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A two-dimensional tumor-immune model with the time delay of the adaptive
immune response is considered in this paper. The model is designed to account
for the interaction between cytotoxic T lymphocytes (CTLs) and cancer cells
on the surface of a solid tumor. The model considers the surface growth as
a major growth pattern of solid tumors in order to describe the existence of
necrotic kernels. The qualitative analysis shows that the immune-free equilib-
rium is unstable, and the behavior of positive equilibrium is closely related to
the ratio of the immune killing rate to tumor volume growth rate. The positive
equilibrium is locally asymptotically stable when the ratio is smaller than a crit-
ical value. Otherwise, the occurrence of the delay-driven Hopf bifurcation at the
positive equilibrium is proved. Applying the center manifold reduction and nor-
mal form method, we obtain explicit formulas to determine the properties of the
Hopf bifurcation. The global continuation of a local Hopf bifurcation is investi-
gated based on the coincidence degree theory. The results reveal that the time
of the adaptive immune system taken to response to tumors can lead to oscilla-
tion dynamics. We also carry out detailed numerical analysis for parameters and
numerical simulations to illustrate our qualitative analysis. Numerically, we find
that shorter immune response time can lead to longer patient survival time, and
the period and amplitude of a stable periodic solution increase with the increas-
ing immune response time. When CTLs recruitment rate and death rate vary,
we show how the ratio of the immune killing rate to tumor volume growth rate
and the first bifurcation value change numerically, which yields further insights
to the tumor-immune dynamics.
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1 INTRODUCTION

Cancer, an unnatural growth phenomenon of cell numbers, remains mostly an intractable disease despite the fact that
tremendous advances have been made in treatment techniques and medicine.1,2 Finding effective strategies for tumor
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FIGURE 1 A tumor with a
necrotic kernel and surface
tumor-immune interaction
[Colour figure can be viewed at
wileyonlinelibrary.com]

control and therapies is significant for public health, as well as for economic resources. However, it is a great challenge
since the growth and control of tumors involve a considerable number of biological mechanisms and dynamical pro-
cesses that are too complicated to be fully captured. As studies of complexities in physics, tumor-associated responses
can be better approached by establishing mathematical models with some appropriate simplified assumptions than via
experimental procedures alone.3–6

Over the last two decades, tumor immunology has attracted remarkable attention and various mathematical models
have been developed to understand the interaction between cancer and immune cells. A review of early works concern-
ing tumor-immune interactions can be found in Adam and Bellomo7 and Eftimie et al.8 Given the complexity of this
process, many models include four or more variables or equations. For example, Kuznetsov et al9 proposed a system with
five equations to investigate the mediated response to growing tumor mass, which can be applied to the tumor dormancy.
However, in order to better recognise the main response mechanism between immune cells and tumor mass, some sim-
plifications are excepted. Frascoli et al10 presented a coupled ordinary equation system to account for the role of cytotoxic
T lymphocytes (CTLs) in the growth of solid tumors, where CTLs can recognize and kill the cancer cells in a tumor and
recruit other immune cells to the tumor site.11 The structure of a tumor in Frascoli et al10 was supposed to be a sphere
with an inner shell representing a necrotic kernel, and the active cellular division only occurred on the surface of the
tumor sphere; see Figure 1. A similar idea was also proposed in Kansal et al.12

There are two immune systems that can defend against cancer cells: the innate immune system as the first line of
defence can lead to fast immune response. Macrophages and natural killer cells are two central types of innate immune
cells in detecting and killing cancer cells. The adaptive immune response is slower to develop but manifests as antigenic
specificity and memory increase. It consists of antibodies, B cells, and CD4+ and CD8+ T lymphocytes. Natural killer T
cells and 𝛾𝛿 T cells are cytotoxic lymphocytes that straddle the interface of innate and adaptive immunity.13 There might be
a delay between the moment the cancer cells appear and the adaptive immune system is activated to work on cancer cells.
CTLs belong to the adaptive immune system. To appropriately model CTLs-mediated immune response to tumor cells, the
time delay of the adaptive immune response should not be ignored. Besides, numerous results such as those of previous
works14–16 have demonstrated that time delays can produce rich dynamics in a system, such as the stability switches and
periodic oscillations. Bi et al14 considered three delays that, respectively, described tumor cells proliferation, effector cells
growth, and the immune effector cells differentiation and studied the oscillation activity of tumor and immune cells.
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Parameter Description Biological ranges and unit
Tm maximum volume of the tumor 0 – 4 × 106 μm3

𝜌 recruitment rate of CTLs 0 – 0.97 μm day−1

r growth rate of the tumor 0 – 0.5 μm day−1

k killing rate of CTLs for the tumor 0 – 2.42 μm day−1

d death rate of CTLs 0 – 0.5 day−1

TABLE 1 Common ranges and units for parameters
in system (2), estimated based on Frascoli et al10

A solid tumor grows from a slow avascular growth period due to the nutrient limitation. Interested by the
CTLs-mediated immune response on this stage, Frascoli et al10 proposed the following model:{ .

V(t) = 𝜌rtV 2∕3(t) − 𝜌kV 2∕3(t)C(t),.
N(t) = 𝜌rcV 2∕3(t)N(t) − dcN(t). (1)

Here, V(t) and N(t) stand for the volume of a tumor mass and the number of CTLs with the ability to attack tumor cells
at time t, respectively. It is assumed that the tumor has a spherical shape and the radius changes when tumor grows, so
the tumor surface area is proportional to 𝜌V2/3(t), where 𝜌 is the dimensionless shape factor changing with the tumor
volume. rc is the CTLs' recruitment rate, and rt is the growth rate of tumor volume. The death rate of CTLs is denoted by
dc, and the rate at which cancer cells are killed by CTLs is k. C(t) is a dimensionless function that stands for the fraction
of the attacked surface area. All parameters in system (1) are positive.

Note that the term V2/3(t)N(t) is a functional response with fractional powers. This type of response functions has been
widely used (see previous studies17–19 and references therein). Chattopadhyay et al19 proposed that it was better to use
surface area rather volume when modeling the prey in groups. They further verified that the fractional term significantly
affected the existence of interior equilibrium and periodic solutions. Kaslik and Neamtu17 presented stable oscillations
induced by time delay and pointed out that small fractional orders was better for system to remain stable.

The logistic function is one common choice when modelling species growth. Thus, in this paper, we use it to describe
the growth of tumor in the absence of CTLs. In addition, the Holling II response function is used to model tumor-CTLs
interaction. It is more practical to use a discrete time delay to reflect the time for the adaptive immune system to respond
to the tumor. Accordingly, we propose a two-compartment model as

⎧⎪⎨⎪⎩
dT(t)

dt
= rT2∕3(t)

[
1 − T(t)

Tm

]
− kT2∕3(t) N(t)

N(t)+𝛽
,

dN(t)
dt

= 𝜌T2∕3(t − 𝜏)N(t − 𝜏) − dN2(t),
(2)

where r is the growth rate of the tumor, Tm is the maximum volume of a tumor, d stands for the death rate of the CTLs,
and 𝜌 is the recruitment rate of CTLs. k is the killing rate of CTLs. Here, we assume the death of CTLs is nonlinear, the
similar consideration can be found in Friedman et al.20 All parameters are estimated based on Frascoli et al,10 which are
shown in Table 1, except that 𝛽 is the half-saturation constant which is chosen as 0 − 0.6 × 106.

