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Abstract: The complexity of oncolytic virotherapy arises from many factors. In this study, we in-
corporate environmental noise and stochastic effects to our basic deterministic model and propose
a stochastic model for viral therapy in terms of Ito stochastic differential equations. We conduct a
detailed analysis of the model using boundary methods. We find two combined parameters, one de-
scribes possibilities of eradicating tumors and one is an increasing function of the viral burst size,
which serve as thresholds to classify asymptotical dynamics of the model solution paths. We show
there are three ergodic invariant probability measures which correspond to equilibrium states of the
deterministic model, and extra possibility to eradicate tumor due to strong variance of tumor growth
rate and medium viral burst size. Numerical analysis demonstrates several typical solution paths with
biological explanations. In addition, we provide some medical interpretations and implications.
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1. Introduction

Cancer is a genetic disease. It is caused by changes to genes, which control how cells grow and
divide. A DNA change can cause genes involved in normal cells to become oncogenes. A onco-
gene is difficult to be turned off and so it causes cells grow without limits. When too many cells
are accumulated, they form a solid tumor, which is masses of tissue. Cancer therapy is a broad area
of research, which may have three subfields: immunotherapy, gene therapy, and oncolytic virother-
apy. Immunotherapy relies on the concept of stimulating the body’s immune system to recognize and
destroy cancer cells. Cancer cells harvested from patients are grown in vitro. Then these cells are engi-
neered to be more recognizable to immune system by some substances or genes. These altered cells are
grown in vitro and killed and their contents are incorporated into a vaccine that will be administered
to patients, in order to boost the patients’ immune responses. But this method had limited success [1].
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Gene therapy also is called gene transfer treatment which refers to the insertion of a foreign gene into
the cancer cell or surrounding tissue to express specific genes such as suicide genes. This method does
not rely on the immune system. Typically, replication-incompetent viruses, such as modified strains
of adenovirus, have been used to deliver these genes. However, this technique met a lot of difficulties
such as gene silence, the gene not being expressed for long enough time period [2].

In this paper, we will focus on mathematical analysis of the third type of cancer treatments, known
as oncolytic virotherapy. Oncolytic viral therapy is considered to be a promising therapeutic strategy
to treat solid tumors [3] and has shown its efficacy in clinical trials [4, 5]. This treatment involves
the use of oncolytic viruses, namely genetically modified viruses to selectively infect cancer cells and
induce cell death through lysis and further propagation of the virus. A number of viruses such as
adenovirus, ONYX-15 and CV706, herpes simplex virus 1, and wild-type Newcastle disease virus
have been used for such purposes. These viruses are shown to be unharmful to normal cells and tumor
specific. In contrast to gene transfer treatments which utilize replication-incompetent viruses to alter
the characteristics of cancer cells, oncolytic viruses have the ability to selectively replicate within the
target cancel cell, resulting in the amplification effect in areas of tumor growth, allowing for safer doses
of viral agent to be used in treatment [6].

Mathematical models formulated in terms of ordinary differential equations (ODEs) have been ap-
plied to understand spreading dynamics of oncolytic viruses through tumors for nearly twenty years.
The early ODE model was proposed by Wodarz [7, 8], and was generalized by Dingli et al [9] later
on. These models were formulated with three physical variables: uninfected tumor cells, a free virus
population, and tumor cells infected by virus particles. The uninfected tumor cells were assumed to
undergo logistic growth, and infected by virus particles, which multiply rapidly with infected tumor
cells. Infected tumor cells were removed from the system due to natural or virus-inflicted death, result-
ing in new virus particles bursting to the free virus population. Motivated by experimental evidence,
Bajzer et al [10] suggested that the forming of syncytia by fusing of uninfected and infected tumor cells
rather than the free virus particles was the physical mechanism which drives intratumor virus spread-
ing. Komarova and Wodarz [11] proposed and analyzed several general mathematical formulations for
oncolytic virus infection in terms of systems of two ordinary differential equations, which categorized
two types of virus spread, slow and fast spread. Our work [12] proposed a simple system of three
ordinary differential equations to describe the interactions among uninfected tumor cells, infected tu-
mor cells, and oncolytic viruses. Our analytic and numerical results concluded that the oncolytic viral
dynamics is mainly determined by the viral burst size. To further understand the complexity of im-
mune responses in virotherapy, we incorporated the innate immune response into our basic model for
virotherapy and investigated how the innate immunity affects the outcome of virotherapy [13].

Stochastic effects are encountered in many biological and medical systems. Stochastic models
may be able to capture some stochastic effects or variations in dynamics of biological and medical
problems. In recent years, several attempts have been made to characterize viral dynamics for oncolytic
virotherapy using stochastic differential equations (SDEs) such as Yuan and Allen [14], Kim et al [15],
and Rajalakshmi et al [16, 17]. Most of these stochastic models were formulated by transforming
ODE systems using the method proposed in [18]. These transformed SDE models may have some
computational advantages. In this study, we propose a system of stochastic differential equations for
tumor virotherapy and carry out its analysis and computation based on some suggestions from research
presented in articles [19, 20, 21].

Mathematical Biosciences and Engineering Volume 17, Issue 4, 4271–4294.



4273

In [12], we proposed a common basic deterministic model for oncolytic virotherapy that includes
the virus burst size b explicitly as follows,

dx
dt

= ρx
(
1 −

x + y
C

)
− βxv,

dy
dt

= βxv − δy, (1.1)

dv
dt

= bδy − βxv − γv,

in which x stands for the uninfected tumor cell population, y the infected tumor cell population, and
v the free virus population. The tumor growth is modeled by a logistic pattern with the growth rate ρ
and carrying capacity of the tumor size C. The coefficient β represents the infectivity of the virus. The
infected tumor cells die with a rate δy, which means the average life time of infected tumor cells is 1

δ
.

The viral burst size b is the number of new viruses released from a lysis of an infected tumor cell. The
term γv is the clearance rate of free virus particles by various reasons including non-specific binding
and generation of defective interfering particles.

There are several ways to incorporating environmental noise or stochastic effects into mathematical
models. Suppose P is a population, its growth or change is modeled dP

dt = f (t, P) in the deterministic
situation. To count for environmental noise and stochastic effects, we may consider that each individual
in the population make almost same contribution to the stochastic effects and receive the same environ-
mental noise. Then, we may model the environmental noise and stochastic effects of the population is
proportional to the population P. In other words, the environmental noise and stochastic effects can be
represented by τPξ, where ξ is the unit noise [22] and τ can be thought as a way to measure an average
variation of each individual. In general, we take the noise to be white noise ξ = dW

dt , where W = W(t) is
the standard Wiener Process. So, we obtain a Ito stochastic differential equation dP

dt = f (t, P) + τPdW
dt ,

or dP = f (t, P)dt + τPdW as a stochastic model for the population P. We may call the noise added
this way the linear noise. For our model (1.1), we will incorporate linear noise to the infected tumor
cell population and free virus population. that is, we will add τ2y dW2

dt and τ3vdW3
dt to the second and the

third equations of (1.1), respectively. However, for the uninfected tumor cell population, we incorpo-
rate environmental effects into per capital growth rate ρ. That is, we replace ρ by ρ + τ1

dW1
dt , where τ1

represent the strength of the noise contributed by each tumor cells. It should be assumed that W1, W2,
and W3 are mutually independent Wiener processes. Such, we obtain a system of three Ito stochastic
differential equations which is a basic stochastic model for oncolytic viral therapy as follows.

dx =

[
ρx

(
1 −

x + y
C

)
− βxv

]
dt + τ1x

(
1 −

x + y
C

)
dW1,

dy = (βxv − δy)dt + τ2ydW2, (1.2)
dv = (bδy − βxv − γv)dt + τ3vdW3.

The analysis of the deterministic system (1.1) (see [12]) shows that the virus burst size b plays a
crucial role in determining its dynamics. We found two important thresholds of the burst size that give
a complete picture of dynamical behavior of (1.1). Our aim in this work is to analyze the SDE system
(1.2) in order to find thresholds under which we can identify the extinction or persistence of the tumor
cells and, furthermore, figure out how noise intensities affect the dynamics of the SDE system (1.2).
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The rest of this paper is organized as follows. In Section 2, we simplify the stochastic system (1.2),
introduce notations, present our results, state medical interpretations. In Section 3, we analyze our
model using boundary analysis technique, and prove our results. In Section 4, by means of published
data, we demonstrate typical dynamic behaviors of our stochastic model by numerical simulations
and explain possible biological meanings. We also provide a brief discussion, some open problems,
and possible future work. Finally, we present some basic properties of Generalized Inverse Gaussian
distribution in Appendix.

