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Abstract. This paper deals with the asymptotic behavior of the solutions of
the non-autonomous one-dimensional stochastic Keller-Segel equations defined

in a bounded interval with Neumann boundary conditions. We prove the ex-

istence and uniqueness of tempered pullback random attractors under certain
conditions. We also establish the convergence of the solutions as well as the

pullback random attractors of the stochastic equations as the intensity of noise

approaches zero.

1. Introduction. In this paper, we investigate the long term dynamics of the non-
autonomous stochastic Keller-Segel equations defined in a bounded interval I for
t > τ with τ ∈ R:

∂u

∂t
= a

∂2u

∂x2
− ∂

∂x

(
u
∂

∂x
f(ρ)

)
, (1.1)

∂ρ

∂t
= b

∂2ρ

∂x2
+ c(t)u− dρ+ λρ ◦ dW

dt
, (1.2)

which are supplemented with homogeneous Neumann boundary conditions and
appropriate initial conditions. The unknown functions in system (1.1)-(1.2) are
u = u(x, t) and ρ = ρ(x, t), a, b and d are fixed positive constants, c : R → R+ is
a given function, f : R → R is a given nonlinearity. W is a two-sided real-valued
Wiener process defined on a probability space and λ > 0 is the intensity of noise.
The symbol ◦ in (2.2) indicates that the equation is understood in the sense of
Stratonovich’s integration.

The deterministic version (i.e., λ = 0) of system (1.1)-(1.2) was proposed by
Keller and Segel in [26] to model the aggregation process of cellular slime mold by
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chemical attraction. From biological point of view, u and ρ represent the popula-
tion density of biological individuals and the concentration of chemical substance,
respectively, a is the diffusion rate of u, b is the diffusion rate of ρ, c and d are the
degradation and production rates of ρ, respectively. The nonlinear function f in
(1.1) is called a sensitivity function that is used to model the response of of cells
to chemicals. The term − ∂

∂x

(
u ∂
∂xf(ρ)

)
is called a chemotactic term that is used

to model the fact that cells are attracted by chemical stimulus. Several interest-
ing nonlinear functions f are extensively investigated in the literature (see, e.g.,
[28, 32, 34]) including

f(s) = s, s2, ln(1 + s),
s

1 + s
, and

s2

1 + s2
(1.3)

for s ≥ 0.
The deterministic Keller-Segel equations have been studied by many experts,

see, e.g., [16, 23, 24, 28, 30, 31, 32, 33, 34, 41]. In particular, the existence of
solutions of the equations were investigated in [16, 30, 41], the blow-up of solutions
were examined in [23, 24, 31], and the global attractors were discussed in [32, 33].
However, as far as the authors are aware, there is no result available in the literature
regarding the long term dynamics of the stochastic Keller-Segel system given by
(1.1)-(1.2). The goal of the present paper is to investigate this problem and establish
the existence of tempered pullback random attractors for the stochastic system in
an invariant subset of L2(I) × H1(I). We will also examine the limiting behavior
of the solutions of system (1.1)-(1.2) as λ → 0, and prove the convergence of the
solutions as well as the pullback random attractors as λ→ 0. The main difficulty of
the paper lies in how to derive pullback uniform estimates for the solutions. Since
system (1.1)-(1.2) is a quasilinear system for the unknown functions u and ρ, it
is hard to derive such estimates. We will combine the semigroup method and the
energy method to establish the desired a priori uniform estimates for the stochastic
system.

The concept of random attractors was introduced in [13, 15, 35] and further
studied in [2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 17, 18, 19, 20, 25, 27, 29, 36, 37] for
the autonomous stochastic equations; and in [1, 10, 14, 21, 22, 38, 39, 40] for the
non-autonomous stochastic equations. We here will investigate the pullback random
attractors for the non-autonomous stochastic system (1.1)-(1.2).

Notice that (1.1) is a deterministic equation which is not perturbed by noise.
When system (1.1)-(1.2) is supplemented with homogeneous Neumann boundary
conditions, by (1.1) we find that∫

I

u(x, t)dx is constant for all t ≥ τ, (1.4)

where τ is the initial time. This means that the total population of biological
individuals is conserved for all t ≥ τ , a fact of significance in both biology and
mathematics. If (1.1) is perturbed by white noise, then the solutions of the system
do not satisfy (1.4) anymore, which is not consistent with the deterministic system
from biological point of view, and also introduces difficulty to derive uniform esti-
mates of the solutions. That is why we do not perturb (1.1) by white noise in this
paper.

This paper is organized as follows. In the next section, we define a continuous
cocycle for the non-autonomous stochastic system (1.1)-(1.2) in an invariant subset
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of L2(I)×H1(I). In Section 3, we derive pullback uniform estimates for the solu-
tions which are needed for constructing pullback random absorbing sets. We then
prove the existence of pullback random attractors in Section 4, and establish the
convergence of the solutions as well as the pullback random attractors as λ→ 0 in
Section 5.

Hereafter, we use C and Ci (i = 1, 2, · · · ,) to denote generic positive constants
whose values may change from line to line.

For later purpose, we recall the following Gagliardo-Nirenberg interpolation in-
equality:

Lemma 1.1. Let I be a bounded interval in R. Suppose s > 0, 1 ≤ q, r ≤ ∞,
m ∈ {1, 2, · · · } and j ∈ {0, 1, 2, · · · }. If

j

m
≤ θ ≤ 1

and
1

p
= j + θ(

1

r
−m) +

1− θ
q

then there exists a positive constant C = C(m, j, q, r, θ, s, I) such that

‖Dju‖Lp(I) ≤ C‖Dmu‖θLr(I)‖u‖
1−θ
Lq(I) + C‖u‖Ls(I) (1.5)

for all u : I → R provided the right-hand side of (1.5) is finite.

Note that the space Hs(I) is continuously embedded into C(Ī) for s > 1
2 , that

is, there exists a positive constant C = C(s, I) such that

‖u‖C(Ī) ≤ C‖u‖Hs(I), ∀ u ∈ Hs(I). (1.6)

The following Agmon’s inequality will also be used in this paper:

‖u‖L∞(I) ≤ C‖u‖
1
2

L2(I)‖u‖
1
2

H1(I), ∀ u ∈ H1(I), (1.7)

for some C > 0.

2. Cocycles for the stochastic Keller-Segel system. In this section, we prove
the global existence of solutions for the non-autonomous stochastic Keller-Segel
system under certain conditions, and define a continuous cocycle in an invariant
subset of L2(I)×H1(I).

Given τ ∈ R, consider the following one-dimensional stochastic Keller-Segel equa-
tions defined in a bounded interval I = (a1, b1) for t > τ :

∂u

∂t
= a

∂2u

∂x2
− ∂

∂x

(
u
∂

∂x
f(ρ)

)
, (2.1)

∂ρ

∂t
= b

∂2ρ

∂x2
+ c(t)u− dρ+ λρ ◦ dW

dt
, (2.2)

with boundary conditions

∂u

∂x
(a1, t) =

∂u

∂x
(b1, t) =

∂ρ

∂x
(a1, t) =

∂ρ

∂x
(b1, t) = 0, (2.3)

and initial conditions

u(x, τ) = u0(x), ρ(x, τ) = ρ0(x), (2.4)

where a, b, d and λ are all positive constants.
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Throughout this paper, we will assume that f : [0,∞)→ R is a smooth function
such that there exist constants α1 ≥ 0, α2 ≥ 0 and α > 0 such that for all s ≥ 0,

|f ′(s)|+ |f ′′(s)|+ |f ′′′(s)| ≤ α1 + α2s
α. (2.5)

Note that all functions given by (1.3) satisfy condition (2.5).
We will also assume

c : R→ R+ is continuous and bounded, (2.6)

where c is the function in (2.2).
To describe the Wiener process W , we introduce the standard Wiener space

(Ω,F , P ) where Ω = {ω ∈ C(R,R) : ω(0) = 0}, F is the Borel σ-algebra induced
by the compact-open topology of Ω, and P is the Wiener measure on (Ω,F). Then
the Wiener process W on (Ω,F , P ) takes the form: W (t, ω) = ω(t) for all t ∈ R
and ω ∈ Ω. Denote by θt : Ω→ Ω the transformation

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω.

Then by [2], (Ω,F , P, {θt}t∈R) is a metric dynamical system, and there exists a
θt-invariant set of full measure (which is still denoted by Ω) such that for every ω
in that set,

lim
t→±∞

ω(t)

t
= 0.

Next, we establish the existence and uniqueness of solutions of system (2.1)-(2.4)
under (2.5). To that end, we need to transform the stochastic equation (2.2) into
a deterministic one parametrized by the sample paths. Let v(x, t) = e−λω(t)ρ(x, t).
Then by (2.1)-(2.2) we find that u and v satisfy

∂u

∂t
= a

∂2u

∂x2
− ∂

∂x

(
u
∂

∂x
f(eλω(t)v)

)
, t > τ, (2.7)

∂v

∂t
= b

∂2v

∂x2
− dv + c(t)e−λω(t)u, t > τ, (2.8)

with boundary conditions

∂u

∂x
(a1, t) =

∂u

∂x
(b1, t) =

∂v

∂x
(a1, t) =

∂v

∂x
(b1, t) = 0, t > τ, (2.9)

and initial conditions

u(x, τ) = u0(x), v(x, τ) = v0(x), (2.10)

with v0(x) = e−λω(τ)ρ0(x). By the Galerkin method, one can verify that if f satisfies
(2.5), then problem (2.7)-(2.10) has a unique local solution for every (u0, v0) ∈
L2(I)×H1(I). More precisely, we have the following lemma.

Lemma 2.1. Suppose (2.5) holds true. Let τ ∈ R, ω ∈ Ω and (u0, v0) ∈ L2(I) ×
H1(I) with ‖u0‖L2(I) + ‖v0‖H1 ≤ R for some R > 0. Then there exists a posi-
tive number T0 = T0(τ, ω,R) such that problem (2.7)-(2.10) has a unique solution
(u, v) = (u(t, τ, ω, u0), v(t, τ, ω, v0)) defined for t ∈ [τ, τ + T0] with the properties

u ∈ C([τ, τ + T0], L2(I))
⋂
L2((τ, τ + T0), H1(I)),

du

dt
∈ L2((τ, τ + T0), H−1(I))

and

v ∈ C([τ, τ+T0], H1(I))
⋂
L2((τ, τ+T0), H2(I)) and

dv

dt
∈ L2((τ, τ+T0), L2(I)).
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In addition, (u(t), v(t)) is continuous with respect to initial data (u0, v0) in ∈ L2(I)×
H1(I) and is measurable with respect to ω ∈ Ω for every t ∈ [τ, τ+T0]. Furthermore,
if u0 ≥ 0 and v0 ≥ 0, then for every t ∈ [τ, τ + T0], u(t) ≥ 0 and v(t) ≥ 0.

