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ABSTRACT
In this paper, we consider a system of delay differential equa-
tions that models the oncolytic virotherapy on solid tumours with
the delay of viral infection in the presence of the innate immune
response. We conduct qualitative and numerical analysis, and pro-
videpossiblemedical implications for our results. The systemhas four
equilibrium solutions. Fixed point analysis indicates that increasing
the burst size and infection rate of the viruses has positive contribu-
tion to the therapy. However, increasing the immune killing infection
rate, the immune stimulation rate, or the immune killing virus rate
may lead the treatment failed. The viral infection time delay induces
backward Hopf bifurcations, which means that the therapy may fail
before time delay increases passing through a Hopf bifurcation. The
parameter analysis also shows how saddle-node and Hopf bifurca-
tions occur as viral burst size and other parameters vary, which yields
further insights into the dynamics of the virotherapy.
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1. Introduction

Oncolytic virotherapy is an encouraging therapeutic strategy to destruct tumours [6].
Oncolytic viruses selectively infect and replicate in tumour cells, but spare normal cells.
It was initially tested in the middle of the last century, and merged with renewed interests
over last 30 years due to the technological advances in virology and in the use of viruses as
vectors for gene transfer [14]. However, the efficacy of oncolytic viral therapy has not been
well established yet. Themajor challenge is the complexity of the immune responses [5,38]
in the process of the therapy [7].

Since fifteen years ago, mathematicians have applied mathematical models to under-
standing of oncolytic virotherapy. Wu [37] andWein [33] proposed and analysed a system
of partial differential equations (PDEs) that is essentially a radially-symmetric epidemic
model embedded in a Stefan problem to describe some aspect of cancer virotherapy.
Wodarz [34,35] formulated a simple model with three ordinary differential equations
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(ODEs) to study three hypothetical situations, viral cytotoxicity kills tumour cells, a virus-
specific lytic CTL response contributes to killing of infected tumour cells, and the virus
elicits immunostimulatory signals within the tumour that promote the development of
tumour-specific CTL. Komarova [16] and Wodarz et al. [36] analysed several possible
mathematical formulations of oncolytic virus infection in terms of two ODEs, while
Novozhilov et al. [19] analysed ratio based oncolytic virus infection models. Bajzer et al.
[3] used three ODEs to model specific cancer virotherapy with measles virus, and then
considered optimization of viral doses, number of doses, and timing [4].

Friedman et al. [12] proposed a free boundary problem to study brain tumour glioma
with mutant herpes simplex virus therapy. It incorporated immunosuppressive agent
cyclophosphamide to reduce the effect of the innate immune response. This model reveals
the oscillation phenomenon in oncolytic viral therapy. Vasiliu et al. [30] studied a simpli-
fied model for the cell population oscillation, which may be caused by interaction between
infected tumour cells and innate immune cells. To obtain a basic dynamic picture of
oncolytic viral therapy, Tian [27] proposed a simple model with three ODEs to represent
interaction among tumour cells, infected tumour cells, and oncolytic viruses, and con-
cluded that the viral therapeutic dynamics is largely determined by the viral burst size.
To further understand how the viral burst size is affected, Wang et al. [31] and Tian et al.
[28] proposed a delay parameter for virus infection process into the basic model. These
delay differential equation models gave another explanation of cell population oscillation
and revealed a functional relation between the virus burst size and lytic cycle. In a recent
paper [8], Choudhury et al. considered a simple model of three ODEs for the dynamics
of oncolytic virotherapy in the presence of immune response. However, this model did
not include the free virus population, and it may not give a complete the dynamic picture
of viral therapy with innate immune response. There also are some other mathematical
models that describe the dynamics of oncolytic viral therapy [24].

