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In this paper, we analyze a new Ito stochastic differential equation model for untreated
human glioblastomas. The model was the best fit of the average growth and variance of

94 pairs of a data set. We show the existence and uniqueness of solutions in the positive

spatial domain. When the model is restricted in the finite domain (0, b), we show that
the boundary point 0 is unattainable while the point b is reflecting attainable. We prove

there is a unique ergodic stationary distribution for any non-zero noise intensity, and
obtain the explicit probability density function for the stationary distribution. By using
Brownian bridge, we give a representation of the probability density function of the

first passage time when the diffusion process defined by a solution passes the point

b firstly. We carry out numerical studies to illustrate our analysis. Our mathematical
and numerical analysis confirm the soundness of our randomization of the deterministic

model in that the stochastic model will set down to the deterministic model when the
noise intensity approaches zero. We also give physical interpretation of our stochastic
model and analysis.
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1. Introduction

Mathematical modeling of solid tumor growth has a long history. Gompertz

proposed a mathematical model to express his law of human mortality [1], which

was purely phenomenologically fitted to his data. The Gompertz curve was originally

applied to actuaries. It then was used by various authors as a growth curve, both for

biological and for economic phenomena [2]. It was until 1960s the Gompertz curve

was verified for some solid tumor growth in a study by Laird [3]. After Laird’s

work, there have been many studies about applications of the Gompertz curve

in tumor growth [4, 5]. A recent review tried to unify all Gompertz type models

[6]. A recent work [7] still showed the Gompertz model was a good fit for their

experimental data. However, there always exist discrepancies between predicted

curves and data when we study all fitted Gompertz models and corresponding

experimental or clinical data. It is clear that there are errors in measurements which

may contribute data variations. But, there are intrinsic noises or fluctuations in

tumor growth due to interactions between tumor cells and their microenvironment

including nutrition and oxygen supplies. To count these uncertainties, there are

several generalized Gompertz types of mathematical models in terms of stochastic

processes and stochastic differential equations [8, 9, 10, 11]. These models have some

applications or provide some theoretical understanding of tumor growth with white

noise perturbations.

We recently proposed a new stochastic Gompertzian model for untreated human

glioblastoma growth [12]. Based on the data set of 94 untreated glioblastoma

patients [13], we found the best fit of deterministic Gompertz curve, and then found

the best fit of white noise term for data variance. We combined these two best fits,

and the resulted model is a Ito stochastic differential equation. The model has the

following form

dX = f(X)dt+ g(X)dW, (1.1)

where f(x) = ax log b
x and g(x) = ϵσ(x) with σ(x) = x

h+
√
x
. Here X = X(t) (or Xt)

stands for the tumor volume at time t; a represents the intrinsic tumor growth rate;

b is the carrying capacity of the tumor; ϵ is a positive parameter which is related to

the noise intensity; and W =W (t) (or Wt) is the one-dimensional standard Wiener

process.

In [12], we showed how the stochastic model was established, and then carried

out extensive computations to simulate the distribution of patient survival time

with and without treatments, and obtained empirical formulas to calculate the

average survival time and its variance. The study provided physicians with optimal

times for operating surgery on glioblastoma patients. In current study, our goal

is to rigorously analyze behaviors of the stochastic model (1.1) and to obtain a
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complete understanding of our new model. We show that the model has a unique

globally positive solution for any nonnegative initial condition. We classify the

boundary properties of the stochastic model when it is restricted to a finite spatial

interval. Interestingly, the stochastic model possesses a unique ergodic stationary

distribution to which transition probabilities of all solutions would approach no

matter how large the noise intensity is. We also derive a representation for the first

passage time when the solution crosses a certain level by using the three-dimensional

Brownian bridge. We carry out some numerical simulations to show how solutions

of stochastic and deterministic model behave, how the probability density function

of the stationary distribution changes as the noise intensity value changes, and

we approximate the probability density function of the first passage time by using

Monte Carlo estimation.

The rest of the article is organized as follows. In Section 2, the analysis is carried

out in 4 subsections. In Section 3, we carry out numerical studies. In Section 4, we

briefly discuss why our stochastic differential equation model is reasonable and

sound mathematically, also discuss how to interpret our model physically.

2. Analysis of the model

In this section, we analyze our stochastic model. We first prove the existence and

uniqueness of the solution for the stochastic differential equation (1.1) in the whole

positive spatial domain. If we restrict to the invariant domain of the deterministic

part of the model (0, b) which has two boundary points, we carry out a detailed

analysis for boundary classification. We then prove there exists a unique ergodic

invariant measure in the whole positive domain. Lastly, we study the first passage

time and its density representation.

2.1. Existence and uniqueness of the solution

First of all, for the sake of completion, we mention the deterministic part of our

model (1.1), namely, the Gompertz model,

dX

dt
= aX log

b

X
. (2.1)

It is clear that X(t) > 0 for all t and we assume that 0 < X(0) < b. It is easy to

obtain it’s solution as follows,

X(t) = b

(
X(0)

b

)e−at

.

Note that limt→∞X(t) = b. Since 0 < e−at < 1, 0 < X(t) < b. This shows that

(0, b) is the positive invariant domain of the deterministic equation (2.1).

Now we consider the stochastic differential equation (1.1). First, we need to

specify an appropriate filtered probability space for (1.1). Let Ω = {ω ∈ C(R+,R) :
ω(0) = 0}, F be the Borel σ-algebra on Ω, and P be the measure induced by
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{Wt}t∈R+ , the one-dimensional Wiener process in (1.1). Without loss of generality,

we can assume that F is completed by P. Then the filtration Ft is given by

the canonical filtration generated by {Wt}t∈R completed by all P-null sets of F .

Then a completed filtered probability space (Ω,F , {Ft}t∈R+ ,P) for our stochastic

differential equation model is obtained.

For our model (1.1), we define the differential operator

Lh(x) = f(x)
dh(x)

dx
+

1

2
g2(x)

d2h(x)

dx2

and its adjoint as

L∗h(x) = − d

dx
(f(x)h(x)) +

d2

dx2

(
1

2
g2(x)h(x)

)
where h(x) is a smooth enough function.