Proof. The existence of local solutions follows from a standard process by applying
the Galerkin method, see, e.g., [32]. The uniqueness and nonnegativity of solutions
with nonnegative initial data can be obtained by the arguments of [32]. Since
the local solution of problem (2.7)-(2.10) is given by the limit of the measurable
solutions in ω of a family of finite-dimensional Galerkin systems, we infer that this
local solution of system (2.7)-(2.10) is also measurable in ω ∈ Ω.

In what follows, we prove the local solution of problem (2.7)-(2.10) obtained in
Lemma 2.1 is actually defined for all t ≥ τ when initial data are nonnegative. For
that purpose, we only need to derive uniform estimates of the solutions on a finite
time interval [τ, τ + T ] where the solution is defined. First, by integrating equation
(2.7) we get

d

dt

∫
I

u(x, t)dx = 0,

which together with the nonnegativity of solutions implies

‖u(t)‖L1(I) = ‖u0‖L1(I), ∀ t ∈ [τ, τ + T ]. (2.11)

Based on (2.11), we now derive uniform estimates on the component v of the
solution (u, v) in H1(I).

Lemma 2.2. Suppose (2.5) holds true. Let λ0 > 0, T > 0, τ ∈ R, ω ∈ Ω and
(u0, v0) ∈ L2(I)×H1(I) with u0 ≥ 0, v0 ≥ 0, and ‖u0‖L2(I) +‖v0‖H1 ≤ R for some
R > 0. Then there exists a positive number M1 = M1(τ, T, ω,R, λ0) such that the
solution (u, v) of problem (2.7)-(2.10) satisfies, for all 0 < λ ≤ λ0,

‖v(t, τ, ω, v0)‖H1(I) ≤M1 for all t ∈ [τ, τ + T ].

Proof. For convenience, we write A = −b∂xx+d with domain D(A) = {v ∈ H2(I) :
v satisfies (2.9)}. Given θ ≥ 0, let Aθ be the fractional power of A. It follows from
[32] that D(Aθ) ⊆ H2θ(I) for θ ≥ 0, which along with (1.6) implies that for every
v1 ∈ L1(I) and v2 ∈ D(Aθ) with θ > 1

4 ,

|
∫
I

v1(x)v2(x)dx| ≤ ‖v2‖C(Ī)‖v1‖L1(I) ≤ C‖v2‖H2θ‖v1‖L1(I) ≤ C‖v2‖D(Aθ)‖v1‖L1(I).

(2.12)

By (2.12) we find that if θ > 1
4 and v1 ∈ L1(I), then v1 ∈ D(A−θ) and

‖v1‖D(A−θ) ≤ C‖v1‖L1(I), (2.13)

where D(A−θ) is the dual space of D(Aθ).
Note that

‖e−Atv0‖L2(I) ≤ e−dt‖v0‖L2(I) for all v0 ∈ L2(I) and t ≥ 0. (2.14)

Note that equation (2.8) can be reformulated as

dv

dt
+Av = c(t)e−λω(t)u, v(τ) = v0,

and hence

v(t) = eA(τ−t)v0 +

∫ t

τ

c(s)eA(s−t)e−λω(s)u(s)ds. (2.15)
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By (2.13)-(2.15) we get, for t ∈ [τ, τ + T ],

‖A 1
2 v(t)‖L2(I)

≤ e−d(t−τ)‖A 1
2 v0‖L2(I) +

∫ t

τ

c(s)e−λω(s)‖eA(s−t)A
7
8 (A−

3
8u(s))‖L2(I)ds

≤ C1e
−d(t−τ)‖v0‖H1(I) + C2

∫ t

τ

(t− s)− 7
8 e−d(t−s)−λω(s)‖u(s)‖

D(A−
3
8 )
ds

≤ C1e
−d(t−τ)‖v0‖H1(I) + C3

∫ t

τ

(t− s)− 7
8 e−d(t−s)−λω(s)‖u(s)‖L1(I)ds. (2.16)

By (2.11) and (2.16) we obtain, for t ∈ [τ, τ + T ],

‖A 1
2 v(t)‖L2(I) ≤ C1e

−d(t−τ)‖v0‖H1(I) + C3‖u0‖L1(I)

∫ t

τ

(t− s)− 7
8 e−d(t−s)−λω(s)ds

(2.17)

≤ C1e
−d(t−τ)‖v0‖H1(I) + C4‖u0‖L2(I)

∫ t

τ

(t− s)− 7
8 e−d(t−s)−λω(s)ds,

from which the desired estimates follows.

Next, we derive uniform estimates on the component u of the solution (u, v) in
L2(I).

Lemma 2.3. Suppose (2.5) holds true. Let λ0 > 0, T > 0, τ ∈ R, ω ∈ Ω and
(u0, v0) ∈ L2(I)×H1(I) with u0 ≥ 0, v0 ≥ 0, and ‖u0‖L2(I) +‖v0‖H1 ≤ R for some
R > 0. Then there exists a positive number M2 = M2(τ, T, ω,R, λ0) such that the
solution (u, v) of problem (2.7)-(2.10) satisfies, for all 0 < λ ≤ λ0,

‖u(t, τ, ω, u0)‖2L2(I) +

∫ τ+T

τ

(‖u(t)‖2H1(I) + ‖v(t)‖
2
H2(I))dt ≤M2 for all t ∈ [τ, τ + T ].

(2.18)

Proof. By (2.7) we get

1

2

d

dt
‖u‖2L2(I) + a‖ux‖2L2(I) =

∫
I

uux
∂

∂x

(
f(eλω(t)v)

)
dx

≤ 1

2
a‖ux‖2L2(I) +

1

2a
e2λω(t)

∫
I

u2|vx|2|f ′(eλω(t)v)|2dx. (2.19)

We now estimate the last term on the right-hand side of (2.19). By (2.5) we get

1

2a
e2λω(t)

∫
I

u2|vx|2|f ′(eλω(t)v)|2dx

≤ 1

2a
e2λω(t)

∫
I

(α1 + α2e
αλω(t)|v|α)2u2|vx|2dx

≤ C1e
2λω(t)

∫
I

u2|vx|2dx+ C2e
2(α+1)λω(t)

∫
I

|v|2αu2|vx|2dx. (2.20)

To estimate the right-hand side of (2.20), we use the following interpolation in-
equalities from (1.5):

‖u‖L4(I) ≤ C3‖u‖
1
2

H1(I)‖u‖
1
2

L1(I) and ‖u‖L4(I) ≤ C4‖u‖
1
4

H1(I)‖u‖
3
4

L2(I). (2.21)

By (1.6) and (2.21), for the second term on the right-hand side of (2.20) we have

C2e
2(α+1)λω(t)

∫
I

|v|2αu2|vx|2dx ≤ C2e
2(α+1)λω(t)‖v‖2αL∞(I)

∫
I

u2|vx|2dx
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≤ C5e
2(α+1)λω(t)‖v‖2αH1(I)‖u‖

2
L4(I)‖vx‖

2
L4(I)

≤ C6e
2(α+1)λω(t)‖v‖2αH1(I)‖u‖H1(I)‖u‖L1(I)‖vx‖

3
2

L2(I)‖vx‖
1
2

H1(I)

≤ C7e
2(α+1)λω(t)‖v‖2α+2

H1(I)‖u‖H1(I)‖u‖L1(I)

+ C7e
2(α+1)λω(t)‖v‖2α+ 3

2

H1(I)‖u‖H1(I)‖u‖L1(I)‖vxx‖
1
2

L2(I). (2.22)

For convenience, we write

δ = min{1

2
a, b, d}. (2.23)

Then by Young’s inequality, (2.11) and (2.22) we get

C2e
2(α+1)λω(t)

∫
I

|v|2αu2|vx|2dx

≤ 1

8
δ‖u‖2H1(I) + C8e

4(α+1)λω(t)‖v‖4α+4
H1(I) + C8e

4(α+1)λω(t)‖v‖4α+3
H1(I)‖vxx‖L2(I)

≤ 1

8
δ‖u‖2H1(I) +

1

8
δ‖vxx‖2L2(I) + C8e

4(α+1)λω(t)‖v‖4α+4
H1(I) + C9e

8(α+1)λω(t)‖v‖8α+6
H1(I)

≤ 1

8
δ‖u‖2H1(I) +

1

8
δ‖vxx‖2L2(I) +C9(1+e8(α+1)λω(t))‖v‖8α+6

H1(I) +C10e
4λ(α+1)(4α+3)

2α+1 ω(t).