All proposedmathematical models have given some insights into oncolytic virotherapy.
However, there is a considerable need of understanding the dynamics of oncolytic virother-
apy in the presence of immune responses [7]. Particularly, we need to understand the subtle
dynamics which includes some details of viral infection process and immune responses.
The viral oncolytic process has five stages, attachment, penetration, replication, assembly,
and release [18], and each stage is preprogrammed and tightly regulated in time and space
[25]. These sequential stages can differ substantially among individual viruses and influ-
ence their rate of cell killing and spread, accordingly affecting their oncolytic potential.
To infect a tumour cell, one or more virus particles must enter the host cell. This process
differs between classes of viruses, especially regarding the presence or absence of a viral
membrane envelope. Attachment to cells is mediated by viral surface proteins targeting
molecules accessible on cell membranes. Upon attachment, the viral particle passes the
host cell membrane in a process termed penetration, which is involved in different mecha-
nisms depending on the virus type. Some viruses require interaction of two distinct surface
proteins for entry [21]. Binding of the H protein to a cell entry receptor induces a change in
the structural conformation of the F (fusion) protein, leading to an approximation of viral
particle and host cell. This finally results in membrane fusion, allowing entry of the viral
particle into the cell [17]. Endocytosis provides an alternative route of cell entry. Acidifica-
tion ofmaturing endosomes can induce conformation changes in viral attachment proteins
to promote membrane approximation and fusion. Non-enveloped viruses do not need for
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membrane fusion and rely on endocytic pathways for entry [26]. After one or more viruses
enter a host cell, the virus will replicate up to certain number of copies, then assemble, and
then release from the host cell by lysis. It is clear that each stage needs some time to com-
plete [18]. In order to understand the subtle dynamical behaviours of the oncolytic viral
therapy, it is necessary to incorporate each stage of viral oncolytic process into mathemat-
ical modelling. One way to include these infection stages into a mathematical model is
to introduce delay parameters for each stage. However, it is reasonable to use two param-
eters to present the viral oncolytic process, the infection time which is the time period
from the time when viruses attach to a host cell to the time when they penetrate into the
host cell, and the viral renewal time (or the lytic cycle in narrow sense) which is the time
period from the time when viruses penetrate to the host cell to the time when new viruses
burst out from the host cell. In the literature, there are several models which include the
infection time as a delay parameter [28,31,32], and several models which include the virus
renewal time as a delay parameter [1,2,15]. However, these models either have two equa-
tions or three equations for tumour cells and infected tumour cells or/and viruses, and do
not incorporate immune responses. To obtain insights, we have built amathematicalmodel
for oncolytic virotherapy with the innate immune system [20], and a computational model
[29]. In the current study, we further build the infection time and innate immune response
into our basic model as the system of delay differential equations that models the oncolytic
virotherapy on solid tumours with the delay of viral infection in the presence of the innate
immune response.

Our mathematical model incorporates tumour cells, free viruses, infected tumour cells,
and innate immune cells. The infection time of oncolytic viruses is considered as a time
delay parameter, which varies from seconds to hours [9,18,22]. We conduct analysis and
numerical computations. Our model shows some interesting dynamical properties. For
example, ourmodel has saddle node bifurcations andHopf bifurcations as different param-
eters vary. Biologically, our analysis shows that if we increase the burst size of the oncolytic
virus and infection rate, we can obtain good therapeutic results. If we increase the immune
killing infection rate, the immune stimulation rate, or the immune killing virus rate, the
oncolytic viral therapy may fail. The infection time delay induces backward Hopf bifurca-
tions, whichmeans thatwewill have unstable periodic solutions before time delay increases
passing a Hopf bifurcation.

The rest of the paper is organized as follows. In Section 2, we provide basic feasibility
of the model. In Section 3, we analyse and simulate our model without infection delay. In
Section 4, we analyse and simulate our model with infection delay. We then conclude our
study with Summary and discussion in Section 5.

2. Mathematical model and positiveness

We assume the solid tumour follows an exponential growth pattern as we are concerned
with glioma viral therapy [12], and as in the early stage of tumour initiation the tumour
is in a fast growth phase. We only consider the infection time as a delay parameter. Let
x(t), y(t), v(t), and z(t) represent the number of tumour cells, infected tumour cells, free
virus and innate immune cells, respectively. Based on ourmodels [20,31], themathematical
model for oncolytic viral therapy with the infection delay and the innate immune response
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is proposed in the following.

ẋ(t) = ax(t) − βx(t)v(t),

ẏ(t) = βx(t − τ)v(t − τ) − μy(t)z(t) − δy(t),

v̇(t) = bδy(t) − βx(t)v(t) − kv(t)z(t) − γ v(t),

ż(t) = rz(t)y(t) − cz2(t).

(1)

The parameters are defined as follows. The tumour growth rate is a. β is the viral infection
rate. τ is the infection time delay. μ is the immune killing infection rate that is the rate at
which the innate immune systemkills the infected tumour cells. δ is the lysis rate of infected
cells. b is a key parameter standing for the virus burst size. k is the immune killing virus rate
that is the rate atwhich the innate immune systemkills free viruses. γ is the clearance rate of
viruses. r is the immune stimulation rate that is the rate at which the infected tumour cells
stimulate innate immune response. c is the constant determining the clearance of immune
cells. The infection, lysis, and the mechanism of virotherapy are shown in Figure 1.