2. Results and interpretations

First of all, for simplicity, we non-dimensionalize the system (1.2) by setting T = δt, x = Cx,
y = Cy, v = Cv, r =

ρ

δ
, a =

βC
δ

, c =
γ

δ
, τ1 = τ1, τ2 = τ2, and τ3 = τ3. Then (1.2) becomes

dx =
[
rx(1 − x − y) − axv

]
dT + τ1x(1 − x − y)dW1,

dy = (axv − y)dT + τ2ydW2, (2.1)
dv = (by − axv − cv)dT + τ3vdW3.

Dropping all bars over the parameters and variables and writing T as t, we obtain

dx =
[
rx(1 − x − y) − axv

]
dt + τ1x(1 − x − y)dW1,

dy = (axv − y)dt + τ2ydW2, (2.2)
dv = (by − axv − cv)dt + τ3vdW3.

All parameters are positive. Assume that we are working on a complete probability space
(Ω,F , {Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the usual condition. The process given by the solu-
tion to the system (2.2) will be denoted by u or u(t) = (x(t), y(t), v(t)), t ≥ 0. We denote the drift term
and the diffusion term of the system (2.2) by

f (u) =


rx(1 − x − y) − axv

axv − y
by − axv − cv

 , and g(u) =


τ1x(1 − x − y) 0 0

0 τ2y 0
0 0 τ3v

 .
Let L be the infinitesimal generator of the process u and, for any smooth enough functions F : R3

+ :=
[0,∞)3 → R, the generator L acts as

LF(u) = Fu · f (u) +
1
2

trace(g(u)g(u)T Fuu),

where Fu is the gradient of F and Fuu is the Hessian matrix of F. We use Pu or Px,y,v to denote the
probability law on Ω when the solution path starts at u = (x, y, v) and Eu or Ex,y,v is the expectation
corresponding to Pu.

Based on the results (see Theorem 1.1 and Theorem 1.3 in [23]) about asymptotic behaviors of
stochastic Kolmogorov systems in non-compact domains, we derive a sufficient and almost necessary
condition to determine the extinction and persistence of populations of uninfected tumor cells, infected
tumor cells, and free viruses. However, these results cannot be applied directly to our model because
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the drift term of the system (2.2) is not in Kolmogorov form as that of the system in [23]. To apply
these results, we need to change variables. In view of (2.2), set the transformation of variables x = x,
y = y, v = yz, or z = v

y , and use Ito’s formula, we get

dz = vd
(
1
y

)
+

1
y

dv + dvd
(
1
y

)
= v

[(
−ax

v
y2 +

1
y

+ τ2
2
1
y

)
dt − τ2

1
y

dW2

]
+

1
y
[
(by − axv − cv)dt + τ3vdW3

]
= (b − axz − cz − axz2 + z + τ2

2z)dt − τ2zdW2 + τ3zdW3.

Then (2.2) is changed to

dx =
[
rx(1 − x − y) − axyz

]
dt + τ1x(1 − x − y)dW1,

dy = (axz − 1)ydt + τ2ydW2, (2.3)
dz = [b + (1 + τ2

2 − ax − c)z − axz2]dt − τ2zdW2 + τ3zdW3.

We still denote by u(t) = (x(t), y(t), z(t)) the solution process of the system (2.3). The drift term and
the diffusion term of (2.3) are also denoted by

f (u) =


rx(1 − x − y) − axyz

(axz − 1)y
b + (1 + τ2

2 − ax − c)z − axz2

 , and g(u) =


τ1x(1 − x − y) 0 0

0 τ2y 0
0 −τ2z τ3z

 .
The following theorem, that will be proved in Section 3, guarantees the global non-negativity of the
solution of the system (2.3) for any positive initial value.

Theorem 2.1. For any initial value (x(0), y(0), z(0)) ∈ R3
+ := {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0}, there exists

a unique a.s. continuous global solution (x(t), y(t), z(t)), t ≥ 0, that remains in R3
+ a.s. In particular, if

x(0) = 0 then x(t) = 0 for all t > 0 a.s. and if x(0) > 0 then x(t) > 0 for all t > 0 a.s. Similarly, if
y(0) = 0 then y(t) = 0 for all t > 0 a.s. and if y(0) > 0 then y(t) > 0 for all t > 0 a.s. Finally, if z(0) ≥ 0
then z(t) > 0 for all t > 0 a.s. Furthermore, the solution (x(t), y(t), z(t)) is a strong Markov process that
possesses the Feller property.

Our analysis in Section 3 shows that there are only two ergodic invariant measures

µ1 = δ∗0 × δ
∗
0 × π1 and µ2 = δ∗1 × δ

∗
0 × π2

of (2.3) on the boundary ∂R3
+. Here δ∗0 and δ∗1 are Dirac measures with mass at 0 and 1, respec-

tively. The invariant measure π1 has the inverse gamma distribution: π1 ∼ IG
(

2(c−1−τ2
2)

τ2
2+τ2

3
+ 1, 2b

τ2
2+τ2

3

)
.

The invariant measure π2 has the generalized inverse Gaussian distribution: π2 ∼ GIG(θ, χ, ψ), where

θ =
2(1 + τ2

2 − a − c)
τ2

2 + τ2
3

− 1, ψ =
4a

τ2
2 + τ2

3

, and χ =
4b

τ2
2 + τ2

3

.

To classify solutions of the system (2.3), we define two combined parameters as follows.

λ :=
√

ab Rθ(w) − 1 −
τ2

2

2
, ζ := 2c − 2 − τ2

2 + τ2
3
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where w =
4
√

ab
τ2

2 + τ2
3

, Rθ(w) =
Kθ+1(w)
Kθ(w) , and Kθ(·) is the modified Bessel function of the third kind with

index θ which is given by

Kθ(φ) =
1
2

∫ ∞

0
xθ−1 exp

{
−

1
2
φ

(
x +

1
x

)}
dx, φ > 0.

With these parameters and their thresholds, we give the complete picture of the stochastic dynamics
of the system (2.3). Our main result is stated in the following theorem that will be proved in Section 3.

Theorem 2.2. Assume that the initial values u = (x, y, z) are in R3,◦
+ := {(x, y, z) : x > 0, y > 0, z > 0}

such that x + y ≤ 1. The complete classification of solutions of the system (2.3) is as follows.
Case 1. When ζ < 0, there is only one ergodic invariant measure µ2 for solutions of (2.3) on the

boundary ∂R3
+.

• If λ < 0 then x(t) converges to 1 a.s., y(t) converges to 0 a.s., and z(t) converges a.s. to π2 weakly.
• If λ > 0 then the solution u(t) is strongly stochastically persistent in the sense that the solution

converges to its unique invariant probability measure µ3 supported by R3,◦
+ .

Case 2. When ζ ≥ 0, there are two ergodic invariant measures µ1 and µ2 for solutions of (2.3) on
the boundary ∂R3

+.

• If λ < 0 and τ1 <
√

2r, then x(t) converges to 1 a.s., y(t) converges to 0 a.s., and z(t) converges
a.s. to π2 weakly.
• If λ < 0 and τ1 >

√
2r, then solutions starting near the interior of supp(µ2) will tend to stay close

and concentrate on supp(µ1).
• If λ > 0 and τ1 <

√
2r, then the solution u(t) is strongly stochastically persistent.

• If λ > 0 and τ1 >
√

2r, then x(t) and y(t) both converge a.s. to 0.

Proposition 2.1. The deterministic part of the system (2.3) has three possible nonnegative equilibrium
solutions, E1 = (0, 0, b

c−1 ), E2 = (1, 0, 1
2a ((1 − a − c) +

√
(1 − a − c)2 + 4ab)), and E3 = ( 1

az ,
r(1−/az)

r+az , z)
where z = b−1

c . The ergodic invariant measures µ1 and µ2 correspond to E1 and E2, respectively, in
the sense that the means of the distributions of µ1 and µ2 approaches E1 and E2, respectively, when
(τ1, τ2, τ3) approaches (0, 0, 0).

From the transformation of variables, the information about the system (2.2) can be obtained. We
write them as the interpretation of our main theorem. We will give some medical interpretation of these
results and compare with our study in [12].

Interpretation 2.1. Consider the non-dimensionalized uninfected tumor cell population x(t), infected
tumor cell population y(t), and free virus population v(t) start in R3,◦

+ := {(x, y, z) : x > 0, y > 0, v > 0}
such that x + y ≤ 1, which corresponds to the system (2.2). Then, according to the thresholds ζ and λ,
we can describe how each population will evolve as follows.

Case 1. When ζ < 0, the tumor cannot be eradicated completely a.s.

• If λ < 0 then (x(t), y(t), v(t)) converges to µ2 = δ∗1 × δ
∗
0 × δ

∗
0 a.s.

• If λ > 0 then (x(t), y(t), v(t)) is strongly stochastically coexistence in the sense that (x(t), y(t), v(t))
converges to a unique invariant probability measure µ3 supported by R3,◦

+ .
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Case 2. When ζ ≥ 0, there is some possibilities to eradicate the tumor by oncolytic viruses.