(2.24)
By the process to derive (2.24), we also obtain

C1e
2λω(t)

∫
I

u2|vx|2dx

≤ 1

8
δ‖u‖2H1(I) +

1

8
δ‖vxx‖2L2(I) + C11(1 + e8λω(t))‖v‖6H1(I) + C12e

12λω(t),

which along with (2.20) and (2.24) implies

1

2a
e2λω(t)

∫
I

u2|vx|2|f ′(eλω(t)v)|dx

≤ 1

4
δ‖u‖2H1(I) +

1

4
δ‖vxx‖2L2(I) +C9(1 + e8(α+1)λω(t))‖v‖8α+6

H1(I) +C10e
4λ(α+1)(4α+3)

2α+1 ω(t)

+C11(1 + e8λω(t))‖v‖6H1(I) + C12e
12λω(t) (2.25)

By (2.19) and (2) we obtain

d

dt
‖u‖2L2(I) + a‖ux‖2L2(I) ≤

1

2
δ‖u‖2H1(I) +

1

2
δ‖vxx‖2L2(I)

+2C9(1 + e8(α+1)λω(t))‖v‖8α+6
H1(I) + 2C10e

4λ(α+1)(4α+3)
2α+1 ω(t)

+ 2C11(1 + e8λω(t))‖v‖6H1(I) + 2C12e
12λω(t). (2.26)

Note that by (1.5),

‖u‖L2(I) ≤ C13‖u‖
1
3

H1(I)‖u‖
2
3

L1(I). (2.27)

By (2.27) we get

2d‖u‖2L2(I) ≤
1

8
δ‖u‖2H1(I) + C14‖u‖2L1(I),

which along with (2.11) and (2.26) yields

d

dt
‖u‖2L2(I) + 2d‖u‖2L2(I) + a‖ux‖2L2(I) ≤

5

8
δ‖u‖2H1(I) +

1

2
δ‖vxx‖2L2(I)

+2C9(1 + e8(α+1)λω(t))‖v‖8α+6
H1(I) + 2C10e

4λ(α+1)(4α+3)
2α+1 ω(t)
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+2C11(1 + e8λω(t))‖v‖6H1(I) + 2C12e
12λω(t) + C15. (2.28)

On the other hand, by (2.8) we get

1

2

d

dt
‖vx‖2L2(I) + b‖vxx‖2L2(I) + d‖vx‖2L2(I) = −e−λω(t)

∫
I

c(t)uvxxdx

≤ 1

2
b‖vxx‖2L2(I) + C16e

−2λω(t)‖u‖2L2(I). (2.29)

By (2.27) we obtain

C16e
−2λω(t)‖u‖2L2(I) ≤

1

8
δ‖u‖2H1(I) + C17e

−3λω(t)‖u‖2L1(I). (2.30)

By (2.11) and (2.29)-(2.30) we get

d

dt
‖vx‖2L2(I) + b‖vxx‖2L2(I) + 2d‖vx‖2L2(I) ≤

1

4
δ‖u‖2H1(I) + C18e

−3λω(t). (2.31)

It follows from (2) and (2.31) that

d

dt
(‖u‖2L2(I) + ‖vx‖2L2(I)) + 2d(‖u‖2L2(I) + ‖vx‖2L2(I)) + a‖ux‖2L2(I) + b‖vxx‖2L2(I)

≤ 7

8
δ‖u‖2H1(I) +

1

2
δ‖vxx‖2L2(I)

+2C9(1 + e8(α+1)λω(t))‖v‖8α+6
H1(I) + 2C10e

4λ(α+1)(4α+3)
2α+1 ω(t)

+2C11(1 + e8λω(t))‖v‖6H1(I) + 2C12e
12λω(t) + C18e

−3λω(t) + C15. (2.32)

By (2.23) and (2) we find that

d

dt
(‖u‖2L2(I) + ‖vx‖2L2(I)) + d(‖u‖2L2(I) + ‖vx‖2L2(I)) +

1

2
a‖ux‖2L2(I) +

1

2
b‖vxx‖2L2(I)

≤ 2C9(1 + e8(α+1)λω(t))‖v‖8α+6
H1(I) + 2C10e

4λ(α+1)(4α+3)
2α+1 ω(t)

+2C11(1 + e8λω(t))‖v‖6H1(I) + 2C12e
12λω(t) + C18e

−3λω(t) + C15. (2.33)

By (2) and Lemma 2.2 we infer that there exists C19 = C19(τ, T, ω,R, λ0) > 0 such
that for all t ∈ [τ, τ + T ] and 0 < λ ≤ λ0,

d

dt
(‖u‖2L2(I) + ‖vx‖2L2(I)) +

1

2
min{a, b}(‖ux‖2L2(I) + ‖vxx‖2L2(I)) ≤ C19,

from which (2.18) follows.

As an immediate consequence of Lemmas 2.1, 2.2 and 2.3 we obtain the global
existence of solutions for problem (2.7)-(2.10).

Corollary 2.4. Suppose (2.5) holds true. Let τ ∈ R, ω ∈ Ω and (u0, v0) ∈ L2(I)×
H1(I) with u0 ≥ 0 and v0 ≥ 0. Then system (2.7)-(2.10) possesses a unique
nonnegative solution (u, v) = (u(t, τ, ω, u0), v(t, τ, ω, v0)) defined for all t ≥ τ with
the properties

u ∈ C([τ,∞), L2(I))
⋂
L2
loc((τ,∞), H1(I)),

du

dt
∈ L2

loc((τ,∞), H−1(I))

and

v ∈ C([τ,∞), H1(I))
⋂
L2
loc((τ,∞), H2(I)) and

dv

dt
∈ L2

loc((τ,∞), L2(I)).

In addition, (u(t), v(t)) is continuous with respect to initial data (u0, v0) in ∈ L2(I)×
H1(I) and is measurable with respect to ω ∈ Ω for every t ≥ τ .
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Next, we establish the uniform estimates of solutions of problem (2.7)-(2.10) in
H1(I)×H2(I).

Lemma 2.5. Suppose (2.5) holds true. Let λ0 > 0, T > 0, τ ∈ R, ω ∈ Ω and
(u0, v0) ∈ L2(I)×H1(I) with u0 ≥ 0, v0 ≥ 0, and ‖u0‖L2(I) +‖v0‖H1 ≤ R for some
R > 0. Then there exists a positive number M3 = M3(τ, T, ω,R, λ0) such that the
solution (u, v) of problem (2.7)-(2.10) satisfies, for all 0 < λ ≤ λ0,

‖u(t, τ, ω, u0)‖2H1(I)+‖v(t, τ, ω, u0)‖2H2(I) ≤M3+M3(t−τ)−1 for all t ∈ (τ, τ+T ].

(2.34)

Proof. By (2.8) we get

1

2

d

dt
‖vxx‖2L2(I) + b‖vxxx‖2L2(I) + d‖vxx‖2L2(I) = −c(t)e−λω(t)

∫
I

uxvxxxdx

≤ 1

2
b‖vxxx‖2L2(I) +

1

2b
c2(t)e−2λω(t)‖ux‖2L2(I)

which implies

d

dt
‖vxx‖2L2(I) + b‖vxxx‖2L2(I) + 2d‖vxx‖2L2(I) ≤

1

b
c2(t)e−2λω(t)‖ux‖2L2(I). (2.35)

By (2.7) we obtain

1

2

d

dt
‖ux‖2L2(I) + a‖uxx‖2L2(I) =

∫
I

uxx
∂

∂x

(
u
∂

∂x
f(eλω(t)v)

)
≤ 1

2
a‖uxx‖2L2(I) +

1

2a

∫
I

(
ux

∂

∂x
f(eλω(t)v) + u

∂2

∂x2
f(eλω(t)v)

)2

dx

which implies
d

dt
‖ux‖2L2(I) + a‖uxx‖2L2(I)

≤ 3

a

∫
I

(
(eλω(t)f ′(eλω(t)v)uxvx)2 + (eλω(t)f ′(eλω(t)v)uvxx)2

)
dx

+
3

a

∫
I

(e2λω(t)f ′′(eλω(t)v)v2
xu)2dx. (2.36)

We now estimate the right-hand side of (2). By (1.6) and Lemma 2.2 we find that
there exists C1 = C1(τ, T, ω,R, λ0) > 0 such that for all 0 < λ ≤ λ0,

‖v(t)‖C(Ī) ≤ C1 for all t ∈ [τ, τ + T ]. (2.37)

By (2.5) and (2.37) we obtain from (2) that, for all 0 < λ ≤ λ0,

d

dt
‖ux‖2L2(I) + a‖uxx‖2L2(I) ≤ C2

∫
I

(
u2
xv

2
x + u2v2

xx + v4
xu

2
)
dx (2.38)

for some C2 = C2(τ, T, ω,R, λ0) > 0. By (1.5) we have

‖ux‖L4(I) ≤ C3‖uxx‖
5
8

L2(I)‖u‖
3
8

L2(I) + C3‖u‖L2(I), (2.39)

and

‖u‖L4(I) ≤ C4‖uxx‖
1
8

L2(I)‖u‖
7
8

L2(I) + C4‖u‖L2(I). (2.40)

By (2.39)-(2.40) and Lemmas 2.2 and 2.3 we obtain

C2

∫
I

u2
xv

2
xdx ≤ C2‖ux‖2L4(I)‖vx‖

2
L4(I)

≤ C5(‖uxx‖
5
4

L2(I)‖u‖
3
4

L2(I) + ‖u‖2L2(I))(‖vxxx‖
1
4

L2(I)‖vx‖
7
4

L2(I) + ‖vx‖2L2(I))
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≤ C6(1+‖uxx‖
5
4

L2(I))(1+‖vxxx‖
1
4

L2(I)) ≤
1

4
a‖uxx‖2L2(I)+

1

4
b‖vxxx‖2L2(I)+C7. (2.41)

Similarly, by (2.39)-(2.40) we can also obtain

C2

∫
I

u2v2
xxdx ≤ C8(1 + ‖uxx‖

1
4

L2(I))(1 + ‖vxxx‖
5
4

L2(I))

≤ 1

4
a‖uxx‖2L2(I) +

1

4
b‖vxxx‖2L2(I) + C9, (2.42)

and by (1.7) and (2.39)-(2.40),

C2

∫
I

v4
xu

2dx ≤ C10‖u‖2L∞(I)‖vx‖
4
L4(I)

≤ C11(1 + ‖ux‖L2(I))(1 + ‖vxxx‖
1
2

L2(I)) ≤ ‖ux‖
2
L2(I) +

1

4
b‖vxxx‖2L2(I) + C12. (2.43)

It follows from (2.38) and (2.41)-(2) that

d

dt
‖ux‖2L2(I) +

1

2
a‖uxx‖2L2(I) ≤

3

4
b‖vxxx‖2L2(I) + ‖ux‖2L2(I) + C13,

which along with (2.35) yields

d

dt
(‖ux‖2L2(I) + ‖vxx‖2L2(I)) +

1

2
a‖uxx‖2L2(I) +

1

4
b‖vxxx‖2L2(I) + 2d‖vxx‖2L2(I)

≤ C14‖ux‖2L2(I) + C13. (2.44)

Let t ∈ (τ, τ + T ] and s ∈ (τ, t). Integrating (2.44) on (s, t) we get

‖ux(t)‖2L2(I) + ‖vxx(t)‖2L2(I)

≤ ‖ux(s)‖2L2(I) + ‖vxx(s)‖2L2(I) + C14

∫ τ+T

τ

‖ux(r)‖2L2(I)dr + C13T.

