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Abstract
We formulate a mathematical model of functional partial differential equations for
oncolytic virotherapy which incorporates virus diffusivity, tumor cell diffusion, and
the viral lytic cycle based on a basic oncolytic virus dynamics model. We conduct a
detailed analysis for the dynamics of the model and carry out numerical simulations
to demonstrate our analytic results. Particularly, we establish the positive invariant
domain for the ω limit set of the system and show that the model has three spatially
homogenous equilibriums solutions. We prove that the spatially uniform virus-free
steady state is globally asymptotically stable for any viral lytic period delay and diffu-
sion coefficients of tumor cells and viruses when the viral burst size is smaller than a
critical value. We obtain the conditions, for example the ratio of virus diffusion coef-
ficient to that of tumor cells is greater than a value and the viral lytic cycle, is greater
than a critical value, under which the spatially uniform positive steady state is locally
asymptotically stable. We also obtain conditions under which the system undergoes
Hopf bifurcations, and stable periodic solutions occur. We point out medical impli-
cations of our results which are difficult to obtain from models without combining
diffusive properties of viruses and tumor cells with viral lytic cycles.
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1 Introduction

Oncolytic viruses are genetically altered viruses that can infect and multiply in can-
cer cells but leave healthy normal cells intact. Oncolytic viruses are of two types:
oncolytic wild viruses that naturally occur preferentially in human cancer cells, and
gene-modified viruses that are engineered to achieve selective oncolysis. Wild-type
viruses have shown a limited oncolytic efficacy in some preclinical trials, while gene-
modified viruses seem to have a great potency of oncolysis (Kirn and McCormick
1996; Kaplan 2005; Roberts et al. 2006). Before 1990s, case studies and small tri-
als of various viruses in cancer therapy were reported (Chiocca 2002). Since 1990s,
genetic engineering began to be used for oncolytic viruses (Martuza et al. 1991). So
far, many types of viruses have been modified for experiments (Lawler et al. 2017),
and some oncolytic viruses have been approved for human clinic trials (Maroun et al.
2017). However, the full potential of oncolytic viruses seem still not to have been
reached (Chiocca and Rabkin 2014). One major challenge is how to make viruses
spread thoroughly into solid tumors (Mok et al. 2009). Understanding of the spread-
ing dynamics of oncolytic viruses through tumors can help to overcome this difficulty
and possibly to develop strategies for clinical applications.

Mathematical modeling can allow us to explore the whole spectrum of possible
outcomes and provide rationales to optimize treatments. Several attempts have been
made to understand and characterize viral dynamics by mathematical models, see for
example (Wu et al. 2001; Wodarz 2001; Bajzer et al. 2008; Friedman et al. 2006).
These mathematical models can be divided into two classes roughly. One class uses
ordinary differential equations (ODEs) including delay differential equations (DDEs)
(Novozhilov et al. 2006; Karev et al. 2006; Wodarz and Komarova 2009; Tian 2011;
Wang et al. 2013; Phan and Tian 2017; Vasiliu and Tian 2011; Boeuf et al. 1974;
Choudhury and Nasipuri 2014; Wares et al. 2015; Barish et al. 2017; Mahasa et al.
2017; Jenner et al. 2018; Ratajczyk et al. 2018), and the other uses partial differential
equations (PDEs) (Wu et al. 2001;Wein et al. 2003; Friedman et al. 2006;Wodarz et al.
2012;Wang et al. 2017; Timalsina et al. 2017; Friedman and Lai 2018). For PDEmod-
els of oncolytic virotherapy, most of them use ideas fromfluid dynamics tomodel solid
tumor growth where tumor cells convect in the fluid velocity field within the tumor
and viruses simply diffuse within the tumor. All these modeling studies have provided
certain insights to viral therapy. One study by Jain and colleagues particularly empha-
sizes the importance of the diffusive property of viruses (Mok et al. 2009). However, it
is well known that the growth of solid tumors, particularly, brain tumor gliomas, also
shows characters of cell diffusion (Harpold et al. 2007). It is, therefore, appropriate to
combine diffusive tumor growth with virus diffusion into one mathematical model.

Theviral lytic cycle is the timeperiodof the intracellular viral life cycle starting from
the time when a virus enters a cell to the time when a certain number (viral burst size)
of newly replicated viruses come out upon the cell lysis. It is an important parameter
of viral dynamics. The article (Wang et al. 2013) was the first to incorporate the viral
lytic cycle as a delay parameter in a mathematical model for oncolytic viral therapy.

In this study, building on a basic mathematical model for oncolytic viral dynamics
(Tian 2011; Wang et al. 2013), we combine the viral lytic cycle, tumor cell diffusion,
and virus diffusion into a system of functional partial differential equations as a spatial
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model for oncolytic viral therapy. Our spatial model considers a brain as a domain
in R

3 where a brain tumor grows and three populations, tumor cells, infected tumor
cells, and intercellular-free viruses, interact with each other. We conduct a detailed
analysis and computational demonstrations.

Although our analysis focuses on long-term (asymptotical) dynamical behaviors,
we also obtain short-term information about virus and cell distributions which may
also give insights to experiments and treatments. Comparing with non-spatial and
non-delay models, our model reveals more relevant details of viral therapy. For
example, when the ratio of diffusion coefficients between viruses and tumor cells
is greater than a particular value, the spatially homogeneous equilibrium solution is
stable for any length of the viral lytic cycle. A possible medical implication is that
if we can genetically make oncolytic viruses diffuse faster than tumor cell diffuse,
the time period of the viral lytic cycle will not affect the stabilization of treatments
and may improve overall efficacy of treatments. This mathematical result does not
contradict the fact that there is a functional relation between the viral lytic cycle
and burst size which reveals that at a critical lytic cycle time, Hopf bifurcations
occur in the model system (Tian 2011; Wang et al. 2013). In fact, for our spatial
model, we also obtain a similar functional relation of bifurcation diagram for differ-
ent ranges of parameter values. In addition, the diffusion coefficients of viruses and
tumor cells with viral lytic cycle length have a combined effect on dramatic changes
of the solutions, for example the occurrence of Hopf bifurcations and occurrence
of stable periodic solutions. This theoretical result may explain various outcomes
of oncolytic viral therapies in the current experimental research. Therefore, com-
bining diffusive property of viruses and tumor cells with viral lytic cycle into one
mathematical model is necessary to further our understanding for oncolytic viral ther-
apy.

The rest of the paper is organized as follows. In Sect. 2, we review some basic
mathematical models for oncolytic viral therapy and introduce our model in terms of
delay reaction–diffusion equations. In Sect. 3, we mathematically analyze the dynam-
ics of our functional PDE model for a solid tumor in R

3. In Sect. 4, we demonstrate
some numerical simulations in a two-dimensional spatial domain to support the the-
oretical results. In Sect. 5, we highlight our results which cannot be obtained without
virus and cell diffusion, explain some medical implications of our results, and dis-
cuss and compare several relevant results in the literature. In “Appendix”, we carry
out analysis for properties of periodic solutions arising from Hopf bifurcations of
functional partial differential equations which provides some guidance for numer-
ical simulations and also briefly describe numerical methods we use to solve our
model.

2 Mathematical Model

In the paper (Tian 2011), a basic mathematical model for oncolytic virotherapy was
proposed as follows:
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⎧
⎪⎪⎨

⎪⎪⎩

du(t)
dt = αu(t)

(
1 − u(t)+w(t)

K

)
− βu(t)v(t),

dw(t)
dt = βu(t)v(t) − δw(t),

dv(t)
dt = bδw(t) − βu(t)v(t) − γ v(t).

(1)

Here, u(t) stands for the uninfected tumor cell population at time t ,w(t) stands for the
infected tumor cell population, and v(t) stands for the free virus population. Tumor
growth is modeled by logistic growth, and K is the maximum tumor population. The
coefficient β represents infectivity of the virus. The infected tumor cells die with a rate
δw. The parameter b is the burst size of the virus, the parameter γ v is the clearance
rate of free virus particles by various mechanisms including non-specific binding and
generation of the defective interfering particles.

Viruses need time to complete their life cycle within cells. Incorporating the viral
lytic cycle within infected tumor cells, in Wang et al. (2013), the following delay
differential equation model was proposed.