• If λ < 0 and τ1 <
√

2r, then (x(t), y(t), v(t)) converges to µ2 = δ∗1 × δ
∗
0 × δ

∗
0 a.s.

• If λ > 0 and τ1 <
√

2r, then the solution (x(t), y(t), v(t)) is strongly stochastically coexistence.
• If λ > 0 and τ1 >

√
2r, then (x(t), y(t), v(t)) converge to µ1 = δ∗0 × δ

∗
0 × δ

∗
0 a.s.

Using the transformation of variables or directly deduce, we have a similar proposition as 2.1.

Proposition 2.2. The deterministic part of the system (2.2) has three equilibrium solutions, Q1 =

(0, 0, 0), Q2 = (1, 0, 0), and Q3 = ( 1
az ,

r(1−/az)
r+az , r(1−/az)

a+r/z ). The system (2.2) has three ergodic invariant
probability measures µ1 = δ∗0 × δ

∗
0 × δ

∗
0, µ2 = δ∗1 × δ

∗
0 × δ

∗
0, and µ3, which correspond to Q1, Q2, Q3,

respectively.

In our study [12], we obtained asymptotic properties of the system (1.1). There are three equi-
librium solutions Q1, Q2, and Q3. Q1 is always unstable for any positive values of parameters. Q2

is globally asymptotically stable when the virus burst size b is smaller a threshold value bs1 , while it
is unstable if b is greater than bs1 . There is a second threshold value of the viral burst size bs2 , and
under the second threshold value and other conditions, Q3 is locally asymptotically stable. The system
(1.1) undergoes Hopf bifurcations with three families of periodic solutions when the virus burst size
passes the second threshold value bs2 . It is interesting that Q3 can be approximated by (O(1

b ),O(1
b ), r

a )
when the viral burst size b is very big. After incorporating environmental noise and stochastic effects
into the system (1.1), there are three invariant probability measures in which solutions will approach
them under various conditions. We have two combined parameters ζ and λ to describe asymptotical
properties of solutions to the systems (2.2) or (2.3) as in Theorem 2.2. However, we would like to
understand these results from the original system or how environmental noise and stochastic effects
change the dynamical behaviors of the original system (1.1). Then, we need to understand how these
two combined parameters connect to original parameters and their biological meanings. We have a
proposition about the parameter λ.

Proposition 2.3. The parameter λ =
√

ab Rθ(w) − 1 − τ2
2

2 is an increasing function of the virus burst
size b. Also consider λ is a function of noise intensities τ2 and τ3, and set λ := lim(τ2,τ3)→(0,0) λ. Then
λ = 0 if and only if b = bs1 = 1 + c

a , λ < 0 if and only if b < bs1 , and λ > 0 if and only if b > bs1; or
simply, λ also is a increasing function of b.

The parameter ζ combines infected tumor cell lysis rate δ, virus degradation rate γ, and their
stochastic variation τ2 and τ3, which describes possibilities if the tumor can be eradicated. More
specifically, ζ = 2c− 2− τ2

2 + τ2
3 = 2 Tδ

Tγ
− 2− τ2

2 + τ2
3, where Tδ is the average life time of infected tumor

cells, and Tγ is the average life time of free viruses in tumor tissue. ζ < 0 means Tδ
Tγ

+
τ2

3
2 <

τ2
2

2 + 1.
We may interpret that, if the ratio between the life time of infected tumor cells to the life time of free
viruses is small and stochastic effects of viruses also is small comparing with stochastic effects of in-
fected tumor cells, it is impossible to eradicate the tumor for viral therapy. However, in this situation,
the viral therapy may partly success which depends on λ, or implicitly the outcome of the virotherapy
depends on the virus burst size b. As in the deterministic model (1.1), if b is smaller than the threshold
bs1 which corresponds to λ < 0 (it is deduced from continuity of λ as a function of b, τ2, and τ3), then
the infected tumor cell population and virus population will disappear, and only tumor cell population
is left a.s., or the system approaches the invariant probability measure µ2 = δ∗1 × δ

∗
0 × δ

∗
0. If b is greater
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than the threshold bs1 which corresponds to λ > 0, three populations will coexist, or the system ap-
proaches the invariant probability measure µ3, in which we may say viral therapy achieve some partial
success.

When ζ > 0 which means Tδ
Tγ

+
τ2

3
2 >

τ2
2

2 + 1. We may interpret that, if the ratio between the life time
of infected tumor cells to the life time of free viruses is big and stochastic effects of viruses also is big
comparing with stochastic effects of infected tumor cells, there is some possibilities to eradicate the
tumor by viral therapy. In this case, there is a third threshold value for stochastic variations of tumor
cell growth τ1 that comes to play some roles. This value is 2r = 2ρ

δ
, scaled tumor cell growth rate.

When b is smaller than the threshold bs1 which corresponds to λ < 0, the noise intensity τ1 or tumor cell
variance τ2

1 is smaller than the double of the scaled tumor cell growth rate, then the viral treatment will
completely fail. When b is greater than the threshold bs1 which corresponds to λ > 0, and the noise
intensity 1

2τ
2
1 is not strong or smaller than scaled tumor cell growth rate, the system eventually will

have three populations coexist, where the viral therapy reaches partial success. However, unlike in the
corresponding deterministic model (1.1), when b is greater than the threshold bs1 which corresponds
to λ > 0, and the noise intensity 1

2τ
2
1 is strong or greater than scaled tumor cell growth rate, the viral

therapy will eradicate the tumor. A medical implication could be that viral therapy can success without
too big virus burst size.

3. Analysis of the model

This section is devoted to proving results in Section 2.

3.1. Proof of Theorem 2.1

Consider the system (2.3). Since the drift term f (u) and the diffusion term g(u) are locally Lipschitz
continuous, there exists a unique local a.s. continuous solution u(t) up to the explosion time

τe = inf {t > 0 : min{x(t), y(t), z(t)} = −∞ or max{x(t), y(t), z(t)} = ∞} .

Also, the solution u(t) = (x(t), y(t), z(t)), t ∈ (0, τe), is a strong Markov process (see [24]). Denote by
(x, y, z) the initial value of u(t). First, we will show that if (x, y, z) is in R3

+ then u(t) is also in R3
+ for all

t ∈ (0, τe) a.s.
From the equation of x(t), we get

x(t) = x exp
{∫ t

0

[
r(1 − x(s) − y(s)) − ay(s)z(s) −

τ2
1

2
(1 − x(s) − y(s))2

]
ds

+τ1

∫ t

0
(1 − x(s) − y(s))dW1(s)

}
.

So, if x = 0, then P0,y,z{x(t) = 0 ∀ t ∈ (0, τe)} = 1 for all y ≥ 0 and z ≥ 0; if x > 0, then Px,y,z{x(t) >
0 ∀ t ∈ (0, τe)} = 1 for all y ≥ 0 and z ≥ 0.

The second equation of (2.3) implies

y(t) = y exp
{∫ t

0
(ax(s)z(s) − 1 −

τ2
2

2
)ds + τ2W2(t)

}
.
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If y = 0, then Px,0,z{y(t) = 0 ∀ t ∈ (0, τe)} = 1 for all x ≥ 0 and z ≥ 0; if y > 0, then Px,y,z{y(t) > 0 ∀ t ∈
(0, τe)} = 1 for all x ≥ 0 and z ≥ 0.

The last equation of (2.3) follows

z(t) = φ(t)
[
z +

∫ t

0
bφ−1(s)ds

]
where

φ(t) = exp
{∫ t

0

[
(1 + τ2

2 − ax(s) − c) − ax(s)z(s) −
τ2

2

2
−
τ2

3

2

]
ds − τ2W2(t) + τ3W3(t)

}
.

This implies that if z ≥ 0, then Px,y,z{z(t) > 0 ∀ t ∈ (0, τe)} = 1 for all x ≥ 0 and y ≥ 0.
Hence, we have shown that if x ≥ 0, y ≥ 0, and z ≥ 0 then x(t) ≥ 0, y(t) ≥ 0, and z(t) ≥ 0 for all

t ∈ (0, τe) a.s.
Next, we show that τe = ∞ a.s. Consider V(x, y, z) = x + y + ln(1 + z). By Ito’s formula, for all

t ∈ (0, τe) we get

LV(t) = rx(t)[1 − x(t) − y(t)] − ax(t)y(t)z(t) + ax(t)y(t)z(t) − y(t)

+
b + (1 + τ2

2 − ax(t) − c)z(t) − ax(t)z2(t)
1 + z(t)

−
1
2

(τ2
2 + τ2

3)
z2(t)

(1 + z(t))2

≤ (b + 1 + τ2
2)1{x+y>1} + (r + b + 1 + τ2

2)1{x+y≤1} =: H.