We now integrate the above with respect to s on (τ, t) to obtain

(t− τ)(‖ux(t)‖2L2(I) + ‖vxx(t)‖2L2(I))

≤
∫ t

τ

(‖ux(s)‖2L2(I) + ‖vxx(s)‖2L2(I))ds+ C14T

∫ τ+T

τ

‖ux(r)‖2L2(I)dr + C13T
2.

≤
∫ τ+T

τ

(‖ux(s)‖2L2(I) + ‖vxx(s)‖2L2(I))ds+ C14T

∫ τ+T

τ

‖ux(r)‖2L2(I)dr + C13T
2,

which along with Lemmas 2.2 and 2.3 yields the desired estimates.

As a consequence of Lemma 2.5 and the compactness of Sobolev embedding
H1(I)×H2(I) ↪→ L2(I)×H1(I), we obtain the compactness of the solution operator
of problem (2.7)-(2.10).

Corollary 2.6. Suppose (2.5) holds true. Then given τ ∈ R, t > τ , ω ∈ Ω, and
a bounded sequence {(u0,n, v0,n)}∞n=1 of nonnegative initial data in L2(I) ×H1(I),
the sequence {(u(t, τ, ω, u0,n), v(t, τ, ω, v0,n))}∞n=1 of the solutions of problem (2.7)-
(2.10) has a convergent subsequence in L2(I)×H1(I).
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Now by the solution (u, v) of (2.7)-(2.10), we can get a solution (u, ρ) for the
stochastic system (2.1)-(2.4) where ρ is given by

ρ(t, τ, ω, ρ0) = eλω(t)v(t, τ, ω, v0) (2.45)

with ρ0 = eλω(τ)v0. By Corollary 2.4 we find that for every (u0, ρ0) ∈ L2(I)×H1(I)
with u0 ≥ 0 and ρ0 ≥ 0, system (2.1)-(2.4) has a unique nonnegative solution
(u(t, τ, ω, u0), ρ(t, τ, ω, ρ0)) in L2(I) × H1(I) which is defined for all t ≥ τ . This
solution is both continuous in t ∈ [τ,∞) and in (u0, ρ0) ∈ L2(I)×H1(I). Moreover,
(u(t, τ, ·, u0), ρ(t, τ, ·, ρ0)) : Ω → L2(I) × H1(I) is measurable. Let γ be a fixed
positive number, and define a subset of L2(I)×H1(I) by

H = {(u, ρ) ∈ L2(I)×H1(I) : u ≥ 0, ρ ≥ 0,

∫
I

u(x)dx ≤ γ}.

Then we see that H is invariant under the solution operator of system (2.1)-(2.4).
We now define a continuous cocycle in H for (2.1)-(2.4). Let Φ : R+×R×Ω×H

→ H be a mapping given by, for every t ∈ R+, τ ∈ R, ω ∈ Ω and (u0, ρ0) ∈ H,

Φ(t, τ, ω, (u0, ρ0)) = (u(t+ τ, τ, θ−τω, u0), ρ(t+ τ, τ, θ−τω, ρ0))

= (u(t+ τ, τ, θ−τω, u0), eλ(ω(t)−ω(−τ))v(t+ τ, τ, θ−τω, v0)) (2.46)

where v0 = eλω(−τ)ρ0. We will investigate the tempered random attractors for Φ in
H.

Let D = {D(τ, ω) ⊆ H : τ ∈ R, ω ∈ Ω} be a family of bounded nonempty subsets
of H. Such a family D is called tempered if for every C > 0, τ ∈ R and ω ∈ Ω,

lim
t→−∞

eCt‖D(τ + t, θtω)‖ = 0,

where the norm ‖D‖ of a set D in H is given by ‖D‖ = sup
(u,ρ)∈D

‖(u, ρ)‖L2(I)×H1(I).

We will use D to denote the collection of all tempered families of bounded nonempty
subsets of H:

D = {D = {D(τ, ω) ⊆ H : τ ∈ R, ω ∈ Ω} : D is tempered in H}.

3. Uniform estimates. In this section, we derive uniform estimates for the cocycle
Φ defined by (2). These estimates will be used to construct tempered pullback
absorbing sets for system (2.1)-(2.4). We start with the uniform estimates on the
component v of problem (2.7)-(2.10) in H1(I).

Lemma 3.1. Suppose (2.5) holds true. Then for every λ0 > 0, σ ∈ R, τ ∈ R,
ω ∈ Ω and D ∈ D, there exists T1 = T1(τ, ω,D, λ0, σ) > 0 such that for all t ≥ T1

and 0 < λ ≤ λ0, the solution (u, v) of problem (2.7)-(2.10) satisfies

‖v(σ, τ − t, θ−τω, v0)‖H1(I) ≤ L1 +L1

∫ σ−τ

−∞
(σ− τ − s)− 7

8 ed(s−σ+τ)eλ(ω(−τ)−ω(s))ds,

(3.1)
where (u0, e

λ(ω(−t)−ω(−τ))v0) ∈ D(τ − t, θ−tω), and L1 is a positive constant inde-
pendent of τ , ω, D and λ.

Proof. By replacing t by σ, τ by τ − t and ω by θ−τω in (2.17) we obtain, for all
0 < λ ≤ λ0,

‖A 1
2 v(σ, τ − t, θ−τω, v0)‖L2(I) ≤ C1e

−d(σ−τ+t)‖v0‖H1(I)

+C3‖u0‖L1(I)

∫ σ

τ−t
(σ − s)− 7

8 e−d(σ−s)eλ(ω(−τ)−ω(s−τ))ds
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≤ C1e
−d(σ−τ)+λω(−τ)e−dt−λω(−t)‖D(τ − t, θ−τω)‖

+C3γ

∫ σ−τ

−∞
(σ − τ − s)− 7

8 ed(s−σ+τ)eλ(ω(−τ)−ω(s))ds

≤ C1e
−d(σ−τ)+λ0|ω(−τ)|e−dt+λ0|ω(−t)|‖D(τ − t, θ−τω)‖

+ C3γ

∫ σ−τ

−∞
(σ − τ − s)− 7

8 ed(s−σ+τ)eλ(ω(−τ)−ω(s))ds. (3.2)

Since D ∈ D, we find that

lim
t→∞

C1e
−d(σ−τ)+λ0|ω(−τ)|e−dt+λ0|ω(−t)|‖D(τ − t, θ−τω)‖ = 0,

and hence there exists T1 = T1(τ, ω,D, λ0, σ) > 0 such that for all t ≥ T1 and
0 < λ ≤ λ0,

C1e
−d(σ−τ)+λ0|ω(−τ)|e−dt+λ0|ω(−t)|‖D(τ − t, θ−τω)‖ ≤ 1. (3.3)

Then (3.1) follows from (3.2)-(3.3).

We now establish the uniform estimates on the component u of problem (2.7)-
(2.10) in L2(I).

Lemma 3.2. Suppose (2.5) holds true. Then for every λ0 > 0, σ ∈ R, τ ∈ R,
ω ∈ Ω and D ∈ D, there exists T2 = T2(τ, ω,D, λ0, σ) > 0 such that for all t ≥ T2

and 0 < λ ≤ λ0, the solution (u, v) of problem (2.7)-(2.10) satisfies

‖u(σ, τ − t, θ−τω, u0)‖2L2(I) ≤ L2 + L2

∫ σ

−∞
ed(r−σ)φλ(r, θ−τω)dr

+ L2

∫ σ

−∞
ed(r−σ)

(∫ ∞
0

s−
7
8 e−dseλ(ω(−τ)−ω(r−τ−s))ds

)16α+12

dr, (3.4)

where (u0, e
λ(ω(−t)−ω(−τ))v0) ∈ D(τ−t, θ−tω), L2 is a positive constant independent

of τ , ω, D and λ, and

φλ(r, ω) = e16(α+1)λω(r) + e
4λ(α+1)(4α+3)

2α+1 ω(r) + e
λ(8α+6)

α ω(r) + e12λω(r) + e−3λω(r) + 1.
(3.5)

Proof. By (2) we find

d

dt
(‖u‖2L2(I) + ‖vx‖2L2(I)) + d(‖u‖2L2(I) + ‖vx‖2L2(I))

≤ 2C9(1 + e8(α+1)λω(t))‖v‖8α+6
H1(I) + 2C10e

4λ(α+1)(4α+3)
2α+1 ω(t)

+2C11(1 + e8λω(t))‖v‖6H1(I) + 2C12e
12λω(t) + C18e

−3λω(t) + C15

≤ C19(1 + e8(α+1)λω(t))‖v‖8α+6
H1(I) + 2C10e

4λ(α+1)(4α+3)
2α+1 ω(t)

+C20(1 + e
λ(8α+6)

α ω(t)) + 2C12e
12λω(t) + C18e

−3λω(t) + C15.