The main goal of this paper is to study the effect of adaptive immune response delay on the stability of system (2). In
particular, we intend to seek some conditions such that system (2) undergoes a Hopf bifurcation at positive equilibrium.
We are further going to analyze the properties of bifurcating periodic solutions in local and global ranges. In fact, the
center manifold method and normal form theory presented by Hassard et al21 and Faria22 are two useful tools for this
problem, and they have been applied by many literatures (see Adak and Bairagi23 and Wei24 and the references therein).
Biologically, the Hopf bifurcation phenomenon implies that the tumor and CTLs interaction in a periodical fashion and
the tumor mass can never be eradicated. It is also noticed that when the time required by CTLs to respond to the tumor is
less than bifurcation value, the tumor and CTLs can be stable at the positive equilibrium. Moreover, following the global
Hopf bifurcation theory given in Wu,25 we verify the global continuation of the local Hopf bifurcation. Understanding
how the parameters in model, especially the delay 𝜏, affect the solutions is helpful for successful treatment.

The rest of this paper is organized as follows. In Section 2, we investigate the existence and stability of equilibria, estab-
lish the conditions for Hopf bifurcation, and obtain explicit formulas to determine the direction of the Hopf bifurcation
and the stability of the periodic solutions. In Section 3, we discuss the global existence of the Hopf bifurcation. In Section 4,
we carry out some numerical simulations to illustrate our analytical results and exhibit the effects of parameters in model
on the bifurcation parameter. Finally, we give a brief conclusion in the last section.
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The phase space for a two-dimensional functional differential equation is usually C([−𝜏, 0],R2). However, due to the
fractional-order terms, system (2) is not well defined when T(t) = 0; thus, we consider system (2) on the space X
throughout this paper, where

X = {(T,N) ∈  ∶  = C([−𝜏, 0], Int(R+) × R+)},
R+ = {𝑦 ∈ R ∶ 𝑦 ≥ 0} and Int(R+) = {𝑦 ∈ R+ ∶ 𝑦 > 0}.

From Hale and Lunel,26 we see that for the initial value

0 < T(𝜃), 0 < N(𝜃), 𝜃 ∈ [−𝜏, 0],

there exists a maximum tm > 0 such that (2) has a unique solution (T(t), N(t)) on (0, tm). We further claim that 0 <

T(t) ≤ Tm, 0 < N(t) for t ∈ (0, tm). Suppose that there exists t0 ∈ (0, tm) such that N(t0) = 0 and N(t) > 0 for t ∈ (0, t0).
Then from the second equation of (2), we have

.
N(t0) = 𝜌x2(t0 − 𝜏)N(t0 − 𝜏) > 0.

This is a contradiction, and then the positivity of N(t) follows. From the positivity of N(t) and the comparison principle of
functional differential equation, we have 0 < T(t) ≤ Tm for t ∈ (0, tm).

2 BASIC ANALYSIS

In this section, we provide analysis on the local stability of equilibria and the existence of the Hopf bifurcation near the
positive equilibrium. Moreover, the properties of the Hopf bifurcation are demonstrated.

2.1 Local stability of boundary equilibria
Clearly, system (2) always has a boundary equilibrium E1 = (Tm, 0). Rescaling T by T = x3, we have

⎧⎪⎨⎪⎩
.x(t) = r

3

[
1 − x3(t)

Tm

]
− k

3
N(t)

𝛽 + N(t)
,

.
N(t) = 𝜌x2(t − 𝜏)N(t − 𝜏) − dN2(t).

(3)

Let x(t) = T1∕3
m x̂(t), N(t) = 𝛽N̂(t), r̂ = rT−1∕3

m ∕3, k̂ = kT−1∕3
m ∕3, �̂� = 𝜌T2∕3

m , d̂ = d𝛽 and drop the hats; then system (3)
becomes ⎧⎪⎨⎪⎩

.x(t) = r[1 − x3(t)] − kN(t)
1 + N(t)

,

.
N(t) = 𝜌x2(t − 𝜏)N(t − 𝜏) − dN2(t).

(4)

The boundary equilibrium (Tm, 0) becomes (1, 0). It is easy to get that the characteristic equation of the linearization
associated with system (4) at (1, 0) is

(𝜆 + 3r)(𝜆 − 𝜌e−𝜆𝜏 ) = 0. (5)
Apparently, the stability of (1, 0) depends on the roots of

𝜆 − 𝜌e−𝜆𝜏 = 0. (6)

In the case of 𝜏 = 0, 𝜆 = 𝜌 > 0, which implies (1, 0) is unstable. For 𝜏 > 0, we can check that (6) has no zero root or
purely imaginary roots. Thus, (1, 0) remains unstable. Consequently, (Tm, 0) is unstable. The result is concluded in the
following theorem.

Theorem 2.1. For system (2), the boundary equilibrium E1 is unstable.
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Remark 2.1. Theorem 2.1 indicates that the immune-free equilibrium is unstable. Namely, once the adaptive immune
system is activated, the volume of the tumor is no longer Tm but tends to some other states. In the following subsection,
we will further discuss the long-time behavior of the volume of the tumor.

2.2 Existence and local stability of positive equilibrium
We turn to the coexistence state of CTLs and tumor. Note that the possible positive equilibrium (T∗, N∗) of system (2)
becomes E∗ = (x∗,N∗) of system (4) after the transformation above. Further, the system (4) has identical dynamics with
the system (2) at E∗; thus, we only study system (4) in later discussions.

Some trivial calculations give the existence and uniqueness of positive equilibrium E∗ as follows.

Lemma 2.1. System (4) always has a unique positive equilibrium E∗ = (x∗,N∗), where N∗ = 𝜌x2
∗∕d and x∗ is the unique

positive solution of 𝜌x5 + dx3 − 𝜌

(
1 − k

r

)
x2 − d = 0.

Proof. Assume that (x, N) is a positive solution for system (4). Then, the second equation of system (4) shows N =
𝜌x2∕d. Substituting it into the first equation, we have

𝜌x5 + dx3 − 𝜌

(
1 − k

r

)
x2 − d = 0. (7)

Denote

H(x) = 𝜌x5 + dx3 − 𝜌

(
1 − k

r

)
x2 − d. (8)

Taking derivatives of both sides of Equation (8) with respect to x yields

H′(x) = 5𝜌x4 + 3dx2 − 2𝜌
(

1 − k
r

)
x. (9)

Case I: If 1− k∕r ≤ 0, then H′(x) ≥ 0 for x ≥ 0. Furthermore, H(0) = −d < 0, and lim
x→∞

H(x) = ∞. This implies that
H(x) = 0 has a unique solution for x ∈ (0, ∞);

Case II: If 1 − k∕r > 0, let G(x) = 5𝜌x3 + 3dx − 2𝜌
(

1 − k
r

)
, then H′(x) = xG(x). Since G′(x) > 0, G(0) < 0 and

lim
x→∞

G(x) = ∞, there exists a unique x1 ∈ (0, ∞) such that G(x1) = 0. Hence, H′(x) < 0 for x ∈ (0, x1); H′(x) ≥ 0
when x > x1. Notice that H(x1) < H(0) = −d < 0 and lim

x→∞
H(x) = ∞. Thus, H(x) = 0 has a unique solution on (x1, ∞).

