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Abstract

Motivated by our study of infiltrating dynamics of immune cells into tumors, we propose a
stochastic model in terms of Ito stochastic differential equations to study how two parameters,
the chemoattractant production rate and the chemotactic coefficient, influence immune cell
migration and how these parameters distinguish two types of gliomas. We conduct a detailed
analysis of the stochastic model and its deterministic counterpart. The deterministic model
can differentiate two types of gliomas according to the range of the chemoattractant production
rate as two equilibrium solutions, while the stochastic model also can differentiate two types
of gliomas according to the ranges of the chemoattractant production rate and chemotactic
coefficient with thresholds as one non-zero ergodic invariant measure and one weak persistent
state when the noise intensities are small. When the noise intensities are large comparing with
the chemotactic coefficient, there is only one type of glioma that corresponds to a non-zero
ergodic invariant measure. Using our experimental data, numerical simulations are carried out
to demonstrate properties of our models, and we give medical interpretations and implications
for our analytical results and numerical simulations. This study also confirms some of our results
about IDH gliomas.

Keywords: ergodic invariant measure, weak persistence, stochastic differential equation,
muIDH glioma, wtIDH glioma

1 Introduction

It is significant for many cancers to have infiltrated immune cells [1]. There are lots of studies to
explore the impacts of tumor-infiltrated immune cells [2]. Some studies showed that direct contact
between immune cells and tumor cells can reduce the tumor size while other studies indicated that
increased immune cells in the tumor may facilitate tumor cell invasion [3, 4, 5]. Although the
reason for these contradictory observations remains elusive, it is important to understand how the
migration of immune cells into the tumor is regulated [8]. Recently, our group performed a series of
experimental studies about how tumor-associated immune cells are regulated [9]. Gliomas have two
types, CIMP and non-CIMP, according to CpG island methylator phenotype (CIMP) [10]. CIMP
gliomas have some mutations in isocitrate dehydrogenase 1/2 (IDH1/2). Non-CIMP wild-type
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IDH1/2 (wtIDH1/2) gliomas are more malicious comparing with their CIMP counterparts, CIMP
mutant IDH1/2 (muIDH1/2). In our experiments with human tissues, we compared the infiltrated
immune cell amounts of wtIDH1 and muIDH1 and found human CIMP gliomas have lower numbers
of several immune cell types compared with non-CIMP tumors. To understand the difference in
vivo, we utilized the RCAS/tva system to create isogenic glioma pairs from PDGF-driven mouse
glioma models whose initiating events differed only in the presence or absence of muIDH1. Our
experimental results showed that the muIDH1 mouse gliomas have significant reduced immune cell
contents, and showed a regulatory role of muIDH1 on the infiltration of immune cells into gliomas
with the secretion of several chemoattractants [9]. However, to comprehend how IDH1 mutants
regulate the infiltration of immune cells into gliomas and how they affect the aggressiveness of
gliomas, it is necessary to integrate our experimental data into a dynamical system to acquire a
complete understanding of subtle regulation of immune cell infiltration.

In our study [12], we formulated a mathematical model of 3-dimensional glioma driven by
PDGF. We consider a radially symmetrical tumor and denote by r the distance from a point to
the center of the tumor. The tumor boundary is denoted by r = R(t). Let G(r, t) be the number
density of glioma cells, H(r, t) the number density of necrotic cells, N(r, t) the number density of
infiltrated immune cells, and A(r, t) the concentration of chemoattractants produced by tumor cells.
The proliferation and removal of cells cause movements of cells within the tumor, with a convection
term, for tumor cells G, which is of the form 1

r2
∂
∂r (r2G(r, t)V (r, t)), where V (r, t) is the velocity and

V (0, t) = 0. The necrotic cells undergo the same convection while the chemoattractants undergo
diffusion. The immune cells migrate along the gradient field generated by chemoattractants into
the tumor, and then undergo the same convection besides chemotaxis within the tumor. By mass
conservation laws, the model we proposed in [12] is as follows:

∂G(r, t)

∂t
+

1

r2
∂

∂r
[r2G(r, t)V (r, t)] = λG(r, t)− µG(r, t), r ∈ [0, R(t)),

∂H(r, t)

∂t
+

1

r2
∂

∂r
[r2H(r, t)V (r, t)] = µG(r, t)− δH(r, t), r ∈ [0, R(t)),

∂A(r, t)

∂t
= D

1

r2
∂

∂r

[
r2
∂A(r, t)

∂r

]
+

mG(r, t)

β +G(r, t)
− γA(r, t), r ∈ [0,∞),

∂N(r, t)

∂t
+

1

r2
∂

∂r
[r2N(r, t)V (r, t)] = −α 1

r2
∂

∂r
[r2N(r, t)

∂A(r, t)

∂r
]− ρN(r, t), r ∈ [0, R(t)).

We assumed that all cells have the same size. Since the number density of the tissue is constant,
we have G(r, t) +H(r, t) +N(r, t) = θ within the tumor. Combining these equations, we have the
equation for the velocity,

θ

r2
∂

∂r
[r2V (r, t)] = λG(r, t)− δH(r, t)− α 1

r2
∂

∂r
[r2N(r, t)

∂A(r, t)

∂r
]− ρN(r, t).

The free boundary condition is given by dR(t)
dt = V (R(t), t). The initial conditions are specified as

R(0) = ε, where ε is a very small number; G(r, 0), H(r, 0), N(r, 0), for 0 < r < ε; and A(r, 0),
0 < r <∞. The boundary conditions for the chemoattractant A(r, t) are specified as ∂

∂rA(0, t) = 0
and A(r, t) vanishes at infinity, and V (0, t) = 0 for t ≥ 0. We did computational studies to
verify our model and made numerical predications in [12]. Particularly, we found two parameters,
the chemoattractant production rate m and chemotactic coefficient α, play important roles. The
chemoattractant production rate m can distinguish two types of tumors, wtIDH1 and muIDH1,
according to the range of its value. The chemotactic coefficient α determines the possibilities of
immune cell migration along chemoattractant gradient fields. However, as these two parameters
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are perturbed or in a noisy environment which actually is the case in reality, we would like to
explore how stable our conclusion about these two parameters are. This is a medical relevant
question. There are several factors which contribute randomness of parameter values [11]. We
mentioned parameter sensitivity analysis in [12]. However, the influence of randomness and noise
on parameters is a different question.

Therefore, in this article, we conduct some analysis of how these two parameters will affect
the dynamics of immune cells infiltrating into the tumor site if they are perturbed. In order
to grasp the essence of the problem, we first reduce our PDE system above to a system of
ordinary differential equations and then perturb two parameters to obtain a system of Ito stochastic
differential equations.

The simplified ODE system is as follows:

dG

dt
= λG

(
1− G+N

C

)
,

dA

dt
=

mG

β +G
− γA, (1.1)

dN

dt
= αAN − ρN.

where G = G(t) is the number density of glioma cells at time t, A = A(t) is the concentration
of chemoattractants at time t, and N = N(t) is the number density of infiltrated immune cells
at time t. We use logistic growth to model the growth of glioma cells with the proliferation rate
λ and carrying capacity C. The necrotic cells is not needed since it is built in logistic growth
function. Chemoattractants is produced by glioma cells and the Michaelis-Menten Kinetics is
used to model the production rate of chemoattractants which is proportional to mG

β+G , where β is
Michaelis constant. The parameter γ denotes the chemoattractant degradation rate. The parameter
ρ is the immune clearance rate. The last two parameters m and α, represent the chemoattractant
production rate and the chemotactic coefficient, respectively. This ODE model may be regarded
as a simplified version of our PDE model without spatial distributions, but inherits dynamical
properties in time, particularly, which we are interested in most are about these two parameters.

Aforementioned, we are interested in parameters m and α. The chemoattractant production
rate m describes how much chemoattractants are produced in unit volume and unit time. The
randomness or noise for m mainly comes from how much chemoattractants are in the tumor, or
its variation can be described by variation of chemoattractant concentrations. Specifically, we
may assume that each chemoattractant molecule make almost same contribution to the stochastic
effects and receive the same environmental noise. Then, the environmental noise and randomness
for chemoattractant production can be represented by τ1Aξ, where ξ is the unit noise and τ1 can
be regarded as a way to measure average variation of each chemoattractant molecule [11]. As
usual, we take the white noise ξ = dW

dt , and Wt represents the standard Wiener process. Thus,

we will change m to m + τ1A
dW1
dt . The chemotactic coefficient α describes how much area or

volume of the gradient can be generated per unit of chemoattractant and time. In other words, the
chemotactic coefficient describes how much possibility that chemoattractant substance can make
immune cell move forward. The randomness and noise for α mainly is from the environment.
We may represent the noise by τ2ξ, where τ2 measure an average variation of the environmental
contribution [23]. We then replace α with α+ τ2

dW2
dt . It should be mentioned that W1 and W2 are

mutually independent one dimensional Wiener processes. Therefore, we get the following system
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of Ito stochastic differential equations.

dG = λG

(
1− G+N

C

)
dt,

dA =

(
mG

β +G
− γA

)
dt+

τ1AG

β +G
dW1, (1.2)

dN = (αAN − ρN) dt+ τ2AN dW2.

As the way we incorporate randomness and noise is not usually to simply add additive or
linear noise, our stochastic model does not satisfy usual boundedness conditions [6, 17]. This
creates difficulties in analyzing our stochastic model. Based on significant progress in the theory of
stochastic persistence [6, 7, 17], we develop delicate and new estimates for our model. Meanwhile,
we conduct numerical studies using our experimental data with detailed biological interpretations
and implications.

The rest of the article is organized as follows. In Section 2, we non-dimensionalize the systems
(1.1) and (1.2), present main analytical results, and provide medical interpretations. In Section
3, using our experimental data, we provide numerical simulations for two systems with biological
explanations, we discuss some aspects of stochastic modeling and list several open problems. In
Section 4, an analysis of the deterministic counterpart of our stochastic model is presented and the
main theorem for this system is proved. In Section 5, we analyze our stochastic model by studying
the long-term behaviors near the boundary of the positive invariant domain. The article ends with
Acknowledgements and References.

2 Results and interpretations

In this section, we list our major analytical results and give some biological interpretations. For
simplicity, we non-dimensionalize the system (1.2) by setting G = CG, A = CA, N = CN , T = γt,
and rename parameters r = λ

γ , a = m
γC , b = β

C , c = αC
γ , d = ρ

γ , τ1 = τ1
C , and τ2 = τ2

C . Then the
system (1.2) becomes

dG = rG(1−G−N) dT,

dA =

(
aG

b+G
−A

)
dT +

τ1AG

b+G
dW1,

dN = (cAN − dN) dT + τ2AN dW2.

For convenience, drop all the bars over the variables and write T as t, we get

dG = rG(1−G−N) dt,

dA =

(
aG

b+G
−A

)
dt+

τ1AG

b+G
dW1, (2.1)

dN = (cAN − dN) dt+ τ2AN dW2,

and the corresponding deterministic system of (2.1) is

dG

dt
= rG(1−G−N),

dA

dt
=

aG

b+G
−A, (2.2)

dN

dt
= cAN − dN.
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It is assumed that all parameters are nonnegative.
For the deterministic system (2.2), it is straightforward to find the positive invariant domain

which is biologically meaningful as

D = {(G,A,N) : 0 ≤ G ≤ 1, A ≥ 0, N ≥ 0}.

Now, the parameter a represents the chemoattractant production rate and c represents chemotactic
coefficient. We find the first critical value for the parameter a, as1 = bd+d

c , by determining three

equilibrium solutions E0 = (0, 0, 0), E1 = (1, a
b+1 , 0), and E2 =

(
bd

ac−d ,
d
c ,

ac−d−bd
ac−d

)
. We linearize the

system (2.2) at these equilibria to study their local stability. We also use center manifold theorem
to study the global and local stability of the equilibria on the boundary of D. To investigate Hopf
bifurcations, we develop a family of coefficient parameterized polynomials and take advantage of
properties of Routh-Hurwitz determinant to obtain the second critical value for the parameter a,

as2 =
y∗3+d
c , where y∗3 is the unique positive root of the cubic polynomial Φ(y) = −y3 + (b+ bd)y2 +

bd(br + 1)y + b2d2r. The main result for the dynamics of the system (2.2) can be summarized in
the following theorem.