It is natural to expect that (0, b) would also be the positive invariant domain

of (1.1). It is useful to know whether or not the sample path of the solution of

(1.1) exit from the domain (0, b) in a finite time. For our model, the exit of the

solution path through the boundary b within a finite time might happen. In the

next subsection, we will study the exit probability of the solution path through the

boundaries to classify the boundary points for (1.1) when we restrict our model to a

finite spatial interval. Now, we show that (0,∞) is the almost sure invariant domain

of the equation (1.1). In fact, we cannot use the standard theorems that provide the

existence of a solution because f and g do not satisfy the Lipschitz condition and

the linear growth condition on the domain (0,∞). Instead, our method is based on

Corollary 3.1 in [14].

Let D = (0,∞) and Dn = ( 1n , n) for each n ≥ 1, then Dn ⊂ Dn+1, Dn ⊂ D, for

each n ≥ 1, and
⋃∞
n=1Dn = D. Note that f and g satisfy the Lipschitz condition

and the linear growth condition on each Dn. Consider the function V (x) = x+1−
b− b log x

b for x ∈ D, which is positive and twice continuously differentiable on D.

Furthermore, it is easy to check that for all x ∈ D, we have

LV = −a(log x− log b)(x− b) +
1

2

bϵ2

(h+
√
x)2

.

Since log x is increasing on (0,∞) and 1
2

bϵ2

(h+
√
x)2

≤ 1
2b(

ϵ
h )

2, LV ≤ 1
2b(

ϵ
h )

2. As V ≥ 1

for all x ∈ D, so LV ≤ c̄V with c̄ = 1
2b(

ϵ
h )

2. Notice that V (x) → ∞ as either x→ 0

or x→ ∞. If x ∈ D\Dn, then, as n→ ∞, either x→ 0 or x→ ∞. Therefore

inf
D\Dn

V (x) → ∞ as n→ ∞.

According to Corollary 3.1 in [14], these two conditions guarantee that, withX(0) >

0, the equation (1.1) possesses a pathwise unique continuous solution X(t) > 0 with

probability 1.

Theorem 2.1. The stochastic model (1.1) has a pathwise unique continuous strong

positive solution X(t) almost surely with any positive initial value X(0). This

solution defines a scalar homogeneous diffusion process on (0,∞).
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2.2. Boundary classification

For the deterministic model (2.1), the domain is (0, b). For the stochastic model

(1.1) with the drift term f(x) = ax log b
x and the diffusion coefficient g2(x) =

ϵ2σ2(x), where σ(x) = x
h+

√
x
, the domain is (0,∞). If we restrict the stochastic

differential equation (1.1) in the finite domain D = (0, b), it is important to know

the properties of two boundary points or how the solutions behave around two

boundary points [17, 18]. In this subsection, we study the boundary classification.

We use methods developed by Gihman and Skorohod [19].

Note that g(x) > 0 for all x ∈ (0, b). Set

φ(x) = exp

{
− 2

ϵ2

∫ x

x0

f(y)

σ2(y)
dy

}
and ψ(x) =

∫ x

y0

φ(y)dy

where x0 and y0 are arbitrary and fixed in (0, b). By computation,∫ x

x0

f(y)

σ2(y)
dy = ah2 log b log x− 1

2
ah2(log x)2 + 4ah

√
x log b

− 4ah
√
x log x+ 8ah

√
x+ ax log b− ax log x+ ax+ C,

where

C := −ah2 log b log x0 +
1

2
ah2(log x0)

2 − 4ah
√
x0 log b

+ 4ah
√
x0 log x0 − 8ah

√
x0 − ax0 log b+ ax0 log x0 − ax0.

Then we get

φ(x) =
exp{ 1

ϵ2 log x(ah
2 log x+ 8ah

√
x+ 2ax− ah2 log b)}

b(8ah
√
x+2ax)/ϵ2 exp{2(8ah

√
x+ ax+ C)/ϵ2}

.

Let Xx(t) be the solution to

dXx(t) = f(Xx(t)) dt+ g(Xx(t)) dW (t)

until first exit from (0, b) with Xx(0) = x ∈ (0, b) and τx[α, β] the first time Xx(t)

attains the boundary of (α, β) ⊂ (0, b) where x ∈ (α, β). By Theorem 4 in Chapter

3 [19],

P (Xx(τx[α, β]) = α) =
ψ(β)− ψ(x)

ψ(β)− ψ(α)
, (2.2)

and

P(Xx(τx[α, β]) = β) =
ψ(x)− ψ(α)

ψ(β)− ψ(α)
. (2.3)

First of all, we show that the boundary point 0 of (1.1) in the domain D is

unattainable. In fact, the property of the boundary point of 0 depends only on

the following constant

L0
1 :=

∫ β

0

φ(y) dy, for some fixed β ∈ (0, b).
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Now, since log(x2 exp[ah
2

ϵ2 (log x)2]) = 2 log x+ ah2

ϵ2 (log x)2 approaches ∞ as x ↓ 0,

lim
x↓0

x2 exp

[
ah2

ϵ2
(log x)2

]
= ∞.

On the other hand, as x is getting close to 0, the denominator of φ(x) tends to

a finite number while its numerator blows up to ∞ exponentially fast because of

the term exp
[
ah2

ϵ2 (log x)2
]
. This implies that lim

x↓0
x2φ(x) = ∞, so there exists a

0 < δ < β such that for 0 < x < δ we get φ(x) > x−2. Thus, for any 0 < α < δ,

ψ(α) = −
∫ δ

α

φ(y) dy −
∫ y0

δ

φ(y) dy

≤ −
∫ δ

α

dy

y2
−
∫ y0

δ

φ(y) dy =
1

δ
− 1

α
−
∫ y0

δ

φ(y) dy,

which follows that L0
1 = ψ(β)− lim

α↓0
ψ(α) = ψ(β)−ψ(0+0) = ∞. Hence, from (2.2),

letting α ↓ 0 gives

P (Xx(τx[0, β]) = 0) =
ψ(β)− ψ(x)

ψ(β)− ψ(0 + 0)
= 0.

In other words, P (Xx(τx[ϵ, β]) = ϵ) can be made arbitrarily small by suitable choice

of ϵ > 0 for any initial value x ∈ (0, b). Therefore, the boundary point 0 cannot be

attained in finite time before the boundary point b. Moreover, the solution Xx(t)

cannot reach 0 with positive probability as t → ∞ since then Xx(t) would, with

the same probability, reach ϵ before b for each ϵ > 0, which is impossible. Hence 0

is an unattainable boundary point of (1.1).

Secondly, we claim that b is a reflecting attainable boundary point of (1.1).