The proof is completed.

Linearizing system (4) at E∗ leads to

⎧⎪⎨⎪⎩
.x(t) = −3rx2

∗x(t) − kN(t)
(1 + N∗)2 ,

.
N(t) = −2dN∗N(t) + 2𝜌x∗N∗x(t − 𝜏) + 𝜌x2

∗N(t − 𝜏).
(10)

The corresponding characteristic equation of (10) is

𝜆2 + A𝜆 + B + (C𝜆 + D)e−𝜆𝜏 = 0, (11)

with A = 2dN∗ + 3rx2
∗, B = 6rdx2

∗N∗, C = −𝜌x2
∗, D = 2𝜌kx∗N∗

(1+N∗)2
− 3r𝜌x4

∗.
We show the stability of E∗ when 𝜏 = 0.

Theorem 2.2. E∗ is locally asymptotically stable for 𝜏 = 0.

Proof. When 𝜏 = 0, (11) becomes
𝜆2 + (A + C)𝜆 + (B + D) = 0. (12)



6 ZHANG ET AL.

It can be easily verified that

A + C = (𝜌 + 3r)x2
∗ > 0, B + D = 3r𝜌x4

∗ +
2𝜌kx∗N∗

(1 + N∗)2 > 0.

It follows from the Routh–Hurwitz criterion that all characteristic roots of (12) have negative real parts. The proof is
completed.

For 𝜏 > 0, let i𝜔(𝜔 > 0) be a root of (11); then we have

−𝜔2 + iA𝜔 + B + (iC𝜔 + D)e−i𝜔𝜏 = 0.

Separating the real and imaginary parts gives

D cos𝜔𝜏 + C𝜔 sin𝜔𝜏 = 𝜔2 − B,
D sin𝜔𝜏 − C𝜔 cos𝜔𝜏 = A𝜔.

Adding the square of both sides of above two equations yields

𝜔4 + (A2 − C2 − 2B)𝜔2 + (B2 − D2) = 0,

and

𝜔2 =
C2 + 2B − A2 ±

√
(A2 − C2 − 2B)2 − 4(B2 − D2)

2
.

According to the expressions of A, B and C, we have

A2 − C2 − 2B = (2dN∗ + 3rx2
∗)2 − 𝜌2x4

∗ + 12rdx2
∗N∗ = 3𝜌2x4

∗ + 9rx4
∗ > 0.

If
(H1) ∶ B < D

is satisfied, then we obtain

𝜔0 =
√

2
2

√
C2 − A2 + 2B +

√
(C2 − A2 + 2B)2 − 4(B2 − D2). (13)

Further, we have

𝜏𝑗 =

⎧⎪⎪⎨⎪⎪⎩

1
𝜔0

[
arccos

D(𝜔2
0 − B) − AC𝜔2

0

C2𝜔2
0 + D2

+ 2𝑗𝜋

]
, cos𝜔0𝜏 > 0,

1
𝜔0

[
2𝜋 − arccos

(
−

D(𝜔2
0 − B) − AC𝜔2

0

C2𝜔2
0 + D2

)
+ 2𝑗𝜋

]
, cos𝜔0𝜏 < 0, 𝑗 = 0, 1, 2, … .

(14)

Let 𝜆 = 𝛼(𝜏) + i𝜔(𝜏) be a root of (11) satisfying 𝛼(𝜏𝑗) = 0 and 𝜔(𝜏𝑗) = 𝜔0. Some calculations yield the following result.

Lemma 2.2. If the assumption (H1) holds, then de(𝜆(𝜏))
d𝜏

|||𝜏=𝜏𝑗 > 0.

Proof. Differentiating both sides of (11) with respect to 𝜏 gives

d𝜆(𝜏)
d𝜏

= (C𝜆 + D)𝜆
(2𝜆 + A)e𝜆𝜏 + C − (C𝜆 + D)𝜏

.

This leads to [
de(𝜆(𝜏))

d𝜏

]−1

= e
[
(2𝜆 + A)e𝜆𝜏 + C

(C𝜆 + D)𝜆
− 𝜏

𝜆

]
.
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Then we obtain[
de(𝜆(𝜏))

d𝜏

]−1|||||𝜏=𝜏𝑗 =
D𝜔0(A sin𝜔0𝜏𝑗 + 2𝜔0 cos𝜔0𝜏𝑗) − C𝜔2

0(A cos𝜔0𝜏𝑗 − 2𝜔0 cos𝜔0𝜏𝑗 + C)
C2𝜔4 + D2𝜔2

=
A2 − C2 − 2B + 2𝜔2

0

C2𝜔2
0 + D2

.

Again, using A2 − C2 − 2B > 0, we have A2−C2−2B+2𝜔2
0

C2𝜔2
0+D2 > 0, which completes the proof.

According to the results in Ruan and Wei,27 we arrive at the following results.

Lemma 2.3. For system (4), we have the following:

(i) If assumption (H1) is not satisfied, then all roots of (11) have negative real parts for all 𝜏 ≥ 0;
(ii) If (H1) holds, then there exists a sequence of values of 𝜏: 0 < 𝜏0 < 𝜏1 < … < 𝜏 j < … such that all eigenvalues

have negative real parts when 𝜏 ∈ [0, 𝜏0); (11) has 2(j + 1) roots with positive real parts when 𝜏 ∈ (𝜏𝑗 , 𝜏𝑗+1], 𝑗 =
0, 1, 2, … ; For 𝜏 = 𝜏𝑗 , 𝑗 = 0, 1, 2, … , (11) has exactly a pair of simple imaginary roots ±i𝜔0.

Now, based on the fundamental Hopf bifurcation theorem in Hale and Lunel,26 we have the following stability results
at E∗ and the existence of Hopf bifurcations.

Theorem 2.3. For system (4), the following results hold.

(i) Assume (H1) is not satisfied; the positive equilibrium E∗ is locally asymptotically stable for 𝜏 ≥ 0;
(ii) Assume (H1) is satisfied; then E∗ is locally asymptotically stable for 𝜏 ∈ [0, 𝜏0) and unstable for 𝜏 > 𝜏0.

Furthermore, a Hopf bifurcation takes place at E∗ when 𝜏 = 𝜏𝑗 , 𝑗 = 0, 1, 2, … .

Remark 2.2. Noticing that all results obtained above are closely related to (H1), we a give brief discussion about it.
Denote

Γ(x) = 9x(d + 𝜌x2)2 − 2𝜌d k
r
.

