. Then innate immune

cell population approaches 0 as time goes by. We take d1 = 0.36, e1 = 9, d2 = 0.36, and e2 = 9.5. By

computation, we found a22 = 1.0394, a32 = 9.14, a42 = 1.1958, and a52 = 7.9442. Since δ2 > 0, we can

compute a62 = 1.4806 and a72 = 6.6594. In this case, we simulate the trajectories of the system (2.1) with
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Fig. 2. Dynamics of the system (2.1) when a = 1.1 and initial values are x = 0.5, y = 0.5, z1 = 0.01, and z2 = 0.01.

Fig. 3. Dynamics of the system (2.1) when a = 5 and initial values are x = 0.5, y = 0.5, z1 = 0.01, and z2 = 0.01.

Fig. 4. Dynamics of the system (2.1) when a = 9 and initial values are x = 0.5, y = 0.5, z1 = 0.01, and z2 = 0.01.
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Fig. 5. Dynamics of the system (2.1) when a = 1.15 and initial values are x = 0.8, y = 0.03, z1 = 0.01, and z2 = 0.01.

Fig. 6. Dynamics of the system (2.1) when a = 1.48 and initial values are x = 0.6, y = 0.03, z1 = 0.01, and z2 = 0.09.

different initial values and different values of the parameter a. When a = 1.15, that is, a22 < a < a42,

Fig. 5 shows the equilibrium E2 = (0.8696, 0.0311, 0, 0) is locally asymptotically stable. When a = 1.48,

that is, a42 < a < a52, Fig. 6 shows periodic solutions, arising from Hopf bifurcation as a is very close to

a62, fluctuate around the equilibrium E4 = (0.6757, 0.0379, 0, 0.098). When a = 6.65, Fig. 7 shows periodic

solutions oscillate around the equilibrium E4 = (0.1504, 0.0379, 0, 0.0838) as a is very close of a72. With the

presence of adaptive immunity, the dynamics of the interaction between tumor cells and adaptive immune

cells becomes more complicated but the tumor load reduces in size compared to Case 1. This demonstrates

that the only presence of adaptive immunity has a positive effect on the success of virotherapy.

Case 3. We assume that both types of immune responses, innate and adaptive, would be stimulated

simultaneously with the same ratio of clearance rate to stimulate rate, that is, d1

e1
= d2

e2
. We take d = d1 =

d2 = 0.4 and e = e1 = e2 = 10. By computation, we found a2 = 1.0417 and a3 = 8.64, which verify the

condition a3 − 4a2 > 0, and hence we can compute a4 = 1.2116 and a5 = 7.4284. Since δ = 22.6116 > 0,

a6 = 1.4924 and a7 = 6.2476. In this case, we simulate the trajectories of the system (2.1) with different

initial values and different values of a to verify the stability of the manifold of equilibria M and demonstrate

the occurrence of Poincare-Andronov-Hopf bifurcation without parameters for this system. When a = 1.4

(a4 < a < a6) or a = 6.5 (a7 < a < a5), Fig. 8 and 9 show the interior of the manifold of equilibria
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Fig. 7. Dynamics of the system (2.1) when a = 6.65 and initial values are x = 0.15, y = 0.03, z1 = 0.01, and z2 = 0.08.

Fig. 8. Dynamics of the system (2.1) when a = 1.4 and initial values are x = 0.7, y = 0.03, z1 = 0.2, and z2 = 0.01.

M◦ = {E5(ζ) : 1
a < ζ < 1 − d

e − ad
re } is locally stable. When a = 6, that is, a6 < a < a7, Fig. 10 and 11

show 3-dim xyz1 and xyz2 phase portraits, respectively, together with three different periodic solutions that

oscillate around the manifold of equilibria M in each one. With the presence of both immune responses,

although the dynamics of the interaction between tumor cells and immune cells is quite complicated, the

pattern is still clear: the higher the infectivity rate of infected tumor cells, the more successful the virotherapy

treatment is.

As we know, the parameter a represents the relative infectivity rate of infected tumor cells, which is a key

parameter for determining the dynamics of our model. Also a partially captures the strength of viruses and

the replicability of the viruses. A large value of a implies the burst size of the viruses is large and vice versa.

To further understanding of the effect of adaptive immune response on the efficacy of virotherapy treatment

for different burst size of viruses, we perform simulations of uninfected tumor cell population for different

values of two immune killing rates, l1 for the innate immunity and l2 for the adaptive immunity, with two

different settings of other parameters. Fig. 12 displays the growth of uninfected tumor cells with respect to

several different values of l1 and l2 when other parameter values are r = 0.36, e = 10, d = 0.4, and a = 1.4.

As the immune killing rate l2 for the adaptive immunity increases, the number density of uninfected tumor
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Fig. 9. Dynamics of the system (2.1) when a = 6.5 and initial values are x = 0.1, y = 0.03, z1 = 0.6, and z2 = 0.02.