Indeed, the property of the boundary point b depends on the following constants

Lb1 :=

∫ b

α

φ(y) dy, Lb2 :=

∫ b

α

ψ(b)− ψ(y)

ϵσ2(y)φ(y)
dy, and Lb3 :=

∫ b

α

dy

ϵσ2(y)φ(y)
,

for some fixed α ∈ (0, b). Since φ(x) is continuous at b,

Lb1 = ψ(b− 0) = lim
x↑b

∫ x

α

φ(y) dy <∞.

Then, from (2.3), letting β ↑ b gives

P(Xx(τx[α, b]) = b) =
ψ(x)− ψ(α)

ψ(b− 0)− ψ(α)
> 0. (2.4)

Next, set Y (t) = ψ(X(t)), where ψ(x) =
∫ x
y0
φ(y) dy. By Ito’s formula,

dY (t) = ψ′(X(t))dX(t) +
1

2
ψ′′(X(t))(dX(t))2

= φ(X(t))[f(X(t))dt+ g(X(t))dW (t)] +
ϵ2

2
φ′(X(t))σ2(X(t))dt

=

[
φ(X(t))f(X(t)) +

ϵ2

2
φ′(X(t))σ2(X(t))

]
dt+ ϵφ(X(t))σ(X(t))dW (t).
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Since φ(x) = exp
{
− 2
ϵ2

∫ x
x0

f(y)
σ2(y)dy

}
, differentiating both sides with respect to x

gives

ϵ2

2
φ′(x)σ2(x) + f(x)φ(x) = 0.

Hence

dY (t) = ϵσ(X(t))φ(X(t)) dW (t).

As ψ(x) is increasing and differentiable over (0, b) with ψ′(x) = φ(x) > 0 for

all x ∈ (0, b), so ψ has a unique differentiable inverse function ξ = ψ−1. Then

X(t) = ξ(Y (t)) and so

dY (t) = σ̄(Y (t)) dW (t), (2.5)

where σ̄(x) = ϵ σ(ξ(x))φ(ξ(x)). The process Y (t) will be defined up to the first exit

from (r1, r2) in which r1 = ψ(0) =
∫ 0

y0
φ(y) dy and r2 = ψ(b) =

∫ b
y0
φ(y) dy. Let

Yy(t) satisfy dYy(t) = σ̄(Yy(t)) dW (t) up to the first exit from (r1, r2) with initial

condition Yy(0) = y ∈ (r1, r2). Let τ̄y[s1, s2] be the first time Yy(t) reaches the

boundary of (s1, s2), where r1 < s1 < s2 < r2. Set V (y) = E τ̄y[s1, s2], s1 ≤ y ≤ s2.

By Theorem 2 in Section 15 in [19], since σ̄(y) > 0 for all y ∈ [s1, s2], τ̄y[s1, s2] <∞
w.p.1 and V (y) solves

1

2
σ̄2(y)V ′′(y) = −1, V (s1) = V (s2) = 0.

By computation, we obtain

V (y) := E τ̄y[s1, s2] = 2

∫ y

s1

(s2 − y)(t− s1)

(s2 − s1)σ̄2(t)
dt+ 2

∫ s2

y

(s2 − t)(y − s1)

(s2 − s1)σ̄2(t)
dt. (2.6)

It follows from (2.6) that a necessary and sufficient condition that

E τ̄y[s1, r2] = lim
s2↑r2

E τ̄y[s1, s2] <∞

is, for some z0 ∈ (r1, r2), lim
s2↑r2

∫ s2
z0

(s2−t)(y−s1)
(s2−s1)σ̄2(t) dt <∞. This is equivalent to∫ r2

z0

r2 − t

σ̄2(t)
dt <∞.

Since σ̄(t) = ϵ σ(ξ(t))φ(ξ(t)), by making the substitution ξ(t) = y and t = ψ(y) we

obtain∫ r2

z0

r2 − t

σ̄2(t)
dt =

∫ b

z1

[ψ(b)− ψ(y)]φ(y)

ϵ2 σ2(y)φ2(y)
dy =

∫ b

z1

ψ(b)− ψ(y)

ϵ2 σ2(y)φ(y)
dy <∞, (2.7)

where z1 := ξ(z0). We can assume that z0 is chosen such that α = ξ(z0). Then the

above condition (2.7) is equivalent to Lb2 < ∞. Hence a necessary and sufficient

condition that E τx[α, b] <∞ is Lb2 <∞. It is clear that ψ(b)−ψ(y)
ϵσ2(y)φ(y) is continuous on

[α, b] and Lb1 = ψ(b− 0) <∞. Therefore Lb2 <∞. Then, by Theorem 1 chapter 5 in

[19], for all x ∈ (α, b) we have E τx[α, b] < ∞, which means that τx[α, b] < ∞ a.s.
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and P{Xx(τx[α, b]) = b} > 0. In other words, b is an attainable boundary point of

(1.1).

For the moment, we study properties ensuring a continuous passage from the

boundary b into the interior of the interval (0, b). Let δ > 0 be arbitrary and let

Xδ(t) be a process on (α, b) constructed as follows: Xδ(0) = b−δ, Xδ(t) satisfy (1.1)

in (α, b), if τ is the first exit time of Xδ(t) from (α, b), then take Xδ(τ) = b− δ and

let the further behavior of Xδ(t) for t > τ be governed by (1.1) until it again reaches

the boundary of (α, b) etc. Then Xδ(t) is defined for all t > 0 in this way. Denote

by τk the k-th time Xδ(t) reaches the boundary of (α, b). The variables τk+1 − τk
are identically distributed and are independent (see Corollary 1 section 15 in [19]).

Also, the events Uk = {Xδ(τk) = α} are independent. Using the above notation, we

can write for all k ≥ 1

V (b− δ) := E(τk+1 − τk) = E τ1 and P(Uk) =
ψ(b)− ψ(b− δ)

ψ(b)− ψ(α)
.

Then the probability that Xδ(t) hits α for the first time after (n− 1) times it hits

b is

P
{

inf
t≤τn

Xδ(t) = α

}
= 1−

(
1− ψ(b)− ψ(b− δ)

ψ(b)− ψ(α)

)n
.

Let nδ be the integral part of 1/Eτ1 and t > 1 arbitrary. Consider

P{τnδ
< t} = P

{
nδ∑
k=1

(τk − τk−1) < t

}
= 1− P

{
nδ∑
k=1

(τk − τk−1) ≥ t

}
.