⎧
⎪⎪⎨

⎪⎪⎩

du(t)
dt = αu(t)

(
1 − u(t)+w(t)

K

)
− βu(t)v(t),

dw(t)
dt = βu(t − τ)v(t − τ) − δw(t),

dv(t)
dt = bδw(t) − βu(t)v(t) − γ v(t),

(2)

where τ stands for the mean time period of the viral lytic cycle.
Now, we assume that tumor cells diffuse with diffusion coefficient D1, and viruses

diffuse with diffusion coefficient D2. It is an assumption to consider cell movement
to only be by diffusion (Swanson et al. 2002; Massey et al. 2018). Based on the above
mathematical models , we propose a spatial mathematical model for oncolytic viral
therapy as follows:

⎧
⎪⎪⎨

⎪⎪⎩

∂u(x,t)
∂t = D1	u(x, t) + αu(x, t)

(
1 − u(x,t)+w(x,t)

K

)
− βu(x, t)v(x, t),

∂w(x,t)
∂t = D1	w(x, t) + βu(x, t − τ)v(x, t − τ) − δw(x, t),

∂v(x,t)
∂t = D2	v(x, t) + bδw(x, t) − βu(x, t)v(x, t) − γ v(x, t),

(3)

for which x ∈ 
, t > 0, where 
 is the brain tissue which is a domain in R
3. To

complete the model, we give the no-flux boundary conditions and initial conditions as
follows: ⎧

⎪⎨

⎪⎩

∂u(x,t)
∂n = ∂w(x,t)

∂n = ∂v(x,t)
∂n = 0, x ∈ ∂
, t ≥ 0;

u(x, t) = u0(x, t) ≥ 0, w(x, t) = w0(x, t) ≥ 0, and

v(x, t) = v0(x, t) ≥ 0, x ∈ 
, − τ ≤ t ≤ 0.

(4)

In the boundary and initial conditions, ∂
 stands for the brain tissue boundary,n stands
for its normal direction, 
 stands for the brain tissue with it boundary, and u0(x, t),
w0(x, t), v0(x, t) are initial densities. The zero-flux boundary condition means that
there are no tumor cells or viruses crossing the brain tissue boundary. The zero-flux
boundary condition for tumor cells has biological significance and has been applied
in many diffusion-type modeling of brain tumors (Swanson et al. 2002; Massey et al.
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2018). This is also biologically meaningful for viruses since oncolytic viruses do not
infect normal cells by definition which are confined within the tumor (Chiocca 2002).

We non-dimensionalize the system (3)–(4) by setting

t̄ = δt, τ̄ = δτ, u(x, t) = Kū(x, t̄), w(x, t) = K w̄(x, t̄), v(x, t) = K v̄(x, t̄),

r = α

δ
, a = βK

δ
, c = γ

δ
, d1 = D1

δ
, d2 = D2

δ
,

u0(x, t) = Kū0(x, t̄), w0(x, t) = K w̄0(x, t̄), v0(x, t) = K v̄0(x, t̄).

For convenience, dropping all bars over the variables, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d1	u(x, t) + ru(x, t)(1 − u(x, t) − w(x, t)) − au(x, t)v(x, t),

∂w(x,t)
∂t = d1	w(x, t) + au(x, t − τ)v(x, t − τ) − w(x, t),

∂v(x,t)
∂t = d2	v(x, t) + bw(x, t) − au(x, t)v(x, t) − cv(x, t), x ∈ 
, t > 0;

∂u(x,t)
∂n = ∂w(x,t)

∂n = ∂v(x,t)
∂n = 0, x ∈ ∂
, t ≥ 0;

u(x, t) = u0(x, t) ≥ 0, w(x, t) = w0(x, t) ≥ 0, and

v(x, t) = v0(x, t) ≥ 0, x ∈ 
, − τ ≤ t ≤ 0.
(5)

3 Analysis of theModel

In this section, we study the properties of spatial homogenous equilibrium solutions
and periodic solutions arising from Hopf bifurcations. The system (5) always has
two spatially uniform steady states E0 = (0, 0, 0) and E1 = (1, 0, 0). When b >

b0 = 1 + c
a , the system (5) has three spatially uniform steady states E0, E1 and

E∗ = (u∗, w∗, v∗), where

u∗ = c

a(b − 1)
, w∗ = rc(ab − a − c)

a(b − 1)(rc + ab − a)
, v∗ = r(ab − a − c)

a(rc + ab − a)
.

In Sect. 3.1, we establish positive invariant region as a sub-functional space for the
ω limit sets of ourmodel and prove that the spatially uniform steady state E1 is globally
asymptotically stable for any viral lytic period τ ≥ 0 when the viral burst size b < b0.
In Sect. 3.2, we obtain the conditions; for example, the ratio of diffusion coefficients
d2
d1

is greater than some value, and the viral lytic cycle is greater than a critical value,
under which the spatially uniform positive steady state is locally asymptotically stable.
We also obtain some conditions under which the system undergoes Hopf bifurcations,
and stable periodic solutions occur.

In what follows, we choose
 be a open set inR3 and define the real-valued Sobolev
space

X =
{

(u1, u2, u3)
T ∈ (W 2,2(
))3 : ∂u1

∂n
= ∂u2

∂n
= ∂u3

∂n
= 0, at x ∈ ∂


}

.

123



Spatial Model for Oncolytic Virotherapy with Lytic Cycle… 2401

3.1 Stability of the Steady State of E1

To simplify notations, we denote u1(t) = u(x, t), u2(t) = w(x, t), u3(t) = v(x, t)
andU (t) = (u1(t), u2(t), u3(t))T . Then, the system (5) can be rewritten as an abstract
differential equation in the phase space C = C([−τ, 0], X),

U̇ (t) = D	U (t) + G(Ut ) (6)

where Ut (·) = U (t + ·), D = diag(d1, d1, d2) and G : C → X are defined by

G(Ut ) =
⎛

⎝
ru1(t)(1 − u1(t) − u2(t)) − au1(t)u3(t)

au1(t − τ)u3(t − τ) − u2(t)
bu2(t) − au1(t)u3(t) − cu3(t)

⎞

⎠ .

Let N be a operator satisfies

N (ϕt )(x) = ∂ϕ(x, t)

∂t
− D	ϕ(x, t) − G(ϕt )(x),

where ϕt (θ)(x) = ϕ(x, t + θ) = (ϕ1(x, t + θ), ϕ2(x, t + θ), ϕ3(x, t + θ)). Then,
N (0, 0, 0) = 0 ≤ 0 = N (ut , wt , vt )(x), where ut (θ)(x) = u(x, t + θ), wt (θ)(x) =
w(x, t + θ), vt (θ)(x) = v(x, t + θ). Noticing the homogeneous Neumann boundary
and nonnegative initial value of system (5), we get (0, 0, 0) is a lower solution of
system (5), and by the comparison principle we know that the solution (u, w, v) of
system (5) satisfies u(x, t) ≥ 0, w(x, t) ≥ 0, v(x, t) ≥ 0 for t ≥ 0.

From the nonnegativity of the solution, we have

∂u

∂t
≤ d1	u + ru(1 − u).

The standard comparison theorem for parabolic boundary value problems implies that
u(x, t) ≤ U1(z, t) in 
 × [0,∞], where U1(x, t) is the positive solution of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂U1

∂t
= d1	U1 + rU1(1 −U1), x ∈ 
, t > 0,

∂U1

∂n
= 0, x ∈ ∂
, t > 0,

U1(x, 0) = u0(x, 0) > 0, x ∈ 
.

It is well known that U1(x, t) → 1 as t → ∞. So we have lim supt→∞ u(x, t) ≤ 1.
For any ε > 0, there exists a T1 > 0 such that u(x, t) ≤ 1+ ε in 
 × (T1,∞). When
t > T1, we have
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∂(u(x, t − τ) + w(x, t))

∂t
= d1	(u(x, t − τ) + w(x, t))

+ ru(x, t − τ)(1 − u(x, t − τ) − w(x, t − τ)) − w(x, t)

≤ d1	(u(x, t − τ) + w(x, t)) + r(1 + ε)(1 − u(x, t − τ)) − w(x, t)

≤ d1	(u(x, t − τ) + w(x, t)) + r(1 + ε) − r1(u(x, t − τ) + w(x, t))

where r1 = min{1, r}. Similar to the previous discussion and noticed the sufficiently
small properties of ε, we get lim supt→∞(u(x, t − τ), w(x, t)) ≤ r

r1
. Since u(x, t −

τ) ≥ 0, we have lim supt→∞ w(x, t) ≤ r
r1
. There exists a T2 > T1 + τ such that

w(x, t) ≤ r
r1

+ ε in 
 × (T2,∞). Then, from the third equation of (5)

∂v(x, t)

∂t
≤ d2	v + bw(x, t) − cv(x, t) ≤ d2	v + b

(
r

r1
+ ε

)

− cv(x, t), t > T2.

Similar to the previous discussion, we get lim supt→∞ ≤ br
cr1

.

We define C+ = C(
×[−τ, 0],R+)with norm ||ϕt || = sup(x,θ)∈
×[−τ,0] ϕ(x, t+
θ). From the previous discussion, we have the following result.

Lemma 3.1 The solution of the system (5) is ultimately uniformly bounded in C+ ×
C+ × C+.