≤ ‖v‖16α+12
H1(I) + C21e

16(α+1)λω(t) + C21e
4λ(α+1)(4α+3)

2α+1 ω(t)

+ C21e
λ(8α+6)

α ω(t) + C21e
12λω(t) + C21e

−3λω(t) + C21. (3.6)

By (3.5) and (3.6) we get

d

dt
(‖u‖2L2(I) +‖vx‖2L2(I))+d(‖u‖2L2(I) +‖vx‖2L2(I)) ≤ ‖v‖

16α+12
H1(I) +C21φλ(t, ω). (3.7)
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Multiplying (3.7) by edt, and then integrating on (τ − t, σ) we get

‖u(σ, τ − t, ω, u0)‖2L2(I) + ‖vx(σ, τ − t, ω, v0)‖2L2(I)

≤ ed(τ−t−σ)(‖u0‖2L2(I) + ‖v0‖2H1(I)) +

∫ σ

τ−t
ed(r−σ)‖v(r, τ − t, ω, v0)‖16α+12

H1(I) dr

+ C21

∫ σ

τ−t
ed(r−σ)φλ(r, ω)dr. (3.8)

Replacing ω by θ−τω in (3.8) we obtain that for every σ ∈ R, τ ∈ R, ω ∈ Ω and
τ − t ≤ σ,

‖u(σ, τ − t, θ−τω, u0)‖2L2(I) + ‖vx(σ, τ − t, θ−τω, v0)‖2L2(I)

≤ ed(τ−t−σ)(‖u0‖2L2(I) + ‖v0‖2H1(I)) +

∫ σ

τ−t
ed(r−σ)‖v(r, τ − t, θ−τω, v0)‖16α+12

H1(I) dr

+ C21

∫ σ

τ−t
ed(r−σ)φλ(r, θ−τω)dr. (3.9)

Since (u0, e
λ(ω(−t)−ω(−τ))v0) ∈ D(τ − t, θ−tω) and D ∈ D, for the first term on the

right-hand side of (3.9) we have

ed(τ−t−σ)(‖u0‖2L2(I) +‖v0‖2H1(I)) ≤ e
d(τ−t−σ)(1+e2λ(ω(−τ)−ω(−t)))‖D(τ− t, θ−tω)‖2

≤ ed(τ−t−σ)(1 + e2λ0(|ω(−τ)|+|ω(−t)|))‖D(τ − t, θ−tω)‖2 → 0 as t→∞.
Therefore, there exists T2 = T2(τ, ω,D, λ0, σ) > 0 such that for all t ≥ T2 and
0 < λ ≤ λ0,

ed(τ−t−σ)(‖u0‖2L2(I) + ‖v0‖2H1(I)) ≤ 1. (3.10)

Similarly, we have

lim
t→∞

edτ+λ0|ω(−τ)|eλ0|ω(−t)|e−
dt

32α+24 ‖D(τ − t, θ−τω)‖ = 0,

and hence there exists T3 = T3(τ, ω,D, λ0) > 0 such that for all t ≥ T3,

edτ+λ0|ω(−τ)|eλ0|ω(−t)|e−
dt

32α+24 ‖D(τ − t, θ−τω)‖ ≤ 1. (3.11)

By (3.2) and (3.11) we get, for all t ≥ T3 and 0 < λ ≤ λ0,

‖v(r, τ − t, θ−τω, v0)‖H1(I)

≤ C22e
−d(r+t)e

dt
32α+24 + C22

∫ r−τ

−∞
(r − τ − s)− 7

8 ed(s−r+τ)eλ(ω(−τ)−ω(s))ds

≤ C22e
−d(r+t)e

dt
32α+24 + C22

∫ ∞
0

s−
7
8 e−dseλ(ω(−τ)−ω(r−τ−s))ds. (3.12)

Let T4 = max{T2, T3}. Then by (3.9), (3.10) and (3.12) we obtain, for all t ≥ T4

and 0 < λ ≤ λ0,

‖u(σ, τ − t, θ−τω, u0)‖2L2(I) + ‖vx(σ, τ − t, θ−τω, v0)‖2L2(I)

≤ 1 + C23e
−dσe

1
2dte−dt(16α+12)

∫ σ

τ−t
e−dr(16α+11)dr

+C23e
−dσ

∫ σ

τ−t
edr
(∫ ∞

0

s−
7
8 e−dseλ(ω(−τ)−ω(r−τ−s))ds

)16α+12

dr

+C21

∫ σ

τ−t
ed(r−σ)φλ(r, θ−τω)dr
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≤ 1 +
C23

d(16α+ 11)
e−dσe−dτ(16α+11)e−

1
2dt

+C23e
−dσ

∫ σ

τ−t
edr
(∫ ∞

0

s−
7
8 e−dseλ(ω(−τ)−ω(r−τ−s))ds

)16α+12

dr

+ C21

∫ σ

τ−t
ed(r−σ)φλ(r, θ−τω)dr. (3.13)

Note that there exists T5 = T5(τ, σ) > 0 such that for all t ≥ T5,

C23

d(16α+ 11)
e−dσe−dτ(16α+11)e−

1
2dt ≤ 1,

which along with (3.13) shows that for all t ≥ max{T4, T5} and 0 < λ ≤ λ0,

‖u(σ, τ − t, θ−τω, u0)‖2L2(I) + ‖vx(σ, τ − t, θ−τω, v0)‖2L2(I)

≤ 2 + C21

∫ σ

τ−t
ed(r−σ)φλ(r, θ−τω)dr

+C23e
−dσ

∫ σ

τ−t
edr
(∫ ∞

0

s−
7
8 e−dseλ(ω(−τ)−ω(r−τ−s))ds

)16α+12

dr

≤ 2 + C21

∫ σ

−∞
ed(r−σ)φλ(r, θ−τω)dr

+C23e
−dσ

∫ σ

−∞
edr
(∫ ∞

0

s−
7
8 e−dseλ(ω(−τ)−ω(r−τ−s))ds

)16α+12

dr.

This completes the proof.

For later purpose, we prove the following compactness of solutions of problem
(2.7)-(2.10).

Lemma 3.3. Suppose (2.5) holds true. Let τ ∈ R, ω ∈ Ω, tn → ∞ and (u0,n,

eλ(ω(−tn)−ω(−τ))v0,n) ∈ D(τ − tn, θ−tnω) for some D ∈ D. Then the sequence of the
solutions of problem (2.7)-(2.10),

{(u(τ, τ − tn, θ−τω, u0,n), v(τ, τ − tn, θ−τω, v0,n))}∞n=1,

has a convergent subsequence in L2(I)×H1(I).

Proof. Since tn → ∞ and (u0,n, e
λ(ω(−tn)−ω(−τ))v0,n) ∈ D(τ − tn, θ−tnω) for some

D ∈ D, by Lemmas 3.1 and (3.2) with σ = τ − 1, we find that there exists N =
N(τ, ω,D, λ) > 0 such that for all n ≥ N ,

‖u(τ −1, τ − tn, θ−τω, u0,n)‖2L2(I) +‖v(τ −1, τ − tn, θ−τω, v0,n)‖2H1(I) ≤ C1, (3.14)

where C1 = C1(τ, ω, λ) > 0. Note that

(u(τ, τ − tn, θ−τω, u0,n), v(τ, τ − tn, θ−τω, v0,n))

= (u(τ, τ − 1, θ−τω, u(τ − 1, τ − tn, θ−τω, u0,n)),

v(τ, τ − 1, θ−τω, v(τ − 1, τ − tn, θ−τω, v0,n))). (3.15)

Then by (3.14)-(3) and Corollary 2.6 we infer that the sequence {(u(τ, τ − tn, θ−τω,
u0,n), v(τ, τ − tn, θ−τω, v0,n))}∞n=1 has a convergent subsequence in L2(I)×H1(I).
This completes the proof.
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4. Existence of tempered random attractors. This section is devoted to the
existence of tempered random attractors for system (2.1)-(2.4). We first present
the existence of pullback absorbing sets for the system in L2(I)×H1(I).

Lemma 4.1. Suppose (2.5) holds true. Given λ > 0, τ ∈ R and ω ∈ Ω, let

Kλ(τ, ω) = {(u, ρ) ∈ H : ‖(u, ρ)‖2L2(I)×H1(I) ≤ Lλ(τ, ω)}, (4.1)

where Lλ(τ, ω) is given by

Lλ(τ, ω) = L3(1 + e−2λω(−τ)) + L3

(∫ ∞
0

s−
7
8 e−dse−λω(−s)ds

)2

+ L3

∫ 0

−∞
edr
(∫ ∞

0

s−
7
8 e−dseλ(ω(−τ)−ω(r−s))ds

)16α+12

dr

+L3

∫ 0

−∞
edrφλ(r + τ, θ−τω)dr, (4.2)

where L3 is a positive constant independent of τ , ω and λ, and φλ is given by (3.5).
Then Kλ = {Kλ(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D is a closed measurable D-pullback
absorbing set of the cocycle Φ.

Proof. As a first step, we show that Kλ pullback absorbs every D ∈ D. By (2.45)
we have

ρ(τ, τ−t, θ−τω, ρ0) = e−λω(−τ)v(τ, τ−t, θ−τω, v0), ρ0 = eλ(ω(−t)−ω(−τ))v0. (4.3)

Let (u0, ρ0) ∈ D(τ − t, θ−tω). Then by (4.3) we find that (u0, e
λ(ω(−t)−ω(−τ))v0) ∈

D(τ − t, θ−tω). Thus by Lemma 3.1, there exists T1 = T1(τ, ω,D, λ) > 0 such that
for all t ≥ T1,

‖v(τ, τ−t, θ−τω, v0)‖2H1(I) ≤ 2L2
1 +2L2

1

(∫ 0

−∞
(−s)− 7

8 edseλ(ω(−τ)−ω(s))ds

)2

, (4.4)

where L1 is a positive constant independent of τ , ω, D and λ. By (4.4) we get, for
all t ≥ T1,

‖v(τ, τ − t, θ−τω, v0)‖2H1(I) ≤ 2L2
1 + 2L2

1

(∫ ∞
0

s−
7
8 e−dseλ(ω(−τ)−ω(−s))ds

)2

. (4.5)

By (4.3) and (4.5) we obtain, for all t ≥ T1,

‖ρ(τ, τ − t, θ−τω, ρ0)‖2H1(I)

≤ 2L2
1e
−2λω(−τ) + 2L2

1e
−2λω(−τ)

(∫ ∞
0

s−
7
8 e−dseλ(ω(−τ)−ω(−s))ds

)2

. (4.6)

On the other hand, by Lemma 3.2, there exists T2 = T2(τ, ω,D, λ) ≥ T1 such that
for all t ≥ T2,

‖u(τ, τ − t, θ−τω, u0)‖2L2(I) ≤ L2 + L2

∫ 0

−∞
edrφλ(r + τ, θ−τω)dr

+ L2

∫ 0

−∞
edr
(∫ ∞

0

s−
7
8 e−dseλ(ω(−τ)−ω(r−s))ds

)16α+12

dr, (4.7)
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where L2 is a positive constant independent of τ , ω, D and λ, and φλ is given by
(3.5). Let L3 = max{L2, 2L

2
1}. It follows from (4)-(4.7) that for all t ≥ T2 and

(u0, ρ0) ∈ D(τ − t, θ−tω),

‖u(τ, τ − t, θ−τω, u0)‖2L2(I) + ‖ρ(τ, τ − t, θ−τω, ρ0)‖2H1(I) ≤ Lλ(τ, ω),

where Lλ(τ, ω) is given by (4.1). This shows that for all t ≥ T2 and (u0, ρ0) ∈
D(τ − t, θ−tω),

(u(τ, τ − t, θ−τω, u0), ρ(τ, τ − t, θ−τω, ρ0)) ∈ Kλ(τ, ω), (4.8)

where Kλ(τ, ω) is given by(4.1). On the other hand, by (2) we have

Φ(t, τ − t, θ−tω, (u0, ρ0)) = (u(τ, τ − t, θ−τω, u0), ρ(τ, τ − t, θ−τω, ρ0)). (4.9)

By (4.8)-(4.9) we find that Φ(t, τ−t, θ−tω,D(τ − t, θ−tω)) ⊆ Kλ(τ, ω) for all t ≥ T2,
and hence Kλ pullback absorbs every member D of D. Since Lλ(τ, ω) is measurable
in ω ∈ Ω, we see that Kλ(τ, ω) is a closed measurable random set in H.