If
∑nδ

k=1(τk − τk−1) ≥ t then
∑nδ

k=1[τk − τk−1 − E(τk − τk−1)] ≥ t − nδEτ1. Note

that nδEτ1 ≤ 1 and so t − nδEτ1 ≥ 0. Then, using the fact that the τk − τk−1 are

identically distributed and independent,

P{τnδ
< t} ≥ 1− P

{∣∣∣∣∣
nδ∑
k=1

[τk − τk−1 − E(τk − τk−1)]

∣∣∣∣∣ ≥ t− nδEτ1

}

≥ 1−
Var(

∑nδ

k=1(τk − τk−1))

(t− nδEτ1)2

= 1− nδVarτ1
(t− nδEτ1)2

≥ 1− Varτ1
Eτ1

1

(t− 1)2
.

By the proof of Corollary 1 chapter 5 in [19], we can obtain

lim sup
δ↓0

Varτ1
Eτ1

= 0.

Let τ = lim
δ↓0

τnδ
, then for t > 1 arbitrary we get P{τ ≤ t} = 1. Hence P{τ <∞} = 1.

Thus, in order that P{inft≤τ Xδ(t) = α} > 0, it is necessary and sufficient that

lim sup
δ↓0

(
1− ψ(b)− ψ(b− δ)

ψ(b)− ψ(α)

)nδ

< 1, i.e., lim sup
δ↓0

nδ[ψ(b)− ψ(b− δ)] > 0.
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This is equivalent to

lim sup
δ↓0

V (b− δ)

ψ(b)− ψ(b− δ)
<∞.

Note that lim
δ↓0

V (b− δ)

ψ(b)− ψ(b− δ)
exists (it might assume the value ∞). Set z(x) :=

V ′(x)

ψ′(x)
, then it is easy to check that z′(x) =

−2

ϵ2 φ(x)σ2(x)
< 0 for x ∈ [α, b], that is,

z(x) is monotone and so lim
x↑b

z(x) = lim
x↑b

V ′(x)
ψ′(x) = V ′(b)

ψ′(b) . On the other hand,

lim
δ↓0

V (b− δ)

ψ(b)− ψ(b− δ)
= − lim

δ↓0

(V (b)− V (b− δ))/δ

(ψ(b)− ψ(b− δ))/δ
= −V

′(b)

ψ′(b)
.

Thus, in order that lim
δ↓0

V (b− δ)

ψ(b)− ψ(b− δ)
is finite, it is necessary and sufficient that

Lb3 :=

∫ b

α

dx

ϵ2 σ2(x)φ(x)
<∞. (2.8)

From the formula of φ, it is easy to see that the condition (2.8) is verified. Thus, we

have proved that the probability that X(t) moves back to the interior of the interval

(0, b) after hitting the boundary b in finite time is positive. This means that b is a

reflecting attainable boundary point of (1.1).

Lastly, we study the probability of first exit through the boundary point b, that

is, the probability that the solution firstly reaches the boundary point b in finite

time, which is p(ϵ) := P (Xx(τ
ϵ
x[α, b]) = b) where τ ϵx[α, b] is the first time that the

solution Xx(t) reaches the boundary of [α, b]. We claim that limϵ↓0 p(ϵ) = 0. To

emphasize the dependence of all the quantities and functions involving p(ϵ) on ϵ,

we denote

φϵ(x) := exp

{
− 2

ϵ2

∫ x

x0

f(z)

σ2(z)
dz

}
, ψϵ(x) :=

∫ x

y0

φϵ(z)dz,

Lb1(ϵ) :=

∫ b

α

φϵ(y)dy, and Lb2(ϵ) :=

∫ b

α

ψϵ(b)− ψϵ(y)

ϵσ2(y)φϵ(y)
.

Indeed, we look at the behavior of two constants Lb1 and Lb2 as ϵ is getting close to

0. For convenience, we treat these two constants as a function of ϵ and so we can

write them as Lb1(ϵ) and Lb2(ϵ). If L
b
1(ϵ + 0) := limϵ↓0 L

b
1(ϵ) = ∞ then, of course,

p(ϵ) → 0 as ϵ→ 0 due to (2.4). If Lb1(ϵ+ 0) <∞ then ψϵ(b)− ψϵ(y) <∞ as ϵ→ 0

for any y ∈ (α, b). Since ϵφϵ(y) = ϵ exp
{
− 2
ϵ2

∫ y
x0

f(z)
σ2(z)dz

}
→ 0 as ϵ → 0 for any

y ∈ (x0, b). Thus L
b
2(ϵ+0) := limϵ↓0 L

b
2(ϵ) = ∞. By (2.6), a necessary and sufficient

condition that E τ ϵ+0
x [α, b] = ∞ is Lb2(ϵ+0) = ∞, where τ ϵ+0

x [α, b] := limϵ↓0 τ
ϵ
x[α, b].

This implies that E τ ϵ+0
x [α, b] = ∞ for all x ∈ (α, b). By Corollary 2 Chapter 5 in

[19],

P
{
Xx(τ

ϵ+0
x [α, β]) = b, τ ϵ+0

x [α, b] <∞
}
= 0.
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In other words, either τ ϵ+0
x [α, b] < ∞ a.s. and Xx(τ

ϵ+0
x [α, β]) = α a.s. for any

α ∈ (0, b), or τ ϵ+0
x [α, b] = ∞ a.s. The first case cannot happen since 0 is unattainable

boundary point. Therefore τ ϵ+0
x [α, b] = ∞ a.s. and hence the first time the solution

Xϵ
x(t) reaches the boundary of [α, b] is infinity as ϵ approaches 0. This means that

p(ϵ) → 0 as ϵ→ 0.

We summarize our results in this section as the following theorem.

Theorem 2.2. If the stochastic model (1.1) is restricted to the interval (0, b), then

0 is an unattainable boundary point while b is reflecting attainable. When the noise

intensity parameter is small enough, the exit probability of the solution of (1.1) from

this interval becomes arbitrarily small.

Remark 2.1. From the derivation above, the exit probability at b from (0, b) is

zero if the noise intensity parameter ϵ is zero. This matches the deterministic case.

When ϵ is zero, the stochastic model is reduced to the deterministic model. Since

x = b is a stable equilibrium point for the deterministic model, starting from any

initial point in (0, b), the solution of the deterministic model can never pass through

the point b.