The ω limit set of the system (5) is contained in the bounded region:

R =
{

(ut , wt , vt ) ∈ C+ × C+ × C+ : ||ut || ≤ 1, ||wt || ≤ r

r1
, ||vt || ≤ br

cr1

}

.

It is easy to verify that the region R is positively invariant for the system (5). In the
rest of this paper, we will discuss the system (5) in region R.

From the above discussion, (ū, w̄, v̄) is a upper solution when the initial value is in
the domain R , where ū, w̄, v̄ is the solution of the following system, respectively,

⎧
⎪⎨

⎪⎩

∂ ū(x,t)
∂t = d1	ū(x, t) + r ū(x, t)(1 − ū(x, t)), x ∈ 
, t > 0;

∂ ū(x,t)
∂ν

= 0, x ∈ ∂
, t ≥ 0;
ū(x, t) = u0(x, t) ≥ 0, x ∈ 
, − τ ≤ t ≤ 0,

⎧
⎪⎨

⎪⎩

∂w̄(x,t)
∂t = d1	w̄(x, t) + abr

cr1
− w̄(x, t), x ∈ 
, t > 0;

∂w̄(x,t)
∂ν

= 0, x ∈ ∂
, t ≥ 0;
w̄(x, t) = w0(x, t) ≥ 0, x ∈ 
, − τ ≤ t ≤ 0,

⎧
⎪⎨

⎪⎩

∂v̄(x,t)
∂t = d2	v̄(x, t) + br

r1
− cv̄(x, t), x ∈ 
, t > 0;

∂v̄(x,t)
∂ν

= 0, x ∈ ∂
, t ≥ 0;
v̄(x, t) = v0(x, t) ≥ 0, x ∈ 
, − τ ≤ t ≤ 0.
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Furthermore, G(ϕ) satisfies a Lipschitz condition; therefore, the system (5) has a
unique classical solution when initial value is in the domain R.

Linearizing system (6) at E1, we have

U̇ (t) = D	U (t) + LE1(Ut ), (7)

where

LE1(Ut ) =
⎛

⎝
−r −r −a
0 −1 0
0 b −a − c

⎞

⎠

⎛

⎝
u1(t)
u2(t)
u3(t)

⎞

⎠ +
⎛

⎝
0 0 0
0 0 a
0 0 0

⎞

⎠

⎛

⎝
u1(t − τ)

u2(t − τ)

u3(t − τ)

⎞

⎠ .

From Wu (2012), the corresponding integral equation of (6) is

U (t) = T (t)U (0) +
∫ t

0
T (t − s)LE1(Us)ds, (8)

where T (t) is a C0 semigroup generated by D	. And its characteristic equation is
given by

λy − D	y − LE1(e
λ ·y) = 0, (9)

where y ∈ dom(	)\{0}, dom(	) ⊂ X and eλ·(θ)y = eλθ y, for θ ∈ [−τ, 0]. It is
known that the eigenvalue problem

{
−	φ = μφ, x ∈ 
,
∂φ
∂n = 0, x ∈ ∂
,

has eigenvaluesμn, n ∈ N0 = N∪{0}, with corresponding eigenfunctions φn(x), and
μn satisfy 0 = μ0 < μ1 ≤ μ2 ≤ · · · ≤ μn ≤ · · · . By using the Fourier expansion
in (9),

y =
∞∑

n=0

⎛

⎝
an
bn
cn

⎞

⎠ φn(x),

where an, bn, cn ∈ C, we know that the characteristic Eq. (9) is equivalent to

det

⎛

⎝
λ + d1μn + r r a

0 λ + d1μn + 1 −ae−λτ

0 −b λ + d2μn + a + c

⎞

⎠ = 0, n ∈ N0.

That is, each eigenvalue λ is a root of the equation

(λ + d1μn + r)(λ2 + Tnλ + Dn − abe−λτ ) = 0, n ∈ N0, (10)

where Tn = (d1 + d2)μn + a + c + 1, Dn = d1d2μ2
n + [d1(a + c) + d2]μn + a + c.

By discussing the distribution of the roots of (10), we have the following Lemma.
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Lemma 3.2 E1 is locally asymptotically stable when b < 1+ c
a . E1 is unstable when

b > 1 + c
a .

Proof Obviously, λ1,n = −d1μn − r < 0, n ∈ N0 are roots of (10). We only need to
discuss the roots of

λ2 + Tnλ + Dn − abe−λτ = 0, n ∈ N0. (11)

When τ = 0, noticed that T 2
n − 4(Dn − ab) = (d1 − d2)2μ2

n + 2(a + c + 1)(d1 +
d2)μn + (a + c − 1)2 + 4ab > 0, we get Eq. (11) which has two series real roots

λ2,n = −1

2
Tn − 1

2

√

T 2
n − 4(Dn − ab), n ∈ N0,

λ3,n = −1

2
Tn + 1

2

√

T 2
n − 4(Dn − ab), n ∈ N0.

Clearly, λ2,n < 0 for n ∈ N0. And λ3,n < 0 for all n ∈ N0 if and only if b < 1 + c
a .

We claimed that all the roots have negative real parts when b < 1 + c
a and τ > 0.

Otherwise, we assume (11) have a pure imaginary root iνn for some τ > 0; then, we
have

−ν2n + iTnνn + Dn − ab(cos νnτ − i sin νnτ) = 0.

Separating the real and imaginary parts gives

{
−ν2 + Dn = ab cos νnτ,

−Tnνn = ab sin νnτ.

Furthermore, we need

ν4n + (T 2
n − 2Dn)ν

2
n + D2

n − a2b2 = 0. (12)

Denote Qn(z) = z2 + (T 2
n − 2Dn)z + D2

n − a2b2. Obviously,

T 2
n − 2Dn = (d21 + d22 )μ

2
n + [2d1 + 2(a + c)d2]μn + (a + c)2 + 1 > 0.

If b < 1 + c
a , then

D2
n − a2b2 =

{
d1d2μ

2
n + [d1(a + c) + d2]μn

}2

+ 2(a + c)
{
d1d2μ

2
n + [d1(a + c) + d2]μn

}
+ (a + c)2 − a2b2 > 0.

So Qn(z) has no positive roots when b < 1 + c
a . We know that (12) is always not

valid when b < 1 + c
a . This is a contradiction. 
�
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Remark 3.3 The spatially uniform steady state E0 of the system (5) is always unstable
because there has an eigenvalue r > 0.

Theorem 3.4 If b < b0 = 1 + c
a , then the spatially uniform steady state E1 of the

system (5) is globally asymptotically stable for τ ≥ 0.

Proof Define a Lyapunov functional on the region R by

V (φt )(x) =
∫




(

bϕ2
t (x, 0) + ϕ3

t (x, 0) + ba
∫ 0

−τ

ϕ1
t (x, θ)ϕ3

t (x, θ)dθ

)

dx

where φt (θ) = (ϕ1
t (θ), ϕ2

t (θ), ϕ3
t (θ)), ϕi

t (θ)(x) = ϕi (x, t + θ), i = 1, 2, 3. When
b < b0, by virtue of the Neumann boundary condition, we obtain that

V̇ (φt ) = ∫



[a(b − 1)ϕ1

t (x, 0) − c]ϕ3
t (x, 0)dx

≤ ∫



[a(b − 1) − c]ϕ3

t (x, 0)dx ≤ 0.

And V̇ (φt ) = 0 if and only if ϕ3
t (x, 0) = 0. Furthermore, we can get the maximum

invariant set in {φ ∈ R : V̇ (φt ) = 0} is the single point set {E1}. The Lasalles
invariance principle implies that E1 is globally attractive. By Lemma 3.2, we get E1
is global asymptotically stable for τ ≥ 0. 
�

3.2 Stability of the Positive Steady State E∗ and Hopf Bifurcations

If b > b0 = 1+ c
a , the system (5) has a spatially uniform positive steady state E∗. In

this subsection, we always assume that b > b0 = 1 + c
a holds.