Let τn := inf{t ∈ [0, τe) : x(t) > n or y(t) > n or z(t) > n}. Clearly, τn increases to τ∞ as n→ ∞ where

τ∞ := inf{t ∈ [0, τe) : x(t) = ∞ or y(t) = ∞ or z(t) = ∞}.

Since τ∞ ≤ τe a.s., it suffices to prove that Px,y,z{τ∞ = ∞} = 1. Fix t > 0, Ito’s formula for V implies

Ex,y,zV(t ∧ τn) := Ex,y,zV(x(t ∧ τn), y(t ∧ τn), z(t ∧ τn))

= V(x, y, z) + Ex,y,z

∫ t∧τn

0
LV(x(s), y(s), z(s))ds

≤ K + H(t ∧ τn) ≤ K + Ht

where K := V(x, y, z). On the other hand,

Ex,y,zV(t ∧ τn) ≥
∫
{τn<t}

V(x(τn), y(τn), z(τn))dPx,y,z ≥ (n ∧ ln(1 + n))Px,y,z{τn < t}.

Thus

Px,y,z{τn < t} ≤
K + Ht

n ∧ ln(1 + n)
→ 0, as n→ ∞.

Since t > 0 is arbitrary, Px,y,z{τ∞ < ∞} = 0 and hence τ∞ = ∞ a.s.
This completes the proof. �
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3.2. Proof of Theorem 2.2

Before giving the detailed proof of the main theorem 2.2, we analyze solutions of the system (2.3)
on the boundary ∂R3

+ firstly. When x(0) = 0, x(t) = 0 for all t ≥ 0 a.s. If x = 0 then the system (2.3)
becomes

dY = −Ydt + τ2YdW2

dZ = [b + (1 + τ2
2 − c)Z]dt − τ2ZdW2 + τ3ZdW3.

The second equation for y(t) implies

Y(t) = Y(0) exp
{
−

(
1 +

τ2
2

2

)
t + τ2W2(t)

}
.

So Y(t)→ 0 a.s. for all Y(0) = y(0) ≥ 0. Consider the last equation for Z

dZ = [b − (c − 1 − τ2
2)Z]dt − τ2ZdW2 + τ3ZdW3. (3.1)

Fix α1 > 0, consider

s(Z) =

∫ Z

α1

exp
{
−

∫ y

α1

2b − 2(c − 1 − τ2
2)u

(τ2
2 + τ2

3)u2
du

}
dy

= C1

∫ Z

α1

y2(c−1−τ2
2)/(τ2

2+τ2
3) exp

{
2b

(τ2
2 + τ2

3)y

}
dy

where C1 is some positive constant. Rewrite the integrand as

y−2(1+τ2
2−c)/(τ2

2+τ2
3)
[
1 +

2b
τ2

2 + τ2
3

1
y

+
1
2!

4b2

(τ2
2 + τ2

3)2

1
y2 + · · ·

]

Since there exists a k ∈ Z+ such that −2(1+τ2
2−c)

τ2
2+τ2

3
− k < −1, s(0+) = −∞. If ζ = 2c− 2− τ2

2 + τ2
3 < 0, then

−
2(1+τ2

2−c)
τ2

2+τ2
3

+ 1 < 0, and, so s(∞) < ∞. By the item 2 of Theorem 3.1 on page 447 in [25], lim
t→∞

Z(t) = ∞

a.s. In this case, (3.1) does not have any invariant measure. If ζ ≥ 0, then −2(1+τ2
2−c)

τ2
2

+ 1 ≥ 0, and
this implies that s(∞) = ∞. Then Z(t) oscillates between 0 and ∞. Then (3.1) has a unique invariant

measure π1 ∼ IG
(

2(c−1−τ2
2)

τ2
2+τ2

3
+ 1, 2b

τ2
2+τ2

3

)
(the inverse gamma distribution with parameters 2(c−1−τ2

2)
τ2

2+τ2
3

+ 1 and
2b

τ2
2+τ2

3
).

When x(0) > 0, x(t) > 0 for all t > 0 a.s. If y(0) = 0, then the second equation of (2.3) implies
y(t) = 0 for all t > 0 a.s. So, when y = 0, the equation for x becomes

dx̃ = rx̃(1 − x̃)dt + τ1 x̃(1 − x̃)dW1. (3.2)

Fix α2 > 0, we compute

s(x̃) =

∫ x̃

α2

exp
{
−

∫ y

α2

2ru(1 − u)
τ2

1u2(1 − u)2
du

}
dy
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= C2

∫ x̃

α2

(
1
y
− 1

)2r/τ2
1

dy

where C2 is some positive constant. Clearly, s(1−) < ∞. Since limy→0+( 1
y −1)2r/τ2

1 = ∞, for any M > 0,
there exists a 0 < δ < α2 so that, if 0 < y < δ, then (1

y − 1)2r/τ2
1 ≥ M

δC2
. But we have

s(0+) = −C2

∫ α2

0

(
1
y
− 1

)2r/τ2
1

dy

= −C2

∫ δ

0

(
1
y
− 1

)2r/τ2
1

dy −C2

∫ α2

δ

(
1
y
− 1

)2r/τ2
1

dy

≤ −C2

∫ δ

0

(
1
y
− 1

)2r/τ2
1

dy ≤ −C2δ
M
δC2

= −M.

Letting M → ∞, it gives s(0+) = −∞. This means that limt→∞ x̃(t) = 1 a.s. for any x̃(0) = x(0) > 0.
When x = 1 and y = 0, the last equation for z becomes

dz̃ = [b + (1 + τ2
2 − a − c)z̃ − az̃2]dt − τ2z̃dW2 + τ3z̃dW3. (3.3)

Fix α > 0, consider

s(z̃) =

∫ z̃

α

exp
{
−

∫ y

α

2b + 2(1 + τ2
2 − a − c)u − 2au2

(τ2
2 + τ2

3)u2
du

}
dy

= C3

∫ z̃

α

y−2(1+τ2
2−a−c)/(τ2

2+τ2
3) exp

{
2b

τ2
2 + τ2

3

y−1 +
2a

τ2
2 + τ2

3

y
}

dy

where C3 is some positive constant. The integrand can be written as

y−2(1+τ2
2−a−c)/(τ2

2+τ2
3)
[
1 +

(
2b

τ2
2 + τ2

3

1
y

+
2a

τ2
2 + τ2

3

y
)

+

(
4b2

(τ2
2 + τ2

3)2

1
y2 +

8ab
(τ2

2 + τ2
3)2

+
4a2

(τ2
2 + τ2

3)2
y2

)
+ · · ·

]
.

Clearly, there are k1 and k2 inZ+ such that

−
2(1 + τ2

2 − a − c)
τ2

2 + τ2
3

− k1 < −1 and −
2(1 + τ2

2 − a − c)
τ2

2 + τ2
3

+ k2 > −1.

Hence s(0+) = −∞ and s(∞) = ∞. So z̃(t) oscillates between 0 and ∞, and thus (3.3) has a unique
invariant measure π2 ∼ GIG(θ, χ, ψ), which is the generalized inverse Gaussian distribution with pa-
rameters θ ∈ R, χ > 0, and ψ > 0 (see the Appendix), whose density takes the form

p(z̃) =
(a/b)θ/2

2Kθ

(
4
√

ab/(τ2
2 + τ2

3)
) z̃θ−1 exp

{
−

1
2

(χz̃−1 + ψz̃)
}
, z̃ ∈ (0,∞),
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where θ :=
2(1 + τ2

2 − a − c)
τ2

2 + τ2
3

− 1, χ :=
4b

τ2
2 + τ2

3

, and ψ :=
4a

τ2
2 + τ2

3

; Kθ(·) is the modified Bessel function

of the third kind with index θ. By law of large numbers,

lim
t→∞

1
t

∫ t

0
z̃(s)ds =

∫ ∞

0
z̃π2(dz̃) = Rθ(w)

√
b/a,

in which Rθ(w) :=
Kθ+1(w)
Kθ(w)

and w :=
4
√

ab
τ2

2 + τ2
3

.

In summary, on the boundary ∂R3
+

• If ζ = 2c−2−τ2
2 +τ2

3 < 0, then the system (2.3) has only one invariant measure µ2 := δ∗1×δ
∗
0×π2.

• If ζ ≥ 0 then the system (2.3) has two invariant measures µ1 := δ∗0 × δ
∗
0 × π1 and µ2.

Note that ∫
∂R3

+

(
axz − 1 −

τ2
2

2

)
dµ1 = −1 −

τ2
2

2
< 0,∫

∂R3
+

(
axz − 1 −

τ2
2

2

)
dµ2 =

√
abRθ(w) − 1 −

τ2
2

2
.

We define a combined parameter as the threshold

λ :=
√

abRθ(w) − 1 −
τ2

2

2
,

and define the family of the random normalized occupation measures

Πt(·) :=
1
t

∫ t

0
1{u(s)∈·}ds, t > 0.