2.3. Ergodic stationary distributions

We know that x = b is a stable equilibrium point of the deterministic model

dX = f(X)dt. For the stochastic differential equation (1.1) in the domain E =

(0,∞), x = b is no longer an equilibrium point (or a stationary solution). However,

we obtain a unique invariant distribution that can be considered as the stochastic

analogue of the deterministic stationary solution. In this subsection, we construct

the invariant measure by using the Fokker-Planck equation and show it is ergodic.

Theorem 2.3. The stochastic differential equation (1.1) has a unique invariant

measure µ that is ergodic. The probability density function of this invariant measure

is of the form

pϵ(x) = K
ϵ 2(h+

√
x)2

ϵ2x2
exp

{
1

ϵ2
H(x)

}
, x > 0,

where

H(x) = −ah2
(
log

b

x

)2

+ 8ah

(√
x log

b

x
+ 2

√
x− 2

√
b

)
+ 2a

(
x log

b

x
+ x− b

)
and

(K
ϵ
)−1 =

∫ ∞

0

2(h+
√
y)2

ϵ2y2
exp

{
1

ϵ2
H(y)

}
dy

is the normalizing constant.

Proof. By Zhu in [22], since g(x) > 0 for all x ∈ (0,∞), it suffices to find a C2

function V : R+ → R+ and a neighborhood U of b such that LV (x) < 0 for all
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x ∈ E\U . Now consider V (x) = x− b− b log x
b . Then

LV = ax log
b

x

(
1− b

x

)
+

1

2

b

x2
ϵ2x2

(h+
√
x)2

= −a(log x− log b)(x− b) +
1

2

bϵ2

(h+
√
x)2

≤ −a(log x− log b)(x− b) +
1

2
b
( ϵ
h

)2
.

Let q(x) = a(log x− log b)(x− b)− 1
2b
(
ϵ
h

)2
, where x ∈ E = (0,∞). Then

q′(x) = a− ab

x
+ a log x− a log b, and q′′(x) =

ab

x2
+
a

x
> 0.

It implies that q′(x) is strictly increasing on (0,∞). Since q′(b) = 0, q′(x) has a

unique solution (0,∞). Note that q(b) < 0, lim
x↓0

q(x) = ∞, and lim
x→∞

q(x) = ∞.

Then there exist x1 ∈ (0, b) and x2 ∈ (b,∞) so that q(x1) = q(x2) = 0. As q′(x) has

a unique solution, so q has exactly two solutions x1 and x2. Choose U = (x1, x2).

If x /∈ U then q(x) < 0. Thus LV (x) < 0 for x ∈ E\U . Hence we can conclude

that there exists a unique ergodic invariant measure µ for the solution X(t) of the

stochastic equation (1.1) no matter how large the noise strength ϵ is.

Next, we compute the density of this invariant measure µ using the

Fokker-Planck equation associated with the stochastic equation (1.1). Let pϵ =

pϵ(x), x ∈ (0,∞), be the invariant probability density function of µ. Then L∗pϵ = 0

where

L∗pϵ = − d

dx
(f(x)pϵ) +

d2

dx2

(
1

2
g2(x)pϵ

)
.

The equation L∗pϵ = 0 is equivalent to

d

dx

[
d

dx

(
1

2
g2(x)pϵ(x)

)
− 2f(x)

g2(x)

(
1

2
g2(x)pϵ(x)

)]
= 0. (2.9)

Set yϵ(x) :=
1
2g

2(x)pϵ(x) = 1
2

ϵ2x2

(h+
√
x)2
pϵ(x) and αϵ(x) :=

2f(x)
g2(x) = 2a

ϵ2
(h+

√
x)2

x log b
x .

Then the equation (2.9) is equivalent to

y′ϵ(x)− αϵ(x) yϵ(x) = −c (2.10)

for some constant c. The solution of (2.10) has the form of

yϵ(x) = Aϵ(x)

(
K − c

∫ x

b

dt

Aϵ(t)

)
where Aϵ(t) = exp{

∫ t
b
αϵ(u) du} and K is a positive constant. By computation, we

get ∫ x

b

αϵ(u) du =
2ah2

ϵ2

(
log b log x− 1

2
(log x)2 − 1

2
(log b)2

)
+

8ah

ϵ2

(√
x log

b

x
+ 2

√
x− 2

√
b

)
+

2a

ϵ2

(
x log

b

x
+ x− b

)
.
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Denote

H(x) := −ah2
(
log

b

x

)2

+ 8ah

(√
x log

b

x
+ 2

√
x− 2

√
b

)
+ 2a

(
x log

b

x
+ x− b

)
.

Therefore the density pϵ(x) has the form of

pϵ(x) =
2(h+

√
x)2

ϵ2x2
Aϵ(x)

[
K + c

∫ b

x

dt

Aϵ(t)

]
in which

Aϵ(x) = exp

{
1

ϵ2
H(x)

}
.

Note that

lim
x↓0

2(h+
√
x)2

ϵ2x2
Aϵ(x) = 0 and lim

x↑∞

2(h+
√
x)2

ϵ2x2
Aϵ(x) = 0.

Now we claim that pϵ(x) is a density function if and only if c = 0. We show that,

in some neighborhood of 0, pϵ(x) has bounded integral only when c = 0. Here

we take K > 0 and c ≥ 0 because pϵ is a density. Suppose that c > 0. Write

H(x) = −ϵ2γ(log b
x )

2 +H1(x) where γ := ah2

ϵ2 and

H1(x) = 8ah

(√
x log

b

x
+ 2

√
x− 2

√
b

)
+ 2a

(
x log

b

x
+ x− b

)
.

Then

Aϵ(x) = exp

{
−γ
(
log

b

x

)2
}
exp

{
1

ϵ2
H1(x)

}
.

Since

lim
x↓0

exp

{
1

ϵ2
H1(x)

}
= exp

{
1

ϵ2
(−16ah

√
b− 2ab)

}
> 0,

there are positive constants Kϵ
1 and Kϵ

2 such that in some neighborhood of 0

Kϵ
1 exp

{
−γ
(
log

b

x

)2
}

≤ Aϵ(x) ≤ Kϵ
2 exp

{
−γ
(
log

b

x

)2
}
.