Linearizing the system (5) at E∗, we get

U̇ (t) = D	U (t) + LE∗(Ut ),

where

LE∗ = L1φ(0) + L2φ(−τ)

with

L1 =
⎛

⎝
−ru∗ −ru∗ −au∗
0 −1 0

−av∗ b −au∗ − c

⎞

⎠ and L2 =
⎛

⎝
0 0 0

av∗ 0 au∗
0 0 0

⎞

⎠ ,

for ϕ(θ) = (ϕ1(θ), ϕ2(θ), ϕ3(θ))T. Similar to the previous subsection, we find that
the characteristic equation is equivalent to

λ3 + a2,nλ
2 + a1,nλ + a0,n + (b1,nλ + b0,n)e

−λτ = 0, n ∈ N0, (13)
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where

a2,n = (2d1 + d2)μn + rc + abc + ab − a

a(b − 1)
,

a1,n = (d21 + 2d1d2)μ
2
n +

[
rc + 2abc + a2b − a2

a(b − 1)
d1 + rc + ab − a

a(b − 1)d2

]

μn

+rc(bc + b − 1)

a(b − 1)2
+ bc

b − 1
− rc(ab − a − c)

(b − 1)(rc + ab − a)
,

a0,n = d21d2μ
3
n +

[
bc

b − 1
d21 + rc + ab − a

a(b − 1)
d1d2

]

μ2
n

+
[(

bc(rc + ab − a)

a(b − 1)2
− rc(ab − a − c)

a(b − 1)(rc + ab − a)

)

d1 + rc

a(b − 1)
d2

]

μn

+ rbc2

a(b − 1)2
− rc(ab − a − c)

(b − 1)(rc + ab − a)
,

b1,n = r2c(ab − a − c)

(b − 1)(rc + ab − a)
− bc

b − 1
,

b0,n =
[

r2c(ab − a − c)

a(b − 1)(rc + ab − a)
d2 − bc

b − 1
d1

]

μn

− rbc2

a(b − 1)2
+ rc(ab − a − c)(ab + rc)

a(b − 1)(rc + ab − a)
.

When τ = 0, the characteristic Eq. (13) becomes the following sequence of equa-
tions

λ3 + a2,nλ
2 + (a1,n + b1,n)λ + a0,n + b0,n = 0, n ∈ N0. (14)

By the Routh–Hurwitz Criterion, all roots of (14) have negative real parts if and only
if

H1,n = a2,n > 0, H2,n = a2,n(a1,n + b1,n)

−a0,n − b0,n > 0, H3,n = (a0,n + b0,n)H2,n > 0

for n ∈ N0. When b > b0, we can see that a2,n > 0 and a0,n + b0,n > 0 for n ∈ N0.
So when

(H) b > b0, a2,n(a1,n + b1,n) − a0,n − b0,n > 0,

all roots of (14) have negative real parts. We get the following conclusion.

Lemma 3.5 If (H)holds, the spatially uniformpositive steady state E∗ of the system (5)
is locally asymptotically stable when τ = 0.

Now, we look for sufficient conditions to ensure H2,n > 0. By calculation, we have

H2,n = 2d1(d1 + d2)
2μ3

n + A3μ
2
n + (A1d1 + A2d2)μn + H2,0
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where

A1 = (rc + abc + ab − a)(a2b − a2 + 2abc + rc)

a2(b − 1)2

+ rc[2c(rc + ab) + (b − 1)(3a + 2ra − a2) + c]
a(b − 1)(rc + ab − a)

− rc(b − 2c)

a(b − 1)2
,

A2 = (rc + abc + ab − a)(rc + ab − a)

a2(b − 1)2
+ rbc2

a(b − 1)2
− rc(ab − a − c)

a(b − 1)(rc + ab − a)
,

A3 =
[
4abc + 3rc

a(b − 1)
+ 2a + 1

]

d21 + rc + ab − a

a(b − 1)
d22

+
[
4rc + 2ac + 2abc

a(b − 1)
+ 2c + a + 3

]

d1d2,

H2,0 = rc(rc + abc + ab − a)

a2(b − 1)2

[
rc(bc + b − 1)

(b − 1)
+ (ab − a − c)(r − a)

rc + ab − a

]

−rc(ab − a − c)

a(b − 1)
.

If b > b0, then A3 > 0. We define a function ψ(x) by

ψ(x) = − a3x4 + [c3 + 3c + r + 1 − (c − 1)a3]x3
+[(c2 + 3c + r + 1)rca − 3(2c + r + 1)a2 − (3 − 2c)a3]x2
+[r2c3 − (3c + 2r + 2)rca − (c2 − 3c − 3r − 3)a2 − (c − 1)a3]x
+ rc(r + 1)a − (r + 1)a2.

It is easy to see that

H2,0 = rcψ(b)

a(b − 1)3(rc + ab − a)
.

When b > b0, sign{H2,0} = sign{ψ(b)}. Since

ψ(b0) = c3(r + 1)

[

r + a + 2c + 2 + (c + 1)(r + c + 1)

a

]

> 0

and ψ(x) → −∞ as x → ±∞, so ψ(x) has at least one root and at most three
root greater than b0. According to the distribution of the roots of ψ(x), we have the
following two cases:
Case I : ψ(b) has only root b1 > b0 or has three roots b1, b2, b3 which are greater
than b0. When it has three roots which greater than b0, the three roots are satisfied
b1 < b2 = b3 or b1 = b2 = b3.
Case I I : ψ(b) has three roots b1, b2, b3 that are greater than b0, and the three roots
are satisfied b1 ≤ b2 < b3.
When Case I occurs, if b ∈ (b0, b1), then H2,0 > 0. When Case I I occurs, if
b ∈ (b0, b1)

⋃
(b2, b3), then H2,0 > 0.
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Whenb > b0,we can see that A3 > 0. So if b > b0, H2,0 > 0 and A1d1+A2d2 ≥ 0,
then H2,n > 0 for n ∈ N0.

When A2 > 0, if the diffusion coefficient d2 is sufficiently large relative to the
diffusion coefficient d1, then A1d1 + A2d2 ≥ 0 can be established.

It is easy to see that if rbc2

a(b−1)2
− rc(ab−a−c)

a(b−1)(rc+ab−a)
> 0, then A2 > 0. rbc2

a(b−1)2
−

rc(ab−a−c)
a(b−1)(rc+ab−a)

> 0, is equivalent to

a(c − a)b2 + (rc2 + 2a2)b − a(c + a) > 0. (15)

When c = a, the (15) always holds since b > b0. When c �= a, the equation a(c −
a)b2 + (rc2 + 2a2)b − a(c + a) = 0 has two real roots

b4,5 = −(rc + 2a2) ± √
r2c2 + 4ra2 + 4a2

2a(c − a)
.

If c > a, b5 < 0 < b4 and the (15) holds when b > b4 or b < b5. If c < a,
0 < b4 < b5 and the (15) hold when b4 < b < b5.

Through calculation, we get A2 = a3y3+a2 y2+a1y+a0
a2 y2(ay+rc)

, where

a0 = (r + 2a)c3r2 > 0,

a1 = (3r + 2cr + 4a)ac2r > 0,

a2 = [(1 − r)a + 3(c + 1)r ]a2c,
a3 = (c + 1)a3 > 0,

y = b − 1.

If r ≤ 1 or a ≤ 3(c + 1), then a2 > 0. When r > 1 and a > 3(c + 1), a2 > 0 if and
only if r < a

a−3(c+1) . Obviously, if a2 > 0, then A2 > 0 for b > b0.
From the above discussion and Lemma 3.5, we reach the following conclusions.

Corollary 3.6 In Case I , if one of the following conditions holds

(1) c > a, max{b0, b4} < b < b1,
(2) c < a, max{b0, b4} < b < min{b1, b5},
(3) c = a, b0 < b < b1, and

d2
d1

> − A1
A2
, then the spatially uniform positive steady

state E∗ of the system (5) is locally asymptotically stable when τ = 0.

Corollary 3.7 In CaseI I , if one of the following conditions holds

(1) c > a, max{b0, b4} < b < b1 or max{b2, b4} < b < b3,
(2) c < a, max{b0, b4} < b < min{b1, b5} or max{b2, b4} < b < min{b3, b5},
(3) c = a, b0 < b < b1 or b2 < b < b3, and

d2
d1

> − A1
A2
, then the spatially uniform

positive steady state E∗ of system (5) is locally asymptotically stable when τ = 0.

Corollary 3.8 Suppose b > b0. If one of the following conditions holds

(1) r ≤ 1,
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(2) a ≤ 3(c + 1),
(3) a > 3(c + 1) and 1 < r < a

a−3(c+1) and
d2
d1

> − A1
A2
, then the spatially uniform

positive steady state E∗ of system (5) is locally asymptotically stable when τ = 0.

Now, we assume the condition (H) holds, we would like to seek critical value τ

such that there exists a pair of purely imaginary eigenvalue. Let iω(ω > 0) be the
solution of the (n + 1)th equation of (13), we have

−iω3 − a2,nω
2 + ia1,nω + a0,n + (ib1,nω + b0,n)(cosωτ − i sinωτ) = 0.

Separating the real and imaginary parts gives

{
−ω3 + a1,nω = b0,n sinωτ − b1,nω cosωτ,

a2,nω2 − a0,n = b0,n cosωτ + b1,nω sinωτ.
(16)

Square each sides of (16) and plus, we have

ω6 + fnω
4 + gnω

2 + hn = 0 (17)

where fn = a22,n − 2a1,n , gn = a21,n − 2a2,na0,n − b21,n , hn = a20,n − b20,n .
Let z = ω2, then (17) becomes

Pn(z) = z3 + fnz
2 + gnz + hn = 0. (18)

Lemma 3.9 For Eq. (18), we have the following conclusions.