Equation (1) is a functional differential equation in the phase space C4 with C :=
C([−τ , 0],R). Also denote by C+ := C([−τ , 0],R+) the positive cone in C. We find that
the solution of Equation (1) preserves positiveness.

Lemma 2.1: Suppose that (x(t), y(t), v(t), z(t)) is a solution of Equation (1)with initial con-
ditions x(θ) = φ1(θ), y(θ) = φ2(θ), v(θ) = φ3(θ) and z(θ) = φ4(θ), where φi(θ) ∈ C+,
and φi(0) > 0, i = 1, 2, 3, 4. Then x(t) ≥ 0, y(t) ≥ 0, v(t) ≥ 0, z(t) ≥ 0 for all t ≥ 0.

Figure 1. Mechanisms of viral therapy with innate immune response in a tumour.
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Proof: From the first equation of Equation (1), we have that x(t) = x(0) e
∫ t
0 [α−βv(s)] ds ≥ 0.

Similarly, from the fourth equation of Equation (1), we have that z(t) ≥ 0. From the second
equation of Equation (1) and the variation-of-constant formula, we have that y(t) ≥ 0, for
t ∈ [0, τ ]. From the third equation of Equation (1), we have that v(t) > 0 for t ∈ [0, τ ].
Thus, the induction method leads to the conclusion. �

3. Model analysis in the absence of infection delay

In this section, we study the existence and stability of equilibria of the model (1). We
numerically analyse how a saddle node bifurcation occurs as main parameters change. We
also numerically analyse how a Hopf bifurcation occurs when the burst size b varies.

3.1. Analytical results

The system (1) has two equilibria on the boundary as follows.

(1) Zero equilibrium E0 : (0, 0, 0, 0), which is always a saddle since one eigenvalue is
positive and others are negative.

(2) Immune-free equilibrium E1 : (γ /(b − 1)β , aγ /(b − 1)βδ, a/β , 0). When b>1, all
components of E1 are positive, and it is unstable since there is at least one positive
eigenvalue.

For the possible existence of positive equilibria of model (1), we calculate and find
there are at most two inner equilibria given by E± : (x±, y±, v±, z±) with v± = a/β , y± =
(c/r)z±, x± = (bδc/ar − k/β)z± − γ /β and z± are the roots of

− cμ
r
z2± +

[
(b − 1)δ

c
r

− ka
β

]
z± − a

γ

β
= 0 (2)

Lemma 3.1: E± is positive if b > b∗ := akr/βcδ + 2√aγμr/
√

βcδ + 1.

Proof: In fact, from (2) we know z± > 0 implies x± > 0. Also z± > 0 if and only if (b −
1)δ(c/r) − ka/β > 0 and [(b − 1)δ(c/r) − ka/β]2 − 4(cμ/r)a(γ /β) > 0 hold. This leads
to the condition b > b∗. �

For definiteness, we always assume z+ ≥ z−. Since x± is monotonically increasing in
z±, then we have x+ ≥ x−. Obviously b = b∗ is a saddle-node singularity. We now mainly
focus on the stability of E±.

When τ = 0, the Jacobean matrix of the right hand side of the system (1) is given by

J(x, y, v, z) =

⎛
⎜⎜⎝
a − vβ 0 −xβ 0
vβ −δ − zμ xβ −yμ

−vβ bδ −kz − xβ − γ −kv
0 rz 0 ry − 2cz

⎞
⎟⎟⎠ .
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At each of the equilibria E±, we can compute this matrix by

J(x±, y±, v±, z±)=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 kz − bcβδz
ar

+ γ 0

a −δ − zμ −kz + bcβδz
ar

− γ −czμ
r

−a bδ −bczβδ

ar
−ak

β
0 rz 0 −cz

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣
(x,y,v,z)=(x±,y±,v±,z±).