Then, we have the following claim.

Claim 3.1. Assume that λ < 0. For any initial value u = (x, y, z) in R3,◦
+ satisfying x + y ≤ 1, if Πt(·)

converges weakly to µ2 a.s. and y(t) converges a.s. to 0 exponentially fast with the rate λ, then x(t)
converges a.s. to 1 and z(t) converges weakly to π2.

In order to prove Claim 3.1, we will utilize the non-negative semi-martingale convergence theorem
(see Theorem 3.1 in [24]) and the following two lemmas, whose proofs will be given in the end of this
subsection.

Lemma 3.1. If u(t) = (x(t), y(t), z(t)) is the solution of (2.3) with the initial value u = (x, y, z) satisfying
x > 0, y > 0, z > 0, and x + y ≤ 1 then 0 < x(t) < 1 for all t > 0 a.s.

Lemma 3.2. Suppose the assumption of Lemma 3.1 is satisfied. Then lim sup
t→∞

Eux(t)z(t) < ∞.

Proof of Claim 3.1. From the equation for x(t) of (2.3), we get

1 − x(t) = 1 − x +

∫ t

0
x(s)y(s)[r + az(s)]ds −

∫ t

0
rx(s)[1 − x(s)]ds
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−

∫ t

0
τ1x(s)[1 − x(s) − y(s)]dW1(s).

Denote

At :=
∫ t

0
x(s)y(s)[r + az(s)]ds, Ut :=

∫ t

0
rx(s)[1 − x(s)]ds,

Mt := −
∫ t

0
τ1x(s)[1 − x(s) − y(s)]dW1(s).

Clearly, At and Ut are continuous adapted (Ft-measurable) increasing processes with A0 = U0 = 0. Mt

is a local martingale with M0 = 0 and 1 − x(t) ≥ 0 a.s. by Lemma 3.1.

Then, we show that limt→∞ At < ∞ a.s. Since lim
t→∞

ln y(t)
t

= λ < 0, there is a Θ > 0 such that t ≥ Θ

implies y(t) ≤ exp{λt
2 }. But, then for t ≥ Θ∫ t

0
rx(s)y(s)ds =

∫ Θ

0
rx(s)y(s)ds +

∫ t

Θ

rx(s)y(s)ds

≤ rΘ + r
∫ t

Θ

exp
{
λs
2

}
ds = rΘ +

2r
−λ

[
exp

{
λΘ

2

}
− exp

{
λt
2

}]
,

which follows that lim
t→∞

∫ t

0
rx(s)y(s)ds < ∞ a.s. On the other hand, by Lemma 3.2, we can use the

Markov inequality to show N := sup
t≥0

x(t)z(t) < ∞ a.s. So the same argument as above implies

lim
t→∞

∫ t

0
ax(s)y(s)z(s)ds < ∞ a.s. Therefore lim

t→∞
At < ∞ a.s.

By Theorem 3.9 on page 14 in [24], lim
t→∞

(1 − x(t)) < ∞ a.s. and lim
t→∞

∫ t

0
x(s)[1 − x(s)]ds < ∞ a.s.

If x(t)[1 − x(t)] did not converge a.s. to 0, then there would be an Ω1 ⊆ Ω with P(Ω1) > 0 so that
lim inf

t→∞
x(t, ω)[1 − x(t, ω)] = p(ω) > 0 for all ω ∈ Ω1. Fix ω ∈ Ω1, there exists a T := T (ω) > 0 so that

t ≥ T implies x(t, ω)[1 − x(t, ω)] > 1
2 p(ω). Hence∫ ∞

0
x(s, ω)[1 − x(s, ω)]ds ≥

∫ ∞

T
x(s, ω)[1 − s(s, ω)]ds

≥
1
2

p(ω)
∫ ∞

T
ds = ∞.

Then Ω1 ⊆ Ω2, where Ω2 =
{
ω;

∫ ∞
0

x(s, ω)[1 − x(s, ω)]ds = ∞
}
. This implies that P(Ω2) > 0. But this

contradicts the fact that lim
t→∞

∫ t

0
x(s)[1 − x(s)]ds < ∞ a.s. Therefore

lim
t→∞

x(t)[1 − x(t)] = 0 a.s. (3.4)

Since Πt(·) converges weakly to µ2, there exists a sequence {tk}k≥1 such that tk ↑ ∞ and

lim
k→∞

∫
D

xP(tk, u, du) =

∫
D

xµ2(du) = 1,
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where P(t, u, ·) is the transition probability of the solution u(t) of the system (2.3). In other words,
Eux(tk) → 1. Combining this fact with (3.4), we can conclude that x(t) converges a.s. to 1. Moreover,
since

lim
k→∞

∫
D
|z − z̃| P(tk, u, du) =

∫
D
|z − z̃|µ2(du) = 0,

Eu|z(tk) − z̃(tk)| → 0. As z̃(t) converges weakly to π2, so is z(t). �
Now, we give a proof of our main theorem 2.2. Notice that Assumptions 1.1-1.5 and Theorems

1.1 and 1.3 mentioned in the proof are referred in [23], since our proof is based on Theorem 1.1 and
Theorem 1.3 there.
Proof of Theorem 2.2. First, we denote x1 = x, x2 = y, x3 = z, f1 = r(1 − x − y) − ayz, f2 = axz − 1,
f3 = b

z + 1 + τ2
2 − ax − c − axz, g1 = 1 − x − y, g2 = g3 = 1, and

Γ = (σi j)1≤i, j≤3 =


τ1 0 0
0 τ2 0
0 −τ2 τ3

 .
It is clear that fi and gi (i = 1, 2, 3) are locally Lipschitz. For c = (0, 0, 1)T , u = (x, y, z)T , and γb > 0,
we have ∑3

i=1 cixi fi

1 + cT u
=

b + (1 + τ2
2 − ax − c)z − axz2

1 + z
,

−1
2

∑3
i, j=1 σi jcic jxix jgig j

(1 + cT u)2 = −
1
2
τ2

2z2 + τ2
3y2z2

(1 + z)2 , and

γb

1 +

3∑
i=1

| fi| +

3∑
i=1

g2
i

 = γb
[
1 + |r(1 − x − y) − ayz| + |axz − 1|

+|b/z + 1 + τ2
2 − ax − c − axz| + 2 + (1 − x − y)2

]
.

Note that, since 0 ≤ x(t) ≤ 1 for all t ≥ 0 a.s. by Lemma 3.1, we can show that Eu(x(t) + y(t)) ≤ 1. This
implies that Euy(t) ≤ 1 and hence, by Markov’s inequality, we can prove that y(t) is bounded a.s. Thus∑3

i=1 cixi fi

1 + cT u
−

1
2

∑3
i, j=1 σi jcic jxix jgig j

(1 + cT u)2 + γb

1 +

3∑
i=1

| fi| +

3∑
i=1

g2
i


≤

b
1 + z

+
(1 + τ2

2 − ax − c)z
1 + z

−
axz2

1 + z
+
γbb

z
+ γbK4(1 + z)

for some constant K4 > 0. When z is large enough, we can choose γb > 0 sufficiently small so that

b
1 + z

+
(1 + τ2

2 − ax − c)z
1 + z

−
axz2

1 + z
+
γbb

z
+ γbK4(1 + z) < 0.

This shows that

lim
‖u‖→∞


∑3

i=1 cixi fi

1 + cT u
−

1
2

∑3
i, j=1 σi jcic jxix jgig j

(1 + cT u)2 + γb

1 +

3∑
i=1

| fi| +

3∑
i=1

g2
i


 < 0
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where ‖u‖ := |x| + |y| + |z|. Moreover, it is easy to compute

diag(g1, g2, g3)ΓΓT diag(g1, g2, g3) =


τ2

1(1 − x − y)2 0 0
0 τ2

2 τ2
2

0 τ2
2 τ2

3 + τ2
2


which is positive definite for all (x, y, z) ∈ R3,◦

+ satisfying x + y ≤ 1. Thus, Assumption 1.1 in [23] is
fulfilled for the system (2.3).

Next, letM be the set of ergodic invariant measures of the system (2.3) supported by the boundary
∂R3

+. Consider two cases.
Case 1. ζ = 2c − 2 − τ2

2 + τ2
3 < 0. There is only one ergodic invariant measure on ∂R3

+, which is
µ2 = δ∗1 × δ

∗
0 × π2. Observe that

Dµ2 := supp(µ2) = {(x, y, z) ∈ R3
+ : y = 0},

Iµ2 = {1, 3}, Ic
µ2

= {2},

λ1(µ2) = λ3(µ2) = 0, (by Lemma 2.1 in [23])

λ2(µ2) =
√

abRθ(w) − 1 −
τ2

2

2
=: λ.