(i) If hn < 0, Eq. (18) has at least one positive roots.
(ii) If hn ≥ 0 and f 2n − 3gn ≤ 0, Eq. (18) has no positive root.
(iii) If hn ≥ 0 and f 2n − 3gn > 0, Eq. (18) has positive roots if and only if z∗1,n > 0

and P(z∗1,n) ≤ 0, where z∗1,n = − fn+
√

f 2n −3gn
3 .

Proof Since Pn(z) → +∞ as z → +∞, we conclude that Pn(z) has at least one
positive root if Pn(0) = hn < 0. Differentiating Pn(z) with respect to z, we have
P ′
n(z) = 3z2+2 fnz+gn . If f 2n −3gn ≤ 0, then P ′

n(z) ≥ 0 and Pn(z) is nondecreasing
when z ≥ 0. Thus, for hn ≥ 0 and f 2n − 3gn ≤ 0, the Eq. (18) has no positive root.

When hn ≥ 0 and f 2n − 3gn > 0, P ′
n(z) has two roots z∗1,n = − fn+

√
f 2n −3gn

3 and

z∗2,n = − fn−
√

f 2n −3gn
3 . Clearly,

p′′
n(z

∗
1,n) = 2

√

f 2n − 3gn > 0, p′′
n(z

∗
2,n) = −2

√

f 2n − 3gn < 0.

So z∗1,n is the locally minimum point of Pn(z), and z∗2,n is the locally maximum point
of Pn(z). Noticing that hn ≥ 0, z∗1,n is the local minimum of Pn(z) and Pn(z) → +∞
as z → +∞, we know that the sufficiency of (iii) is true. In what follows, we need to
prove the necessity of (iii). Suppose that either z∗1,n ≤ 0 or z∗1,n > 0 and Pn(z∗1,n) > 0.
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Since Pn(z) is increasing for z ≥ 0 and Pn(0) = hn ≥ 0, we know that Pn(z) has no
positive real roots for z∗1,n ≤ 0. If z∗1,n > 0 and Pn(z∗1,n) > 0, since h(x∗

1 ) is the local
minimum value, it follows that Pn(0) = hn > 0 that when z∗1,n and Pn(z∗1,n) > 0,
Pn(z) has no positive real roots, too. This proves the lemma. 
�

Corollary 3.10 If b0 < b < b6 = 1 + 3c
2a +

√
9c2+8ac
2a , then h0 < 0.

Proof When b > b0, we have a0,0 + b0,0 > 0. So h0 = a20,0 − b20,0 = (a0,0 +
b0,0)(a0,0 − b0,0) < 0 if a0,0 − b0,0 < 0 and b > b0.

a0,0 − b0,0 = 2rbc2

a(b − 1)2
− rc(ab − a − c)(ab + rc + a)

(b − 1)(rc + ab − a)

= rc

a(b − 1)

(
2bc

b − 1
− (ab − a − c) − 2a(ab − a − c)

rc + ab − a

)

If b > b0 and 2bc
b−1 − (ab − a − c) < 0, then a0,0 − b0,0 < 0. When b > b0,

2bc

b − 1
− (ab − a − c) < 0

⇔ ab2 − (2a + 3c)b + a + c > 0

⇔ 1 + 3c

2a
−

√
9c2 + 8ac

2a
< b < 1 + 3c

2a
+

√
9c2 + 8ac

2a
.

Because of 1+ 3c
2a −

√
9c2+8ac
2a < b0 < 1+ 3c

2a +
√
9c2+8ac
2a , we get h < 0 if b0 < b < b6.


�
Denote

D = {n ∈ N0 : hn < 0; or hn ≥ 0, f 2n − 3gn > 0, z∗1,n0, and Pn(z
∗
1,n) ≤ 0}.

From Lemma 3.9, we know that Eq. (18) has positive roots if and only if n ∈ D.
Without loss of generality, we assume Eq. (18) has three positive roots z1,n, z1,n and
z3,n when n ∈ D. We denote ωk,n = √

zk,n and

τ
( j)
k,n

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
ωk,n

[

arccos
b0,n (a2,nω2

k,n−a0,n )+b1,nωk,n (ω
2
k,n−a1,nωk,n )

b21,nω+k,n2+b20,n
+ 2 jπ

]

, sinωk,nτ
(0)
k,n ≥ 0,

1
ωk,n

[

− arccos
b0,n (a2,nω2

k,n−a0,n )+b1,nωk,n (ω
2
k,n−a1,nωk,n )

b21,nω+k,n2+b20,n
+ 2( j + 1)π

]

, sinωk,nτ
(0)
k,n < 0,

for k = 1, 2, 3, j ∈ N0 and n ∈ D. When τ = τ
( j)
k,n , Eq. (13) has a pair of purely

imaginary roots ±iωk,n .
For some n ∈ D, let λ(τ) = αn(τ ) + iω be a root of the (n + 1)th equation of (13)

which satisfies ωn(τ
( j)
k,n ) = ωk,n and αn(τ

( j)
k,n ) = 0 for k = 1, 2, 3 and j ∈ N0.
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Lemma 3.11 sign{α′
n(τ

( j)
k,n )} = sign{P ′

n(zk,n)}.
Proof Differentiating the both side of Eq. (13) with respect to τ , it follows that

(
dλ

dτ

)−1

= (3λ2 + 2a2,nλ + a1,n)eλτ

λ(b1,nλ + b0,n)
+ b1,n

λ(b1,0λ + b0,n)
− τ

λ
.

From (16), we have

α′
n(τ

( j)
k,n )−1 = Re

(
dλ

dτ

)−1
∣
∣
∣
∣
∣
τ=τ

( j)
k,n

= P ′
n(zk,n)

b21,nω
2
k,n + b20,n

.

This proves the lemma. 
�
Let

τ ∗ = τ
(0)
k0,n0

= min
k=1,2,3, n∈D

{τ (0)
k,n}.

From Lemma 3.5, 3.9 and 3.11, we have the following conclusion.

Theorem 3.12 Suppose the condition (H) holds.

(i) If h ≥ 0, f 2n − 3gn ≤ 0, or f 2n − 3gn > 0, z∗1,n < 0, or f 2n − 3gn > 0, z∗1,n >

0, Pn(z∗1,n) > 0 for all n ∈ N0, the spatially uniform steady state E∗ of the
system (5) is locally asymptotically stable for all τ > 0.

(ii) If hn < 0, or hn ≥ 0, f 2n − 3gn > 0, z∗1,n > 0 and Pn(z∗1,n) ≤ 0 for
some n ∈ N0, the spatially uniform steady state E∗ of the system (5) is locally
asymptotically stable for τ ∈ [0, τ ∗).

(iii) If all conditions as stated in (ii) and P ′
n(zk,n) �= 0 hold, the system (5) undergoes

a Hopf bifurcation at E∗ when τ = τ
( j)
k,n , k = 1, 2, 3, j ∈ N0.

4 Numerical Simulations

For the convenience of presentation, our numerical simulations are performed for the
tumor site as a domain in R

2. We describe briefly the numerical method; we use to
solve the system (5) at the end of “Appendix”. In the following, we demonstrate several
typical cases which correspond to our analysis.

Let 
 = (0, π) × (0, π) (i.e., p = q = 1) and choose

r = 0.1, a = 0.01, c = 0.08, d1 = 0.02, d2 = 0.2.

For this set of parameter values, we can get b0 = 1 + c
a = 9, b1 ≈ 135.5540. And

when 9 < b < 135.5540, (H) holds. So when τ = 0, the positive steady state E∗ is
stable if 9 < b < 135.5540. From our calculation, we find only for b ≥ 24.4105 and
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Fig. 1 A bifurcation curve τ∗(b) (Colour figure online)

n = 0, (17) has a positive root, and we get a bifurcation curve about τ ∗ and b (see
Fig. 1).

If we choose

r = 0.1, a = 0.01, b = 4, c = 0.08, d1 = 0.02, d2 = 0.2, τ = 2.

For this set of parameter values, we observe that b < 1 + c
a . So from Theorem 3.4,

the steady state E1 = (1, 0, 0) is globally asymptotically stable (see Fig. 2). The
initial conditions of Fig. 3 are u(x, t) = 0.5000 + 0.3000 cos 2x cos y, w(x, t) =
0.0500 + 0.0300 cos 2x cos y, v(x, t) = 8.0000 + 2.0000 cos 2x cos y, (x, y, t) ∈
[0, π ] × [0, π ] × [−τ, 0]. In Fig. 2, we take x = π/3 and y = π/3, respectively.