Theorem 2.1. The system (2.2) has three equilibrium solutions E0, E1, and the positive equilibrium
E2. E0 is always unstable for all positive values of a. E1 is globally asymptotically stable when
0 < a < as1, and it is unstable when a > as1. At a = as1, E1 is locally asymptotically stable and the
positive equilibrium E2 moves into the positive invariant domain D, a similar type of transcritical
bifurcation occurs with E1 and E2. As as1 < a < as2, E2 is locally asymptotically stable; when
a > as2, E2 is unstable. Only one Hopf bifurcation occurs at a = as2, and this bifurcation gives rise
to one family of periodical solutions. As a becomes large enough, E2 ≈ (O( 1a), dc , 1).

This theorem has some biological interpretations or implications. From our study in [12], we
know that the chemoattractant production rate m or a now can distinguish two type of gliomas,
wtIDH1 and muIDH1. Gliomas of wtIDH1 have more infiltrated immune cells. We may give the
following interpretations.

Interpretation 2.1. With the deterministic system (2.2), two types of gliomas can be distinguished
by their chemoattractant production rate. If the chemoattractant production rate is smaller than a
critical value, as1, then the tumor belongs to muIDH1 type. If the chemoattractant production rate
is greater than as1, then the tumor belongs to wtIDH1 type. When the chemoattractant production
rate is even larger, the tumor will attract more immune cells and is more aggressive.

For the stochastic system (2.1), we specify an appropriate completed filtered probability space.
Let Ω = {ω ∈ C(R,R2), ω(0) = 0}, F the Borel σ-algebra on Ω and P the measure induced by
{Wt}t∈R, a two-sided 2-dimensional Wiener process. Then the elements of Ω can be identified with
paths of a Wiener process ω(t) = Wt(ω). Now we consider the P-completion of F , also denoted by
F , that is F contains all P-null sets. The filtration Ft is given by the canonical filtration generated
by the Wiener process completed by all P-null sets of F . Denote the probability measure given by
the extension of P to the completed F again by P. Thus, a completed filtered probability space
(Ω,F , {Ft}t∈R,P) is obtained. We denote the drift term and the diffusion term of the system (2.1)
by

f(U) =

rG(1−G−N)
aG
b+G −A
cAN − dN

 , and g(U) =

 0 0
τ1AG
b+G 0

0 τ2AN

 .
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The process given by the solution to (2.1) will be denoted by U or U(t) = (G(t), A(t), N(t)),
t ≥ 0. Let L be the infinitesimal generator of the process U and, for any smooth enough functions
F : R3

+ := [0,∞)3 → R, the generator L acts as

LF (u) = Fu · f(u) +
1

2
trace(g(u)g(u)TFuu),

where Fu is the gradient of F and Fuu is the Hessian matrix of F . We use Pu to denote the
probability law on Ω when the solution path starts at u = (G,A,N) and Eu is the expectation
corresponding to Pu.

Our aim for studying the stochastic system (2.1) is to explore how environmental noise and
parameter randomness affect our tumor classification and the dynamics of the system (2.2). Our
method is to analyze solutions of (2.1) on the boundary of D. Our analysis shows that there are
two ergodic invariant measures µ1 = δ∗0× δ∗0× δ∗0 and µ2 = δ∗1× π× δ∗0 on the boundary ∂D. Here
δ∗1 and δ∗0 denote the Dirac measures with mass at 1 and 0, respectively. The invariant measure π

is the inverse gamma distribution: π ∼ IG
(

2( b+1
τ1

)2 + 1, 2a(b+1)
τ21

)
. From these measures, we derive

the sufficient and almost necessary condition for weak persistence of the SDE system (2.1). Our
main result for the dynamics of the system (2.1) is stated in the following theorem.

Theorem 2.2. Assume that τ1 < (b+ 1)
√

2 and define the threshold

λ :=
ac

b+ 1
− d− τ22 a

2

2(b+ 1)2 − τ21
.

If λ < 0 then for any initial value u = (G,A,N) in the interior of D, D◦, the solution U(t) =
(G(t), A(t), N(t)) of the system (2.1) converges to µ2 in the sense that G(t) converges to 1 a.s.,
A(t) converges weakly to π, and N(t) converges to 0 exponentially fast with the rate λ. If λ > 0,
then lim supt→∞ Eu 1

t

∫ t
0 ln(N(s) + 1)ds > 0 that is N(t) cannot converge to 0 in “log-moment”time

average sense, which also implies that lim supt→∞ Eu 1
t

∫ t
0 N

p(s)ds > 0, p ∈ (0, 1). In this case, µ2
becomes a repeller and the system (2.1) becomes weakly persistent in the sense that solution U(t)
does not converge to µ2 a.s.

In order to interpret this theorem and give some biological implications, we need to find relations
between λ, a, and noise intensities. We consider λ = λ(a, τ1, τ2) as a function of the parameter a,
τ1, and τ2. The following lemma lists some possible relations among these parameters.

Lemma 2.1. The existence of the second moment of the invariant measure π requires the noise
intensity τ1 is bounded as τ21 < 2(b+ 1)2.

(1) When 1
4d( c

b+1)2τ21 + τ22 ≥ c2

2d and τ21 < 2(b+ 1)2, we have λ < 0.

(2) When 1
4d( c

b+1)2τ21 + τ22 <
c2

2d , there exist the values a1 and a2 of the parameter a with as1 < a1
and a1 < a2, where λ(a1) = λ(a2) = 0. We have two cases:

• if a ∈ (0, a1) ∪ (a2,∞), then λ < 0;

• if a ∈ (a1, a2), then λ > 0.

In the case of 1
4d( c

b+1)2τ21 + τ22 <
c2

2d , a2 can be considered as a function of τ1 and τ2 and then it
is increasing with two noise intensities; a2 > as2 for small values of τ1 and τ2 while a2 < as2 for
large values of τ1 and τ2.
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It is easy to see that the mean of the inverse gamma distribution π approaches a
b+1 when (τ1, τ2)

approaches (0, 0). Hence, we may say that the ergodic invariant measures of the stochastic system
(2.1), µ1 and µ2, correspond to the equilibrium solutions of the deterministic system (2.2), E0 and
E1, respectively. There should exist another ergodic invariant measure of the system (2.1) which
corresponds to the equilibrium solution E2 of the system (2.2). However, it is difficult to prove this
property because our model has a rational function noise term and lacks boundedness. We will
list this as an open problem for future studies. We only can say that, when λ > 0, any solution
starting in the interior of the positive invariant domain D will not approach neither µ1 nor µ2
on the boundary ∂D. In other words, this solution will stay at the interior of D; it may either
approach an invariant measure supported by the interior of D or stochastically oscillate.

Biologically, we obtain more subtle implications related to two parameters, a and c, and noise
intensities from our stochastic model (2.1).

Interpretation 2.2. If the noise of chemotactic coefficient c is big enough, τ22 ≥ c2

2d while τ21 <
2(b+ 1)2, then the tumor always belongs to type muIDH1 no matter how large the chemoattractant
production rate a is. In this case, the tumor type is determined by the chemotactic coefficient. This
is a new situation when randomness and stochastic effects are introduced into the model.

When both noise intensities are not big, namely τ22 < c2

2d and τ21 < 2(b + 1)2, the tumor type
is largely determined by the chemoattractant production rate which is similar as the deterministic
model (2.2). However, we have more subtle situations. The critical value of the chemoattractant
production rate that determines tumor type in the stochastic model is greater than that in the
deterministic model which is the case as1 < a1. This is reasonable because the stochastic model
counts parameter randomness and environmental noise. Another new situation is that, when the
value of the chemoattractant production rate is greater than a2, the tumor type seems to be switched
again. A reasonable interpretation may be as follows. The tumor type is not changed again, but
periodic solutions or pulse solutions with low immune cell contents appear.

It is clear that the stochastic model confirms the result about tumor type classification from
our PDE model by the chemoattractant production rate with emphasizing the importance of the
chemotactic coefficient. The classification of tumor types with these parameters in either model is
stable in the sense of parameter perturbations.

3 Numerical simulations and discussion

3.1 Numerical simulations with biological interpretations

In order to illustrate our analytical results, we utilize some data from our previous research
(see [12]) to simulate our model of deterministic type and stochastic type. Before we do so,
we would like to explain some connection between our current models and previous PDE model
and related experimental work. In our study [12], our PDE model fits our experimental results,
for example, tumor volume changes over time in under several conditions. In these simplified
models, there is no spatial variable. However, our quantities are now still cell number densities
and chemoattractant concentration as in our PDE model, not cell numbers and chemoattractant
quantity in general ODE/SDE models. In this way, our current models inherit dynamical behaviors
and some sort of spatial information, and we will be able to use the parameter values from our
previous work which were estimated from our experimental results. All parameters of the system
(1.2), except the noise intensities τ1 and τ2, are listed in table 1, which are from our study [12].
After non-dimensionalization, the parameters of the stochastic system (2.1) and its corresponding
deterministic system (2.2) are r = 0.22, b = 0.1, c = 0.275, and d = 0.412. For the sake of simplicity,
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we conduct numerical simulations based on the non-dimensionalized SDE system (2.1) and ODE
system (2.2). Thus, the units of glioma cells, concentration of chemoattractants, and infiltrated
immune cells are not absolute number densities but relative numbers. The quantities such as G, A,
and N are, the portion of glioma cells, concentration of chemoattractants, and infiltrated immune
cells over the tumor carrying capacity, respectively. We just indicate them as relative glioma cells
and so on in the figures. For the time, it can be regarded as relative time since τ = γt. In all
the figures below, we will simulate the trajectories of the ODE system (2.2) and the SDE system
(2.1) with initial value (0.5, 0.1, 0.1) and all parameters fixed except the parameter a and the noise
intensities τ1 and τ2.

Parameters Description Values Dimensions

λ proliferation rate of glioma cells 0.48 day−1

m Maximum of chemoattractant production rate 0.7− 17 105 pg/ml.day

β Michaelis constant 0.1 106 cells/mm3

γ chemoattractant degradation rate 2.185 102/day

α chemotactic coefficient 0.6 mm2.ml/day.pg

ρ clearance rate of immune cells 0.9 day−1

C cell density of tumor tissue 1 106 cells/mm3

Table 1: Parameters and their values

In Section 4, we found two thresholds of the parameter a which are as1 = 1.65 and as2 = 2.5579.
The parameter a measures how much chemoattractants can be produced by tumor cells in a unit
time. The analysis in Section 4 shows this parameter plays a central role in determining the
dynamics of the ODE system (2.2).
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Figure 1: Deterministic solution paths when
a = 1.5
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Figure 2: Deterministic solution paths when
a = 2

When a is below as1 , Figure 1 indicates that relative glioma cells are increasing to its carrying
capacity while relative infiltrated immune cells decay to zero. This can be explained as follows. At
the beginning, glioma cells secrete chemoattractants that form a dynamic gradient field to facilitate

8



migration of immune cells into the tumor. However, the concentration of chemoattractants is not
strong enough to attract immune cells. So the number density of infiltrated immune cells goes
down while the number density of glioma cells keep growing.

When a is between as1 and as2 , Figure 2 shows relative glioma cells, relative concentration of
chemoattractants, and relative infiltrated immune cells eventually settle down into an equilibrium
state (which is the positive equilibrium E2). This is because after recruiting a portion of immune
cells, the number density of glioma cells becomes oscillatory and starts reaching a steady state. But
then the concentration of chemoattractants becomes saturated, consequently immune cell migration
undergoes a slowdown phase and finally its number density reaches an equilibrium state.
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Figure 3: Deterministic solution paths when
a = 2.6
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Figure 4: Deterministic solution paths when
a = 5

When a is slightly bigger than as2 , Figure 3 indicates that the populations of glioma cells
and infiltrated immune cells and concentration of chemoattractants undergo an oscillating process.
As in the proof of Section 4, there is only one stable periodic solution arising from the Hopf
bifurcation at as2 = 2.5579. This solution represents the predator-prey dynamics among glioma
cells, chemoattractants, and infiltrated immune cells.

As a is becoming large, say a = 5, the solution behaves differently. Figure 4 shows populations
of glioma cells and infiltrated immune cells can reach a very small value. It represents a pulsating
oscillation. The minimum of the pulsating oscillation solution is decreasing as a increases.