It can be verified thatΓ(x∗) > 0 when k∕r ≤ 1. Note that B−D = 𝜌rx3
∗

(d+𝜌x2
∗)2
Γ(x∗); thus, B > D always holds when k∕r ≤ 1.

From the biological viewpoint, when the CTL killing rate is less than the tumor growth rate, the tumor is stable and
cannot be easily influenced by some external factors. In a later study, we will give some numerical simulations to
illustrate how other factors impact (H1) and the existence of the Hopf bifurcation on the k − r plane.

2.3 Properties of the Hopf bifurcation
In the previous subsection, we have obtained a sufficient condition for the occurrence of the Hopf bifurcation. According
to the center manifold theorem, we know that the projection of periodic solution bifurcating from the first bifurcation
value 𝜏0 on the center manifold has the same stability with that of system (4). Therefore, we shall study the direction
of the Hopf bifurcation and the stability of bifurcating periodic solutions with the center manifold theory and normal
form method given in Hassard et al.21 The details will be provided in Appendix A, and the consequence is stated as the
following theorem.

Theorem 2.4. Suppose that the assumption (H1) is satisfied. In the neighborhood of 𝜏 j, 𝑗 = 0, 1, 2, … , the Hopf bifur-
cation at E∗ is forward (backward), and the periodic solutions bifurcating from 𝜏0 are orbitally asymptotically stable
(unstable) if e(c1(0)) < 0 (> 0).

The calculation of c1(0) is given in Appendix A; we shall carry out some numerical simulations to illustrate our
theoretical analysis in Section 4.

3 GLOBAL EXISTENCE OF PERIODIC SOLUTIONS

In this section, we always assume that (H1) is satisfied and consider the global existence of the Hopf bifurcation at the
point (E∗, 𝜏𝑗), 𝑗 = 0, 1, 2, … , by applying the global bifurcation result developed by Wu.25
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Let  = C([−𝜏, 0], Int(R+) × R+) and vt = (xt,Nt) ∈  with vt(𝜃) = v(t + 𝜃) for t ≥ 0, 𝜃 ∈ [− 𝜏, 0]. System (4) can be
abstracted as the following functional differential equation

.v(t) = F(vt, 𝜏, s), (15)

where

F(Ψ, 𝜏, s) =

(
r(1 − 𝜓3

1 (0)) −
k𝜓2(0)

1+𝜓2(0)

𝜌𝜓2
1 (−𝜏)𝜓2(−𝜏) − d𝜓2

2 (0)

)
,

and Ψ = (𝜓1, 𝜓2) ∈ . The mapping F ∶  ×R2
+ → Int(R+)×R+ is completely continuous. To restrict F onto the subspace

of  composed by all constant functions, we define the mapping F̂ = F|Int(R+)×R3
+
∶ Int(R+) × R3

+ → Int(R+) × R+.
Obviously,

F̂(v, 𝜏, s) =

(
r(1 − x3) − kN

1+N
𝜌x2N − dN2

)
. (16)

Denote constant mapping v0 ∈  by v∗. The point (v∗, 𝜏∗, s∗) is said to be a stationary solution of (15) if F̂(v∗, 𝜏∗, s∗) = 0.
Therefore, we get

(A1) F̂ ∈ 2(Int(R+) × R
3
+, Int(R+) ×R+).

Furthermore, under assumption (H1), we have

det(DvF̂(v, 𝜏, s)|v=v∗ ) = det

(
−3x2

∗ − k
(1+N∗)2

2𝜌x∗N∗ 𝜌x2
∗ − 2dN∗

)
< 0.

Thus, we have
(A2) DvF̂(v, 𝜏, s) at the positive equilibrium v∗ is an isomorphism on Int(R+) ×R+.

It is also clearly that
(A3) F(Ψ, 𝜏, s) is differentiable with respect to Ψ.

At any stationary solution (v∗, 𝜏∗, s∗), the corresponding characteristic matrix is

Δ(v∗, 𝜏∗, s∗)(𝜆) =

(
𝜆 + 3x2

∗
k

(1+N∗)2

−2𝜌x∗N∗e−𝜆𝜏 𝜆 − 𝜌x2
∗e−𝜆𝜏 + 2dN∗

)
,

and then we obtain that
det(Δ(v∗, 𝜏∗, s∗)(𝜆)) = 𝜆2 + A𝜆 + B + (C𝜆 + D)e−𝜆𝜏 , (17)

where A, B, C, D are defined as in (11).
The stationary solution (v∗, 𝜏∗, s∗) is called a center if

det
(
Δ(v∗, 𝜏∗, s∗)

(
n 2𝜋i

s

))
= 0

for some integer n. A center (v∗, 𝜏∗, s∗) is said to be isolated if it is the only center in some neighborhood of
(v∗, 𝜏∗, s∗). It can be easily verified that

(
v∗, 𝜏𝑗 , 2𝜋

𝜔0

)
, 𝑗 = 0, 1, 2, … , are isolate centers based on the analysis in

Section 2. We also know that there exist 𝜂 > 0, 𝜉 > 0 and a smooth curve 𝜆 ∶ (𝜏𝑗 − 𝜂, 𝜏𝑗 + 𝜂) → C such that

det (Δ(v∗, 𝜏∗, s∗)(𝜆(𝜏))) = 0, |𝜆(𝜏) − i𝜔0| < 𝜉, (18)

for all 𝜏 ∈ [𝜏 j − 𝜂, 𝜏 j + 𝜂]. Moreover, 𝜆(𝜏𝑗) = i𝜔0,
de(𝜆(𝜏))

d𝜏
|||𝜏=𝜏𝑗 > 0 . It can be proved that on (𝜏𝑗 − 𝜂, 𝜏𝑗 + 𝜂)×Ω

𝜉,
2𝜋
𝜔0

,

(A4) det
(
Δ(v∗, 𝜏∗, s∗)

(
u + i 2𝜋

s

))
= 0 if and only if u = 0, 𝜏 = 𝜏𝑗 and s = 2𝜋∕𝜔0, 𝑗 = 0, 1, 2, … , where

Ω
𝜉,

2𝜋
𝜔0

= {(u, s) ∶ 0 < u < 𝜉, |s − 2𝜋∕𝜔0| < 𝜉} .
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Define
Σ(F) = Cl{(v, 𝜏, s) ∈  × R

2
+ ∶ vt+s = ut},

N(F) = {(v∗, 𝜏, s) ∈ Int(R+) × R
3
+ ∶ F(v∗, 𝜏, s) = 0},

and let D
(

v∗, 𝜏𝑗 , 2𝜋
𝜔0

)
be the connected component for the center

(
v∗, 𝜏𝑗 , 2𝜋

𝜔0

)
of (15) in Σ(F).

Lemma 3.1. D
(

v∗, 𝜏𝑗 , 2𝜋
𝜔0

)
is unbounded for each center

(
v∗, 𝜏𝑗 , 2𝜋

𝜔0

)
.