To determine the stability of E±, we need the characteristic equation of J(x±, y±, v±, z±)

which is

λ4 + A1λ
3 + A2λ

2 + A3λ + A4 = 0

where, after dropping all subscripts to simplify notations,

A1 = acrz + aδr + aμrz + bβcδz
ar

,

A2 =

a2r(γ + kz) + a[cz(−bβδ + δr + 2μrz) + bδr(γ + kz)]

+ bβcδz(−bδ + cz + δ + μz)
ar

,

A3 =

a2(−r)(γ + kz)[krz − β(−bδ + cz + δ + μz)]

+ abβcδz(bβδ − βδ − βcz + 2krz + γ r − βμz)

+ bβ2c2δz2(−bδ + δ + 2μz)
aβr

and

A4 = z[ar(γ + kz) − bβcδz][akr + βc(−bδ + δ + 2μz)]
βr

.

The stability of E+ can be easily determined. In fact, we have

Lemma 3.2: A4 > 0 if z = z−. A4 < 0 if z = z+, thus E+ is always unstable.

Proof: We have A4 = z(ar(γ + kz) − bβcδz)/βr × [akr + βc(−bδ + δ + 2μz)] :=
A41 × A42. In fact A41 < 0 from b > b∗. Moreover,

SignA42 = Sign
{
z − r

2μc

[
c
r
δ(b − 1) − ak

β

]}

which is negative at z = z− from (2). If z = z+, then obviously we have A42 > 0, which
means A4 < 0. This indicates the product of all four roots of the characteristic equation is
negative, which means there exists at least one positive root, i.e. E+ is always unstable. �

Noticing that 
1 = A1 > 0 and using the Routh-Hurwitz criterion, we have

Theorem3.1: When τ = 0, E− is asymptotically stable if and only if
2 = A1A2 − A3 > 0,
and 
3 = A1A2A3 − A2

1A4 − A2
3 > 0.
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These two Lemmas are conditions to determine the stability ofE±, and also indicate that
only Hopf bifurcation can lead to instability of E−. In fact, we may vary some parameter
values, for example, increase b, so that


3(b)|b=bH = A1A2A3 − A2
1A4 − A0A2

3 = 0,

i.e. the Routh-Hurwitz condition is violated, then a possible Hopf bifurcation occurs at
b = bH .

3.2. Numerical simulation

It seems difficult to obtain analytical results about the occurrence of Hopf bifurcations.
However, we can numerically demonstrate this. Choose a set of parameter values as
in [12],

(P): b = 50,β = 10−7, a = 10−2,μ = 1/48, δ = 1/18, k = 2 × 10−8, γ = 2.5 × 10−2,
r = 10−5, and c = 10−3.

Using these parameters we can compute that E− = (26105.7, 994.0, 100000, 9.9). The
four key values determining the stability of E− are, respectively, A0 = 1, A1A2 − A3A0 =
0.00135387,A1A2A3 − A2

1A4 − A0A2
3 = 1.11519 × 10−7 andA4 = 5.98908 × 10−7. They

are all positive, hence Theorem 3.1 yields that E− is stable when τ = 0, which is shown in
Figure 2.

Let b,μ, r, k and β vary separately, we have the saddle-node bifurcation diagram shown
in Figure 3. From these computations, we find that, if we increase the burst size b or infec-
tion rate β , the systemmoves to a stable E−. Thismeans that the viruses control the tumour
growth and the therapy succeeds. If we increase immune killing infection rate μ, immune
killing virus rate k, or immune stimulation rate r, the viruses cannot control the tumour
growth and the therapy fails.

Figure 2. When τ = 0, E− is asymptotically stable for b = 50.
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Figure 3. Saddle-node bifurcation of E∗±.

Figure 4. The curve
3(b)with
3(153.649) = 0, i.e. bH = 153.649.

Let the parameter b vary, and keep other parameters as in (P).We can calculate the values
of
3 as a function of b, and its graph is shown in Figure 4. In this figure, we findwhen bH =
153.649, 
3 = 0. We also see that, when parameters fall in the left of the graph, we have
stable equilibria; when parameters fall in the right of the graph, we have periodic solutions
induced byHopf bifurcations. The numerical simulations in Figures 5 and 6 indicates there
exist stable Hopf bifurcating periodic solutions.
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Figure 5. When b = 100 < bH , the profile of system (1).

Figure 6. When b = 160 > bH , the profile of system (1).

4. The effect of delay

In this section, we study the effect of delay τ at the equilibrium E−, and Hopf bifurcation
induced by this infection delay. Since the system has four state variables and the research
about the characteristic equation is difficult to be carried out analytically, we will combine
numerical analysis in this section to show the dynamical behaviour of the system with
infection delay.