In Section 5, we analyzed the SDE system (2.1) which is obtained from the ODE system (2.2)
by perturbing the parameter a, the relative maximum of the chemoattractant production rate, and
the parameter c, the relative chemotactic coefficient. We found a threshold

λ = λ(a, τ1, τ2) =
ac

b+ 1
− d− τ22 a

2

2(b+ 1)2 − τ21
, (3.1)

to determine the extinction and weak persistence of the SDE system (2.1) provided τ1 < (b+ 1)
√

2.
According to Lemma 2.1, we can regard λ as a function of a, τ1, and τ2. Actually, λ is a quadratic
function of a with negative leading coefficient, which has two positive real solutions

a1,2 =
c(2(b+ 1)2 − τ21 )

2τ22 (b+ 1)
∓
√

2(b+ 1)2 − τ21
τ2

√
c2(2(b+ 1)2 − τ21 )

4τ22 (b+ 1)2
− d
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provided that 1
4d( c

b+1)2τ21 + τ22 <
c2

2d . The main theorem 2.2 showed that population of glioma cells
reaches its carrying capacity and population of infiltrated immune cells goes extinct when λ < 0.
By Lemma 2.1, this condition is equivalent to either 1

4d( c
b+1)2τ21 + τ22 ≥ c2

2d , τ1 < (b + 1)
√

2 or
1
4d( c

b+1)2τ21 + τ22 <
c2

2d , a ∈ (0, a1)∪ (a2,∞). We observe that the condition for the extinction of the
system (2.1) is quite subtle and complicated. Particularly, when noise intensities are small and a
is large enough, the solution of the system (2.1) approaches the boundary of the positive invariant
domain and hence the system goes extinct. Furthermore, when noise intensities are large enough,
the solution of the system (2.1) is suppressed to approach the boundary no matter how large the
value of a is. Contrary to the complexity of the extinction conditions, the weak persistent condition
for the system (2.1) is quite simple. All populations become weakly persistent when λ > 0, which

is equivalent to 1
4d( c

b+1)2τ21 + τ22 < c2

2d and a1 < a < a2. With parameters as in simulating ODE
system (2.2), we illustrate the extinction and weak persistence of the SDE system (2.1) in the
following two examples.

Example 1. We demonstrate the situation when λ < 0. Take a = 1.5, τ1 = τ2 = 0.1 in Figure
5 and take a = 5, τ1 = 0.1, τ2 = 0.4 in Figure 6. Both figures indicate that in a short period of
time glioma cells increases to the tumor carrying capacity and infiltrated immune cells decay to
zero exponentially fast, while the concentration of chemoattractants becomes saturated.
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Figure 5: Stochastic solution paths when
a = 1.5, τ1 = τ2 = 0.1
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Figure 6: Stochastic solution paths when
a = 5, τ1 = 0.1, τ2 = 0.4

Example 2. We simulate the stochastic trajectories when λ > 0. Take a = 2.5, τ1 = τ2 = 0.1
in Figure 7. This picture shows that glioma cells, chemoattractants, and infiltrated immune cells
coexist and interact in the predator-type dynamics. Even though the solution path represents an
oscillatory behavior as in the deterministic case, its pattern cannot be predicted. Next, take a = 5,
τ1 = τ2 = 0.1 in Figure 8. This figure indicates the solution path still weakly persist but represents
a pulsating oscillation.

Our PDGF models of the deterministic type and stochastic type are able to predict the
dynamical behavior of these two types of gliomas. As an example, the mathematical model of
PDE type in [12] predicted that the wild-type tumor mice will survive longer if the immune cells
are blocked to migrate into the tumor. The infiltrated immune cells help to drive the aggressiveness
of gliomas and then increase production of chemoattractants. So in order to block immune cells

10
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Figure 7: Stochastic solution paths when
a = 2.5, τ1 = τ2 = 0.1
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Figure 8: Stochastic solution paths when
a = 5, τ1 = τ2 = 0.1
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Figure 9: Stochastic solution paths when a = 2.5, τ1 = 0.1, τ2 = 0.01

to infiltrate into the tumor, we can reduce the chemotactic strength which is represented by the
relative chemotactic coefficient and its corresponding noise intensity τ2. Using our SDE model,
take a = 2.5, τ1 = 0.1 as in Figure 7 but τ2 is decreased to 0.01. Figure 9 shows that the solution
oscillates less wildly and hence glioma cells of wild type become less aggressive.

It should be noticed that we only plot one realization for each case above for demonstration
purpose. We actually simulated many realizations for each case, and observed that these realizations
share a similar pattern in each case. Therefore, we present one typical path for each case.
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3.2 Discussion

The motivation of this study is to understand the roles of two parameters, the chemoattractant
production rate and chemotactic coefficient, in the infiltrating dynamics of immune cells into
tumors. In our experiments and modeling of immune cells infiltrating to tumor sites in terms of
PDE free boundary problem, we computationally found these two parameters are very important.
The chemoattractant production rate by tumor cells determines two types of gliomas according to
the range of its value, or aggressiveness of gliomas, while the chemotactic coefficient determines
the possibilities of immune cells migrating to tumor sites. We would like to know how stable our
conclusion about these two parameters are when they are perturbed or when stochastic effects
are counted in noisy tumor growth environments. This is a medical relevant question because
there are many randomness and stochastic effects in medical problems. Due to difficulties of
analysis of free boundary problem, we propose to utilize stochastic differential equations to explore
this question. The first step is to reduce the free boundary PDE system to an ODE system.
We then add white noises to these two parameters according to their properties, and obtain a
system of Ito stochastic differential equations. We carry out detailed studies about these two
models. We see the correspondence between equilibrium solutions of the deterministic system
and ergodic invariant measures of the stochastic system according to different value range of the
chemoattractant production rate and chemotactic coefficient. For the stochastic system, there
appears some new features. For example, when both noise intensities are not big comparing with
the chemotactic coefficient, the stochastic model behaves more or less similarly as the deterministic
counterpart. However, when both noise intensities are big, particularly when the noise intensity of
the chemotactic coefficient is greater than a scaled chemotactic coefficient, the occupation measure
of the stochastic solution converges to the invariant measure µ2 and hence the stochastic system
behaves uniformly as muIDH gliomas.

Mathematically, the noise term for the chemoattractant production rate is of a rational function
which creates difficulties for analysis. For the deterministic system, there is a stable equilibrium
solution E2 which is in the interior of the positive invariant domain D. We expect that there is
a ergodic invariant measure for the stochastic system which corresponds to E2. However, it is
not easy to show the existence of such invariant measure supported by the interior of the positive
invariant domain D. We would like to list this question as an open problem.

For the deterministic system, we show there is a Hopf bifurcation and appearance of one family
of periodic solutions when the value of the chemoattractant production rate passes through a second
critical value. For the stochastic model, we observe some periodical solution paths. However, it is
difficult to show the existence of Hopf bifurcations in stochastic models. We would also like to list
this question as an open problem.

Although the stochastic model is obtained by a simplification of PDE model, it is interesting
on its own. Besides the two open problems mentioned above, it will be interesting to explore what
new features we can obtain if we also perturb the tumor growth rate, because one way to model
aggressiveness of tumors is to increase growth rate. We plan to study this problem in the future.

4 Analysis of the ODE model

This section is devoted to the proof of Theorem 2.1 for the ODE system (2.2).
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4.1 Preliminaries

Since the right-hand side of each equation of the system (2.2) is a continuously differentiable
function with respect G, A, and N , by existence and uniqueness theorem of an ODE system (see
Theorem 1 on page 89 in [16]), the system (2.2) with initial value (G(0), A(0), N(0)) always has a
unique solution (G(t), A(t), N(t)) defined on the maximal interval [0, ζ). It is important to know if
the solution exists for all time t ≥ 0. Our result is summarized in the following theorem.

Theorem 4.1. If G(0) ≥ 0, A(0) ≥ 0, and N(0) ≥ 0 then G(t) ≥ 0, A(t) ≥ 0, and N(t) ≥ 0 for
all t ∈ [0, ζ). Furthermore, if 0 ≤ G(0) ≤ 1, 0 ≤ A(0) ≤ a

b+1 , and N(0) ≥ 0 then 0 ≤ G(t) ≤ 1, 0 ≤
A(t) ≤ a

b+1 , N(t) ≥ 0 for all t ∈ [0, ζ). Finally, we can conclude that the solution (G(t), A(t), N(t))
exists for all time t ≥ 0, i.e. ζ =∞.

Proof. First, assume that G(0) ≥ 0, A(0) ≥ 0, and N(0) ≥ 0. By the first equation of (2.2), for all
t ∈ (0, ζ)

G(t) = G(0) exp

{∫ t

0
r(1−G(s)−N(s))ds

}
,

which implies that G(t) ≥ 0 for all t ∈ (0, ζ) because G(0) ≥ 0. The second equation of (2.2)
implies for t ∈ (0, ζ)

A(t) = A(0)e−t + e−t
∫ t

0

aG(s)

b+G(s)
esds.

Since A(0) ≥ 0 and G(s) ≥ 0 for all s ∈ [0, ζ), A(t) ≥ 0 for all t ∈ (0, ζ). From the last equation of
(2.2), we get for all t ∈ (0, ζ)

N(t) = N(0) exp

{∫ t

0
[cA(s)− d]ds

}
.

As N(0) ≥ 0, so N(t) ≥ 0 for all t ∈ (0, ζ).
Next, assume that 0 ≤ G(0) ≤ 1, 0 ≤ A(0) ≤ a

b+1 , and N(0) ≥ 0. By the above proof
G(t), A(t), and N(t) are non-negative for all t ∈ [0, ζ). Since N(t) ≥ 0, G′ = rG(1 − G − N) ≤
rG(1 − G). Because G(0) ≤ 1, by comparison theorem G(t) ≤ 1 for all t ∈ [0, ζ). But, then from
the second equation we have A′ = aG

b+G − A ≤
a
b+1 − A. Again the comparison theorem implies

A(t) ≤ a
b+1 − ( a

b+1 − A(0))e−t. Since A(0) ≤ a
b+1 , A(t) ≤ a

b+1 for all t ∈ [0, ζ). Now define the
domain

E =

{
(G,A,N) : 0 ≤ G ≤ 1, 0 ≤ A ≤ a

b+ 1
, N ≥ 0

}
.

We have proved that given any (G(0), A(0), N(0)) ∈ E the system (2.2) with this initial value has
a unique solution (G(t), A(t), N(t)) ∈ E defined on the maximal interval [0, ζ). In order to prove
that ζ =∞, consider the following compact set contained in E

K =

{
(G,A,N) : 0 ≤ G ≤ 1, 0 ≤ A ≤ a

b+ 1
, 0 ≤ N ≤M

}
for some constant M which is to be chosen. By way of contradiction, assume that ζ <∞. Notice
that we can assume that A(0) and N(0) are very small initial values that is close to 0 because
A(0) and N(0) represent relative concentration of chemoattractant and relative number density
of infiltrated immune cells at the beginning, respectively. Then we can suppose that A(0) ≤ a

b+1 ,
by above proof A(t) ≤ a

b+1 for all t ∈ [0, ζ). The third equation of the system (2.2) implies that

13



N ′(t) ≤ ac−bd−d
b+1 N and then by comparison theorem N(t) ≤ N(0)exp

{
ac−bd−d
b+1 t

}
. Choose M > 0

big enough so that for all finite times t ∈ (0, ζ)

N(0)exp

{
ac− bd− d

b+ 1
t

}
≤M.

Thus N(t) ≤M for all t ∈ (0, ζ) and hence (G(t), A(t), N(t)) ∈ K for all t ∈ (0, ζ). This contradicts
the conclusion of Theorem 3 on page 91 in [16]. Therefore ζ =∞.

4.2 Equilibrium analysis

Define the domain D = {(G,A,N) : 0 ≤ G ≤ 1, A ≥ 0, N ≥ 0}. By the Theorem 4.1, D
is a positive invariant domain for the system (2.2). So we refer it as a “global” domain. Let
U = (G,A,N)T and f(U) = (rG(1−G−N), aG

b+G −A, cAN − dN)T . The equilibrium solutions of
(2.2) are the solutions to f(U) = 0, which is equivalent to

rG(1−G−N) = 0,

aG

b+G
= A,

(cA− d)N = 0.

It is easy to obtain equilibrium solutions as follows.

• If 0 < ac ≤ d + bd then the system (2.2) has 2 equilibrium solutions E0 = (0, 0, 0) and
E1 = (1, a

b+1 , 0).

• If ac > d + bd then the system (2.2) has 3 equilibrium solutions which are E0, E1, and the

unique positive equilibrium solution E2 =
(

bd
ac−d ,

d
c ,

ac−d−bd
ac−d

)
.