Proof. As in Wu,25 we define

±
(

v∗, 𝜏𝑗 ,
2𝜋
𝜔0

)
(u, s) = det

(
Δ
(

v∗, 𝜏𝑗±𝜂,
2𝜋
𝜔0

)(
u + i 2𝜋

s

))
.

Assumption (A4) indicates that ±
(

v∗, 𝜏𝑗 , 2𝜋
𝜔0

)
(u, s) ≠ 0 for (u, s) ∈ Ω𝜉,2𝜋∕𝜔0 ; then the first crossing number

𝛾

(
v∗, 𝜏𝑗 , 2𝜋

𝜔0

)
is

𝛾

(
v∗, 𝜏𝑗 ,

2𝜋
𝜔0

)
= degB

(
−

(
v∗, 𝜏𝑗 ,

2𝜋
𝜔0

)
,Ω𝜉,2𝜋∕𝜔0

)
− degB

(
+

(
v∗, 𝜏𝑗 ,

2𝜋
𝜔0

)
,Ω𝜉,2𝜋∕𝜔0

)
= −1.

Consequently, we have ∑
(v∗,𝜏𝑗 ,2𝜋∕𝜔0)∈D(v∗,𝜏,s)∩N(F)

𝛾(v∗, 𝜏, s) < 0. (19)

Besides, D(v∗, 𝜏, s) is nonempty.
From the theorem 3.3 in Wu,25 we know that D

(
v∗, 𝜏𝑗 , 2𝜋

𝜔0

)
is unbounded. The proof is completed.

Lemma 3.2. All the positive periodic solutions of system (4) are uniformly bounded.

Proof. Let (x(t), N(t)) be a positive nonconstant periodic solution of system (4). Set

M1 =max{x(t)|t > 0} = x(𝜂1), M2 = max{N(t)|t > 0} = N(𝜂2),
m1 =min{x(t)|t > 0} = x(𝜉1), m2 = min{N(t)|t > 0} = N(𝜉2).

Since N(t) > 0 for all t > 0, we have

0 = r(1 − M3
1) −

kN(𝜂1)
1 + N(𝜂1)

≤ r(1 − M3
1),

0 = r(1 − m3
1) −

kN(𝜉1)
1 + N(𝜉1)

≥ r(1 − m3
1) − k.

Then, the following is easy to obtain:

max

{
0,

(
1 − k

r

)1∕3
}

≤ m1 ≤ M1 ≤ 1, (20)

Note that
0 = 𝜌x2(𝜂2 − 𝜏)N(𝜂2 − 𝜏) − dM2

2 ≤ 𝜌M2
1N(𝜂2 − 𝜏) − dM2

2 ,

0 = 𝜌x2(𝜉2 − 𝜏)N(𝜉2 − 𝜏) − dm2
2 ≥ 𝜌m2

1N(𝜉2 − 𝜏) − dm2
2.

A direct calculation yields
𝜌m2

1

d
≤ m2 ≤ M2 ≤ 𝜌M2

1

d
. (21)

The proof is completed.
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Lemma 3.3. The system (4) has no 𝜏 − periodicsolution under the assumption

(H2) 𝜌 ≤ 3r.

Proof. Let (x(t), N(t)) be a nonconstant periodic solution to (4) with period 𝜏. Then (x(t), N(t)) also is a nonconstant
periodic solution for the following ODE system:

⎧⎪⎨⎪⎩
.x(t) = r[1 − x3(t)] − kN(t)

1 + N(t)
,

.
N(t) = 𝜌x2(t)N(t) − dN2(t).

(22)

Let (f (x, N), g(x, N)) be the vector filed of (22); then for all (x,N) ∈ Int(R+) × R+, we have

𝜕𝑓

𝜕x
+

𝜕g
𝜕N

= (𝜌 − 3r)x2 − 2dN. (23)

Under the condition (H2), we have 𝜕𝑓

𝜕x
+ 𝜕g

𝜕N
< 0. By the classical Bendixson criterion,28 we see that the system (22)

has no nonconstant periodic solutions lying entirely on Int(R+) ×R+.

Proposition 1. Suppose (H2) is true, then system (4) has no periodic solutions.

Theorem 3.1. If (H1) and (H2) hold, then system (4) has at least j positive periodic solutions when 𝜏 > 𝜏 j, 𝑗 = 1, 2, …
with 𝜏 j defined in (14).

Proof. According to the discussion in the beginning of this section, we know that
(

v∗, 𝜏𝑗 , 2𝜋
𝜔0

)
are isolate centers. Then

D
(

v∗, 𝜏𝑗 , 2𝜋
𝜔0

)
is unbounded following Lemma 3.1. Meanwhile, Lemma 3.2 suggests that the projection of D

(
v∗, 𝜏𝑗 , 2𝜋

𝜔0

)
onto v-space is bounded. From Proposition 1, one knows the projection of D

(
v∗, 𝜏𝑗 , 2𝜋

𝜔0

)
onto 𝜏-space is bounded below.

The definition of 𝜏 j in (14) shows that 2𝜋 < 𝜏 j𝜔0 < (2j + 1)𝜋 for j ≥ 1; then

𝜏𝑗

𝑗 + 1
<

2𝜋
𝜔0

< 𝜏𝑗. (24)

It follows from Lemma 3.3 that if (v, 𝜏, s) ∈ D
(

v∗, 𝜏𝑗 , 2𝜋
𝜔0

)
, then 𝜏

𝑗+1
< s < 𝜏. Thus, the projection of D

(
v∗, 𝜏𝑗 , 2𝜋

𝜔0

)
onto the 𝜏-space has to be unbounded so that D

(
v∗, 𝜏𝑗 , 2𝜋

𝜔0

)
can be unbounded. This implies that the projection of

D
(

v∗, 𝜏𝑗 , 2𝜋
𝜔0

)
onto the 𝜏-space covers [𝜏 j, ∞). Thus, for each 𝜏 > 𝜏 j, system (4) has j positive nonconstant periodic

solutions. The proof is completed.

Remark 3.1. Since 0 < 𝜔0𝜏0 < 2𝜋, we have 𝜏0 <
2𝜋
𝜔0

< ∞. It has been known that the projection of D
(

v∗, 𝜏𝑗 , 2𝜋
𝜔0

)
onto the v-space is bounded. If we further have that the periods of periodic solutions bifurcating from (E∗, 𝜏0) is
bounded, then the unboundedness of D

(
v∗, 𝜏𝑗 , 2𝜋

𝜔0

)
leads to that the projection of D

(
v∗, 𝜏𝑗 , 2𝜋

𝜔0

)
onto the 𝜏-space is

unbounded. Therefore, under conditions (H1) and (H2), system (4) has at least j + 1 positive periodic solutions for
𝜏 > 𝜏 j, 𝑗 = 0, 1, 2, … . If the the periods of periodic solutions bifurcating from (E∗, 𝜏0) are unbounded, then the
projection of D

(
v∗, 𝜏𝑗 , 2𝜋

𝜔0

)
onto the 𝜏-space may not cover [𝜏0, ∞).