It remains to show Kλ is tempered, i.e., Kλ ∈ D. Replacing τ by τ − t and ω by
θ−tω in (4.1), after simple calculations, we get

Lλ(τ − t, θ−tω) = L3(1 + e−2λ(ω(−τ)−ω(−t)))

+L3

(∫ ∞
0

s−
7
8 e−dseλ(ω(−t)−ω(−s−t))ds

)2

+ L3

∫ 0

−∞
edr
(∫ ∞

0

s−
7
8 e−dseλ(ω(−τ)−ω(r−s−t))ds

)16α+12

dr

+L3

∫ 0

−∞
edrφλ(r + τ − t, θ−τω)dr, (4.10)

where φλ(r + τ − t, θ−τω) is given by

φλ(r + τ − t, θ−τω) = e16(α+1)λ(ω(r−t)−ω(−τ)) + e
4λ(α+1)(4α+3)

2α+1 (ω(r−t)−ω(−τ))

+e
λ(8α+6)

α (ω(r−t)−ω(−τ)) + e12λ(ω(r−t)−ω(−τ)) + e−3λ(ω(r−t)−ω(−τ)) + 1.

Let C > 0 be an arbitrary constant. Then we get from (4.1) and (4) that

e−2Ct‖Kλ(τ − t, θ−tω)‖2 = e−2CtLλ(τ − t, θ−tω)

≤ L3e
−2Ct(1 + e−2λ(ω(−τ)−ω(−t))) + L3e

−2Ct

(∫ ∞
0

s−
7
8 e−dseλ(ω(−t)−ω(−s−t))ds

)2

+ L3e
−2Ct

∫ 0

−∞
edr
(∫ ∞

0

s−
7
8 e−dseλ(ω(−τ)−ω(r−s−t))ds

)16α+12

dr

+L3e
−2Ct

∫ 0

−∞
edrφλ(r + τ − t, θ−τω)dr. (4.11)

Next, we show that the right-hand side of (4) converges to zero as t→∞. Note
that for every ε > 0 and ω ∈ Ω, there exists T0 = T0(ε, ω) > 0 such that for all
ξ ≥ T0,

|ω(−ξ)| ≤ εξ. (4.12)

Let

ε = min{ d
2λ
,

d

λ(32α+ 24)
,

C

λ(16α+ 12)
}. (4.13)

Now for t ≥ T0, s ≥ 0 and r ≤ 0, we have t + s − r ≥ T0, and hence by (4.12) for
ξ = t+ s− r,

|ω(r − s− t)| ≤ ε(t+ s− r). (4.14)
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By (4.14) we have the following estimate for the third term on the right-hand side
of (4),

L3e
−2Ct

∫ 0

−∞
edr
(∫ ∞

0

s−
7
8 e−dseλ(ω(−τ)−ω(r−s−t))ds

)16α+12

dr

≤ L3e
−2Ct

∫ 0

−∞
edr
(∫ ∞

0

s−
7
8 e−dseλω(−τ)eλε(s+t−r)ds

)16α+12

dr

≤ L3e
(16α+12)λω(−τ)e−2Ct

(∫ ∞
0

s−
7
8 e−dseλεsds

)16α+12 ∫ 0

−∞
edre(16α+12)λε(t−r)dr

which along with (4.13) implies

L3e
−2Ct

∫ 0

−∞
edr
(∫ ∞

0

s−
7
8 e−dseλ(ω(−τ)−ω(r−s−t))ds

)16α+12

dr

≤ L3e
(16α+12)λω(−τ)e−Ct

(∫ ∞
0

s−
7
8 e−

1
2dsds

)16α+12 ∫ 0

−∞
e

1
2drdr

≤ 2L3d
−1e(16α+12)λω(−τ)e−Ct

(∫ ∞
0

s−
7
8 e−

1
2dsds

)16α+12

.

Therefore, we obtain that for any C > 0,

lim
t→∞

L3e
−2Ct

∫ 0

−∞
edr
(∫ ∞

0

s−
7
8 e−dseλ(ω(−τ)−ω(r−s−t))ds

)16α+12

dr = 0. (4.15)

Similarly, by (4.13), one can verify that the other terms on the right-hand side of
(4) also converge to zero as t→∞, which together with (4) and (4.15) yields

lim
t→∞

e−2Ct‖Kλ(τ − t, θ−tω)‖2 = 0.

In other words, K ∈ D. This completes the proof.

Next, we prove the D-pullback asymptotic compactness of Φ in H.

Lemma 4.2. Suppose (2.5) holds true. Then for every λ > 0, τ ∈ R, ω ∈ Ω and
D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, the sequence Φ(tn, τ − tn, θ−tnω, (u0,n, ρ0,n))
has a convergent subsequence in H whenever tn → ∞ and (u0,n, ρ0,n) ∈ D(τ −
tn, θ−tnω).

Proof. By (4.3) we have

ρ(τ, τ−tn, θ−τω, ρ0,n) = e−λω(−τ)v(τ, τ−tn, θ−τω, v0,n), ρ0,n = eλ(ω(−tn)−ω(−τ))v0,n.
(4.16)

Since (u0,n, ρ0,n) ∈ D(τ − tn, θ−tnω), by (4.16) we find that (u0,n, e
λ(ω(−tn)−ω(−τ))

v0,n) ∈ D(τ − tn, θ−tnω). Therefore, by Lemma 3.3 we know that the sequence

(u(τ, τ − tn, θ−τω, u0,n), v(τ, τ − tn, θ−τω, v0,n))

has a convergent subsequence in L2(I)×H1(I), which along with (4.16) show that
the sequence

(u(τ, τ − tn, θ−τω, u0,n), ρ(τ, τ − tn, θ−τω, ρ0,n))

has a convergent subsequence in L2(I) × H1(I). Then by (4.9) we conclude that
Φ(tn, τ − tn, θ−tnω, (u0,n, ρ0,n)) has a convergent subsequence in H.

We are now ready to present the main result of this section as given below.
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Theorem 4.3. Suppose (2.5) holds true. Then the cocycle Φ of problem (2.1)-(2.4)
has a unique D-pullback attractor A = {A(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D in H. If, in
addition, the function c : R→ R+ is periodic with period T > 0, then the attractor
A is also periodic with period T , i.e., A(τ + T, ω) = A(τ, ω) for all τ ∈ R and
ω ∈ Ω.

Proof. By Lemmas 4.1 and 4.2, we obtain the existence and uniqueness of the D-
pullback attractor A immediately from [38, 40]. If the function c : R → R+ is
periodic with period T > 0, then so is the cocycle Φ, i.e., Φ(t, τ + T, ω, (u0, ρ0)) =
Φ(t, τ, ω, (u0, ρ0)) for all t ∈ R+, τ ∈ R, ω ∈ Ω and (u0, ρ0) ∈ H. Then the
T -periodicity of A follows from Proposition 3.2 in [38].

5. Convergence of tempered random attractors. In this section, we investi-
gate the limiting behavior of the solutions of the stochastic system (2.1)-(2.4) as
the intensity λ of noise approaches zero. We will show that the D-pullback random
attractors of the stochastic system converge to that of a deterministic system in
terms of the Hausdorff semi-distance in L2(I)×H1(I) as λ→ 0.

To indicate the dependence of solutions on λ, from now on, we write the solution
of problem (2.1)-(2.4) as (uλ, ρλ), and the corresponding cocycle as Φλ. For the
same reason, we write the solution of system (2.7)-(2.10) as (uλ, vλ):

∂uλ
∂t

= a
∂2uλ
∂x2

− ∂

∂x

(
uλ

∂

∂x
f(eλω(t)vλ)

)
, t > τ, (5.1)

∂vλ
∂t

= b
∂2vλ
∂x2

− dvλ + c(t)e−λω(t)uλ, t > τ, (5.2)

with boundary conditions

∂uλ
∂x

(a1, t) =
∂uλ
∂x

(b1, t) =
∂vλ
∂x

(a1, t) =
∂vλ
∂x

(b1, t) = 0, t > τ, (5.3)

and initial conditions

uλ(x, τ) = u0,λ(x), vλ(x, τ) = v0,λ(x). (5.4)

In the limiting case λ = 0, the stochastic system (2.1)-(2.4) becomes a determin-
istic system:

∂u

∂t
= a

∂2u

∂x2
− ∂

∂x

(
u
∂

∂x
f(ρ)

)
, (5.5)

∂ρ

∂t
= b

∂2ρ

∂x2
+ c(t)u− dρ, (5.6)

with boundary conditions

∂u

∂x
(a1, t) =

∂u

∂x
(b1, t) =

∂ρ

∂x
(a1, t) =

∂ρ

∂x
(b1, t) = 0, (5.7)

and initial conditions

u(x, τ) = u0(x), ρ(x, τ) = ρ0(x), (5.8)

In the rest of this paper, we always assume λ ∈ [0, 1]. Note that all uniform
estimates obtained in the previous sections are valid for λ = 0. This indicates that
system (5.5)-(5.8) is well-posed in H. Let Φ0 be the corresponding continuous de-
terministic cocycle associated with problem (5.5)-(5.8). Denote by D0 the collection
of tempered families of deterministic nonempty subsets of H, i.e.,

D0 = {D = {D(τ) ⊆ H : τ ∈ R} : lim
t→−∞

eCt‖D(τ + t)‖ = 0, ∀τ ∈ R, ∀ C > 0}.
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By Theorem 4.3, we see that, for every positive λ, Φλ has a unique D-pullback
random attractor Aλ ∈ D. By the same argument, we can prove that Φ0 also has a
unique D0-pullback attractor A0 = {A0(τ) : τ ∈ R} ∈ D0. The goal of this section
is to investigate the relation between Aλ and A0 as λ→ 0.