Then

pϵ(x) ≥ 2cKϵ
1

(
h

ϵ

)2

x−2 exp

{
−γ
(
log

b

x

)2
}∫ b

x

Kϵ
2 exp

{
γ

(
log

b

t

)2
}
dt

= Kϵ
3 x

−2 exp

{
−γ
(
log

b

x

)2
}∫ b

x

exp

{
γ

(
log

b

t

)2
}
dt

where Kϵ
3 > 0 is a constant. Denote

L := lim
x↓0

(H2(x))
−1

∫ b

x

exp{γ(log(b/t))2}dt,
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where H2(x) = x2 exp{γ(log(b/x))2}. We will prove that L = ∞. Indeed, since

lim
t↓0

t2 exp{γ(log(b/t))2} = ∞, there is a 0 < δ1 < b such that 0 < t < δ1 implies

exp{γ(log(b/t))2} > t−2. Then∫ b

x

exp{γ(log(b/t))2}dt ≥
∫ δ1

x

t−2dt =
1

x
− 1

δ1
→ ∞ as x ↓ 0.

On the other hand, H2(x) → ∞ as x ↓ 0. So applying L’Hospital’s Rule gives

L = lim
x↓0

∫ b
x
exp{γ(log(b/t))2}dt

H2(x)

= lim
x↓0

− exp{γ(log(b/x))2}
2x exp{γ(log(b/x))2}[1− γ log(b/x)]

= lim
x↓0

1

2x(γ log b− γ log x− 1)
= ∞.

Given N > 0 there is 0 < δ2 < 1 such that 0 < x < δ2 implies

Kϵ
3 x

−2 exp

{
−γ
(
log

b

x

)2
}∫ b

x

exp

{
γ

(
log

b

t

)2
}
dt >

N

δ2
.

Hence ∫ 1

0

pϵ(x)dx ≥
∫ δ2

0

N

δ2
dx = N.

Since N is arbitrary,
∫ 1

0
pϵ(x)dx = ∞. This completes the proof.

Remark 2.2. We have two observations. First, the ergodic stationary distribution

exists for any non-zero noise intensity ϵ. Second, when the noise intensity ϵ

approaches 0, the probability density function pϵ(x) tends to the Dirac delta

function with mass concentrated in b. In fact, let δ(x) = limϵ↓0 p
ϵ(x). Taking natural

log of pϵ(x), we get

log pϵ(x) = log

(
2(h+

√
x)2

x2

)
+

1

ϵ2
(H(x)− ϵ2 log I(ϵ)),

where

I(ϵ) :=

∫ ∞

0

2(h+
√
y)2

y2
exp

{
1

ϵ2
H(y)

}
dy.

Notice that the function H(x) is increasing on (0, b), decreasing on (b,∞), and

attains its maximum 0 at x = b. This implies that H(x) < 0 for x ̸= b and

H(x) = 0 when x = b. Furthermore, using standard calculus, we can prove that

I(ϵ) → 0 as ϵ ↓ 0 which follows that ϵ2 log I(ϵ) → 0 as ϵ ↓ 0. So, for x ̸= b,

as ϵ ↓ 0 we have log pϵ(x) → −∞ which implies that pϵ(x) → 0. When x = b,

log pϵ(b) = log
(

2(h+
√
b)2

b2

)
− log I(ϵ) → ∞ as ϵ ↓ 0 and hence pϵ(x) → ∞ as ϵ ↓ 0.

Therefore δ(x) = 0 for all 0 < x ̸= b and δ(b) = ∞.

We will simulate the probability density function of the stationary distribution

and make some numerical observations in Section 3.
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2.4. The first passage time density

We have shown that, in the section 2.1, with X0 = x > 0 w.p.1, the stochastic

differential equation (1.1) has a pathwise unique strong solution Xt > 0 w.p.1. Then

Px[S = ∞] = 1, where

S = inf{t > 0; Xt /∈ (0,∞)}

is the explosion time of the diffusion process Xt. We have also proved that 0 is

an unattainable boundary point of the diffusion process Xt starting at any point

X0 = x ∈ (0,∞). If we restrict our attention to the interval (0, b1) (with b1 < b)

then, by the same argument as the previous section, b1 is a reflecting attainable

boundary point. Now we are interested in the distribution of the first passage time

of the diffusion process Xt at level b1

τb1 = inf{t > 0; Xt = b1}.

For simplicity, we can reduce Xt to a diffusion process with unit diffusion

coefficient by using the transformation

Y =

∫ X

b1

dz

g(z)
=: ϕ(X).

Note that g(x) = ϵx
h+

√
x
> 0 on (0,∞) and 1

g(x) is locally integrable over (0,∞).

Then this transformation defines a new 1-dimensional diffusion process Yt with

dynamics

dYt = ϕ′(Xt)dXt +
1

2
ϕ′′(Xt)(dXt)

2,

which is equivalent to

dYt =

(
f(Xt)

g(Xt)
− 1

2
g′(Xt)

)
dt+ dWt.

Since

ϕ(X) =

∫ X

b1

dz

g(z)
=
h

ϵ
log

X

b1
+

2

ϵ

(√
X −

√
b1

)
is continuously differentiable and increasing on (0, b1) and ϕ

′(X) = 1
g(X) > 0 for all

X ∈ (0, b1), there is a unique inverse function ψ = ϕ−1 defined on (ϕ(0), ϕ(b1)) =

(−∞, 0) such that ψ′(Y ) = 1
ϕ′(X) = g(X) > 0 for all Y = ϕ(X) ∈ (−∞, 0). With

y := ϕ(x), the first passage time of Xt with X0 = x ∈ (0, b1) at level b1 is equal to

the first passage time of Yt with Y0 = y ∈ (−∞, 0) at level 0. Let

τ0 = inf{t > 0; Yt = 0},

and Py denote the probability law on the canonical path space C(R+,R) of

continuous functions from R+ to R that makes the process Yt behave according

to

dYt = c(Yt) dt+ dWt, (2.11)
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where

c(Yt) =
f(ψ(Yt))

g(ψ(Yt))
− 1

2
g′(ψ(Yt)) =

a

ϵ
log

b

ψ(Yt)

(
h+

√
ψ(Yt)

)
− ϵ

2

2h+
√
ψ(Yt)(

h+
√
ψ(Yt)

)2 .
Since ψ is continuously differentiable over (−∞, 0) and takes values on (0, b1), c is

also continuously differentiable over (−∞, 0). Note that the function γ := 1
2 (c

2+c′)

is continuous and locally integrable on (−∞, 0). By the transformation, the equation

(2.11) admits a unique strong solution Yt < 0 w.p.1 with initial value Y0 = y ∈
(−∞, 0) w.p.1. Thus, Yτ0 does not explode to ∞.