4 NUMERICAL SIMULATIONS

In this section, some numerical simulations are conducted to support the previous theoretical analysis. In particular, we
numerically study the ratio of the immune killing rate to tumor volume growth rate, behavior of the Hopf bifurcation,
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FIGURE 2 (A) The black and red lines are determined by P(r, k) = 0 and k = r, respectively. P(r, k) < 0 above the black line and
P(r, k) > 0 below the black line; (B) the effect of 𝜌 on k∕r; (C) the effect of d on k∕r [Colour figure can be viewed at wileyonlinelibrary.com]

and the effects of other parameters on the first bifurcation value of the immune response time. Considering Table 1, we
choose the following parameter values: Tm = 0.5×106, r = 0.29, k = 0.9, d = 0.5 , 𝜌 = 0.24, and 𝛽 is chosen by 0.11 × 106.

4.1 The effect of the killing rate and growth rate
We show the stability change of positive equilibrium driven by the ratio k∕r. In Figure 2A, the black line is denoted by
P(r, k) = 𝜌rx3

∗
(d+𝜌x2

∗)2
Γ(x∗) and the red line stands for k = r. It can be checked that the points satisfying B < D are in the

region above the black line. The region under the red line must hold B > D, where the coexisting state of tumor and CTLs
is stable. As the ratio between the growth rate of tumor and the killing rate of CTLs increases and crosses the black line,
Theorem 2.4 shows the stability of positive equilibrium may switch and a family of periodic solutions are likely to appear.
In fact, oscillations of immune cell number have been observed in some clinical contexts, for example, D'Onofrio.6 It is
clear that there is a critical value of the ratio, below which the positive equilibrium is always locally asymptotically stable
and above which periodic solutions may appear.

Understanding how the CTLs recruitment and death rate affect k∕r inspires our interest since the ratio determines the
competition outcome between CTLs and tumor cells. As illustrated in Figure 2B, CTLs recruitment has a negative effect
on the ratio. While the ratio first rapidly decreases then gradually increases as CTLs death rate goes up, as shown in
Figure 2C. We have known that it is more possible for the system (4) to undergo the Hopf bifurcation with a large value of
k∕r. Therefore, when more CTLs die or less CTLs are activated, the stable coexistence of tumor and CTLs will be broken
and the volume of the tumor changes in period.

It is known that the size of a tumor indicates the grade malignancy of a tumor; if the tumor volume reaches a certain
size, the patient will die. In this study, we have found that the tumor volume may change periodically when the immune
response time is long. Once the volume is greater than a specific value, the patient cannot be cured and such oscillations
disappear. Suppose that the critical value is T0 = 3 × 106μm3. Define survivaltime by the first time that the tumor size
reaches to T0. We numerically explore the effect of immune delay on the survival time, which is shown in Figure 3. Observe
that shorter response time of the adaptive immune system leads to longer survival time for the patient, and the survival
time has a positive minimum value.

4.2 Numerical simulations of Hopf bifurcation
With the same group of parameter values, some calculations show that the unique positive equilibrium is (0.3968 ×
106, 0.4238 × 106) and the condition B < D is satisfied. Furthermore, we obtain the first Hopf bifurcation value 𝜏0 ≈ 13.4,
and 𝜔0 ≈ 0.07. Applying Theorem 2.3, E∗ is locally asymptotically stable when 𝜏 ∈ [0, 𝜏0). When 𝜏 passes through 𝜏0,
E∗ loses its stability and a family of periodic solutions appear if 𝜏 > 𝜏0.

Next, we consider the properties of Hopf bifurcations at 𝜏0. It can be calculated that c1(0) ≈ −1779.8039 − 7729.1143,
𝜇2 ≈ 7.7066, 𝛽2 ≈ −3559.6078, T2 ≈ 7537.1536. Thus, the Hopf bifurcation is forward; the periodic solutions are
orbitally asymptotically stable, and their periods increase with time delay. The above results are illustrated in Figures 4
and 5, respectively.

http://wileyonlinelibrary.com
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FIGURE 3 Survival time varies with immune
delay when initial values are
T(t) = 0.01 × 106,N(t) = 0.82 × 106

FIGURE 4 The positive equilibrium of system (4) is locally asymptotically stable when 𝜏 = 9 ∈ [0, 𝜏0) (the red curve represents CTL cells
and the blue one is tumor cells) [Colour figure can be viewed at wileyonlinelibrary.com]

With the same parameters, we simulate the global behavior of solutions. The Hopf bifurcation diagrams are shown in
Figure 6. We see that there is a global continuation of periodic solution bifurcating from Hopf bifurcation when 𝜏 > 𝜏 j,
j ≥ 1.

4.3 Oscillation behavior affected by other parameters
In this subsection, we numerically explore how other parameters in system (4) affect the oscillation behavior of tumor and
CTLs. We first consider how the amount of CTLs affects the first bifurcation value 𝜏0, which is shown in Figure 7A. This
suggests that the oscillation phenomenon of tumor and CTLs is hard to appear when more CTL cells die. The periodic
change is easier to occur as the recruitment rate increases that means more immune cells are recruited to the cancer site,
as shown in Figure 7B.

Frascoli et al10 and the assumption (H1) in this paper both point out that the ratio k∕r mostly reflects on the tumor-CTLs
interaction dynamics. When other parameters remain unaltered, it can be found that the value of 𝜏0 is large if tumor
growth is fast, which is shown in Figure 8A. In Figure 8B, we can see the change of 𝜏0 affected by the CTL killing action.

http://wileyonlinelibrary.com
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FIGURE 5 When 𝜏 = 17 > 𝜏0, there is a stable periodic solution bifurcating from the positive equilibrium (the red curve represents CTL
cells and the blue one is tumor cells) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 The amplitudes of the first two branches of periodic solutions with the initial value (0.3968 × 106, 0.4328 × 106)

FIGURE 7 (A) The variation of 𝜏0 with CTL death rate d. (B) The variation of 𝜏0 with CTL recruitment rate 𝜌

The joint effect of growth rate and killing rate is presented in Figure 9. We claim that a large killing rate of CTLs and a
small growth rate of tumor are favorable for the periodic interacting fashion between tumor and immune system.

http://wileyonlinelibrary.com
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FIGURE 8 (A) Numerical simulation of 𝜏0 for varying growth rate r. (B) Numerical simulation of 𝜏0 for varying killing rate k

FIGURE 9 Numerical simulation of
𝜏0 affected by k and r together [Colour
figure can be viewed at
wileyonlinelibrary.com]

5 CONCLUSION

In this work, a two-dimensional tumor-immune model with the time delay of the adaptive immune response is studied
from the point of view of bifurcation analysis. The avascular growth of a spherical solid tumor is achieved by the pro-
liferating layer cells which is restricted by nutrient supply; thus, the tumor has a finite final size. However, we find the
immune-free equilibrium is unstable. Inspired by the fact that dead cells form the necrotic core inside the tumor, we pro-
pose the surface growth idea. If the immune system can recognize and attack the tumor in this phase, then it is possible
to control the growth of a tumor. We assume the immune response only occurs on the surface of a tumor, so the response
function includes the tumor surface area.