Now we analyze the stability of all equilibrium solutions when the parameter a is varied. First,
the variational matrix of the system (2.2) is given by

Df(U) =

r − 2rG− rN 0 −rG
ab

(b+G)2
−1 0

0 cN cA− d

 .

A. At E0 = (0, 0, 0), the variational matrix is Df(E0) =

 r 0 0
a/b −1 0
0 0 −d

, having r, −1, and −d

as its eigenvalues. Since r > 0, E0 is unstable.

B. At E1 = (1, a
b+1 , 0), the variational matrix is

Df(E1) =

 −r 0 −r
ab

(b+1)2
−1 0

0 0 ac−d−bd
b+1


which has 3 eigenvalues λ1 = −r, λ2 = −1, and λ3 = ac−d−bd

b+1 . If 0 < ac < bd + d then λ3 < 0, so
E1 is locally asymptotically stable. If ac > bd+ d then λ3 > 0, hence E1 is unstable.
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C. In fact, when 0 < ac < bd + d, we can show that E1 is globally stable. For convenience, we
make a translation of variables G = 1 − G, A = a

b+1 − A, and N = N . The equilibrium solution

E1 is translated to E1 = (0, 0, 0). Then, after dropping all the bars over variables, the system (2.2)
becomes

dG

dt
= r(1−G)(N −G),

dA

dt
=

a

b+ 1
−A− a(1−G)

b+ 1−G
, (4.1)

dN

dt
= −cAN +

ac− bd− d
b+ 1

N,

while the domain D is translated into D1 = {(G,A,N) : 0 ≤ G ≤ 1, A ≤ a
b+1 , N ≥ 0}. Let

(G(0), A(0), N(0)) ∈ D1, then by Theorem 4.1 we have (G(t), A(t), N(t)) ∈ D1 for t ≥ 0. Since
−cAN ≤ 0, the third equation implies N ′ ≤ ac−bd−d

b+1 N . By comparison theorem, 0 ≤ N(t) ≤
N(0)exp{ac−bd−db+1 t} → 0 as t → ∞ since ac − bd − d < 0. Thus N(t) decays to 0 exponentially
fast. Now it makes sense to assume that G(0) < 1 because if G(0) = 1 then it would mean that
originally we don’t have any glioma cells in tumor tissue. Then 0 < G(t) < 1 for all t ≥ 0. So by
the first equation of (4.1) we have

dG(t)

1−G(t)
= r(N(t)−G(t)).

Integrating both sides from 0 to t yields

G(t) = 1− 1−G(0)

exp{
∫ t
0 r(N(s)−G(s)) ds}

. (4.2)

Since N(t) ≥ 0 for all t ≥ 0 and N(t) → 0 exponentially as t → ∞, lim
t→∞

exp{
∫ t
0 N(s)ds} exists

and is positively finite. As −
∫ t
0 G(s)ds is decreasing with respect to t, so lim

t→∞
exp{−

∫ t
0 G(s)ds}

exists and is either zero or positively finite. This follows that lim
t→∞

exp{
∫ t
0 r(N(s)−G(s))ds} exists

and is either zero or positively finite. Thus lim
t→∞

G(t) exists. As 0 < G(t) < 1 for all t ≥ 0,

so 0 ≤ lim
t→∞

G(t) ≤ 1. Due to (4.2), lim
t→∞

exp{
∫ t
0 r(N(s) − G(s))ds} cannot be zero. Therefore

lim
t→∞

exp{
∫ t
0 r(N(s)−G(s))ds} is positively finite. Since G(0) < 1, by (4.2) we obtain lim

t→∞
G(t) < 1.

Again, by the first equation of (4.1)

dG(t)

dt
= rN(t)(1−G(t))− rG(t)(1−G(t)).

Integrating both sides from 0 to t and then dividing by t give

G(t)−G(0)

t
=

1

t

∫ t

0
rN(s)(1−G(s))ds− 1

t

∫ t

0
rG(s)(1−G(s))ds. (4.3)

Since 0 ≤ 1−G(s) ≤ 1 for all s ≥ 0 and N(s) ≥ 0 for all s ≥ 0,

0 ≤ 1

t

∫ t

0
rN(s)(1−G(s))ds ≤ 1

t

∫ t

0
rN(s)ds.
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By L’Hospital’s Rule ([21] page 28), since lim
t→∞

N(t) = 0, lim
t→∞

1
t

∫ t
0 rN(s)ds = lim

t→∞
rN(t) = 0. So

letting t→∞ in (4.3) yields

lim
t→∞

1

t

∫ t

0
rG(s)(1−G(s))ds = 0.

By the above proof, lim
t→∞

G(t)(1−G(t)) exists and hence, by L’Hospital’s Rule we get

lim
t→∞

G(t)(1−G(t)) = lim
t→∞

1

t

∫ t

0
rG(s)(1−G(s))ds = 0.

Since lim
t→∞

G(t) < 1, lim
t→∞

G(t) = 0. Finally, we show that lim
t→∞

A(t) = 0. From the second equation

of (4.1), we have

A(t) = A(0)e−t + e−t
∫ t

0

(
a

b+ 1
− a(1−G(s))

b+ 1−G(s)

)
esds.

By L’Hospital’s Rule,

lim
t→∞

e−t
∫ t

0

(
a

b+ 1
− a(1−G(s))

b+ 1−G(s)

)
es ds = lim

t→∞

∫ t
0

(
a
b+1 −

a(1−G(s))
b+1−G(s)

)
es ds

et

= lim
t→∞

(
a
b+1 −

a(1−G(t))
b+1−G(t)

)
et

et

= lim
t→∞

(
a

b+ 1
− a(1−G(t))

b+ 1−G(t)

)
=

a

b+ 1
− a

b+ 1
= 0.

Thus lim
t→∞

A(t) = 0. Therefore, E1 is globally stable with respect to the system (4.1). In other

words, the system (2.2) has a global attractor E1.

D. When ac = bd+ d, the system (4.1) becomes

dG

dt
= r(1−G)(N −G),

dA

dt
=

a

b+ 1
−A− a(1−G)

b+ 1−G
, (4.4)

dN

dt
= −cAN.

Let U = (G,A,N)T and F (U) =
(
r(1−G)(N −G), a

b+1 −A−
a(1−G)
b+1−G ,−cAN

)T
, then the

variational matrix at E1 is

L := DF (E1) =

 −r 0 r
ab

(b+1)2
−1 0

0 0 0


which has two negative eigenvalues λ1 = −r, λ2 = −1, and one eigenvalue λ3 = 0. To study
the stability of the equilibrium solution E1, we will utilize the center manifold theorem to reduce
the system (4.4) into a center manifold, and then look at the reduced system. Without loss of
generality, assume that r 6= 1. Then 3 corresponding eigenvectors with respect λ1, λ2, and λ3
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are V1 =
(
(1−r)(b+1)2

ab , 1, 0
)T

, V2 = (0, 1, 0)T , and V3 =
(

1, ab
(b+1)2

, 1
)T

. We set a transformation

matrix to be T = (V1, V2, V3). Then the system (4.4) can be written as dX
dt = LX + F1, where

F1 =
(
−rGN + rG2, a

b+1 −
a(1−G)
b+1−G −

ab
(b+1)2

G,−cAN
)T

. Set U = TY where Y = (y1, y2, y3)
T , then

the system (4.4) is equivalent to

dY

dt
= T−1LTY + T−1F1,

where T−1LT = diag(−r,−1, 0), and G = (1−r)(b+1)2

ab y1 + y3, A = y1 + y2 + ab
(b+1)2

y3, and N = y3.

Denote T−1F1 = (f1, f2, f3)
T , then

f1 =
ab

(1− r)(b+ 1)2

[
r(1− r)2(b+ 1)4

a2b2
y21 +

(
r(1− r)(b+ 1)2

ab
+ c

)
y1y3 + cy2y3 +

abc

(b+ 1)2
y23

]
= A11y

2
1 +A13y1y3 +A23y2y3 +A33y

2
3,

f2 =
rab

(1− r)(b+ 1)2

[
−(1− r)2(b+ 1)4

a2b2
y21 −

(
(1− r)(b+ 1)2

ab
+ c

)
y1y3 − cy2y3 −

abc

(b+ 1)2
y23

]
+

a

b+ 1
−

a− (1−r)(b+1)2

b y1 − ay3
b+ 1− (1−r)(b+1)2

ab y1 − y3
− (1− r)y1 −

ab

(b+ 1)2
y3

= B11y
2
1 +B13y1y3 +B23y2y3 +B33y

2
3 +

a

b+ 1
− a−B1y1 − ay3
b+ 1−B2y1 − y3

+B3y1 +B4y3

= B11y
2
1 +B13y1y3 +B23y2y3 +B33y

2
3 +K(y1, y2, y3),

f3 = −cy1y3 − cy2y3 −
abc

(b+ 1)2
y23

= C13y1y3 + C23y2y3 + C33y
2
3,

where Aij , Bij , Cij , and Bi are easily determined and

K(y1, y2, y3) =
a

b+ 1
− a−B1y1 − ay3
b+ 1−B2y1 − y3

+B3y1 +B4y3.

Note that g ∈ C∞, K(0, 0, 0) = 0, and DK(0, 0, 0) = 0. Using the Taylor series, we can rewritten
K as an infinite polynomial of y1, y2, and y3 with degree at least 2. Next, the transformed system
can be written as

dZ

dt
= BZ +

(
f1
f2

)
,

dy3
dt

= 0y3 + f3,

(4.5)

where B = diag(−r,−1) and Z = (y1, y2)
T . It is straightforward to check that the functions fk’s are

C2 functions, fk(0, 0, 0) = 0 and Dfk(0, 0, 0) = 0, where k = 1, 2, 3, and Df is the first derivative
of the function f . Thus, by the Center Manifold Theorem (see [13] and [15]), there exists a center
manifold given by Z = h(y3) = (h1(y3), h2(y3))

T with h ∈ C2, h(0) = Dh(0) = 0, and it satisfies

Bh(y3) +

(
f1(h(y3), y3)
f2(h(y3), y3)

)
= Dh(y3) f3(h(y3), y3).

We can assume that y1 = h1(y3) = e2y
2
3 + e3y

3
3 + o(y33) and y2 = m2y

2
3 + m3y

3
3 + o(y33). Then

f3(h(y3), y3) = C33y
2
3 + o(y23), where C33 = − abc

(b+1)2
< 0. The behavior of zero solution of the

17



system (4.5) is governed by that of the single equation dy3
dt = f3(h(y3), y3) or dy3

dt = C33y
2
3 + o(y23).

Since C33 < 0, y3 = 0 is locally asymptotically stable. Therefore E1 = (1, a
b+1 , 0) is also locally

asymptotically stable when ac = bd+ d.

E. Now assume that ac > bd+d. Then there is a third equilibrium solution E2 =
(

bd
ac−d ,

d
c ,

ac−d−bd
ac−d

)
,

which is the unique positive equilibrium of the system (2.2). The variational matrix at this point
is

Df(E2) =

−
rbd
ac−d 0 − rbd

ac−d
(ac−d)2
abc2

−1 0

0 c(ac−d−bd)
ac−d 0

 .
The |Df(E2)− λI| = 0 is equivalent to

p(λ) = λ3 + a1λ
2 + a2λ+ a3 = 0,

where a1 = rbd
ac−d + 1, a2 = rbd

ac−d , and a3 = rd(ac−d−bd)
ac . Since ac > bd + d, all the coefficients

ai’s are positive. By the Routh-Hurwitz Criterion, all roots of p(λ) = 0 have negative real parts

iff H1 = a1 > 0, H2 =

∣∣∣∣a1 a3
1 a2

∣∣∣∣ = a1a2 − a3 > 0, and H3 =

∣∣∣∣∣∣
a1 a3 0
1 a2 0
0 a1 a3

∣∣∣∣∣∣ = a3H2 > 0. Since

H1 = a1 > 0 and a3 > 0, these conditions are the same as H2 > 0. We have

H2 = a1a2 − a3 =

(
rbd

ac− d
+ 1

)
rbd

ac− d
− rd(ac− d− bd)

ac
> 0

is equivalent to (rbd+ac−d)a
(ac−d)2(ac−d−bd) >

1
bc . Define ϕ(a) = (rbd+ac−d)a

(ac−d)2(ac−d−bd) , then we can conclude that if

ϕ(a) > 1
bc then the positive equilibrium solution E2 is locally asymptotically stable.