For 0 < λ ≤ 1, let Kλ be the D-pullback absorbing set of Φλ given by (4.1).
When λ = 0, we define K0 to be the following family of subsets of H:

K0 =
{
K0(τ) = {(u, ρ) ∈ H : ‖(u, ρ)‖2L2(I)×H1(I) ≤ L0(τ)} : τ ∈ R

}
, (5.9)

where L0(τ) is given by

L0(τ) = 2L3 + L3

(∫ ∞
0

s−
7
8 e−dsds

)2

+L3

∫ 0

−∞
edr
(∫ ∞

0

s−
7
8 e−dsds

)16α+12

dr + 6L3

∫ 0

−∞
edrdr, (5.10)

with L3 being the same positive constant as in (4.1). Since Lemma 4.1 is also valid
for λ = 0, we find that K0 is a D0-pullback absorbing set of Φ0 in H. In addition,
by (4.1)-(4.1) and (5.9)-(5), one can verify that for every τ ∈ R and ω ∈ Ω,

lim
λ→0
‖Kλ(τ, ω)‖2 = lim

λ→0
‖Lλ(τ, ω)‖ = ‖L0(τ)‖ = ‖K0(τ)‖2. (5.11)

Given τ ∈ R and ω ∈ Ω, denote by

B(τ, ω) = {(u, ρ) ∈ H : ‖(u, ρ)‖2L2(I)×H1(I) ≤ L(τ, ω)}, (5.12)

where L(τ, ω) is given by

L(τ, ω) = L3(1 + e2|ω(−τ)|) + L3

(∫ ∞
0

s−
7
8 e−dse|ω(−s)|ds

)2

+L3

∫ 0

−∞
edr
(∫ ∞

0

s−
7
8 e−dse|ω(−τ)|+|ω(r−s)|ds

)16α+12

dr

+L3

∫ 0

−∞
edrφ(r + τ, θ−τω)dr, (5.13)

and φ(r + τ, θ−τω) is given by

φ(r + τ, θ−τω) = e16(α+1)(|ω(r)|+|ω(−τ)|) + e
4(α+1)(4α+3)

2α+1 (|ω(r)|+|ω(−τ)|)

+e
8α+6
α (|ω(r)|+|ω(−τ)|) + e12(|ω(r)|+|ω(−τ)|) + e3(|ω(r)|+|ω(−τ)|) + 1.

By (4.1)-(4.1) and (5.12)-(5) we see that Kλ(τ, ω) ⊆ B(τ, ω) for all λ ∈ (0, 1], τ ∈ R
and ω ∈ Ω. Therefore, for every τ ∈ R and ω ∈ Ω,⋃

0<λ≤1

Aλ(τ, ω) ⊆
⋃

0<λ≤1

Kλ(τ, ω) ⊆ B(τ, ω). (5.14)

On the other hand, by (5.12)-(5) and Lemma 2.5 we infer that there exists a
positive constant C1 = C1(τ, ω) (independent of λ) such that for all 0 < λ ≤ 1 and
(u0, ρ0) ∈ B(τ − 1, θ−1ω), the solutions of system (5.1)-(5.4) satisfy

‖(uλ(τ, τ − 1, θ−τω, u0), vλ(τ, τ − 1, θ−τω, v0))‖2H1(I)×H2(I) ≤ C1, (5.15)

where v0 = eλ(ω(−τ)−ω(−1))ρ0. By (4.3) and (5.15) we get, for all 0 < λ ≤ 1 and for
all (u0, ρ0) ∈ B(τ − 1, θ−1ω)

‖(uλ(τ, τ − 1, θ−τω, u0), ρλ(τ, τ − 1, θ−τω, ρ0))‖2H1(I)×H2(I) ≤ C1(1 + e2|ω(−τ)|).

(5.16)
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By (4.9) and (5.16) we obtain, for all 0 < λ ≤ 1 and for all (u0, ρ0) ∈ B(τ−1, θ−1ω),

‖Φλ(1, τ − 1, θ−1ω, (u0, ρ0))‖2H1(I)×H2(I) ≤ C1(1 + e2|ω(−τ)|). (5.17)

By (5.14) and (5.17) we see that for all 0 < λ ≤ 1 and (u0, v0) ∈ Aλ(τ − 1, θ−1ω),

‖Φλ(1, τ − 1, θ−1ω, (u0, ρ0))‖2H1(I)×H2(I) ≤ C1(1 + e2|ω(−τ)|). (5.18)

By the invariance of Aλ, we have

Φλ(1, τ − 1, θ−1ω,Aλ(τ − 1, θ−1ω)) = Aλ(τ, ω),

which together with (5.18) implies

‖(u, ρ)‖2H1(I)×H2(I) ≤ C1(1 + e2|ω(−τ)|), for all (u, ρ) ∈ Aλ(τ, ω) with 0 < λ ≤ 1.

(5.19)
By (5.19) we find that the set

⋃
0<λ≤1

Aλ(τ, ω) is bounded in H1(I)×H2(I) and

hence precompact in L2(I)×H1(I), which will be used to prove the upper semi-
continuity of Aλ in L2(I)×H1(I) as λ→ 0.

Next, we establish the convergence of solutions of system (2.1)-(2.4) as λ→ 0.

Lemma 5.1. Suppose (2.5) holds true. Let (u0,λ, v0,λ) ∈ H and (u0, ρ0) ∈ H such
that

‖(u0,λ, v0,λ)‖L2(I)×H1(I) ≤ R and ‖(u0, ρ0)‖L2(I)×H1(I) ≤ R,
for some R > 0. Then, for every τ ∈ R, ω ∈ Ω, T > 0 and ε ∈ (0, 1], there exists a
positive number λ0 = λ0(τ, ω, T, ε) such that for all 0 < λ ≤ λ0 and t ∈ [τ, τ + T ],
the solutions of systems (5.1)-(5.4) and (5.5)-(5.8) satisfy

‖uλ(t, τ, ω, u0,λ)− u(t, τ, u0)‖2L2(I) + ‖vλ(t, τ, ω, v0,λ)− ρ(t, τ, ρ0)‖2H1(I)

≤M4(‖u0,λ − u0‖2L2(I) + ‖v0,λ − ρ0‖2H1(I)) + εM5,

where M4 and M5 are positive constants depending on τ, ω, T and R, but indepen-
dent of ε and λ.

Proof. Let κ = uλ − u and η = vλ − ρ. Then by (5.1)-(5.2) and (5.5)-(5.6) we get

∂κ

∂t
= a

∂2κ

∂x2
− ∂

∂x

(
κ
∂

∂x
f(eλω(t)vλ) + u(

∂

∂x
f(eλω(t)vλ)− ∂

∂x
f(ρ))

)
, t > τ,

(5.20)

∂η

∂t
= b

∂2η

∂x2
− dη + c(t)

(
e−λω(t)κ+ (e−λω(t) − 1)u

)
, t > τ, (5.21)

with initial conditions

κ(x, 0) = κ0(x) = u0,λ(x)− u0(x), η(x, 0) = η0(x) = v0,λ(x)− ρ0(x). (5.22)

Given τ ∈ R, ω ∈ Ω, T > 0 and ε ∈ (0, 1], by the continuity of ω, we find that there
exists λ0 = λ0(τ, ω, T, ε) ∈ (0, 1] such that for all λ ∈ (0, λ0] and for all t ∈ [τ, τ+T ],

|eλω(t) − 1|+ |e−λω(t) − 1| < ε. (5.23)

By (5.20) we obtain
1

2

d

dt
‖κ‖2L2(I) + a‖κx‖2L2(I)

=

∫
I

κxκ
∂

∂x
f(eλω(t)vλ)dx+

∫
I

κxu(
∂

∂x
f(eλω(t)vλ)− ∂

∂x
f(ρ))dx. (5.24)
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For the last term on the right-hand side of (5) we have∫
I

κxu

(
∂

∂x
f(eλω(t)vλ)− ∂

∂x
f(ρ)

)
dx

=

∫
I

κxu

(
f ′(eλω(t)vλ)eλω(t) ∂vλ

∂x
− f ′(ρ)ρx

)
dx

=

∫
I

κxu

(
(f ′(eλω(t)vλ)− f ′(ρ))eλω(t) ∂vλ

∂x
+ f ′(ρ)(eλω(t) ∂vλ

∂x
− ρx

)
dx

=

∫
I

κxu

(
f ′′(s)(eλω(t)vλ − ρ)eλω(t) ∂vλ

∂x
+ f ′(ρ)(eλω(t)ηx + (eλω(t) − 1)ρx)

)
dx

=

∫
I

κxu(f ′′(s)(eλω(t)η+ (eλω(t)− 1)ρ)eλω(t) ∂vλ
∂x

+ f ′(ρ)(eλω(t)ηx + (eλω(t)− 1)ρx))

=

∫
I

e2λω(t)f ′′(s)κxuη
∂vλ
∂x

dx+

∫
I

eλω(t)(eλω(t) − 1)f ′′(s)κxuρ
∂vλ
∂x

dx

+

∫
I

eλω(t)f ′(ρ)κxuηxdx+

∫
I

(eλω(t) − 1)f ′(ρ)κxuρxdx. (5.25)

We need to estimate every term on the right-hand side of (5.25). First, by Lemmas
2.2 and 2.3, we find that there exists C1 = C1(τ, ω, T,R) > 0 such that for all
0 < λ ≤ 1 and t ∈ [τ, τ + T ],

‖uλ(t, τ, ω, u0,λ)‖2L2(I) + ‖vλ(t, τ, ω, v0,λ)‖2H1(I) ≤ C1, (5.26)∫ τ+T

τ

(‖uλ(s, τ, ω, u0,λ)‖2H1(I) + ‖vλ(s, τ, ω, v0,λ)‖H2(I))
2ds ≤ C1, (5.27)