4.1. Analytical results

In the presence of time delay, the characteristic equation at E− is given by

B0λ4 + B1λ3 + B2λ2 + (B3 + C3 e−λτ )λ + (B4 + C4 e−λτ ) = 0, (3)
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where all the parameters Bj and Cj have quite complicated expressions, listed as follows,

B0 = 1,

B1 = −a + 2cz + γ + δ + kz − ry + βv + βx + μz,

B2 = −2acz − aγ − aδ − akz + ary − aβx − aμz + γ δ + 2ckz2 + 2βcvz + 2βcxz

+ 2cμz2 + 2cγ z + 2cδz − kryz + βkvz + kμz2 + δkz − βrvy − βrxy − γ ry − δry

+ βγ v + βδv + βμvz + βδx + βμxz + γμz,

B3 = −aγ δ − 2ackz2 − 2aβcxz − 2acμz2 − 2acγ z − 2acδz + akryz − akμz2 − aδkz

+ aβrxy + aγ ry + aδry − aβδx − aβμxz − aγμz + 2βckvz2 + 2ckμz3 + 2cδkz2

+ 2βcμvz2 + 2βcγ vz + 2βcδvz + 2βcμxz2 + 2βcδxz + 2cγμz2 + 2cγ δz − βkrvyz

− δkryz + βkμvz2 + βδkvz − βγ rvy − βδrvy − βδrxy − γ δry + βγ δv + βγμvz,

C3 = abβδx − 2bβcδxz + bβδrxy + βkrvxz,

B4 = (δry − 2cz(δ + μz))(a(γ + kz + βx) − βv(γ + kz)),

and

C4 = 2abβcδxz − abβδrxy − aβkrvxz − bβδx.

When τ = 0, we assume all roots of (3) have negative real parts. That is, the Routh-
Hurwitz condition in Theorem 3.1 holds true. As discussed in the previous section, we
only consider the case of Hopf bifurcations.

For τ > 0, plugging λ = iω into the characteristic equation (3) yields

C3ω sinωτ + C4 cosωτ + B0ω4 − B2ω2 + B4 = 0

C3ω cosωτ − C4 sinωτ − B1ω3 + B3ω = 0
(4)

which gives

C2
3ω

2 + C2
4 = (B0ω4 − B2ω2 + B4)2 + (B1ω3 − B3ω)2 = 0 (5)

Obviously, at most four positive roots of ω can be solved from (5), which are denoted by
ωj, j = 1, 2, 3, 4.

Denote τ
j
0 by the root of (4) such that ωjτ

j
0 ∈ [0, 2π), and also denote by

τ
j
l = τ

j
0 + 2lπ

ω
, l = 0, 1, 2 . . . ,

then we have

Lemma 4.1: When τ = τ
j
l , l = 0, 1, 2 . . . , j = 1, 2, 3, 4, the characteristic equation (3) has

a pair of purely imaginary roots.

To ensure the existence ofHopf bifurcationwe assume the transversality condition holds
true, that is Re(dλ/dτ) �= 0 at τ = τ

j
l for any l and j. Nowwe have the main theorem about

delay inducing Hopf bifurcation [23].
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Theorem 4.1: Assume the Routh-Hurwitz condition in Theorem 3.1 holds true and τ0 =
min τ

j
0, j = 1, 2, 3, 4, thenwe haveRe(dλ/dτ) is positive at τ = τ0. Hence aHopf bifurcation

occurs, which makes E− loose the stability.

When the parameter value τ increases,Hopf bifurcation occurs at τ0, τ1, . . ..E− is locally
stable for all τ < τ0. Thus the first Hopf bifurcation value τ0 is important for the viral
therapy.

In fact, we can calculate the stability of the bifurcating periodic solutions and the direc-
tion of the Hopf bifurcation on the local centre manifold [13]. The process is standard but
with very complicated and tedious, thus we only give some numerical results in the next
subsection instead of proceeding analytically.

4.2. Numerical analysis

Initially, we choose the parameter values as b = 50;β = 10−7; a = 10−2;μ = 1/48; δ =
1/18; k = 2 × 10−8; γ = 2.5 × 10−2; r = 10−5; c = 10−3. According to the calculations
given in the previous section, we have τ0 = 102.3. Near such a Hopf bifurcation point,
we use the DDE-Biftool [10,11] to show the bifurcation behaviour. It is found that this
is a subcritical Hopf bifurcation at τ0. When τ > τ0, E− looses its stability, and a back-
ward branch of unstable periodic solution appears. Figure 7 shows the eventual amplitude
of the variables. Since the bifurcation is backward, we know there exist unstable periodic
solutions when τ < τ0.