Fig. 10. Phase portrait view xyz1 for the system (2.1) with three different periodic solutions when a = 6.

cells decreases. So the tumor grows slower and eventually reduces in size for a long period of time. This

shows that adaptive immune response positively impacts the efficacy of virotherapy as the tumor is treated

with viruses of small burst size. However, as viruses of large burst size are used, the treatment results are

different. Fig. 13 displays the growth of uninfected tumor cell population with respect to several different

values of l1 and l2 when other parameters are r = 0.36, e = 10, d = 0.4, and a = 2.5. When infectivity rate

is increased to a large value, 2.5, and the killing rate l2 for the adaptive immunity is large, 4.8, the number

density of uninfected tumor cells fluctuates wildly. This may mean that the tumor becomes aggressive.

In this case, the both immune response may not show effects on the success of virotherapy. This may be

attributed to Hopf bifurcation without parameters.

4.2. Discussion

From experiments, preclinical, and clinical trials on oncolytic viral therapy, the innate immune response is

not favorable to good outcomes of the treatment although the adaptive immune response helps to eradicate
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Fig. 11. Phase portrait view xyz2 for the system (2.1) with three different periodic solutions when a = 6.

Fig. 12. Dynamics of uninfected tumor cell population with different values of l1 and l2 when r = 0.36, a = 1.4, e = 10, d = 0.4
and initial values are x = 0.7, y = 0.03, z1 = 0.2, and z2 = 0.01.

the tumor. The complexity of outcomes of virotherapy highly depends on the subtle interactions among

many physical variables. In this virotherapy model, we utilize several essential physical variables which are

tumor cells, infected tumor cells, innate immune cells, and adaptive immune cells. The dynamical behaviors

of our model can be roughly classified according to relative immune clearance rates and infectivity constant.

When the adaptive immune response is reduced from our model, the outcomes simply include four equilibria.

When the innate immune response is diminished from our system, besides four equilibria, periodic solutions

arising from classical Hopf bifurcation are additional outcomes. It is difficult to tell which of these two

systems has a better outcome although the system with adaptive immunity has more possible outcomes.

Using data from our previous studies, we demonstrate that only presence of adaptive immunity in the

therapy has a better outcome. When both innate and adaptive immunities are present in the therapy, there

are more possible outcomes. There are infinitely many equilibria and periodic solutions arising from Hopf

bifurcation without parameters in the full model system. For some cases in the full system, we obtain

better outcomes while we get worse outcomes in other cases. As we mentioned in Introduction, the immune
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Fig. 13. Dynamics of uninfected tumor cell population with different values of l1 and l2 when r = 0.36, a = 2.5, e = 10, d = 0.4 and
initial values are x = 0.4, y = 0.03, z1 = 0.5, and z2 = 0.1. (For interpretation of the colors in the figure, the reader is referred to
the web version of this article.)

clearance rates are not fixed and change with densities of immune cells in the tumor. This means that all

possible dynamical behaviors could appear in the viral treatment as we demonstrate numerically above. We

may conclude that all possible outcomes of our model might represent the current situations in clinical tests.

Mathematically, our model demonstrates some new features. Our model has both classical Hopf bifurca-

tion and Hopf bifurcation without parameters. Hopf bifurcation without parameters appears at some point

in a line or curve of equilibria. The stable and unstable manifolds of this point divide the state space into

three pieces. It should be noticed that manifolds here are open without boundaries in general. In each piece

of the state space, periodic solutions have similar properties and similar asymptotic behaviors. In different

pieces, periodic solutions have completely different properties and asymptotic behaviors. One major differ-

ence between classical Hopf bifurcation and Hopf bifurcation without parameters is as its name suggested.

Classical Hopf bifurcation appears when a parameter passes through a particular value while Hopf bifurca-

tion without parameters appears when a variable or coordinate of state space passes through a particular

value, and, of course, Hopf bifurcation without parameters may be involved in many parameters. There is

no common physical mechanism for Hopf bifurcation without parameters. From our model, it seems to be

easier to explain why virotherapy has many outcomes. One reason is periodic solutions easily appear when

tumor cells change together with the changing of immune clearance rates.

An interesting question is how stable or robust our results obtained from our model are when we take

account of microenvironmental noises or parameter errors. This will be involved in stochastic modeling. Our

research will continue on this direction in Part II.
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Highlights

• Innate and adaptive immune responses have opposite effects in virotherapy.

• Outcome is determined by innate immune if it is cleared less than adaptive immune.

• Outcome is determined by adaptive immune if it is cleared less than innate immune.

• Hopf bifurcation without parameters occurs when two immunes are cleared equally.


	Hopf bifurcation without parameters in deterministic and stochastic modeling of cancer virotherapy, part I
	1 Introduction
	2 Results and interpretations
	3 Analysis of the model
	3.1 Equilibrium solutions
	3.2 Stability of E0 and E1
	3.3 Stability of E2 and E3
	3.4 Stability of E2 and E4
	3.5 Stability of E2 and manifold of equilibria M

	4 Numerical simulation and discussion
	4.1 Numerical simulation and medical interpretations
	4.2 Discussion

	Acknowledgments
	References