‖u(t, τ, u0)‖2L2(I) + ‖ρ(t, τ, ρ0)‖2H1(I) ≤ C1, (5.28)

and ∫ τ+T

τ

(‖u(s, τ, u0)‖2H1(I) + ‖ρ(s, τ, ρ0)‖2H2(I))ds ≤ C1. (5.29)

By (1.6), (5.26) and (5.28) we get, for all 0 < λ ≤ 1 and t ∈ [τ, τ + T ],

‖vλ(t, τ, ω, v0,λ)‖C(Ī) + ‖ρ(t, τ, ω, ρ0)‖C(Ī) ≤ C2, (5.30)

for some C2 = C2(τ, ω, T,R) > 0. By (2.5), (5.26), (5.28) and (5.30), for the first
term on the right-hand side of (5.25) we have, for all 0 < λ ≤ 1 and t ∈ [τ, τ + T ],

|
∫
I

e2λω(t)f ′′(s)κxuη
∂vλ
∂x

dx| ≤ C3

∫
I

|κxuη
∂vλ
∂x
|dx

≤ C3‖κx‖L2(I)‖u‖L4(I)‖
∂vλ
∂x
‖L4(I)‖η‖L∞(I)

≤ C4‖κx‖L2(I)‖u‖
1
4

H1(I)‖u‖
3
4

L2(I)‖
∂vλ
∂x
‖

1
4

H1(I)‖
∂vλ
∂x
‖

3
4

L2(I)‖η‖L∞(I)

≤ C5‖κx‖L2(I)‖u‖
1
4

H1(I)‖
∂vλ
∂x
‖

1
4

H1(I)‖η‖H1(I)

≤ 1

8
a‖κx‖2L2(I) + C6‖u‖

1
2

H1(I)‖
∂vλ
∂x
‖

1
2

H1(I)‖η‖
2
H1(I)

≤ 1

8
a‖κx‖2L2(I) + C7(1 + ‖u‖2H1(I) + ‖vλ‖2H2(I))‖η‖

2
H1(I). (5.31)

Similarly, we can also obtain

|
∫
I

eλω(t)f ′(ρ)κxuηxdx| ≤ C8‖κx‖L2(I)‖u‖L4(I)‖ηx‖L4(I)
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≤ C9‖κx‖L2(I)‖u‖
1
4

H1(I)‖u‖
3
4

L2(I)‖ηx‖
1
4

H1(I)‖ηx‖
3
4

L2(I)

≤ C10‖κx‖L2(I)‖u‖
1
4

H1(I)‖ηx‖
1
4

H1(I)‖ηx‖
3
4

L2(I)

≤ 1

8
a‖κx‖2L2(I) +

1

4
b‖ηxx‖2L2(I) + C11(1 + ‖u‖2H1(I))‖η‖

2
H1(I). (5.32)

For the second term on the right-hand side of (5.25), by (5.23), we get, for all
0 < λ ≤ λ0 and t ∈ [τ, τ + T ],

|
∫
I

eλω(t)(eλω(t)−1)f ′′(s)κxuρ
∂vλ
∂x

dx| ≤ εC12‖κx‖L2(I)‖u‖L4(I)‖
∂vλ
∂x
‖L4(I)‖ρ‖L∞(I)

≤ εC13‖κx‖L2(I)‖u‖
1
4

H1(I)‖u‖
3
4

L2(I)‖
∂vλ
∂x
‖

1
4

H1(I)‖
∂vλ
∂x
‖

3
4

L2(I)‖ρ‖H1(I)

≤ εC14‖κx‖L2(I)‖u‖
1
4

H1(I)‖
∂vλ
∂x
‖

1
4

H1(I)

≤ 1

8
a‖κx‖2L2(I) + εC15(1 + ‖u‖2H1(I) + ‖vλ‖2H2(I)). (5.33)

Similarly, for the last term on the right-hand side of (5.25), by (5.23), we get, for
all 0 < λ ≤ λ0 and t ∈ [τ, τ + T ],

|
∫
I

(eλω(t) − 1)f ′(ρ)κxuρxdx| ≤ εC16‖κx‖L2(I)‖u‖L4(I)‖ρx‖L4(I)

≤ εC17‖κx‖L2(I)‖u‖
1
4

H1(I)‖u‖
3
4

L2(I)‖ρx‖
1
4

H1(I)‖ρx‖
3
4

L2(I)

≤ εC18‖κx‖L2(I)‖u‖
1
4

H1(I)‖ρ‖
1
4

H2(I)

≤ 1

8
a‖κx‖2L2(I) + εC19(1 + ‖u‖2H1(I) + ‖ρ‖2H2(I)). (5.34)

It follows from (5.25), and (5.31)-(5.34) that for all 0 < λ ≤ λ0 and t ∈ [τ, τ + T ],∫
I

κxu

(
∂

∂x
f(eλω(t)vλ)− ∂

∂x
f(ρ)

)
dx ≤ 1

2
a‖κx‖2L2(I) +

1

4
b‖ηxx‖2L2(I)

+ εC20(1 + ‖u‖2H1(I) + ‖ρ‖2H2(I) + ‖vλ‖2H2(I))

+C21(1 + ‖u‖2H1(I) + ‖vλ‖2H2(I))‖η‖
2
H1(I). (5.35)

For the first term on the right-hand side of (5) we have

|
∫
I

κxκ
∂

∂x
f(eλω(t)vλ)dx| = |

∫
I

κxκf
′(eλω(t)vλ)eλω(t) ∂vλ

∂x
dx|

≤ C22‖κx‖L2(I)‖κ‖L2(I)‖
∂vλ
∂x
‖L∞(I)

≤ 1

8
a‖κx‖2L2(I) + C23‖vλ‖2H2(I)‖κ‖

2
L2(I). (5.36)

By (5) and (5)-(5) we obtain that for all 0 < λ ≤ λ0 and t ∈ [τ, τ + T ],

d

dt
‖κ‖2L2(I) +

3

4
a‖κx‖2L2(I)

≤ 1

2
b‖ηxx‖2L2(I) + 2εC20(1 + ‖u‖2H1(I) + ‖ρ‖2H2(I) + ‖vλ‖2H2(I))

+C24(1 + ‖u‖2H1(I) + ‖vλ‖2H2(I))(‖κ‖
2
L2(I) + ‖η‖2H1(I)). (5.37)

On the other hand, by (5.21), (5.23), (5.26)-(5.28) we get

1

2

d

dt
‖η‖2H1(I) + b(‖ηx‖2L2(I) + ‖ηxx‖2L2(I)) + d‖η‖2H1(I)
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= c(t)

∫
I

e−λω(t)κ(η − ηxx)dx+ c(t)

∫
I

(e−λω(t) − 1)u(η − ηxx)dx.

≤ C25‖κ‖L2(I)(‖η‖L2(I) + ‖ηxx‖L2(I)) + εC26‖u‖L2(I)(‖η‖L2(I) + ‖ηxx‖L2(I))

≤ 1

4
b‖ηxx‖2L2(I) + C27(‖κ‖2L2(I) + ‖η‖2L2(I)) + εC28. (5.38)

By (5)-(5.38) we obtain that for all 0 < λ ≤ λ0 and t ∈ [τ, τ + T ],

d

dt
(‖κ‖2L2(I) + ‖η‖2H1(I))

≤ εC29(1 + ‖u‖2H1(I) + ‖ρ‖2H2(I) + ‖vλ‖2H2(I))

+C30(1 + ‖u‖2H1(I) + ‖vλ‖2H2(I))(‖κ‖
2
L2(I) + ‖η‖2H1(I)). (5.39)

Applying Gronwall’s inequality to (5), we obtain, for all 0 < λ ≤ λ0 and t ∈ [τ, τ+T ],

‖κ(t, τ, ω, κ0)‖2L2(I) + ‖η(t, τ, ω, η0)‖2H1(I)

≤ eC30

∫ t
τ

(1+‖u(s,τ,u0)‖2
H1(I)

+‖vλ(s,τ,ω,v0,λ)‖2
H2(I)

)ds
(‖κ0‖2L2(I) + ‖η0‖2H1(I))

+εC29

∫ t

τ

e
C30

∫ t
r

(1+‖u(s,τ,u0)‖2
H1(I)

+‖vλ(s,τ,ω,v0,λ)‖2
H2(I)

)ds
(1 + ‖u(r)‖2H1(I)

+‖ρ(r)‖2H2(I) + ‖vλ(r)‖2H2(I))dr,

which together with (5.27) and (5.29) implies that for all 0 < λ ≤ λ0 and t ∈
[τ, τ + T ],

‖κ(t, τ, ω, κ0)‖2L2(I) + ‖η(t, τ, ω, η0)‖2H1(I) ≤ C31(‖κ0‖2L2(I) + ‖η0‖2H1(I)) + εC32.

(5.40)
By (5.22) and (5.40) we conclude the proof.

We now present the convergence of the solutions of system (2.1)-(2.4) as λ→ 0.

Lemma 5.2. Suppose (2.5) holds true. Let (u0,λ, ρ0,λ) ∈ H and (u0, ρ0) ∈ H such
that

(u0,λ, ρ0,λ)→ (u0, ρ0) in L2(I)×H1(I) as λ→ 0.

Then, for every τ ∈ R, ω ∈ Ω, T > 0 and t ∈ [τ, τ + T ],

(uλ(t, τ, ω, u0,λ), ρλ(t, τ, ω, ρ0,λ))→ (u(t, τ, u0), ρ(t, τ, ρ0)) in L2(I)×H1(I)

as λ→ 0, where (uλ(t, τ, ω, u0,λ), ρλ(t, τ, ω, ρ0,λ)) and (u(t, τ, u0), ρ(t, τ, ρ0)) are the
solutions of system (2.1)-(2.4) and system (5.5)-(5.8), respectively.

Proof. This follows from (2.45) and Lemma 5.1 immediately.

We finally prove the upper semi-continuity of D-pullback random attractors for
the stochastic system (2.1)-(2.4).

Theorem 5.3. Suppose (2.5) holds true. Then for every τ ∈ R and ω ∈ Ω,

lim
λ→0

distL2(I)×H1(I)(Aλ(τ, ω),A0(τ)) = 0. (5.41)

Proof. Based on (5.11), (5.19) and Lemma 5.2, we see that (5.41) follows from
Theorem 3.2 in [39] directly.
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