If we chose b = 60, then by calculation, we have

ω1,0 =≈ 0.0743, τ
( j)
1,0+ ≈ 1.8518 + 84.5804 j, for j ∈ N0.

So τ ∗ = τ
(0)
1,0 ≈ 1.8518. Furthermore, from “Appendix”, we have c1(0) ≈ −0.5369−

2.2209i, P ′(ω2
1,0) = 0.0118 > 0. From Theorem 3.12 and “Appendix”, we know

that positive equilibrium E∗ = (0.1356, 0.0116, 8.5284) is locally asymptotically
stable when τ ∈ [0, τ ∗) (see Fig. 3), and the direction of the Hopf bifurcation is
supercritical when τ = τ ∗ , that is the bifurcating periodic solutions exist for τ > τ ∗,
and they are orbitally stable (see Fig. 4). The initial conditions of Fig. 3 are u(x, t) =
0.1356 + 0.1000 cos 2x cos y, w(x, t) = 0.0116 + 0.0100 cos 2x cos y, v(x, t) =
8.5284 + 3.0000 cos 2x cos y, (x, y, t) ∈ [0, π ] × [0, π ] × [−τ, 0] and the initial
conditions of Fig. 4 are u(x, t) = 0.2000+ 0.1000 cos 2x cos y, w(x, t) = 0.0200+
0.0100 cos 2x cos y, v(x, t) = 8.5000 + 3.0000 cos 2x cos y, (x, y, t) ∈ [0, π ] ×
[0, π ] × [−τ, 0]. In Fig. 3 and Fig. 3, we take x = π/3 and y = π/3, respectively.

5 Conclusion and Discussion

Incorporating virus diffusivity, tumor cell diffusion, and the viral lytic cycle into a basic
oncolytic virus dynamics model, we formulate a mathematical model in terms of delay

123



Spatial Model for Oncolytic Virotherapy with Lytic Cycle… 2413

Fi
g.
2

T
he

st
ea
dy

st
at
e
E
1

=
(1

,
0,

0)
is
gl
ob
al
ly

as
ym

pt
ot
ic
al
ly

st
ab
le
(C
ol
ou
r
fig

ur
e
on
lin

e)

123



2414 J. Zhao, J. P. Tian

Fi
g.
3

T
he

po
si
tiv

e
eq
ui
lib

ri
um

is
as
ym

pt
ot
ic
al
ly

st
ab
le
w
he
n

τ
∈[

0,
τ
∗ )
,w

he
re

τ
=

0.
9

<
τ
∗ ≈

1.
85

18
(C

ol
ou

r
fig

ur
e
on

lin
e)

123



Spatial Model for Oncolytic Virotherapy with Lytic Cycle… 2415

Fi
g.
4

T
he

bi
fu
rc
at
in
g
pe
ri
od

ic
so
lu
tio

n
is
st
ab
le
,w

he
re

τ
=

2
>

τ
∗ ≈

1.
85

18
(C

ol
ou

r
fig

ur
e
on

lin
e)

123



2416 J. Zhao, J. P. Tian

partial differential equations for oncolytic virotherapy. We conduct a detailed study
of the dynamics of our model. We find the positive invariant domain for the omega
limit set and three spatially uniform equilibrium solutions of our model. Comparing
with the basic models without diffusions of virus and tumor cells and the delay of
the viral lytic cycle, we find a first critical value of the viral burst size, and when
the viral burst size is smaller than this first critical value, the spatially uniform virus-
free steady state is globally asymptotically stable for any viral lytic period delay
and any diffusion coefficients of tumor cells and viruses. When the viral burst size
is greater than the first critical value, we characterize the stability of the spatially
uniform positive steady state by three major parameters: the ratio of virus diffusion
coefficient to that of tumor cells, the length of the viral lytic cycle, and the viral burst
size with six different values that are greater than the first critical value. These results
are summarized in Lemma 3.5 with Corollaries 3.6, 3.7, and 3.8; lemma 3.9 with
Corollary 3.10, Lemma 3.11; and Theorem 3.12. These detailed information cannot
be obtained from the models without diffusions of virus and tumor cells and delays
of viral lytic cycle. For instant, if we don’t consider the viral lytic cycle meaning the
viral lytic cycle length is zero, in order to have a locally asymptotical stability of the
spatially uniform positive steady state, the ratio between diffusion coefficients must
be greater than a particular value and the viral burst size must be greater than the first
critical value but smaller than other values depending on the tumor growth rate and
virus clearance rate. If we consider the viral lytic cycle as a delay parameter, we find
a critical value for the length of the viral lytic cycle. Combining conditions for the
ratio between diffusion coefficients and viral burst size, the spatially uniform positive
steady state is locally asymptotical stable when the viral lytic cycle length is smaller
than the critical value while the system undergoes Hopf bifurcation at the critical value
of the viral lytic cycle length and has stable periodic solutions when the viral lytic
cycle length is greater than the critical value. For these results, we give some biological
implications as follows.

From our analysis, we know that the parameters including the viral burst size,
the viral lytic cycle, and the diffusion coefficients of viruses and cells play impor-
tant roles in the dynamics of oncolytic viral therapy. Our model has three spatially
homogeneous equilibrium solutions, E0, E1, and E∗ which are related to long-term
behaviors of general solutions. They may have some medical implications. It is rea-
sonable that the zero solution E0 is always unstable for any parameter values since
the tumor always grows in its beginning. Theorem 3.4 gives a critical value for the
viral burst size, and below that value, the viral therapy fails no matter what values of
any other parameters are chosen. This confirms that the potency of oncolytic viruses
is important, and the viral burst size greater than that critical value is necessary con-
dition for the treatment to work. It is hoped oncolytic viruses will eradicate the tumor
completely. However, this is not always the case. When viruses cannot completely
eradicate the tumor, we may hope the virus treatment will be stabilized at a level
where the tumor cells, infected tumor cells, and viruses are constant. We find some
conditions under which the viral therapy can be stabilized. Under the condition (H)

which includes the viral burst size is greater than the critical value and the ratio of
virus diffusion coefficient to cell diffusion coefficient is greater than certain values
in Corollary 3.6–3.8, and the condition states in Theorem 3.12, the spatially uniform
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equilibrium solution E∗ which is constant solution is stable. We also obtain a critical
value of the viral lytic cycle below that value E∗ is stable while at that value point,
the system undergoes a Hopf bifurcation. Spatially homogeneous periodic solutions
arise fromHopf bifurcations.We numerically show these periodic solutions are stable.
We may consider the stable spatially homogeneous periodic solution as one type of
treatment stabilization. In addition, we find a functional relationship between the viral
burst size and lytic cycle shown in Fig. 1 which may implicate that the viral lytic cycle
length will change if the viral burst size changes. Since we can genetically change
viral genome for different burst sizes, we accordingly change their lytic cycles. As
long as the condition in Theorem 3.12 is satisfied, the stabilization of treatments can
be achieved.

As mentioned in introduction, there have been many studies on oncolytic virother-
apy experimentally and theoretically. Recently,Wodarz et al. (2012) have conducted an
in vitro experiment with recombinant adenovirus type-5 in a two-dimensional setting
and used an agent-based stochastic computational model to simulate experimental
observations. They observed three spatial patterns, “hollow ring structure”, “filled
ring structure, and “disperse pattern”. They found that both the filled ring structure
and disperse pattern of initial expansion were indicative of treatment failure. The
hollow ring structure was associated with either target cell extinction or low-level
persistence, both of which can be viewed as treatment success. It seems that the filled
ring structure and disperse pattern correspond to the spatial positive steady state in
our model, and the hollow ring structure corresponds the spatial virus-free steady
state in our model. However, our study gives more detailed information about the spa-
tial positive equilibriums and possibilities of stable periodic behaviors of the spatial
patterns. They also found that equilibrium properties of ordinary differential equa-
tions describing the dynamics in local neighborhoods in the agent-based model can
predict the outcome of the spatial virus-cell dynamics. This finding agrees with our
results since our model is based on local interactions. A more recent study by Wang
et al. (2017) incorporated nonlocal reaction terms in their delay reaction–diffusion
system for oncolytic virotherapy. They gave different treatment strategies according
to different gene mutations, which has theoretical interests. Friedman and Lai (2018)
presented a computational study about combination therapy for cancer with oncolytic
virus and checkpoint inhibitor. This study did not focus on spatial patterns of oncolytic
virus spreading within tumors. Timalsina et al. (2017) proposed a detailed reaction–
diffusion model for virotherapy and conducted a computational study. This model
focused on the different functions of innate and adaptive immune systems in oncolytic
viral therapies.