For model (4), we confirm that there is a unique coexistence equilibrium and its dynamical behavior closely depends on
the ratio of the immune killing rate to tumor volume growth rate. The positive equilibrium is always locally asymptotically
stable when the ratio is smaller than a critical value; otherwise there may be oscillation behavior. The adaptive immune
response time delay significantly impacts the stability of the positive equilibrium, which drives the system to undergo
Hopf bifurcations under certain conditions. We obtain explicit formulas to determine bifurcation direction and stability
of bifurcating periodical solutions. We show the global existence of Hopf bifurcating solutions.

http://wileyonlinelibrary.com
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Numerically, we find that a shorter immune response time leads to a longer patient survival time and the period and
amplitude of a stable periodic solution increase with the immune response time. When CTL recruitment rate and death
rate vary, we show how the ratio of the immune killing rate to tumor volume growth rate and the first bifurcation value
of the immune response time change numerically, which yields further insights to the tumor-immune dynamics.

It is known that the innate immune system serves as a first defense line. The innate immune system may have different
effect on tumor growth.29 We only consider the adaptive immune response mediated by CTLs in this work. It is necessary
to incorporate the innate immune response into modeling of tumor-immune interaction in order to achieve a complete
understanding. We plan to consider both innate immune response and adaptive immune response in our future study.
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APPENDIX A

In this section, we choose 𝜏 as a bifurcating parameter and derive the explicit formulas determining the properties of
Hopf bifurcation under the assumption (H1). The techniques to be used are normal form method and the centre manifold
theory presented in Hassard et al21 and Faria.22

Without loss of generality, write 𝜏 = 𝜏 + 𝜇; then 𝜇 = 0 is a Hopf bifurcation point for system (4). Let x1(t) = x(t𝜏) −
x∗, x2(t) = N(t𝜏) − N∗; system (4) becomes

⎧⎪⎨⎪⎩
.x1(t) = (𝜏 + 𝜇)

[
r(1 − (x1(t) + x∗)3) − k(x2(t) + N∗)

1 + x2(t) + N∗

]
,

.x2(t) = (𝜏 + 𝜇)
[
𝜌(x1(t − 1) + x∗)2(x2(t − 1) + N∗) − d(x2(t) + N∗)2] . (A1)

For 𝜑 = (𝜑1, 𝜑2)T ∈ C([−1, 0], Int(R+) × R+), let

L𝜇𝜑 = (𝜏 + 𝜇)B1𝜑(0) + (𝜏 + 𝜇)B2𝜑(−1),

with B1 =
(
−3rx2

∗
−k

(1+N∗)2
0 −2dN∗

)
, B2 =

(
0 0
−2𝜌x∗N∗ −𝜌x2

∗

)
. And

𝑓 (𝜇, 𝜑) = (𝜏 + 𝜇)
⎛⎜⎜⎝

k𝜑2
2(0)

(1+N∗)3
− k𝜑3

2(0)
(1+N∗)4

− 3rx∗𝜑2
1(0) − r𝜑3

1(0) + O(4)

𝜌𝜑2
1(−1)𝜑2(−1) + 𝜌N∗𝜑

2
1(−1) − d𝜑2

2(0) + 2𝜌x∗𝜑1(−1)𝜑2(−1)

⎞⎟⎟⎠ . (A2)

By the Riesz representation theorem, there is a function 𝜂(·, 𝜇) ∶ [−1, 0] → Int(R+)×R+ of bounded variation, such that

L𝜇𝜑 = ∫
0

−1
d𝜂(𝜃, 𝜇)𝜑(𝜃), 𝑓or𝜑 ∈ C([−1, 0], Int(R+) ×R+).

In fact, 𝜂(· , 𝜇) can be taken as

𝜂(𝜇, 𝜃) =
⎧⎪⎨⎪⎩

(𝜏 + 𝜇)B1, 𝜃 = 0,
0 𝜃 ∈ (−1, 0),
− (𝜏 + 𝜇)B2, 𝜃 = −1,

https://doi.org/10.1002/mma.7571
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For 𝜑 ∈ C1([−1, 0], Int(R+) × R+), define

A(𝜇)𝜑(𝜃) =

{ d𝜑(𝜃)
d𝜃

, 𝜃 ∈ [−1, 0),

∫ 0
−1 d𝜂(𝜇, 𝜃)𝜑(𝜃), 𝜃 = 0,

R(𝜇)𝜑(𝜃) =
{

0, 𝜃 ∈ [−1, 0),
𝑓 (𝜇, 𝜑), 𝜃 = 0.

Then, system (4) is equivalent to the following abstract form:

.xt = A(𝜇)xt + R(𝜇)xt. (A3)

with x = (x1, x2)T , xt(𝜃) = x(t + 𝜃), 𝜃 ∈ [− 1, 0]. For 𝜓 ∈ C1([0, 1], Int(R+) ×R+), denote the adjoint operator of A(𝜇) by

A∗(𝜇)𝜓(s) =
⎧⎪⎨⎪⎩

− d𝜓(s)
ds

, s ∈ (0, 1],

∫
0

−1
𝜓(−t)d𝜂(t, s), s = 0.

The discussion at the beginning of Section 2 implies that ±i𝜏𝜔0 are eigenvalues of A(0) and they are also eigenvalues
of A∗(0). Let q(𝜃) = (1, P)Tei𝜔0𝜏𝜃, q∗(s) = E(Q, 1)ei𝜔0𝜏s be the corresponding eigenvectors of A(0) and A∗(0), respectively.
Then, using the following bilinear form

⟨𝜓,𝜑⟩ = �̄�(0)𝜑(0) − ∫
0

−1 ∫
𝜃

𝜉=0
�̄�(𝜉 − 𝜃)d𝜂(𝜃)𝜑(𝜉)d𝜉,

with 𝜑 ∈ C1([−1, 0], Int(R+) × R+), 𝜓 ∈ C1([1, 0], Int(R+) ×R+) and 𝜂(𝜃) = 𝜂(𝜃, 0), we have

P = −
(3rx2

∗ + i𝜔0)(1 + N∗)2

k
, Q =

(i𝜔0 − 2dN∗ + 𝜌x2
∗ei𝜔0𝜏)(1 + N∗)2

k
.

E =
[
(Q + P̄) + ei𝜔0𝜏𝜏(2𝜌x∗N∗ + 𝜌x2

∗P̄)
]−1

.

In what follows, we apply the notations in Hassard et al.21 Based on the center manifold theorem, we set W(t, 𝜃) =
W(z(t), z̄(t), 𝜃) on the center manifold 0 with

W(z, z̄, 𝜃) = W20(𝜃)
z2

2
+ W11(𝜃)zz̄ + W02(𝜃)

z̄2

2
+ W30(𝜃)

z3

6
+ … .