4.3 Hopf bifurcations

Now, we study the function H(a) = H2 to get insight into the Hopf bifurcation that occurs
when ac > bd+ d. Note that we fix all the parameters except a and we consider H2 as a function
of the variable a. Then we have

H(a) =
rd

ac(ac− d)2
[abc(rbd+ ac− d)− (ac− d)2(ac− d− bd)].

Set y = ac− d, then ac = y + d. Since ac > bd+ d, y > bd. So

H(a) =
rdΦ(y)

ac(ac− d)2

where Φ(y) := b(y + d)(rbd + y) − y2(y − bd) = −y3 + (b + bd)y2 + bd(rb + 1)y + rb2d2 is a cubic
polynomial of y. Clearly, H(a) and Φ(ac− d) have the same roots. It is easy to compute

Φ(bd) = b2d2(r + 1)(b+ 1) > 0.

Since limy→∞Φ(y) = −∞, Φ(y) = 0 has at least one real root, say y∗3, bigger than bd. On the other
hand,

Φ′(y) = −3y2 + 2(b+ bd)y + bd(rb+ 1) = 0
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has 2 distinct real roots y2,1 = 1
3

(
b+ bd±

√
(b+ bd)2 + 3bd(rb+ 1)

)
. Note that y2 > 0 > y1 and

Φ(0) = rb2d2 > 0. As Φ(y) =
(y
3 −

b+bd
9

)
Φ′(y) + r(y) and r(y) =

[
2
3bd(rb+ 1) + 2

9(b+ bd)2
]
y +

rb2d2 + bd(b + bd)(rb + 1), so Φ(y2) = r(y2) > 0. There are 3 cases. First, if Φ(y1) < 0 then,
since limy→−∞Φ(y) = ∞, Φ has at least one real root, say y∗1, less than y1. Since Φ(0) > 0,
Φ has at least another real root, say y∗2, between y1 and 0. Thus Φ has 3 distinct real roots
y∗1 < y1 < y∗2 < 0 < bd < y∗3. Second, if Φ(y1) = 0 then, since Φ′(y1) = 0, Φ has one repeated real
root y∗1 = y1. So Φ has 2 distinct real roots y∗1 < 0 < bd < y∗3. Lastly, if Φ(y1) > 0 then Φ has a
unique real root y∗3 > bd.

Lemma 4.1. The equation H(a) = 0 has only one root a0 bigger than as1 := d(b+1)
c . Furthermore,

there is a small neighborhood of a0, (a0 − δ1, a0 + δ1), where δ1 < a0 − as1, such that H ′(a0) 6= 0
and H(a) is monotonically decreasing in this interval.

Proof. From the above argument, in any case y∗3 is the unique positive root of Φ(y) = 0. Let

a0 =
y∗3+d
c , since Φ(y∗3) = 0, H(a0) = 0. As y∗3 > bd, so a0 > as1 . Note that Φ′(y∗3) < 0 since

y∗3 > y2 > y1. It is easy to compute

H ′(a0) =
rdΦ′(y∗3)

a0(a0c− d)2
< 0.

Since H ′(a) is continuous, there exists a δ1 > 0 that can be made smaller than a0 − as1 so that
H ′(a) < 0 for all a ∈ (a0 − δ1, a0 + δ1). We’re done.

Let as2 = a0, then H(a) > 0 when as1 < a < as2 , H(as2) = 0, and H(a) < 0 when a > as2 .
From Lemma 4.1, as2 is a unique positive value that zeroes out the function H(a) and after as2 the
function H(a) is always negative.

In order to show that the Hopf bifurcation occurs in the system (2.2) when a passes through
the critical value as2 , we need following two lemmas whose proofs can be found in [13, 14].

Lemma 4.2. A cubic polynomial λ3 + a1λ
2 + a2λ+ a3 = 0 with real coefficients has a pair of pure

imaginary roots iff a2 > 0 and a3 = a1a2. When it has pure imaginary roots, the pure imaginary
roots are ±i√a2, the real root is −a1, and a1a3 ≥ 0. Furthermore, the real part of two complex
roots of the above cubic polynomial is positive iff a2 > 0 and a3 − a1a2 > 0.

Lemma 4.3. Consider a coefficient parametrized polynomial λ3 + a1(τ)λ2 + a2(τ)λ + a3(τ) = 0,
where the coefficients ak(τ), k=1,2,3, are C1 real-valued functions. Denote its complex roots by
λ(τ) = α(τ) + iβ(τ). Suppose there is a τ0 such that α(τ0) = 0 and β(τ0) 6= 0, i.e. λ(τ0) = iβ(τ0).
If α′(τ0) = 0 then a′2(τ0)a3(τ0) = a2(τ0)(a

′
3(τ0)− a2(τ0)a′1(τ0)).

Now we consider each coefficient of the characteristic polynomial p(λ) to be a function of the
parameter a. So

p(λ) = λ3 + a1(a)λ2 + a2(a)λ+ a3(a), (4.6)

where a1(a) = rbd
ac−d + 1, a2(a) = rbd

ac−d , and a3(a) = rd(ac−d−bd)
ac . Since ac > bd + d, all the

coefficients ak(a)’s are positive. Denote the complex roots of (4.6) by λ(a) = α(a) ± iβ(a). By
Lemma 4.1, H(a) is monotonically decreasing in a neighborhood of a0, (a0 − δ1, a0 + δ1). When
a0 − δ1 < a < a0, H2 = H(a) > 0, and we know that H1 = a1(a) > 0 and H3 = a3(a)H2 > 0.
By the Routh-Hurwitz Criterion, α(a) < 0. When a0 < a < a0 + δ1, H(a) < 0 which implies that
a3(a)− a1(a)a2(a) > 0. Due to Lemma 4.2, α(a) must be positive. When a = a0, H(a0) = 0 which
means that a3(a0) = a1(a0)a2(a0). Since a2(a0) > 0, by Lemma 4.2 the cubic equation p(λ) = 0 has
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a pair of pure imaginary roots and hence α(a0) = 0. Thus we have proved that the real part α(a)
changes sign as a passes through a0. Finally, we state a theorem that guarantees the occurrence of
Hopf bifurcation for the system (2.2) as the parameter a passes through the critical value a0.

Theorem 4.2. There exists a neighborhood of a0, (a0 − δ0, a0 + δ0), such that for each a in this
interval the characteristic polynomial (4.6) has a pair of complex conjugate eigenvalues λ(a) =
α(a) ± iβ(a), in which α(a) changes sign when a passes through a0 and β(a) > 0 in the interval.
Furthermore, when a = a0, (4.6) has a pair of pure imaginary roots and one negative real root, and
α′(a0) 6= 0.

Proof. When a = a0, from the above argument, p(λ) = 0 has a pair of pure imaginary roots

λ(a0) = ±iβ(a0). In light of Lemma 4.3, β(a0) =
√
a2(a0) =

√
rbd

a0c−d > 0. Since β(a) is continuous

with respect to a, there is a neighborhood of a0 so that β(a) > 0 in this neighborhood. The radius
δ0 of the neighborhood can be taken small enough so that δ0 < δ1 in Lemma 4.1. Hence when
a ∈ (a0 − δ0, a0 + δ0) the cubic equation p(λ) = 0 has a pair of complex conjugate eigenvalues
with positive imaginary parts and real parts change sign when a passes through a0. It remains to
prove that α′(a0) 6= 0. Indeed, if α′(a0) = 0 then Lemma 4.3 implies that a′3(a0)− a′1(a0)a2(a0) =
a′2(a0)a3(a0)

a2(a0)
. On the other hand,

H ′(a0) = a′1(a0)a2(a0) + a1(a0)a
′
2(a0)− a′3(a0)

= a1(a0)a
′
2(a0)−

a′2(a0)a3(a0)

a2(a0)

=
(a1(a0)a2(a0)− a3(a0))a′2(a0)

a2(a0)
=
H(a0)a

′
2(a0)

a2(a0)
= 0,

which is a contradiction since H ′(a0) 6= 0 by Lemma 4.1. This completes the proof.

Because we cannot find exactly algebraic expression for a0, it is very difficult to gain insight
into the nature of periodical solutions that occur around the equilibrium point E2 as a is close to
a0 such as their amplitudes, periods, and their stability. But we know that as2 := a0 is the unique
critical point after as1 at which the function H(a) has zeros and so we can have only one Hopf
bifurcation at a = as2 . Thus, there will be only one family of periodical solutions rising from this
bifurcation. We will use numerical simulations to demonstrate some typical dynamics of periodical
solutions for the system. However, we can make some statements about the general properties of
periodical solutions occurring around E2 as in the following corollary.

Corollary 4.1. If E2 is stable but not asymptotically stable at a = a0 then all solutions of the
system (2.2) in a neighborhood of E2 are periodical in a surface. If E2 is asymptotically stable or
unstable at b = b0 then there is an asymptotically stable periodical solution in a neighborhood of E2

as a is close to a0.

We now look at the relation between equilibria E1 and E2. When a < as1 , we showed that E1

is globally asymptotically stable; furthermore, the equilibrium E2 is not in the positive invariant
domain D. As a increases to as1 = bd+d

c , the equilibrium E2 moves into D, and it coalesces with
the equilibrium E1. At a = as1 , E1 ≡ E2 and we proved that it is locally asymptotically stable.
When a > as1 and a is in a neighborhood of as1 , E2 is still locally asymptotically stable while E1

becomes unstable. This demonstrates a similar type of transcritical bifurcation occurs at a = as1 .
Therefore, we prove the main theorem 2.1.
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5 Analysis of the SDE system

This section is devoted to deriving a sufficient and almost necessary condition for weak
persistence of the SDE system (2.1), in other words, the condition for distinguishing two types
of gliomas.

5.1 Preliminaries

In previous section, we proved that D = {(G,A,N) : 0 ≤ G ≤ 1, A ≥ 0, N ≥ 0} is the positive
invariant domain of the deterministic system (2.2). It is natural to expect D is also the almost
sure positive invariant domain for the stochastic system (2.1). We prove this fact in the following
theorem.

Theorem 5.1. For any initial value u = (G,A,N) ∈ D, there exists a unique a.s. continuous global
solution U(t) = (G(t), A(t), N(t)), t ≥ 0, for the system (2.1) that remains in D a.s. Particularly,
if N = 0 then Pu{N(t) = 0 ∀ t > 0} = 1, and if N > 0 then Pu{N(t) > 0 ∀ t > 0} = 1. Similarly,
if G = 0 then Pu{G(t) = 0 ∀ t > 0} = 1, and if 0 < G ≤ 1 and N ≥ 0 then Pu{0 < G(t) ≤ 1 ∀ t >
0} = 1. If either G > 0 or A > 0 then Pu{A(t) > 0 ∀ t > 0} = 1. Finally, the solution U(t) is a
strong Markov process that possesses the Feller property.

Proof. Since the coefficients f(U) and g(U) are locally Lipschitz continuous on (−b,∞)×R2, there
exists a unique a.s. continuous local solution U(t) = (G(t), A(t), N(t))T up to the explosion time

τe = inf

{
t > 0 : min

{
G(t)

b+G(t)
, A(t), N(t)

}
= −∞ or max{A(t), N(t)} =∞

}
with any initial value in (−b,∞)×R2 and, furthermore, the solution U(t) with t ∈ [0, τe) is a strong
Markov process with Feller-Markov property (see [19]). Next, we will show that Pu{τe = ∞} = 1
when the initial value is in D. Indeed, by the equation of N(t), we have

N(t) = N exp

{∫ t

0

[
cA(s)− d− τ22

2
A2(s)

]
ds+ τ2

∫ t

0
A(s)dW2(s)

}
.

It follows that if N = 0 then N(t) = 0 for all t ∈ (0, τe) a.s. and if N > 0 then N(t) > 0 for all
t ∈ (0, τe) a.s. Next, the equation for G(t) implies

G(t) = G exp

{∫ t

0
r(1−G(s)−N(s))ds

}
.