It is clear that our model incorporates basic components of oncolytic viral therapy
although it reveals important features of oncolytic viral therapy. There are several
components which are not included, for example immune cells. The immune system
has two different functions in oncolytic viral therapies. The immune cells can be
incorporated to our model. However, it is beyond the scope of our current work. This
may be considered in our future study.
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Appendix: Stability and Direction of the Hopf Bifurcations

Theory of functional reaction–diffusion systems says that a family of spatially
homogeneous or inhomogeneous periodic solutions may bifurcate from the positive
homogeneous equilibrium state E∗ of the system (5) when τ crosses through the
critical value τ ∗. In Appendix, we investigate the stability and direction of Hopf bifur-
cations by using the center manifold theorem and the normal formal theory of partial
functional differential equation (Faria 2000;Wu 2012). Basically, the system (5) firstly
is represented as an abstract ODE system. Secondly, at the center manifold of the ODE
system corresponding to E∗, the normal form or Taylor expansion of the ODE system
is computed. Then, the coefficients of the first four terms of the normal form will
reveal all the properties of the periodical solutions (Hassard et al. 1981). At the end,
we briefly describe the numerical method we use to solve our system.

Let u1(·, t) = u(·, τ t) − u∗, u2(·, t) = w(·, τ t) − w∗, u3(·, t) = v(·, τ t) − v∗
and U (t) = (u1(·, t), u2(·, t), u3(·, t))T . Then, the system (5) can be written as an
equation in the function space C = C([−1, 0], X) :

dU (t)

dt
= τD	U (t) + L(τ )(Ut ) + f (Ut , τ ), (19)

where D = diag(d1, d1, d2), L(τ )(·) : C → X and f : C × R → X are given,
respectively, by

L(τ )(ϕ) = τ L1ϕ(0) + τ L2ϕ(−1),

f (ϕ, τ ) = τ( f1(ϕ, τ ), f2(ϕ, τ ), f3(ϕ, τ ))T ,

with

f1(ϕ, τ ) = −rϕ2
1(0) − rϕ1(0)ϕ2(0) − aϕ1(0)ϕ3(0),

f2(ϕ, τ ) = aϕ1(−τ)ϕ3(−τ),

f3(ϕ, τ ) = −aϕ1(0)ϕ3(0),

for ϕ = (ϕ1, ϕ2, ϕ3)
T ∈ C .

Let τ = τ ∗ + σ , then (19) can be rewritten as

dU (t)

dt
= τ ∗D	U (t) + L(τ ∗)(Ut ) + F(Ut , σ ), (20)
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where

F(ϕ, σ ) = σD	ϕ(0) + L(σ )(ϕ) + f (ϕ, τ ∗ + σ),

for ϕ ∈ C .
From the previous subsection, when σ = 0 (i.e. τ = τ ∗) the system (20) undergoes

Hopf bifurcation at the equilibrium (0, 0, 0), it is also clear that ±iω∗τ ∗ are simply
purely imaginary eigenvalues of the linearized system of (20) at the origin

dU (t)

dt
= (τ ∗ + σ)D	U (t) + L(τ ∗ + σ)(Ut ), (21)

with σ = 0 and all other eigenvalues of (21) at σ = 0 have negative real parts.
The eigenvalues of τD	 on X are −τd1μn (the number of multiples is two) and

−τd2μn, n ∈ N0, with corresponding eigenfunctions β1
n (x) = (γn(x), 0, 0)T , β2

n (x)
= (0, γn(x), 0)T and β3

n (x) = (0, 0, γn(x))T , where γn(x) = φn(x)

(
∫

ω φn(x)dx)
1
2
.

We have that the solution operator of (21) is a C0 semigroup, and the infinitesimal
generator Aσ is given by

Aσ φ =
{

φ̇(θ), θ ∈ [−r , 0),

D	φ(0) + L(τ ∗ + σ)(φ), θ = 0.
(22)

and the domain dom(Aσ ) of Aσ is

dom(Aσ ) := {φ ∈ C : φ̇ ∈ C , φ(0) ∈ dom(	), φ̇(0) = D	φ(0) + L(τ ∗ + σ)(φ)}.

Hence, Eq. (20) can be rewritten as the abstract ODE in C :

U̇t = AσUt + R(σ,Ut ), (23)

where

R(σ,Ut )(θ) =
{
0, θ ∈ [−1, 0),

F(σ,Ut ), θ = 0.

We denote

βn = {(1, 0, 0)Tγn, (0, 1, 0)
Tγn, (0, 0, 1)

Tγn}.

For φ = (φ
(1)

, φ
(2)

)T ∈ C , we denote

φn = 〈φ, βn〉 =
(
〈φ(1)

, γn〉, 〈φ(2)
, γn〉, 〈φ(3)

, γn〉
)T

.
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Define Aσ,n as

Aσ,n(φn(θ)γn) =
{

φ̇n(θ)γn, θ ∈ [−1, 0),
∫ 0
−r dηn(σ, θ)φn(θ)γn, θ = 0.

(24)

Furthermore, we have

Lσ,n(φn) = (τ ∗ + σ)L1φn(0) + (τ ∗ + σ)L2φn(−1),

and

−μnDφn(0) + Lσ,n(φn) =
∫ 0

−1
dηn(σ, θ)φn(θ),

where

ηn(σ, θ) =
⎧
⎨

⎩

−(τ ∗ + σ)L2, θ = −1,
0, θ ∈ (−1, 0),
(τ ∗ + σ)(L1 − μnD), θ = 0.

Define C ∗ = C([0, 1]; X) and a bilinear form (·, ·) on C ∗ × C

(ψ, φ) =
∞∑

k, j=0

(ψk, φ j )c

∫




γkγ jdx,

where (·, ·)c is the bilinear form defined on C∗ × C

(ψn, φn)c = ψ
T
n (0)φn(0) −

∫ 0

−1

∫ θ

ξ=0
ψ

T
n (ξ − θ)dηn(0, θ)φn(ξ)dξ,

and

ψ =
∞∑

n=0

ψnγn ∈ C ∗, φ =
∞∑

n=0

φnγn ∈ C ,

with

φn ∈ C = C([−1, 0],R2), ψn ∈ C∗ = ([0, 1],R2).

Notice that
∫




γkγ jdx = 0 for k �= j,

we have

(ψ, φ) =
∞∑

n=0

(ψn, φn)c,
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We define the adjoint operator A∗ of A0

A∗ψ(s) =
{−ψ̇(s), s ∈ (0, 1],

∑∞
n=0

∫ 0
−1 dη

T
n (0, t)ψn(−t)γn, s = 0.

Let

q(θ)γn0 = q(0)eiω
∗τ∗θ γn0 , q∗(s)γn0 = q∗(0)eiω∗τ∗sγn0

be the eigenfunctions of A0, and A∗ corresponds to iω∗τ ∗ and −iω∗τ ∗, respectively.
By direct calculations, we chose

q(0) = (1,C1,C2)T, q∗(0) = M(1,C3,C4)
T

where

C1 = a2u∗v∗ − (iω∗ + d1μn0 + ru∗)(iω∗ + d2μn0 + au∗ + c)

abu∗ + ru∗(iω∗ + d2μn0 + au∗ + c)
,

C2 = − (iω∗ + d1μn0 + ru∗)b + rau∗v∗

abu∗ + ru∗(iω∗ + d2μn0 + au∗ + c)
,

C3 = (−iω∗ + d1μn0 + ru∗)(−iω∗ + d2μn0 + au∗ + c) − a2u∗v∗

av∗e−iω∗τ∗
(−iω∗ + d2μn0 + c)

,

C4 = (−iω∗ + d1μn0 + ru∗)u∗ − au∗v∗

v∗(−iω∗ + d2μn0 + c)

and

M = 1

1 + C1C3 + C2C4 + τ ∗aC3(v∗ + u∗C2)e−iωτ∗ .

Obviously, (q∗, q)c = 1. Then, we decompose C by

� = {±iω∗τ ∗},

C = P ⊕ Q, where

P = {zqγn0 + zqγn0 |z ∈ C},
Q = {φ ∈ C |(q∗γn0 , φ) = 0 and (q∗γn0 , φ) = 0}.

Thus, system (23) could be rewritten as

Ut = z(t)q(·)γn0 + z̄(t)q̄(·)γn0 + W (t, ·),

where

W (t, ·) ∈ Q.
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As in Hassard et al. (1981), we have

z(t) = (q∗γn0 ,Ut ), W (t, θ) = Ut (θ) − 2Re{z(t)q(θ)γn0}. (25)

Then, it follows that

ż(t) = iω0z(t) + q̄∗T(0)〈F(0,Ut ), βn0〉, (26)

where

〈F, βn〉 := (〈F1, γn〉, 〈F2, γn〉, 〈F3, γn〉)T,

With the center manifold theorem (Lin et al. 1992), there exists a center manifold C0
and on C0, we have

W (t, θ) = W (z(t), z̄(t), θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · · , (27)

where z and z̄ are local coordinates for center manifold C0 in the direction of qγn0 and
q̄γn0 , respectively. For solution Ut ∈ C0, we denote

F(0,Ut ) |C0= F̃(0, z, z̄),

and

F̃(0, z, z̄) = F̃ ′′
zz
z2

2
+ F̃ ′′

zz̄ zz̄ + F̃ ′′
z̄ z̄
z̄2

2
+ F̃ ′′

zzz̄
z2 z̄

2
+ · · · .