Now we will consider the problem of finding a convenient representation of the

quantity

py(t) :=
∂

∂t
Py[τ0 ≤ t], y ∈ (−∞, 0), t ∈ R+,

i.e. the density of the first passage time of the diffusion Yt at level 0. The

representation of this density function is described in the following theorem.

Theorem 2.4. Consider a standard 3-dimensional Brownian bridge β on the

probability space
(
C[0, 1],R3, PBB3

)
. Then

py(t) =
|y|e−y2/2t√

2πt3
exp

(∫ 0

y

c(v)dv

)
EBB3

[
exp

(
−t
∫ 1

0

γ
(
−
∣∣∣u|y|e1 +√

tβu

∣∣∣) du)]
holds for all t ∈ R+, where e1 = (1, 0, 0)T and | · | denotes the usual Euclidean norm

in R3.

Proof. Consider the non-negative Py-supermartingale

Zt := exp

(
−
∫ t∧τ0

0

c(Yu) dWu −
1

2

∫ t∧τ0

0

c2(Yu) du

)
.

Since Py
[
S̄ = ∞

]
= 1 where S̄ = inf{t > 0; Yt /∈ (−∞, 0)}, by Exercise 5.5.38(iii)

in [16] Zt is a martingale. Let Qy be the probability law on C(R+,R) that makes

the process Yt behave like a Brownian motion starting from y and stopping when

it reaches level 0. Then Girsanov’s theorem follows that

dQy
dPy

∣∣∣
Ft

= Zt

for all t ∈ R+. Now applying Ito’s formula under Qy gives

d

(∫ Yt

0

c(v) dv

)
= c(Yt) dYt +

1

2
c′(Yt)(dYt)

2

on the set {τ0 < ∞}. Integrating the above from 0 to τ0 and using the fact that

Yτ0 = 0 yield∫ Yτ0

0

c(v) dv −
∫ Y0

0

c(v) dv =

∫ τ0

0

c(Yu) dYu +
1

2

∫ τ0

0

c′(Yu) du
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and so ∫ 0

y

c(v) dv =

∫ τ0

0

c(Yu) dYu +
1

2

∫ τ0

0

c′(Yu) du.

Hence on {τ0 <∞} we have

1

Zτ0
= exp

(∫ τ0

0

c(Yu) dWu +
1

2

∫ τ0

0

c2(Yu) du

)
= exp

(∫ τ0

0

c(Yu)[dYu − c(Yu)du] +
1

2

∫ τ0

0

c2(Yu) du

)
= exp

(∫ τ0

0

c(Yu) dYu −
1

2

∫ τ0

0

c2(Yu) du

)
= exp

(∫ 0

y

c(v) dv −
∫ τ0

0

γ(Yu) du

)
.

Note that dPy = 1
Zt∧τ0

dQy and this implies that

Py[τ0 ≤ t] = EQy

[
1

Zt∧τ0
1{τ0≤t}

]
= EQy

[
exp

(∫ 0

y

c(v) dv −
∫ τ0

0

γ(Yu) du

)
1{τ0≤t}

]
= EQy

[
exp

(∫ 0

y

c(v) dv −
∫ τ0

0

γ(Yu) du

) ∣∣∣τ0 ≤ t

]
Qy[τ0 ≤ t]

= exp

(∫ 0

y

c(v) dv

)
EQy

[
exp

(
−
∫ τ0

0

γ(Yu) du

) ∣∣∣τ0 ≤ t

]
Qy[τ0 ≤ t].

Then we get

py(t) = lim
h→0

1

h
Py[t ≤ τ0 ≤ t+ h]

= exp

(∫ 0

y

c(v) dv

)
lim
h→0

EQy

[
exp

(
−
∫ τ0

0

γ(Yu) du

) ∣∣∣t ≤ τ0 ≤ t+ h

]
×

lim
h→0

1

h
Qy[t ≤ τ0 ≤ t+ h]

= exp

(∫ 0

y

c(v) dv

)
EQy

[
exp

(
−
∫ τ0

0

γ(Yu) du

) ∣∣∣τ0 = t

]
qy(t)

where qy(t) ≡ |y|√
2πt3

exp(−y2

2t ) is the first exit time density at level 0 of a standard

Brownian motion starting from y. Thus

py(t) =
|y|e−y2/2t√

2πt3
exp

(∫ 0

y

c(v) dv

)
EQy

[
exp

(
−
∫ τ0

0

γ(Yu) du

) ∣∣∣τ0 = t

]
.

Given τ0 = t, the regular conditional Qy-distribution of the process −Yt−s, 0 ≤ s ≤
t, is that of a 3-dimensional Bessel bridge from 0 to |y| over [0, t] (see the proof

of Proposition 2.1 in [21]). On the canonical space (C[0, 1],R3, PBB3) with the
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stardand 3-dim Brownian bridge β, the process
∣∣(s/t)|y|e1 +√

t βs/t
∣∣, 0 ≤ s ≤ t,

has the exact law of the above Bessel bridge. Thus

EQy

[
exp

(
−
∫ τ0

0

γ(Yu)du

)]
= EBB3

[
exp

(
−
∫ t

0

γ
(
−
∣∣∣(s/t)|y|e1 +√

tβs/t

∣∣∣) ds)]
= EBB3

[
exp

(
−t
∫ 1

0

γ(−|u|y|e1 +
√
t βu|)du

)]
,

and therefore the result follows.

This theorem is a representation of the probability density function of the

first passage time which is very useful to simulate the first passage time. We will

numerically compute it in the next section.

3. Numerical studies

In this section, we carry out some numerical studies to demonstrate how

solutions to stochastic model and corresponding deterministic model behave

differently, how the stationary distribution of the stochastic model changes as

noise intensity parameter value changes, and how the first passage time behave

as the tumor volume changes. In Figure 1, we illustrate solutions of stochastic and

deterministic model for 4 different values of the noise intensity parameter ϵ. In each

plot, the initial values for both stochastic and deterministic model are the same.

From these plots, we can see that the fluctuation of the solution to stochastic model

becomes large as the noise intensity parameter value becomes large. The solution

of the stochastic model will merge into the solution of the deterministic model as

the noise intensity parameter ϵ approaches zero.