ThenM = {µ2}, and so Conv(M) = {µ2} (the convex hull ofM, that is the set of probability measure
π of the form π(·) =

∑
µ∈M pµµ(·) with

∑
µ∈M pµ = 1, pµ ≥ 0). If λ > 0, then Assumption 1.2 holds

and thus, by Theorem 1.1, the solution of (2.3) is strongly stochastically persistent. If λ < 0 then
Assumption 1.3 holds. Note that

Mµ2 := {ν ∈ M : supp(ν) ⊆ ∂R3
+} = ∅.

So
M1 := {µ ∈ M : µ satisfies Assumption 1.3} = {µ2} , ∅

and hence M2 := M\M1 = ∅. This means that Assumption 1.5 is satisfied. Furthermore, since∑3
i=1 g2

i = 2 + (1 − x − y)2 is bounded, for any 0 < δ1 < 1 we have

lim
‖u‖→∞

‖u‖δ1
∑3

i=1 g2
i (u)

1 +
∑3

i=1(| fi(u)| + |gi(u)|2)
= 0.

Thus Assumption 1.4 is fulfilled. By Theorem 1.3, for any initial value (x, y, z) in R3,◦
+ satisfying

x + y ≤ 1, Πt(·) converges weakly to the unique invariant measure µ2 and limt→∞
ln y(t)

t = λ w.p.1. By
Claim 3.1, x(t) converges a.s. to 1 and z(t) converges weakly to π2 a.s.

Case 2. ζ ≥ 0. There are two ergodic invariant measures on ∂R3
+, which are µ1 and µ2. It is

straightforward to see that

Dµ1 := supp(µ1) = {(x, y, z) ∈ R3
+ : x = 0, y = 0} ⊆ Dµ2 ,

Iµ1 = {3}, Ic
µ1

= {1, 2},

λ1(µ1) = r −
τ2

1

2
, λ2(µ1) = −1 −

τ2
2

2
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λ3(µ1) = 0 (by Lemma 2.1 in [23]).

ThenM = {µ1, µ2} and so

Conv(M) = {µ = p1µ1 + p2µ2 : p1 + p2 = 1, p1 ≥ 0, p2 ≥ 0}.

If τ1 <
√

2r and λ > 0 then λ1(µ1) > 0 and λ2(µ2) > 0. It is clear that, for any µ ∈ Conv(M),
max{λ1(µ), λ2(µ), λ3(µ)} > 0. Then Assumption 1.2 holds and hence, by Theorem 1.1, the solution of
(2.3) is strongly stochastically persistent.

If τ1 <
√

2r and λ < 0 then M1 = {µ2}. Since Mµ2 = {µ1} and Conv(Mµ2) = {µ1},
max{λ1(µ1), λ3(µ1)} > 0. Hence Assumption 1.3 holds. Since M2 = {µ1}, Conv(M2) = {µ1} and
so max

i=1,2,3
λi(µ1) > 0. Then Assumptions 1.4 and 1.5 are satisfied. By Theorem 1.3 and Claim 3.1, x(t)

converges a.s. to 1, y(t) converges a.s. to 0, and z(t) converges weakly to π2 a.s.
If τ1 >

√
2r and λ > 0 then, since max

i∈Ic
µ1

λi(µ1) < 0 andMµ1 = ∅,M1 = {µ1} and soM2 = {µ2}. As

max
i=1,2,3

λi(µ2) = λ > 0, so Assumption 1.5 are satisfied. With the same argument as Case 1, we also have

Assumption 1.4 is fulfilled. Thus, by Theorem 1.3, we can conclude that x(t) and y(t) both converge
a.s. to 0 with the rates λ1(µ1) and λ2(µ1), respectively.

Lastly, if τ1 >
√

2r and λ < 0, then max
i∈Ic

µ1

λi(µ1) < 0 and max
i∈Ic

µ2

λi(µ2) < 0. However, the condition

(1.7) in Assumption 1.3 does not hold because max
i∈Iµ1

λi(µ1) < 0 and max
i∈Iµ2

λi(µ2) = 0. This means that

µ1 and µ2 are not repellers. In this case, solutions starting near the interior of Dµ2 will stay close and
concentrate on Dµ1 .

This completes the proof. �
Proof of Lemma 3.1.

Take V(x, y, z) = 2 − x − y − ln(1 − x) for x > 0, y > 0, z > 0 and x + y ≤ 1. By Ito’s formula, for all
x > 0, y > 0, z > 0, and x + y ≤ 1 we have

LV = −rx(1 − x − y) + axyz +
rx(1 − x − y)

1 − x
−

axyz
1 − x

+
τ2

1

2
x2(1 − x − y)2

(1 − x)2 − axyz + y ≤ rx + y +
τ2

1x2

2
≤ K1V(x, y, z)

for some suitable positive constant K1. Let ζk = inf{t ≥ 0 : V(x(t), y(t), z(t)) ≥ k} and fix t > 0. Then
Ito’s formula implies

Ex,y,zV(t) := Ex,y,zV(x(ζk ∧ t), y(ζk ∧ t), z(ζk ∧ t))

= V(x, y, z) + Ex,y,z

∫ ζk∧t

0
LV(x(s), y(s), z(s))ds

≤ V(x, y, z) + K1

∫ t

0
Ex,y,zV(x(ζk ∧ s), y(ζk ∧ s), z(ζk ∧ s))ds.

By Gronwall’s inequality, Ex,y,zV(t) ≤ V(x, y, z) exp{K1t}. But, since

Ex,y,zV(t) ≥
∫
{ζk≤t}

V(x(ζk), y(ζk), z(ζk))dPx,y,z ≥ kPx,y,z{ζk ≤ t},
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Px,y,z{ζk ≤ t} ≤
V(x, y, z) exp{K1t}

k
for all k ≥ 1 and hence

Px,y,z{ζk > t} ≥ 1 −
V(x, y, z) exp{K1t}

k

for all k ≥ 1. On the other hand, since ζk > t implies V(x(s), y(s), z(s)) < k for all s ∈ [0, t],

Px,y,z {V(x(s), y(s), z(s)) < k ∀ s ∈ [0, t]} ≥ 1 −
V(x, y, z) exp{K1t}

k

for all k ≥ 1. Letting k → ∞ yields

Px,y,z {V(x(s), y(s), z(s)) < ∞ ∀ s ∈ [0, t]} = 1.

As V(x(s), y(s), z(s)) < ∞ implies 1 − x(s) > 0, so Px,y,z{0 < x(s) < 1 ∀ s ∈ [0, t]} = 1. Since t > 0 is
arbitrary, Px,y,z{0 < x(s) < 1 ∀ s ≥ 0} = 1.

We complete the proof. �

Proof of Lemma 3.2.
By Ito’s formula, since 0 ≤ x(t) ≤ 1 for all t ≥ 0 a.s. (by Lemma 3.1),

d(x(t)z(t)) = x(t)dz(t) + z(t)dx(t) + dx(t)dz(t)
= [bx(t) + (1 + τ2

2 − ax(t) − c)x(t)z(t) − ax2(t)z2(t)]dt

− τ2x(t)z(t)dW2 + τ3x(t)z(t)dW3

+ [rx(t)z(t)(1 − x(t) − y(t)) − ax(t)y(t)z2(t)]dt + τ1x(t)z(t)(1 − x(t) − y(t))dW1

≤ [b + (1 + τ2
2 + r)x(t)z(t) − ax2(t)z2(t)]dt

+ τ1x(t)z(t)(1 − x(t) − y(t))dW1 − τ2x(t)z(t)dW2 + τ3x(t)z(t)dW3.

Taking expectation both sides yields

d
dt
Eux(t)z(t) ≤ b + (1 + τ2

2 + r)Eux(t)z(t) − aEux2(t)z2(t)

≤ b + (1 + τ2
2 + r)Eux(t)z(t) − a(Eux(t)z(t))2,

here we have used the equality Eux2(t)z2(t) ≥ (Eux(t)z(t))2. This implies that

d
dt
Eux(t)z(t) ≤ b +

(1 + τ2
2 + r)2

4a
− a

(
Eux(t)z(t) −

1 + τ2
2 + r

2a

)2

.

Therefore for all t ≥ 0 we obtain

Eux(t)z(t) ≤ min

1,
b
a

+

(
1 + τ2

2 + r
2a

)2 .
So, Lemma 3.2 is proved. �
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3.3. Proofs of Propositions

Proof of Proposition 2.1.
µ1 = δ∗0×δ

∗
0×π1, where the invariant measure π1 has the inverse gamma distribution with parameters

α =
2(c−1−τ2

2)
τ2

2+τ2
3

+ 1 and β = 2b
τ2

2+τ2
3
. The mean is given by β

α−1 = b
c−1−τ2

2
. It is clearly that when τ2 approaches

zero, the mean approaches b
c−1 which is the third coordinate of the equilibrium E1.