So it is obvious that if G = 0 then G(t) = 0 for all t ∈ (0, τe) a.s. and if 0 < G ≤ 1 and N ≥ 0
then G(t) > 0 for all t ∈ (0, τe) a.s. and N(t) ≥ 0 for all t ∈ (0, τe) a.s. By comparison theorem
for the equation of G(t), dG(t) = rG(t)(1−G(t)−N(t))dt ≤ rG(t)(1−G(t))dt. This implies that
0 < G(t) ≤ 1 for all t ∈ (0, τe) a.s. From the equation of A(t), we get

A(t) = φt

[
A+

∫ t

0
φ−1s

aG(s)

b+G(s)
ds

]
(5.1)

where

φt = exp

{∫ t

0

[
−1− τ21

2

G2(s)

(b+G(s))2

]
ds+

∫ t

0

τ1G(s)

b+G(s)
dW1(s)

}
. (5.2)
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If A = 0 and G > 0 then G(t) > 0 for all t ∈ (0, τe) a.s. and it implies that for a.s.

A(t) = φt

∫ t

0
φ−1s

aG(s)

b+G(s)
ds > 0 ∀ t ∈ (0, τe).

If A > 0 and G = 0 then G(t) = 0 for all t ∈ (0, τe) a.s. Thus A(t) = φtA(0) > 0 for all t ∈ (0, τe)
a.s. It is clear that if A > 0 and G > 0 then we have A(t) > 0 for all t ∈ (0, τe) a.s. Therefore, we
have shown that if the initial value u = (G,A,N) is in D then for a.s. 0 ≤ G(t) ≤ 1, A(t) ≥ 0, and
N(t) ≥ 0 for all t ∈ (0, τe).

Now we consider V (G,A,N) = A+ 1
c log(1 +N). Then it is easy to compute for all t ∈ (0, τe)

LV (t) =
aG(t)

b+G(t)
− A(t)

N(t) + 1
− d

c

N(t)

N(t) + 1
− τ22

2c

A2(t)N2(t)

(N(t) + 1)2
≤ a

b+ 1
.

Let ξn = inf{t ∈ [0, τe) : A(t) > n or N(t) > n}. Clearly, ξn is increasing as n→∞. Set

τ∞ := lim
n→∞

ξn = inf{t ∈ [0, τe) : A(t) =∞ or N(t) =∞}.

Since max{A(τe), N(τe)} = ∞, τ∞ ≤ τe a.s. Thus it suffices to show that Pu{τ∞ = ∞} = 1. Fix
t > 0, applying Itô’s formula for V gives

EuV (t ∧ ξn) := EuV (G(t ∧ ξn), A(t ∧ ξn), N(t ∧ ξn))

= V (G(0), A(0), N(0)) + Eu
∫ t∧ξn

0
LV (G(s), A(s), N(s))ds

≤ K +
a

b+ 1
(t ∧ ξn) ≤ K +

at

b+ 1

where K = V (G(0), A(0), N(0)) is a positive constant. On the other hand,

EuV (t ∧ ξn) ≥
∫
{ξn<t}

V (t ∧ ξn)dPu =

∫
{ξn<t}

V (G(ξn), A(ξn), N(ξn))dPu.

But, since V (G(ξn), A(ξn), N(ξn)) = A(ξn) + 1
c log(1 +N(ξn)) ≥ n ∧ 1

c log(1 + n) =: h(n),

Pu{ξn < t} ≤ K + at/(b+ 1)

h(n)
→ 0 as n→∞

and so Pu{τ∞ < t} = 0. As t > 0 is arbitrary, so Pu{τ∞ =∞} = 1. This completes the proof.

5.2 Ergodic invariant measures on the boundary

To investigate the long-term behavior of the SDE system, we first find possible ergodic invariant
measures of the system (2.1) on the boundary ∂D.

A. When N(0) = 0, N(t) = 0 for all t > 0 a.s. The system (2.1) becomes

dG = rG(1−G)dt,

dA =

[
aG

b+G
−A

]
dt+ τ1

AG

b+G
dW1.

(5.3)

If G(0) = 0 then, from the first equation above, G(t) = 0 for all t > 0 a.s. But then the second
equation becomes dA = −Adt, which implies that A(t) = A(0)e−t → 0 a.s. as t → ∞. So we
obtain an ergodic invariant measure µ1 = δ∗0 × δ∗0 × δ∗0 for solutions of (2.1) on ∂D.
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B. If 0 < G(0) ≤ 1 then the first equation of (5.3) implies that limt→∞G(t) = 1 a.s. If G = 1 then
the second equation becomes

dÃ =

(
a

b+ 1
− Ã

)
dt+

τ1
b+ 1

ÃdW1. (5.4)

Let c > 0 and consider

s(Ã) =

∫ Ã

c
exp

{
−
∫ y

c

2( a
b+1 − u)

( τ1ub+1)2

}
dy = C1

∫ Ã

c
y

2(b+1)2

τ21 exp

{
2a(b+ 1)

τ21

1

y

}
dy

for some positive constant C1. Rewrite the integrand as

y
2(b+1)2

τ21

[
1 +

2a(b+ 1)

τ21

1

y
+

1

2!

4a2(b+ 1)2

τ41

1

y2
+ · · ·

]
.

Clearly, there is a k ∈ Z+ such that 2(b+1)2

τ21
− k < −1 and hence s(0+) := limÃ↓0 s(Ã) = −∞.

Of course, s(∞) := limÃ↑∞ s(Ã) = ∞. Then Ã(t) oscillates between 0 and ∞. Hence (5.4) has
a unique invariant measure π on R+ whose density p = p(x) solves the associated Fokker-Planck
equation

− d

dx

[(
a

b+ 1
− x
)
p(x)

]
+

d2

dx2

[
1

2

τ21x
2

(b+ 1)2
p(x)

]
= 0. (5.5)

Set y(x) = 1
2
τ21x

2

(b+1)2
p(x), and γ(x) = 2(b+1)2

τ21
[ a
b+1

1
x2
− 1

x ]. Then (5.5) is equivalent to

y′(x)− γ(x)y(x) = −C

for some constant C. The solution of this equation is given by

y(x) = A(x)

[
K + C

∫ 1

x

dt

A(t)

]
for some positive constant K. It is easy to show that p is a density iff C = 0. Note that

A(t) = exp

{∫ t

1
γ(u)du

}
= exp

{
2a(b+ 1)

τ21

}
t
− 2(b+1)2

τ21 exp

{
−2a(b+ 1)

τ21

1

t

}
.

Thus

p(x) = K
2(b+ 1)2

τ21
exp

{
2a(b+ 1)

τ21

}
x
− 2(b+1)2

τ21 exp

{
−2a(b+ 1)

τ21

1

x

}
.

Let α := 2( b+1
τ1

)2 + 1 and β := 2a(b+1)
τ21

, then p(x) = K x−α−1e−β/x where

K =

(∫ ∞
0

x−α−1e−β/xdx

)−1
is the normalizing constant. By changing variable u = β

x , we get∫ ∞
0

x−α−1e−β/xdx = β−α
∫ ∞
0

(
β

x

)α−1
e−β/x

β

x2
dx

= β−α
∫ ∞
0

uα−1e−udu = β−αΓ(α),
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where Γ is the Gamma function. Hence p(x) =
βα

Γ(α)
x−α−1e−β/x. In other words, the invariant

measure π is the Inverse-Gamma distribution with parameters α and β. Therefore µ2 = δ∗1×π× δ∗0
is an ergodic invariant measure for solutions of (2.1) on ∂D.

From now on, we assume that ( τ1
b+1)2 < 2 in order for the second moment of the invariant

measure π exists.

C. We state and prove several lemmas that are needed to prove the main theorem 2.2.

Lemma 5.1. EuA4(t) ≤ eKt(A(0) + K) for some constant K > 0. There exist cp,Kp > 0 such
that EuA2+p(t) < A2+p(0) e−cpt +Kp for some small constant p > 0.

Proof. We can easily obtain that LA4 ≤ C1(1+A4) for some constant C1, then standard arguments
(see e.g. [20, Section 2.4]) can be applied to prove the first part of the lemma.

To prove the second part, noting from Itô’s formula for A2+p (p > 0) that

L(A2+p) = (2 + p)A1+p

(
aG

b+G
−A

)
+ (2 + p)(1 + p)

τ21
2

(
G

b+G

)2

A2+p

= (2 + p)
aG

b+G
A1+p − (2 + p)

[
1− (1 + p)

τ21
2

(
G

b+G

)2
]
A2+p

≤ a(2 + p)

b+ 1
A1+p − (2 + p)

[
1− 1 + p

2

(
τ1
b+ 1

)2
]
A2+p.

Notice that lim
p→0+

[
1− 1+p

2 ( τ1
b+1)2

]
= 1 − 1

2( τ1
b+1)2 > 0 and lim

p→0+
EuA1+p = EuA. Since d

dtEuA ≤
a
b+1 − EuA, EuA ≤ a

b+1 . Thus, for p > 0 small enough, 1 − 1+p
2 ( τ1

b+1)2 > 0 and EuA1+p ≤ a
b+1 .

Hence EuL(A2+p) ≤ Hp − cpA2+p for p > 0 small and for some positive constants Hp and cp. We

show that lim sup
t→∞

EuA2+p ≤ Hp
cp

. In fact,

EuL(ecptA2+p(t)) ≤ ecpt
[
(Hp − cpEuA2+p) + cpEuA2+p

]
= Hpe

cpt,

and then, by Itô’s formula, we get

Eu
(
ecptA2+p(t)

)
= EuA2+p(0) + Eu

∫ t

0
L(ecptA2+p(s))ds

≤ EuA2+p(0) +Hp

∫ t

0
ecpsds = EuA2+p(0) +

Hp

cp
(ecpt − 1).

Dividing both sides by ecpt gets

EuA2+p(t) ≤ EuA2+p(0)e−cpt +
Hp

cp
(1− e−cpt).

This implies that lim supt→∞ EuA2+p(t) ≤ Hp
cp

.

Lemma 5.2. Eu sup
t∈[0,T ]

N q(t) ≤ KT N
q(0) for q ∈ (0, 12) sufficiently small and any T > 0.
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Proof. Apply Itô’s formula for N q (0 < q < 1), we have for all t ∈ [0, T ]

N q(t) = N q(0) +

∫ t

0
L(N q(s))ds+

∫ t

0
qτ2N

q(s)A(s)dW2(s)

where

L(N q) = qN q

[
cA− d+

1

2
(q − 1)τ22A

2

]
≤ HqN

q

for some positive constant Hq. Then

EuN q(t) ≤ N q(0) +Hq

∫ t

0
EuN q(s)ds.

By Gronwall’s inequality, for all t ∈ [0, T ] and q ∈ (0, 1),

EuN q(t) ≤ N q(0) exp{Hqt} ≤ H1N
q(0).

Now we have

Eu sup
t∈[0,T ]

N q(t) ≤ N q(0) + Eu sup
t∈[0,T ]

∫ t

0
L(N q(s))ds

+ Eu sup
t∈[0,T ]

qτ2

∣∣∣∣∫ t

0
N q(s)A(s)dW2(s)

∣∣∣∣ .
It is clear that

Eu sup
t∈[0,T ]

∫ t

0
L(N q(s))ds ≤ Eu sup

t∈[0,T ]
Hq

∫ t

0
N q(s)ds = Hq

∫ T

0
EuN q(s)ds ≤ H2N

q(0).

On the other hand, by the Burkholder-Davis-Gundy inequality ([22] page 160), for some constant
C1 > 0

Eu sup
t∈[0,T ]

qτ2

∣∣∣∣∫ t

0
N q(s)A(s)dW2(s)

∣∣∣∣ ≤ C1Eu
[∫ T

0
N2q(s)A2(s)ds

]1/2

≤ C1

[(
Eu
∫ T

0
N2q(2+p)/p(s)ds

)p/(2+p)(
Eu
∫ T

0
A2+p(s)

)2/(2+p)
]1/2

here we have used the Holder’s inequality in the last one. By Lemma 5.1, choose p > 0 small
enough so that Eu

∫ T
0 A2+p(s)ds <∞ for any T > 0. For q < p

2(2+p) sufficiently small, we have for
some positive constant H3

Eu
∫ T

0
N2q(2+p)/p(s)ds ≤ H3N

2q(2+p)/p(0).

Thus

Eu sup
t∈[0,T ]

qτ2

∣∣∣∣∫ t

0
N q(s)A(s)dW2(s)

∣∣∣∣ ≤ H4N
q(0)

for some positive constant H4. This completes the proof.
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Lemma 5.3. There exists a compact set K̃ ⊆ D such that for any initial value u = (G,A,N) ∈ D◦,
the solution process U(t) = (G(t), A(t), N(t)) is recurrent relative to K̃.