When τ < τ0, E− is locally stable. We take τ = 80 which is less than τ0, as shown in
Figure 7, the locally stable E− and an unstable periodic solution coexist. Figures 8 and 9
show that solutionswith small (or large) initial values converges toE− (diverges to infinity).

When τ > τ0, from Theorem 4.1, the equilibrium E− is locally unstable, and the figure
is not shown here.

It is better to study how parameters are related to each other for the bifurcations. In
Figure 10, we show the bifurcation diagrams on parametric planes τ0 − b, τ0 − δ, τ0 − r,
τ0 − γ , τ0 − μ, and b − δ. In these figures, we calculate the Hopf bifurcation values.

Figure 7. Subcritical Hopf bifurcation at E∗−. The amplitude of the unstable periodic solution is shown.
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Figure 8. When τ = 80 and the initial value is near E−, i.e. (26105, 990, 100000, 10), we have oscillating
solutions vanishing to E−.

Figure 9. When τ = 80 and the initial value of x is large (8 × 105), the system (1) exhibits unstable
oscillations originating from the backward Hopf bifurcation.

E− loses its stability when τ > τ0 and the Hopf bifurcation occurs. The oncolytic
virotherapy needs to maintain the stability of E− in order to succeed. From the figures
in 10, we can see how we can avoid bifurcation occurrence in terms of parameter values.
For the lysis size b and τ0, if τ0 is small, we may take b big. For the infected tumour cell
burst rate δ and τ0, we have a similar qualitative conclusion as for the burst size b and τ0.
For the immune killing infection rate μ and τ0, if τ0 is small, we have to take μ small. For
the immune stimulation rate r and τ0, or the virus clearance rate and τ0, we have a similar
qualitative conclusion as for the immune stimulation rate r and τ0. One interesting obser-
vation is that, when the infection time τ is fixed, if the infected tumour cell lysis rate δ is
small, then the burst size can be big.
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Figure 10. Hopf bifurcation diagrams. All parameters have been given except τ = 100 in the last figure.

5. Summary and discussion

In this research, we study a 4-dimensional delay differential equation system,whichmodels
oncolytic viral therapy with the innate immune response and infection delay. We analyse
and numerically simulate our model. We obtain that, if we increase the viral burst size and
infection rate of the virus, it will have positive contributions to the therapy; if we increase
the immune killing infection rate, the immune stimulation rate, or the immune killing
virus rate, the therapy may fail. These conclusions seem reasonable. The viral burst size is
ameasure of virus replication. If the viral burst is big, the tumour site will havemore viruses
which increase the chance of infection. The virus infection rate is also a measure of ability
for which the virus can infect tumour cells. If the infection rate is big, the tumour cells will
have high probability to be infected. These both will increase the probability of success of
the therapy. However, if we increase the immune killing infection rate, the immune stim-
ulation rate, or the immune killing virus rate, we decrease the infection (infected tumour
cells), get more innate immune cells that decreases infected tumour cells potentially, or
decrease the number of free viruses. Overall, increasing these three parameters decrease
the infection of the tumour.

The viral infection time delay induces backward Hopf bifurcations, which is different
from the forward Hopf bifurcation induced by the viral infection time delay in virotherapy
model without the innate immune response [31]. On the other hand, the backward Hopf
bifurcation means that there will be unstable periodic solutions before time delay passes
through a Hopf bifurcation. We also find that the Hopf bifurcation value increases while
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the burst size decreases. This may suggest that when biologists change virus genome for a
certain burst size, we should consider its effect on virus infection time if we want a stable
outcome of the therapy. Since the Hopf bifurcation induced by the infection time delay
is backward, it has an effect that the therapy may fail before time delay increases passing
through a Hopf bifurcation.

It is clear thatwe could eradicate tumours if therewould be only such simple interactions
with the immune system. The fact is that there are not only the innate immune response
but also the adaptive immune response in the oncolytic viral therapy. And more compli-
cated, these two immune responsesmay play opposite roles in viral therapies. Furthermore,
there are several steps in the viral infection process, particularly, the infection time and
virus renewal time, which may substantially influence the whole oncolytic outcome. This
calls for further mathematical modelling to find the balance between the two immune
responses with the infection process. We are now working on this direction in our next
models.
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