µ2 = δ∗1 × δ
∗
0 × π2, where the invariant measure π2 has the generalized inverse Gaussian distribution

with parameters θ =
2(1 + τ2

2 − a − c)
τ2

2 + τ2
3

− 1, ψ =
4a

τ2
2 + τ2

3

, and χ =
4b

τ2
2 + τ2

3

. From A.17 on page 172 in

[26], we know the mean of this distribution π2 is Rθ(w)
√

b
a , where w :=

√
ψχ = 4

√
ab

τ2
2+τ2

3
, Rθ(w) := Kθ+1(w)

Kθ(w) ,
and Kθ(w) is the modified Bessel function of the third kind with index θ.

Since θ
w =

2(1+τ2
3−a−c)

4
√

ab
−

τ2
2+τ2

3

4
√

ab
, lim(τ2,τ3)→(0,0)

θ
w = 1−a−c

2
√

ab
. From the reference [26], we get

Rθ(w) =
θ

w
+

√(
θ

w

)2

+ Dθ(w), where Dθ(w) :=
Kθ+1(w)Kθ−1(w)

K2
θ (w)

.

Due to the asymptotic expansion of Dθ(w) as w→ ∞ (see A.22 on page 173 in [26])

Dθ(w) = 1 +
1
w

+
−256θ2 + 64

(8w)3 + o(w−4) (w→ ∞),

it is clear that Dθ(w) approaches 1 as (τ2, τ3) approaches (0, 0). Hence

lim
(τ2,τ3)→(0,0)

Rθ(w)

√
b
a

= lim
(τ2,τ3)→(0,0)

 θw +

√(
θ

w

)2

+ Dθ(w)


√

b
a

=
1 − a − c +

√
(1 − a − c)2 + 4ab
2a

.

�
Proof of Proposition 2.3.

We first show the threshold λ =
√

ab Rθ(w) − 1 − τ2
2

2 is an increasing function of the virus burst size
b. Let h(b) =

√
ab Rθ(w) where w = 4

√
ab

τ2
2+τ2

3
. Since h′(b) = 2a

τ2
2+τ2

3

[
R2
θ(w) − 2 θ

wRθ(w) − 1
]
, h′(b) ≥ 0 is

equivalent to Rθ(w) ≥ θ
w +

√
( θw )2 + 1. By the integral representation of Dθ(w) (see A.29 on page 176

in [26]), we have

Dθ(w) = 1 +
2

w2

∫ +∞

w
w̃

[
Kθ(w̃)
Kθ(w)

]2

dw̃ ≥ 1 (w > 0).

It follows that

Rθ(w) =
θ

w
+

√(
θ

w

)2

+ Dθ(w) ≥
θ

w
+

√(
θ

w

)2

+ 1.

Therefore h(b) is increasing w.r.t. b.
From the proof of Proposition 2.1, lim(τ2,τ3)→(0,0) λ = lim(τ2,τ3)→(0,0)

√
abRθ(w) − 1 − 1

2τ
2
2 =

1−a−c+
√

(1−a−c)2+4ab
2 − 1 = λ. It is easy to see that λ = 0 gives b = 1 + c

a which is the threshold bs1

for the deterministic system (1.1). �
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4. Numerical simulation and discussion

4.1. Numerical simulation with biological explanation

This section is devoted to demonstrate our main analytical results in Section 2. Data values from our
previous research (see [27] and [12]) are used to estimate parameter values and simulate our stochas-
tic model. The maximal radius of the tumor in mice brain, which is considered to be dead from
the tumor, is 5 millimeters. Because our SDE model neglects spatial variations, tumor size is con-
verted into cell numbers using the constant of cell density K = 106 per cubical millimeter. After
non-dimensionalization, the parameter values are r = 0.36, a = 0.11, and c = 0.44. For simplicity,
we carry out numerical simulations based on the non-dimensionalized SDE systems (2.2) and (2.3).
The quantities x, y, and v are, respectively, the portion of uninfected tumor cells, infected tumor cells,
and free virus particles over the maximal cell density of the tumor C. These quantities are not abso-
lute numbers but relative numbers. We just call them relative uninfected tumor cells and so on in the
figures below. Notice that the quantity z in the system (2.3) is the ratio of relative free virus particles
over relative infected tumor cells. In our simulation, time is scaled or relative time since T = δt. In
[27] and [12], the parameter b, the burst size of free virus particles, plays a pivotal role in determining
the success of glioma virotherapy. So we will simulate the trajectories of the system (2.2) with the ini-
tial value (0.5, 0.5, 1.5) and the modified system (2.3) with the initial value (0.5, 0.5, 3) as b and noise
intensities are varied while all the other parameters are fixed.
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Figure 1. Stochastic solution paths
of (2.3) when b = 5, τ1 = 0.2, τ2 =

0.3, and τ3 = 0.2

0 10 20 30 40 50 60 70 80 90 100

relative time

0.2

0.4

0.6

0.8

1

x

0 10 20 30 40 50 60 70 80 90 100

relative time

0

0.2

0.4

0.6

y

0 10 20 30 40 50 60 70 80 90 100

relative time

0

1

2

3

v

Figure 2. Stochastic solution paths
of (2.2) when b = 5, τ1 = 0.2, τ2 =

0.3, and τ3 = 0.2

Example 1. We illustrate the situation when λ < 0. In the figures 1 and 2, we take b = 5, τ1 = 0.2,
τ2 = 0.3, and τ3 = 0.2. By computation, θ = 7.3077, w = 22.8191, Rθ(w) = 1.39, and hence
λ = −0.0141 < 0. Figure 1 indicates that the relative uninfected tumor cells increase to the relative
maximal cell density of the tumor, which is 1; the relative infected tumor cells decay to zero; and
the ratio of relative free virus particle over relative infected tumor cells reaches an equilibrium state,
which explains why the relative free viruses are wiped out as in Figure 2. These two pictures verify
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the conclusion in Case 1 of Theorem 2.2. In terms of biological meaning, since the burst size b is not
big enough, the number of new viruses released from a lysis of an infected cell is inconsiderable when
compared with the number of free viruses dying out. Because of that, in the early stage, the population
of free virus particles increases by contribution from lysis of some infected tumor cells but later the
number of free viruses decrease and decay to zero. The decrease in free viruses leads to decrease in
infected tumor cells and hence the infected also decay to zero. Then the uninfected becomes less and
less infected by free viruses, and finally increases to its carrying capacity. Therefore, virotherapy fails.
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Figure 3. Stochastic solution paths
of (2.3) when b = 10, τ1 = 0.2, τ2 =

0.3, and τ3 = 0.2
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Figure 4. Stochastic solution paths
of (2.2) when b = 10, τ1 = 0.2, τ2 =

0.3, and τ3 = 0.2
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Figure 5. Stochastic solution paths
of (2.2) when b = 20, τ1 = 0.2, τ2 =

0.3, and τ3 = 0.2
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Figure 6. Stochastic solution paths
of (2.2) when b = 40, τ1 = 0.2, τ2 =

0.3, and τ3 = 0.2
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Example 2. We consider the situation when λ > 0. Take b = 10 and noise intensities have the
same values as in Example 1. By computation, we can obtain λ = 0.2832 > 0. The second conclusion
in Case 1 of Theorem 2.2 indicates that relative populations of uninfected, infected tumor cells and
free viruses persist strongly and finally settle down into a coexistence equilibrium state. Both Figures
3 and 4 show that, as time goes by, each solution path oscillates most of the time around a positive
equilibrium point (which is the positive equilibrium point of the corresponding ODE system, E3 or
Q3). Biologically, this phenomenon can be explained as follows. When the burst size of free viruses
is increased, say, to 10, the number of new viruses from a lysis of an infected tumor cell becomes
significant. Then, the dying-out infected cells contribute much to the number of free viruses within the
tumor. The number of free virus particles is big enough to prevent the growth of uninfected tumor cells.
Some of the uninfected getting infected by free viruses becomes the infected, while some of them keep
growing. Three populations interact in the mutually coexistent way. This shows that injecting free
viruses with stronger burst size into the tumor yields better treatment.