Proof. By Theorem 3.9 p.89 in [19], it suffices to construct a nonnegative twice differentiable
function V = V (G,A,N) so that LV < 0 for all (G,A,N) ∈ K̃c. Now we consider V (G,A,N) =
G+ 2cA+ ln(1 +N), then

LV = rG(1−G−N) +
2caG

b+G
− 2cA+

(cA− d)N

N + 1
− τ22

2

A2N2

(1 +N)2

≤ rG(1−G) +
2caG

b+G
− cA− dN

1 +N

≤ H51{G+A+N≤R} −H61{G+A+N>R}

for some positive constants H5, H6, and R. Hence

K̃ = {(G,A,N) ∈ D : G+A+N ≤ R}

is the desired compact set.

D. Next, we will prove the following claim that is also needed for the proof the main theorem 2.2.

Claim 5.1. If lim sup
t→∞

lnN(t)

t
< −r′ a.s for some constant r′ > 0 then lim

t→∞
|A(t)− Ã(t)| = 0 a.s.

Proof. Under the hypothesis of the claim and the first ODE in (2.1), we can easily show that
lim supt→∞ e

ρt|G(t) − 1| = 0 for some constant ρ > 0. As a result, for any ε > 0, there exists Kε

such that
Pu
{
eρt|G(t)− 1| ≤ Kε, t ≥ 0

}
≥ 1− ε. (5.6)

Let A(t) satisfying

dA =

(
aG

b+G
−A

)
dt+

τ1A G

b+G
dW1 with A(0) = A(0) (5.7)

where G(t) = G(t∧ ξε), ξε = inf{t ≥ 0 : eρt|G(t)− 1| ≥ Kε}. From the equation (5.4) and (5.7), we
get

d(A(t)− Ã(t)) =

[
aG(t)

b+G(t)
− a

b+ 1
− (A(t)− Ã(t))

]
dt+

(
τ1A(t)G(t)

b+G(t)
− τ1Ã(t)

b+ 1

)
dW1

and then

d(A(t)− Ã(t))2 =

{
−θ(A(t)− Ã(t))2 + 2a

(
G(t)

b+G(t)
− 1

b+ 1

)
(A(t)− Ã(t))

+τ21

[(
G(t)

b+G(t)
+

1

b+ 1

)
A(t)2 − 2

b+ 1
A(t)Ã(t)

]
b(G(t)− 1)

(b+ 1)(b+G(t))

}
dt

+ 2τ1

(
A(t)G(t)

b+G(t)
− Ã(t)

b+ 1

)
(A(t)− Ã(t))dW1

=− θ(A(t)− Ã(t))2dt+ h1(t)(A(t)− Ã(t))dt

+

[(
G(t)

b+G(t)
+

1

b+ 1

)
A(t)2 − 2

b+ 1
A(t)Ã(t)

]
h2(t)dt+ h3(t)dW1

(5.8)
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where θ := 2− τ21
(b+ 1)2

, h1(t) := 2a

(
G(t)

b+G(t)
− 1

b+ 1

)
, h2(t) :=

τ21 b(G(t)− 1)

(b+ 1)(b+G(t))
, and

h3(t) := 2τ1

(
A(t)G(t)

b+G(t)
− Ã(t)

b+ 1

)
(A(t)− Ã(t)).

One can easily obtain that from the fact that lim supt→∞ e
ρt(G(t)− 1) = 0 that

sup
t>0

eρt/2(|h1(t)|+ |h2(t)|) < K ′ε (5.9)

for some non-random constant K ′ε.
Hence, for some positive constants r, K1 and K2, there exists t0 > 0 such that t > t0 implies

EuL(A(t)− Ã(t))2 ≤ −θEu(A(t)− Ã(t))2 +K1e
−rtEu|A(t)− Ã(t)|

+K2e
−rtEu

∣∣∣∣( G(t)

b+G(t)
+

1

b+ 1

)
A(t)2 − 2

b+ 1
A(t)Ã(t)

∣∣∣∣ .
It is clear that EuÃ(t)2 is uniformly bounded for u ∈ D◦ and, by Lemma 5.1 with slight modification,
so is EuA(t)2. Hence both Eu|A(t)− Ã(t)| and Eu(A(t)Ã(t)) are uniformly bounded. Thus

EuL(A(t)− Ã(t))2 ≤ −θEu(A(t)− Ã(t))2 +K3e
−rt

for all t > t0 and some positive constant K3. Let 0 < θ0 < min{θ, r}, then for all t > 0

EuL
(
eθ0t(A(t)− Ã(t))2

)
≤ eθ0t

[
θ0Eu(A(t)− Ã(t))2 − θEu(A(t)− Ã(t))2 +K3e

−rt
]

≤ K3e
−(r−θ0)t.

Again by Itô’s formula,

Eueθ0t(A(t)− Ã(t))2 = eθ00Eu(A(0)− Ã(0))2 + Eu
∫ t

0
L
(
eθ0s(A(s)− Ã(s))2

)
≤ Eu(A(0)− Ã(0))2 +K3

∫ t

0
e−(r−θ0)sds

= Eu(A(0)− Ã(0))2 +
K3

r − θ0

[
1− e−(r−θ0)t

]
,

which follows that Eu(A(t)− Ã(t))2 ≤ K4e
−θ0t for all t > 0 and for some positive constant K4. By

Holder’s inequality, Eu|A(t)− Ã(t)| ≤
√
K4 e

−θ0t/2 for all t > 0. Now we have for any n ≥ 1

Eu sup
t∈[n,n+1]

|A(t)− Ã(t)| ≤ Eu|A(n)− Ã(n)|+ Eu sup
t∈[n,n+1]

∣∣∣∣∫ t

n
L(A(s)− Ã(s))ds

∣∣∣∣
+ Eu sup

t∈[n,n+1]

∣∣∣∣∣
∫ t

n
τ1

(
A(s)G(s)

b+G(s)
− Ã(s)

b+ 1

)
dW1(s)

∣∣∣∣∣ .
When n > t0, for some positive constant K5

Eu sup
t∈[n,n+1]

∣∣∣∣∫ t

n
L(A(s)− Ã(s))ds

∣∣∣∣ ≤ Eu
∫ n+1

n
|L(A(s)− Ã(s))|ds

≤ Eu
∫ n+1

n

∣∣∣∣ aG(s)

b+G(s)
− a

b+ 1

∣∣∣∣ ds+ Eu
∫ n+1

n
|A(s)− Ã(s)|ds

≤ aK

b+ 1

∫ n+1

n
e−rsds+

√
K4

∫ n+1

n
e−θ0s/2ds ≤ K5e

−θ0n/2.
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On the other hand, by the Burkholder-Davis-Gundy inequality ([22] page 160), there is a positive
constant C > 0 such that

Eu sup
t∈[n,n+1]

∣∣∣∣∣
∫ t

n
τ1

(
A(s)G(s)

b+G(s)
− Ã(s)

b+ 1

)
dW1(s)

∣∣∣∣∣
≤ Cτ1Eu

√√√√∫ n+1

n

(
A(s)G(s)

b+G(s)
− Ã(s)

b+ 1

)2

ds

= Cτ1Eu

√∫ n+1

n

[
A(s)

(
G(s)

b+G(s)
− 1

b+ 1

)
+

1

b+ 1
(A(s)− Ã(s))

]2
ds

≤ Cτ1
√

2

√
Eu
∫ n+1

n
A

2
(s)

(
G(s)

b+G(s)
− 1

b+ 1

)2

ds

+ Cτ1
√

2

√√√√Eu
∫ n+1

n

(
A(s)− Ã(s)

b+ 1

)2

ds

≤ Cτ1
√

2
K

b+ 1
e−rn

√
Eu
∫ n+1

n
A

2
(s)ds+

Cτ1
√

2
√
K4

b+ 1
e−θ0n/2 ≤ K6e

−θ0n/2,

for some positive constant K6. Thus for all n > 0 we get

Eu sup
t∈[n,n+1]

|A(t)− Ã(t)| ≤ K7e
−θ0n/2

for some constant K7 > 0. Then the Markov’s inequality implies for all n > 0

Pu

{
sup

t∈[n,n+1]
|A(t)− Ã(t)| ≥ e−θ0n/4

}
≤ eθ0n/4Eu sup

t∈[n,n+1]
|A(t)− Ã(t)| ≤ K7e

−θ0n/4.

Since
∑
n>0

K7(e
−θ0/4)n < ∞, Borel-Cantelli’s lemma implies with probability 1 there exists a n0

such that for all n > n0 we get

sup
t∈[n,n+1]

|A(t)− Ã(t)| < e−θ0n/4.

Hence |A(t)− Ã(t)| → 0 a.s. It is obvious that Pu{ξε =∞} ≥ 1− ε and A(t) = A(t) for any t ≥ 0
if ξε =∞. Since ε > 0 is chosen arbitrarily, we can easily obtain the desired result.

Remark 5.1. Since π is the invariant measure of (5.4), it follows from the strong law of large
numbers that for a.s.

lim
t→∞

1

t
E
∫ t

0
Ã(s)ds =

∫ ∞
0

Ãπ(dÃ) =
β

α− 1
=

a

b+ 1

and

lim
t→∞

1

t
E
∫ t

0
Ã2(s)ds =

∫ ∞
0

Ã2π(dÃ) =
β2

(α− 1)(α− 2)
=

2a2

2(b+ 1)2 − τ21
.

We can see that µ2 := δ1×π×δ0 is the unique invariant measure of U(t) on the set {u = (G,A,N) :
N = 0} where δ0, δ1 are the Dirac measures with mass at 0 and 1 respectively.
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E. To give an idea how to determine the long term behavior of (2.1), we look at the Lyapunov
exponents of µ1. Now, from the first equation of (2.1),

lnG(t)

t
=

lnG(0)

t
+

1

t

∫ t

0
r(1−G(s)−N(s))ds.

When the solution U(t) is close to the support of µ1 for a long time, lnG(t)
t can be approximated

by the average with respect to µ1

λ1(µ1) :=

∫
∂D

r(1−G−N)dµ1 = r,

which is the Lyapunov exponent of the ergodic invariant measure µ1 along the solution component
G. Since λ1(µ1) = r > 0, the ergodic invariant measure µ1 is always a repeller.

By the third equation of (2.1), using Itô’s formula we get

lnN(t)

t
=

lnN(0)

t
+

1

t

∫ t

0

[
cA(s)− d− τ22

2
A2(s)

]
ds+

1

t

∫ t

0
τ2A(s)dW2(s).

If the solution U(t) is close to the support of µ2 for a long time, lnN(0)
t and 1

t

∫ t
0 τ2A(s)dW2(s)

approximate zero for t large enough while lnN(t)
t can be approximated by the average with respect

to µ2

λ3(µ2) :=

∫
∂D

[
cA− d− τ22

2
A2

]
dµ2 =

ac

b+ 1
− d− τ22 a

2

2(b+ 1)2 − τ21
,

which is the Lyapunov exponent of the ergodic invariant measure µ2 along the solution component
N(t). Let

λ := λ3(µ2) =
ac

b+ 1
− d− τ22 a

2

2(b+ 1)2 − τ21
.

When λ < 0, N(t) approaches 0 a.s. By the same argument as in Section 3, G(t) approaches 1 a.s.
and the occupation measure of A(t) converges weakly to π a.s. due to Claim 5.1. Hence µ2 is a
local attractor. When λ > 0, µ2 becomes a repeller. In fact, our main theorem 2.2 claims that if
λ < 0 then µ2 is a global attractor and if λ > 0 then the solution does not converge to µ2 a.s.

5.3 Proof of the main theorem 2.2

It is ready now to give the detailed proof of the main theorem 2.2.
Case 1. Assume that λ < 0. By Theorem 5.1, there are only two ergodic invariant measures for

the process (G(t), A(t), N(t)) on the boundary ∂D, which are µ1 = δ∗0×δ∗0×δ∗0 and µ2 = δ∗1×π×δ∗0 .
Notice that ∫

∂D
(cA− d− τ22A2/2)dµ1 = −d < 0,∫

∂D
(cA− d− τ22A2/2)dµ2 = λ < 0.