The solution xt of system (A1) at 𝜇 = 0 can be written as

xt = 2e(z(t)q) + W(z(t), z̄(t)),

where z(t) = ⟨q ∗, xt⟩. We further have

ż(t) = i𝜔0𝜏z + q̄∗(𝜃)𝑓 (0,w(z, z̄, 𝜃) + 2e(zq(𝜃)))
= i𝜔0𝜏z + q̄∗(0)𝑓 (0,w(z, z̄, 0) + 2e(zq(0)))
= i𝜔0𝜏z + q̄∗(0)𝑓0

∶= i𝜔0𝜏z(t) + g(z, z̄),

(A4)

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z2

2
+ g21

z2z̄
2

+ … .
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Therefore,

g20 = 2Ē𝜏(Q̄, 1)
⎛⎜⎜⎜⎝

kP2

(1+N∗)3
− 3rx∗

𝜌N∗e−2i𝜔0𝜏 − dP2 + 2𝜌x∗Pe−2i𝜔0𝜏

⎞⎟⎟⎟⎠ ,

g11 = Ē𝜏(Q̄, 1)
⎛⎜⎜⎜⎝

2kPP̄
(1+N∗)3

− 6rx∗

2𝜌N∗ − 2dPP̄ + 2𝜌x∗(P + P̄)

⎞⎟⎟⎟⎠ ,
g21 = 2Ē𝜏(Q̄, 1)

( m11 + m12 + m13
m21 + m22 + m23 + m24

)
,

(A5)

where
m11 = k

(1 + N∗)3

[
W (2)

20 (0)P̄ + 2W (2)
11 (0)P

]
,m12 = −3rx∗

[
W (1)

20 (0) + 2W (1)
11 (0)

]
,

m13 = − 3kPP̄
(1 + N∗)4 − 3r,m22 = 𝜌N∗

[
W (1)

20 (−1)ei𝜔0𝜏 + 2W (1)
11 (−1)e−i𝜔0𝜏

]
,

m21 = 2𝜌x∗
[

ei𝜔0𝜏
(

W (1)
20 (−1)P̄ + W (2)

20 (−1)
)
+ e−i𝜔0𝜏

(
W (1)

11 (−1)P + W (2)
11 (−1)

)]
,

m23 = −d
[

W (2)
20 (0)P̄ + 2W (2)

11 (0)P
]
,m24 = 𝜌(2P + P̄)e−i𝜔0𝜏 .

Note that the value of g21 depends on W20(𝜃) and W11(𝜃); hence, we still need to compute W20(𝜃) and W11(𝜃). Note that

.
W = .xt − żq −

.
z̄q̄ =

{ A(0)W − 2e(q̄∗(0)𝑓0q(𝜃)), 𝜃 ∈ [−1, 0),
A(0)W − 2e(q̄∗(0)𝑓0q(0)) + 𝑓0, 𝜃 = 0,

def
= A(0)W + H20(𝜃)

z2

2
+ H11(𝜃)zz̄ + H02(𝜃)

z̄2

2
+ … .

(A6)

Due to the chain rule
.

W = 𝜕W(z, z̄)
𝜕z

ż + 𝜕W(z, z̄)
𝜕z̄

.
z̄,

then
(A(0) − 2i𝜔0𝜏)W20(𝜃) = −H20(𝜃), A(0)W11(𝜃) = −H11(𝜃). (A7)

It can be seen that for 𝜃 ∈ [− 1, 0),

H(z, z̄, 𝜃) = −q∗(0)𝑓0q(𝜃) − q∗(0)𝑓0q̄(𝜃)
= −g(z, z̄)q(𝜃) − ḡ(z, z̄)q̄(𝜃).

This leads to
H20(𝜃) = −g20q(𝜃) − ḡ02q̄(𝜃), H11(𝜃) = −g11q(𝜃) − ḡ11q̄(𝜃), 𝜃 ∈ [−1, 0). (A8)

From (A7), we have

W20(𝜃) =
ig20

𝜔0𝜏
q(0)ei𝜔0𝜏𝜃 +

iḡ02

3𝜔0𝜏
q(0)e−i𝜔0𝜏𝜃 + M1e2i𝜔0𝜏𝜃,

W11(𝜃) = −
ig11

𝜔0𝜏
q(0)ei𝜔0𝜏𝜃 +

iḡ11

𝜔0𝜏
q̄(0)e−i𝜔0𝜏𝜃 + M2,

(A9)

where M1 and M2 are both two-dimensional vectors.
As 𝜃 = 0 in (A6) and (A7), together with the definition of A(0), we have

H20(0) = −g20q(0) − ḡ02q̄(0) +

( 2kP2

(1+N∗)3
− 6rx∗

2𝜌N∗e−2i𝜔0𝜏 − 2dP2 + 4𝜌x∗Pe−2i𝜔0𝜏

)
,

H11(0) = −g11q(0) − ḡ11q̄(0) +

( 2kPP̄
(1+N∗)3

− 6rx∗

2𝜌N∗ − 2dPP̄ + 2𝜌x∗(P + P̄)

)
.

(A10)
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It follows that(
2i𝜔0 + 3rx2

∗
k

(1+N∗)2

−2𝜌x∗N∗e−2i𝜔0𝜏 2i𝜔0 − 𝜌x2
∗e−2i𝜔0𝜏 + 2dN∗

)
M1 =

( 2kP2

(1+N∗)3
− 6rx∗

2𝜌N∗e−2i𝜔0𝜏 − 2dP2 + 4𝜌x∗Pe−2i𝜔0𝜏

)
. (A11)

and (
3rx2

∗
k

(1+N∗)2

−2𝜌x∗N∗ −𝜌x2
∗ + 2dN∗

)
M2 =

( 2kPP̄
(1+N∗)3

− 6rx∗

2𝜌N∗ − 2dPP̄ + 2𝜌x∗(P + P̄).

)
(A12)

Now W20(𝜃) and W11(𝜃) could be obtained and g21 could be presented explicitly. Consequently, c1(0) and other quantities
could be directly expressed in terms of parameters and delay mentioned in (A1).

c1(0) =
i

2𝜔0𝜏

(
g11g20 − 2|g11|2 −

|ḡ20|2

3

)
+

g21

2
,

𝜇2 = − e(c1(0))
e(𝜆0

′(𝜏))
,

𝛽2 = 2e(c1(0)),

T2 = −m(c1(0)) + 𝜇2m(𝜆0
′(𝜏))

𝜔0
.

(A13)

According to the general Hopf bifurcation theory in Hassard et al,21 it is known that 𝜇2 determines the direction of Hopf
bifurcation: if 𝜇2 > 0(𝜇2 < 0), then a branch of periodic solutions appear for 𝜏 > 𝜏 (𝜏 < 𝜏); 𝛽2 determines the stability
of the bifurcating periodic solutions: the bifurcating periodic solutions in the center manifold are stable (unstable) if
𝛽2 < 0(𝛽2 > 0); T2 determines the period: the period increases (decreases) if T2 > 0(T2 < 0).
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