If the burst size b is doubled to 20 while the noise intensities are the same as in Example 1 and 2,
Figure 5 indicates that all solution paths still persist and oscillate most of the time around an equilib-
rium state. The difference is that the tumor load, which is the total number of the uninfected and the
infected cells, is much smaller than the tumor load with the burst size b = 10. When we increase the
burst size b to 40 and noise intensities are kept the same, the solution behaves differently. Figure 6
shows that all solution paths represent a pulsating oscillatory. The minimum of the uninfected tumor
population can reach a very small value comparing with the maximum tumor size. In this case, the
tumor may be regarded to be undetectable and then we consider that the tumor is eradicated. This
phenomenon becomes more visible when the burst size is taken very large, say b = 80, as illustrated in
Figure 7. Thus, the viral treatment can be seen to be some success.
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Figure 7. The relative uninfected tumor cells when b = 80, τ1 = 0.2, τ2 = 0.3, and τ3 = 0.2

4.2. Discussion

In this paper, our basic virotherapy model of stochastic type is able to predict the dynamics of viral
therapy based on the viral burst size b and noise intensities. We found thresholds ζ and λ that provide
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conditions for various outcomes of our stochastic model. The parameter ζ combines infected tumor
cell lysis rate δ, virus degradation rate γ, and their stochastic variation τ2 and τ3, which describes
possibilities if the tumor can be eradicated by viral therapy. The parameter λ is a differential function
of the viral burst size b and the noise intensities τ2 and τ3, and is increasing as b increases. We elaborate
some medical implications of these parameters and medical outcomes theoretically in Section 2. We
also numerically demonstrate these dynamical outcomes and present more biological explanations in
Subsection 4.1. We compare our stochastic model and its deterministic counterpart. Equilibrium states
of deterministic models correspond to ergodic invariant probability measures of stochastic models.
However, our stochastic model demonstrate some new features. For the deterministic model, there is
no possibility to eradicate the tumor, but for the stochastic model, there is a case where the tumor can
be eradicated. This is due to introducing a big variance τ2

1 of tumor cell growth rate.
There are several interesting questions arisen in our study. For two ergodic invariant probability

measures on the boundary, we obtain their explicit probability distributions, so that we can compute
their expectations which correspond equilibrium solutions of the deterministic system. For the ergodic
invariant probability measure supported by the interior of the domain, we are unable to find its probabil-
ity distribution explicitly in this study although we know it corresponds to the coexistence equilibrium
solution of the deterministic model. One question is to find the explicit expression of this probability
distribution. A second question is about Hopf bifurcations. In the deterministic model, when the viral
burst size passes through the second threshold value bs2 , there is a Hopf bifurcation with appearance
of three families of periodic solutions. We know that λ is an increasing function of the viral burst size
b, and its threshold bs1 also serve well for classification of solutions to stochastic model. We ask if
there is a Hopf bifurcation for the stochastic model when the viral burst size b passes through bs2 . This
would be very interesting from both theoretical and practical viewpoint.

One of the major challenges in current medical practice of oncolytic viral therapy is to get insight
into the complexity of the immune responses. Understanding the dynamics of oncolytic virotherapy in
the presence of immune responses is a considerable need. The innate immune response has a tendency
to reduce the efficacy of oncolytic viral treatment by lowering new virus multiplication and blocking
the infection spreading, while the stimulated adaptive immune response tends to reduce tumor cells.
So the extension of our stochastic model to incorporate the innate and adaptive immune systems is
expected. We plan to conduct these studies in the future.

Acknowledgments

JPT would like to acknowledge grant supports from National Science Foundation (DMS-1446139)
and National Institutes of Health (U54CA132383) which also supported TAP in some semesters and
summers during the grant periods.

Conflict of interest

All authors declare that there are no conflicts of interest regarding the publication of this manuscript.

References

Mathematical Biosciences and Engineering Volume 17, Issue 4, 4271–4294.



4293

1. D. Cross, J. Burmester, Gene therapy for cancer treatment: Past, present, and future, Clin. Med.
Res., 4 (2006), 218–227.

2. X. M. Anguela, K. A. High, Entering the modern era of gene therapy, Annu. Rev. Med., 70 (2019),
273–288.

3. E. A. Chiocca, Oncolytic viruses, Nat. Rev. Cancer, 2 (2002), 938–950.

4. E. Kelly, S. J. Russell, History of oncolytic viruses: Genesis to genetic engineering, Mol. Ther.,
15 (2007), 651–659.

5. R. H. I. Andtbacka, H. L. Kaufman, F. Collichio, T. Amatruda, N. Senzer, J. Chesney, et al.,
Talimogene laherparepvec improves durable response rate in patients with advanced melanoma, J.
Clin. Oncol., 33 (2015), 2780–2788.

6. T. Liu, D. Kirn, Gene therapy progress and prospects cancer: oncolytic viruses, Gene Ther., 15
(2008), 877–884.

7. D. Wodarz, Viruses as antitumor weapons: Defining conditions for tumor remission, Cancer Res.,
61 (2001), 3501–3507.

8. D. Wodarz, Gene therapy for killing p53-negative cancer cells: Use of replicating versus nonrepli-
cating agents, Hum. Gene Ther., 159 (2003), 153–159.

9. D. Dingli, M. D. Cascino, K. Josic, S. J. Russell, Z. Bajzer, Mathematical modeling of cancer
radiovirotherapy, Math. Biosci., 199 (2006), 55–78.

10. Z. Bajzer, T. Carr, K. Josic, S. J. Russell, D. Dingli, Modeling of cancer virotherapy with recom-
binant measles viruses, J. Theor. Biol., 252 (2008), 109–22.

11. N. L. Komarova, D. Wodarz, ODE models for oncolytic virus dynamics, J. Theor. Biol., 263
(2010), 530–543.

12. J. P. Tian, The replicability of oncolytic virus: Defining conditions on tumor virotherapy, Math.
Biosci. Eng., 8 (2011), 841–860.

13. T. A. Phan, J. P. Tian, The Role of the Innate Immune System in Oncolytic Virotherapy, Comput.
Math. Methods Med., Volume 2017, Article ID 6587258, 17 pages.

14. Y. Yuan, L. J. Allen, Stochastic models for virus and immune system dynamics, Math. Biosci.,
234 (2011), 84–94.

15. K. S. Kim, S. Kim, I. H. Jung, Dynamics of tumor virotherapy: A deterministic and stochastic
model approach, Stoch. Anal. Appl., 34 (2016), 483–495.

16. M. Rajalakshmi, M. Ghosh, Modeling treatment of cancer using virotherapy with generalized
logistic growth of tumor cells, Stoch. Anal. Appl., 36 (2018), 1068–1086.

17. M. Rajalakshmi, M. Ghosh, Modeling treatment of cancer using oncolytic virotherapy with
saturated incidence, Stoch. Anal. Appl., 38 (2020), 565–579.

18. E. Allen, Modeling with Ito Stochastic Differential Equations, Springer, Dordrecht, The Nether-
lands, 2007.

19. J. Cresson, B. Puig, S. Sonner, Validating stochastic models: Invariance criteria for systems of
stochastic differential equations and the selection of a stochastic Hodgkin-Huxley type model, Int.
J. Biomath. Biostat., 2 (2013), 111–122.

Mathematical Biosciences and Engineering Volume 17, Issue 4, 4271–4294.



4294

20. J. Cresson, B. Puig, S. Sonner, Stochastic models in biology and the invariance problem, Discrete
Continuous Dyn. Syst. Ser. B, 21 (2016), 2145–2168.

21. J. Cresson, S. Sonner, A note on a derivation method for SDE models: Applications in biology
and viability criteria, Stoch. Anal. Appl., 36 (2018), 224–239.

22. T. A. Phan, J. P. Tian, B. Wang, Dynamics of cholera epidemic models in fluctuating environments,
Stoch. Dyn., (2020), In press.

23. A. Hening, H. D. Nguyen, Coexistence and extinction for stochastic Kolmogorov systems, Ann.
Appl. Probab., 28 (2018), 1893–1942.

24. X. Mao, Stochastic differential equations and applications, 2nd edition, Woodhead Publishing
Limited, 2007.

25. N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd edition,
North-Holland Publishing Co., Amsterdam, 1989.

26. B. Jorgensen, Statistical Property of the Generalized Inverse Gaussian Distribution, Springer-
Verlag New York, 1982.

27. A. Friedman, J. P. Tian, G. Fulci, E. A. Chiocca, J. Wang, Glioma virotherapy: The effects
of innate immune suppression and increased viral replication capacity, Cancer Res., 66 (2006),
2314–2319.

Appendix

We state some properties of the Generalized Inverse Gaussian Distribution GIG(θ, χ, ψ) without
proof (see [26] for more details), that is needed in Section 3, where θ ∈ R, χ > 0, and ψ > 0. Its
probability density function is given by

f (z; θ, χ, ψ) =
(ψ/χ)θ/2

2Kθ(
√
χψ)

zθ−1 exp
{
−

1
2

(χz−1 + ψz)
}
, z ∈ (0,∞),

where Kθ(·) is the modified Bessel function of the third kind with index θ, given by

Kθ(φ) =
1
2

∫ ∞

0
xθ−1 exp

{
−

1
2
φ

(
x +

1
x

)}
dx, φ > 0.

Let w =
√
χψ and η =

√
χ

ψ
, then the above probability density function takes the form

f (z; θ,w, η) =
η−θ

2Kθ(w)
zθ−1 exp

{
−

1
2

w
(
η

z
+

z
η

)}
, z > 0.

Moments of random variable X ∼ GIG(θ,w, η) are given by

EXp =
Kθ+p(w)
Kθ(w)

ηp, p ≥ 0.
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