Applying Itô’s formula for N q (0 < q < 1)

d(N q) = qN q

[
cA− d+

1

2
(q − 1)τ22A

2

]
dt+ qτ2N

qAdW2. (5.10)

29



For q = 1
2 , let M > 0 such that L(

√
N) ≤ −

√
N if A ≥ M . Set H = sup

A≥0
[cA − d − 1

4τ
2
2A

2], then

H > 0 and L(
√
N) ≤ H

√
N for all N ≥ 0. Now let n∗ > 8(H + 1), and define the family of

occupation measures

Πu
t (·) :=

1

t

∫ t

0
Pu{U(s) ∈ ·}ds.

By the Fubini-Tonelli’s theorem ([22] page 160),∫
D

(cA− d− τ22A2/2)Πu
t (dv) =

∫
D

(cA− d− τ22A2/2)
1

t

∫ t

0
Pu{U(s) ∈ dv}ds

=
1

t

∫ t

0

[∫
D

(cA− d− τ22A2/2)Pu{U(s) ∈ dv}
]
ds

=
1

t

∫ t

0
Eu(cA(s)− d− τ22A2(s)/2)ds.

Due to Lemma 5.1, when the initial value u = (G,A,N) is in {G > 0, A > 0, N = 0} ⊆ ∂D such
that G ≤ 1 and A ≤M , we have

sup
A≤M,t>0

1

t

∫ t

0
Eu(cA(s)− d− τ22A2(s)/2)ds <∞.

This means that {Πu
t }t≥0 is tight in ∂D. Then there is a sequence {tk}k≥1 such that tk ↑ ∞ and

Πu
tk

converges weakly to some invariant measure of U(t) supported by {G > 0, A > 0, N = 0}. But,
since µ2 is the unique ergodic invariant measure on there, by lemma 3.4 in [17],

lim
k→∞

1

tk

∫ tk

0
Eu(cA(s)− d− τ22A2(s)/2)ds =

∫
∂D

(cA− d− τ22A2/2)dµ2 = λ < 0.

Use the argument as in Lemma 4.1 in [17], we can show that there is a T ∗ > 0 such that for any
initial value u = (G,A,N) ∈ (0, 1]× (0,M ]× {0} and for all T ≥ T ∗

Eu
∫ T

0
[cA(t)− d− τ22A2(t)/2]dt ≤ λT

2
.

Because of the Feller propery of U(t) (see Remark 3.1 in [17]), and the uniform boundedness of
EuA2+p by lemma 5.1, we get

Eu
∫ T

0
[cA(t)− d− τ22A2(t)/2]dt ≤ λT

2
(5.11)

for all T ∈ [T ∗, n∗T ∗] and for any initial value u = (G,A,N) ∈ (0, 1] × (0,M ] × (0, δ], where δ is
some positive constant. By (5.10), we get for any q ∈ (0, 1) and T ∈ [T ∗, n∗T ∗]

lnN q(T ) = lnN q(0) + q m(T )

where

m(T ) =

∫ T

0
[cA(t)− d− τ22A2(t)/2]dt+

∫ T

0
τ2A(t)dW2(t).

Let φu,T (q) = Eu exp{qm(T )}, then standard calculus shows that

dφu,T
dq

(0) = Eum(T ) = Eu
∫ T

0
[cA(t)− d− τ22A2(t)/2]dt
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and
d2φu,T
dq2

= Eum2(T )eqm(T ) ≤ CEum2(T ) + Eue
1
2
m(T ), q ∈ [0,

1

4
]

Since LN
1
2 ≤ HN

1
2 , we have Eue

1
2
m(T ) = EuN

1
2 (T )

N
1
2
≤ eHT . Due to Lemma 5.1, we have Eum2(T ) ≤

KT,M for some constant K depending on T,M . Then

d2φu,T
dq2

= Eum2(T )eqm(T ) ≤ C̃ := C(KT,M + eHT ), q ∈ [0,
1

4
]

As a result, for any initial value u = (G,A,N) ∈ (0, 1]×(0,M ]×(0, δ], T ∈ [T ∗, n∗T ∗], and q ∈ (0, 14)
sufficiently small, Taylor expansion around q = 0 for φu,T , reads

φu,T (q) ≤ 1 + q
dφu,T
dq

(0) +
C̃

2
q2 ≤ 1− λT

4
q +

C̃

2
q2.

For sufficiently small q, we have

Eu(N(T )q/N(0)q) = Eu exp{qm(T )} = φu,T (q) ≤ 1− qλT

8
< 1

for u = (G,A,N) ∈ (0, 1] × (0,M ] × (0, δ] and T ∈ [T ∗, n∗T ∗]. Since LN
1
2 ≤ −N

1
2 if A > M , we

can mimic the argument in [17, Theorem 5.1] to show that

Eu(N(n∗T ∗)q/N(0)q) ≤ ρ, for any u = (G,A,N) ∈ (0, 1]× (0,∞)× (0, δ0],

for some δ0, and ρ ∈ (0, 1). Define

Y (k) =
N q(kn∗T ∗) ∧ δq0

ρk
, k ∈ N.

Then

Eu(N q(n∗T ∗) ∧ δq) ≤ EuN q(n∗T ∗) ≤ N q(0) exp

{
qλn∗T ∗

2

}
= N q(0)ρ.

It follows that EuY (1) ≤ N q(0) = Y (0), this combined with the Markov property of U(t) implies
that Y (k) is a super-martingale. Now, for ε ∈ (0, δ0), let ηε := inf{k ∈ N : Y (k) > ε}, Z(k) :=
1{ηε>k}N

q(kn∗T ∗), and Bk := [kn∗T ∗, (k + 1)n∗T ∗]. By Lemma 5.2, we have for some positive
constant K∗

Eu sup
t∈[0,n∗T ∗]

N q(t) ≤ K∗N q(0). (5.12)

By Markov’s property and due to (5.12),

Eu sup
t∈Bk

1{ηε>t}N
q(t) = Eu

{
1{ηε>k}EU(kn∗T ∗)

[
sup

t∈[0,n∗T ∗]
1{ηε>t}N

q(t)

]}
≤ K∗Eu

[
1{ηε>k}N

q(kn∗T ∗)
]

≤ K∗ρkN q(0).

(5.13)

Here the last inequality follows from the fact that Y (t) is a super martingale. As a result, we have
from applying Markov’s inequality to (5.13) that

Pu

{
sup
t∈Bk

1{ηε=∞}N
q(t) > ρk/2

}
≤ Pu

{
sup
t∈Bk

1{ηε>t}N
q(t) > ρk/2

}
≤ K∗N q(0)ρk/2.
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Since
∑∞

k=1K∗N
q(0)ρk/2 < ∞, Borel-Cantelli Lemma shows that, wp1, there exists a k0 so that

k > k0 implies 1{ηε=∞}N
q(t) ≤ ρk/2 for all t ∈ Bk. As a result, lim supt→∞

ln(Nq(t))
t < −r′′ < 0 a.s.

on the event {ηε = ∞} for a nonrandom positive constant r′′. On the other hand, since Y (k) is a
super-martingale,

Pu{ηε < k} = Pu{Y (k) > ε} ≤ EuY (k)

ε
≤ N q(0)

ε

for all k ≥ 1, and hence Pu{ηε <∞} ≤ Nq(0)
ε . Thus

Pu
{

ln(N q(t))

t
< −r′′

}
= Pu{ηε =∞} ≥ 1− N q(0)

ε
.

We have shown that for any ε′ > 0 there exists a δ′ > 0 so that

N < δ′ implies Pu
{

ln(N q(t))

t
< −r′′

}
> 1− ε′. (5.14)

Next, we want to show that for some T > 0

inf
u∈K

Pu{G(T ) ≤ 1, A(T ) ≤M, N(T ) < δ′} > 0 (5.15)

for any compact set K in D. Indeed, consider the control system associated with (2.1)

Ġφ = rGφ(1−Gφ −Nφ),

Ȧφ =
aGφ
b+Gφ

−Aφ −
τ21
2

AφG
2
φ

(b+Gφ)2
+
τ1AφGφ
b+Gφ

φ1,

Ṅφ = cAφNφ − dNφ −
τ22
2
A2
φNφ + τ2AφNφφ2,

where φ(t) = (φ1(t), φ2(t))
T is a piece-wise continuous control. It is clear that Gφ(t) ≤ 1 for all

t ≥ 0 and any control φ. With the controls φ1(t) ≤ −H̃ and φ2(t) ≤ −H̃ for sufficiently large
H̃ > 0, we can get Aφ(T ) ≤ M and Nφ(T ) < δ′ for some T > 0. For any compact set K in D, by
the support theorem (see Theorem 8.1 p. 518 in [18]),

Pu{U(T ) ∈ Vδ′} > 0

for any initial value u = (G,A,N) ∈ K, where Vδ′ = (0, 1] × (0,M ] × (0, δ′). Then the uniform
bound (5.15) follows from the Feller property of U(t). In view of Lemma 5.3, for any initial value
u = (G,A,N) in the interior of D, the process U(t) = (G(t), A(t), N(t)) is recurrent relative to
some compact set K̃ in D◦. That is, ζk <∞ a.s. for all k ≥ 1 where ζ0 = 0,

ζ1 = inf{t > 0 : U(t) ∈ K̃},
ζk+1 = inf{t > ζk + T : U(t) ∈ K̃}.

Let Ck := {U(t) /∈ Vδ′ ∀ t ∈ [ζk, ζk+1]}. By (5.15), there is a ρ∗ > 0 such that P(Cck) ≥ ρ∗ for all
k ≥ 1 and for any initial value u in D◦. Using the Strong Markov Property of the process U(t), it
is easy to show that

P(∩nk=1Ck) ≤ (1− ρ∗)n → 0 as n→∞
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and hence P (∪∞k=1C
c
k) = 1. This means that for any initial value u in D◦, the process U(t) will

eventually enter the set {G ≤ 1, A ≤ M, N < δ′} in a finite time with probability 1. Combining
this with (5.14) and using the strong Markov property, we can conclude that

Pu
{

ln(N q(t))

t
< −r′′

}
≥ 1− ε′

for any ε′ > 0 and for any initial value u in D◦. Therefore, lim
t→∞

lnN(t)
t < − r′′

q < 0 a.s. Using Claim

5.1, we obtain |A(t) − Ã(t)| → 0 a.s. and hence A(t) converges weakly to the ergodic invariant
measure π. Now, the equation of N(t) implies

lim
t→∞

lnN(t)

t
= lim

t→∞

lnN

t
+ lim
t→∞

1

t

∫ t

0
[cA(s)− d− τ22A2(s)/2]ds

+ lim
t→∞

1

t

∫ t

0
τ2A(s)dW2(s)

= λ + lim
t→∞

1

t

∫ t

0
τ2A(s)dW2(s).

In view of Theorem 3.4 in [20], since
∫ t
0 τ2A(s)dW2(s), t ≥ 0, is a real-valued continuous local

martingale vanishing at t = 0 and

lim sup
t→∞

1

t

∫ t

0
τ22A

2(s)ds =
2a2τ22

2(b+ 1)2 − τ21
<∞,

we have

lim
t→∞

1

t

∫ t

0
τ2A(s)dW2(s) = 0 a.s.

Thus

lim
t→∞

lnN(t)

t
= λ a.s.

That is N(t) decays a.s. to 0 exponentially fast with the rate λ.
Case 2. Suppose that λ > 0 and the initial value u = (G,A,N) ∈ D◦. By way of

contradiction, assume that lim supt→∞ Eu 1
t

∫ t
0 ln(N(s) + 1)ds = 0. By generalized L’Hospital’s

Rule ([21] page 28), it implies that lim inft→∞ Eu ln(N(t) + 1) = 0. Then Fatou’s lemma implies
that Eu lim inft→∞ ln(N(t) + 1) = 0 and hence lim inft→∞ ln(N(t) + 1) = 0 a.s. So there exists a
sequence of positive real numbers {tk}k such that tk ↑ ∞ and ln(N(tk) + 1) → 0 as k → ∞ a.s.
Hence N(tk) → 0 as k → ∞ a.s. By Claim 5.1, G(tk) → 1 a.s. and |A(tk) − Ã(tk)| → 0 a.s. This
means the family of occupation measures {Πuk

tk
(·)}, where uk = U(tk), is tight on ∂D and converges

weakly to the invariant measure µ2. But, using Lemma 5.2 and [17, Lemma 3.4], we get

lim
k→∞

1

tk
Eu lnN(tk) = lim

k→∞

1

tk

∫ tk

0
Eu(cA(s)−d−τ22A2(s)/2)ds =

∫
∂D

(cA−d−τ22A2/2)dµ2 = λ > 0

which contradicts the hypothesis that lim supt→∞ Eu 1
t

∫ t
0 ln(N(s) + 1)ds = 0. Therefore, the proof

of Theorem 2.2 is completed.
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