In Subsection 2.3, using the Fokker-Plank equation we obtain an explicit

expression of the density function of the stationary distribution for the stochastic

model. To visualize it, we plot the density against the tumor volume for 4 different

values of the noise intensity parameter ϵ in Figure 2. From these plots, we see that

the stationary distribution always exists even for large noise perturbation. When

the noise intensity parameter ϵ becomes small, the density function becomes more

concentrated, and approaches the Dirac delta function at x = b. This verifies that

x = b is a stationary point (equilibrium point) of the model when ϵ = 0, which is

the equilibrium solution of the deterministic model.

In Subsection 2.4, we obtain a representation of the probability density function

of the first passage time. It is still difficult to understand how the the first passage

time behaves. We now use the Monte Carlo simulation technique (see [21]) to

simulate the density function of the first passage time. In order to estimate the

density py(t) at a given time t ∈ R+, we simulate N independent paths of the

3-dimensional Brownian bridge, β1, β2,..., βN , then define the estimator pNy (t) for
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Fig. 1. Comparison: solutions of stochastic and deterministic model for different ϵ values.

py(t) via

pNy (t) :=
|y|e−

y2

2t

√
2πt3

exp

(∫ 0

y

c(v)dv

)
1

N

N∑
i=1

exp

(
−t
∫ 1

0

γ
(
−
∣∣∣u|y|e1 +√

tβiu

∣∣∣) du) .
By strong law of large numbers, the estimator pNy (t) converges almost surely to the

true density py(t) as N goes to ∞ for each fixed t ∈ R+. Furthermore, based on

Propositions 3.1 and 3.2 in [21], we can show that {pNy (t)}t∈R+ converges uniformly

to py(t) with rate 1/
√
N over compact time intervals. We generate a standard

3-dimensional Brownian bridge β from 0 to 1 over the time interval [0, 1] using the

pathwise unique solution of the system of SDEs

dβ =
−β
1− t

dt+ dw(t), 0 ≤ t < 1, β(0) = β(1) = 0,

where w(t) = (w1(t), w2(t), w3(t)) is a 3-dimensional standard Brownian motion

(see [23]). All data of parameter values for the stochastic model (1.1) are taken

from [12], in which a = 0.009916, b = 121.6, ϵ = 0.0769, and h = 0.2241. Since

we are interested in the survival time for each patient and this survival time can

be expressed as the first passage time that the volume of the tumor, X, reaches a
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Fig. 2. The density functions pϵ(x) for different values of ϵ.

specific value, we do simulations for the densities of the first passage time random

variable

τ(X0, Xc) = inf{t > 0; Xt = Xc}

where X0 < Xc, X0 is the tumor size at time we start to observe and Xc is the

tumor size when we stop to observe. As in [12], we choose X0 = 20 and Xc ∈
{60, 70, 80, 90}. The density curves are presented in Picture 3. From these numerical

simulations, we can see some reasonable features of the first passage time. For

example, for a given tumor size, there is a critical time around which the probability

density is concentrated; that means, the probability to grow to the given size of the

tumor is almost zero if the time is too early, and the probability is large if the time

is close to the critical time. We can compute the probability and the time interval

when the tumor size is given. For example, if we want to know the probability that

the tumor will grow to the size of 60 ML after 100 days if the initial observed size

is 20 ML, we then compute (integrate) the probability density function of the first

passage time until 100 days; if we want to know when the tumor size is 60 ML with

probability 80% if the initial observed size is 20 ML, we need to find the critical
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Fig. 3. The first passage time densities of the solution X (the volume of the tumor), starting at

X0 = 20 (initial observation), at level Xc = 60, 70, 80, 90 (final observation).

time, then local a lower bound and upper bound of time centered at the critical

time using 80%.

4. Conclusion and discussion

In this study, we analyze a new Ito stochastic differential equation model for

untreated human gliomas. The model is based deterministic Gompertz model

for solid tumor growth. We show the existence and uniqueness of solutions in

positive spatial domain. When the model is restricted in finite domain (0, b), we

show that the boundary point 0 is unattainable while the point b is reflecting

attainable. The stochastic model does not have non-trivial equilibrium points. But,

we show there is a unique ergodic stationary distribution for any non-zero noise

intensity parameter value, and obtain the explicit probability density function for

the stationary distribution. We also obtain a representation of the density function

of the first passage time. In addition, our mathematical and numerical analysis

confirms that the stochastic model will set down to the deterministic model when

the noise intensity parameter approaches zero [24]. Therefore, our randomization of
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the deterministic Gompertz model is mathematically sound and reasonable.

We know the solution of an Ito stochastic differential equation is a diffusion

process when it exists and is unique. We may consider tumor growth as follows

[20]. The velocity of the macroscopic motion of the tumor cells at the point x and

the instant t is equal to a(t, x). We assume that fluctuational component of the

displacement is random variable ξt,xt,∆t whose distribution depends on the position

x of the tumor cell and the instant t at which the displacement is observed, and

the quantity ∆t which is the length of time interval during which the displacement

is observed. Then, we have the change of tumor volume Xt+∆t −Xt = a(t, xt)∆t+

ξt,xt,∆t. We also assume that ξt,xt,∆t = b(t, x)ξt,∆t, where b(t, x) characterizes the

properties of the tumor microenvironment at the point x and instant t; ξt,∆t is

the increment that is obtained in the local homogeneous environment under the

condition that b(t, x) = 1. We may also consider b(t, x) is a standard deviation of

the displacement. We simply take ξt,∆t is distributed as Brownian motion w(t+∆t)−
w(t). Consequently,Xt+∆t−Xt ≈ a(t, xt)∆t+b(t, xt)[w(t+∆t)−w(t)]. A reasonable

approximation of this growth process is Ito stochastic differential equations. For

our case, we take the fitted average growth rate ax log b
x as the growth velocity

a(t, x), and the fitted standard deviation x
h+

√
x
with a multiplicative parameter ϵ

as b(t, x). This parameter can somehow measure randomness of fluctuational terms.

Therefore, each term in our stochastic model has certain physical significance, and

our stochastic model is physically sound.

If we consider the stochastic model only in the spatial domain (0, b), we might

need some extra conditions for the boundary b. From our analysis of boundary

classification, the boundary point 0 is unattainable and b is reflecting attainable. In

this case, the diffusion process cannot be uniquely determined [17, 19]. In order

to have a unique diffusion process which can be applied to tumor growth, we

have to specify some condition at the boundary point b, while there is no need

of boundary conditions at point 0. There are several ways to impose boundary

conditions. However, this will be a completely different study which is beyond this

study. We plan to conduct this study in the future.
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