For convenience, we rewrite (26) as

ż(t) = iω0z(t) + g(z, z̄),

and denote

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2 z̄

2
+ · · · .

From direct calculation, we get

g20 = 2Mτ ∗
∫




γ 3
n0dx(−r − rC1 − aC2 + aC2e

−2iω∗τ∗
C3 − aC2C4),

g11 = Mτ ∗
∫




γ 3
n0dx[−2r − r(C1 + C1) − a(C2 + C2)

+ a(C2 + C2)C3 − a(C2 + C2)C4],
g02 = 2Mτ ∗

∫




γ 3
n0dx(−r − rC1 − aC2 + aC2e

2iω∗τ∗
C3 − aC2C4)
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and

g21 = Mτ ∗
∫




{[
− r(2w(1)

20 (0) + 4w(1)
11 (0))

− r(w(2)
20 (0) + 2w(2)

11 (0) + C1w
(1)
20 (0) + 2C1w

(1)
11 (0))

− a(w
(3)
20 (0) + 2w(3)

11 (0) + C2w
(1)
20 (0) + 2C2w

(1)
11 (0))

]
γ 2
n0

+ a(w
(3)
20 (−1)eiω

∗τ∗ + 2w(3)
11 (−1)e−iω∗τ∗ + C2w

(1)
20 (−1)eiω

∗τ∗

+ 2C2w
(1)
11 (−1)e−iω∗τ∗

)γ 2
n0C3 − a(w

(3)
20 (0) + 2w(3)

11 (0)

+C2w
(1)
20 (0) + 2C2w

(1)
11 (0))γ 2

n0C4

}
dx .

Here, w11 and w20 are need to be computed. From (25), we have

Ẇ = U̇t − żqγn0 − ˙̄zq̄γn0

=
{
AW − 2Re{g(z, z̄)q(θ)}γn0 , θ ∈ [−r , 0),

AW − 2Re{g(z, z̄)q(θ)}γn0 + F̃, θ = 0,
.= AW + H(z, z̄, θ), (28)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · .

Obviously,

H20(θ) =
{

−g20q(θ)γn0 − ḡ02q̄(θ)γn0 , θ ∈ [−r , 0),

−g20q(0)γn0 − ḡ02q̄(0)γn0 + F̃ ′′
zz, θ = 0,

H11(θ) =
{

−g11q(θ)γn0 − ḡ11q̄(θ)γn0 , θ ∈ [−r , 0),

−g11q(0)γn0 − ḡ11q̄(0)γn0 + F̃ ′′
zz̄, θ = 0,

· · · .

Comparing the coefficients of (28) with the derived function of (27), we obtain

(A0 − 2iω0 I )W20(θ) = −H20(θ), A0W11(θ) = −H11(θ), · · · . (29)

From (22) and (29), for θ ∈ [−1, 0), we have

W20(θ) = − g20
iω∗τ ∗ q(θ)γn0 − ḡ02

3iω∗τ ∗ q(θ)γn0 + E1e
2iω∗τ∗θ ,

W11(θ) = g11
iω∗τ ∗ q(0)eiω

∗τ∗θ γn0 − ḡ11
iω∗τ ∗ q(0)e−iω∗τ∗θ γn0 + E2, (30)
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where E1 and E2 are both three-dimensional vectors in X and can be determined by
setting θ = 0 in H . In fact, set θ = 0 and by (29) and (30), we obtain

(A0 − 2iω∗τ ∗ I )E1e
2iω∗τ∗θ |θ=0= −F̃ ′′

zz, A0E2 |θ=0= −F̃ ′′
zz̄ . (31)

The terms F̃ ′′
zz and F̃ ′′

zz̄ are elements in the space C , and

F̃ ′′
zz =

∞∑

n=1

〈F̃ ′′
zz, βn〉γn, F̃ ′′

zz̄ =
∞∑

n=1

〈F̃ ′′
zz̄, βn〉γn .

We denote

E1 =
∞∑

n=0

En
1γn, E2 =

∞∑

n=0

En
2γn,

then from (31) we have

(A0 − 2iω∗τ ∗ I )En
1γne2iω

∗τ∗θ |θ=0= −〈F̃ ′′
zz, βn〉γn,

A0En
2γn |θ=0= −〈F̃ ′′

zz̄, βn〉γn,
n = 0, 1, · · · .

Thus, En
1 and En

2 could be calculated by

En
1 =

(

2iω∗τ ∗ I −
∫ 0

−1
e2iω

∗τ∗θdηn(0, θ)

)−1

〈F̃ ′′
zz, βn〉,

En
2 = −

(∫ 0

−1
dηn(0, θ)

)−1

〈F̃ ′′
zz, βn〉,

n = 0, 1, · · · ,

where

F̃20 = 2τ ∗
⎛

⎝
−r − rC1 − aC2

aC2e−2iω∗τ∗

−aC2

⎞

⎠ ,

F̃11 = τ ∗
⎛

⎝
−2r − r(C1 + C1) − a(C2 + C2)

a(C2 + C2)

−a(C2 + C2)

⎞

⎠ .

Hence, g21 could be represented explicitly.
We denote

c1(0) = i

2ω∗τ ∗

(

g20g11 − 2|g11|2 − 1

3
|g02|2

)

+ 1

2
g21,
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μ = − Re(c1(0))

τ ∗Re(λ′(τ ∗))
, β2 = 2Re(c1(0)),

T2 = − 1

ω∗τ ∗ (Im(c1(0)) + μ2(ω
∗ + τ ∗Im(λ′(τ ∗))). (32)

Then, by the general Hopf bifurcation theory (see Hassard et al. 1981), we know
that μ determines the directions of the Hopf bifurcation: If μ > 0(< 0), then the
direction of the Hopf bifurcation is forward (backward), that is the bifurcating periodic
solutions existwhena > 0(< 0);β2 determines the stability of the bifurcating periodic
solutions: The bifurcating periodic solutions are orbitally stable(unstable) if β2 <

0(> 0), and T2 determines the period of the bifurcation periodic solutions: The period
increases(decreases) if T2 > 0(< 0).

We now describe briefly the numerical method we use to solve the system (5) as
follows. For 
 = (0, pπ) × (0, qπ), let xi = ihx , i = 1, 2, · · · , l, hx = pπ

l , y j =
jhy, j = 1, 2, · · · ,m, hy = qπ

m , , tk = kht , ht = τ
N (N is a positive integer),

and u(i, j, k) = u(xi , y j , tk), v(i, j, k) = v(xi , y j , tk), w(i, j, k) = w(xi , y j , tk).

We replace
∂u(xi ,y j ,tk )

∂t with a first-order difference u(i, j,k+1)−u(i, j,k)
ht

and replace
∂2u(xi ,y j ,tk )

∂x2
+ ∂2u(xi ,y j ,tk )

∂ y2
with a second-order difference u(i+1, j,k)−2u(i, j,k)+u(i−1, j,k)

hx
+

u(i, j+1,k)−2u(i, j,k)+u(i, j−1,k)
hy

. Similarly, we take differences of the partial derivative
of v and w. Then, we get a system of difference equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(i, j, k + 1) = u(i, j, k) + ht d1
(
u(i+1, j,k)−2u(i, j,k)+u(i−1, j,k)

hx

+ u(i, j+1,k)−2u(i, j,k)+u(i, j−1,k)
hy

)

+ ht (ru(i, j, k)(1 − u(i, j, k) − w(i, j, k)) − au(i, j, k)v(i, j, k)),

w(i, j, k + 1) = w(i, j, k) + ht d1
(

w(i+1, j,k)−2w(i, j,k)+w(i−1, j,k)
hx

+ w(i, j+1,k)−2w(i, j,k)+w(i, j−1,k)
hy

)

+ ht (au(i, j, k − N )v(i, j, k − N ) − w(i, j, k)),

v(i, j, k + 1) = v(i, j, k) + ht d2
(

v(i+1, j,k)−2v(i, j,k)+v(i−1, j,k)
hx

+ v(i, j+1,k)−2v(i, j,k)+v(i, j−1,k)
hy

)

+ ht (bw(i, j, k) − au(i, j, k)v(i, j, k) − cv(i, j, k)).

We implement this method in MATLAB and obtain numerical solutions of the sys-
tem (5).
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