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Abstract We propose a new mathematical modeling framework based on partial
differential equations to study tumor virotherapy with mediated immunity. The model
incorporates both innate and adaptive immune responses and represents the complex
interaction among tumor cells, oncolytic viruses, and immune systems on a domain
with amovingboundary.Using carefully designed computationalmethods,we conduct
extensive numerical simulation to the model. The results allow us to examine tumor
development under a wide range of settings and provide insight into several important
aspects of the virotherapy, including the dependence of the efficacy on a few key
parameters and the delay in the adaptive immunity. Our findings also suggest possible
ways to improve the virotherapy for tumor treatment.

Keywords Tumorvirotherapy · Innate and adaptive immune responses ·Mathematical
modeling

1 Introduction

Cancer is characterized by abnormal cell growthwithout control. Cancer cells typically
grow and divide rapidly, with a high potential of invading and spreading to other parts
of the body. The causes for cancer are complicated and could involve biological,
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environmental, and genetical factors, as well as related to the age, life style, and health
conditions of individuals. Cancer has long been a leading cause of death in developed
countries. The World Health Organization (WHO) estimates that in 2012, about 14
million new cases of cancer occurred, which led to about 8.2 million deaths (World
Cancer Report 2014a). Meanwhile, there are tremendous financial costs in connection
with cancer, estimated at 1.16 trillion US dollars per year as of 2010 (World Cancer
Report 2014b).

There have been a number of options available for cancer management. Surgery,
the primary method of treatment for most isolated cancers, aims to remove the entire
tumor from the body. However, complete surgical excision is often difficult, with
success mainly for small and localized tumors. The procedure may be impossible for
tumors that either have metastasized to other sites of the body or possess metastatic
potential. Chemotherapy, on the other hand, is the treatment of cancer with one or
more drugs that can kill the tumor cells. Such anticancer drugs typically target cells
that divide rapidly, an essential property of tumor cells, though healthy cells with a
high replacement rate can be potentially harmed. The effectiveness of chemotherapy
thus depends on the type and stage of the cancer, and the toxicity introduced to other
tissues in the body. Radiation therapy, another common approach for treating cancers,
utilizes ionizing radiation in an attempt to damage the genetic materials of tumor cells
and prevent these cells from continuing growth and division. The radiation (inevitably)
injures normal cells and tissues, as a side effect, and it is often used in combinationwith
surgery and/or chemotherapy. Other tumor treatment options include, but not limited
to, hormonal therapy, immunotherapy, angiogenesis inhibitors, and palliative care.

A relatively new, yet propitious, strategy in treating cancer is the virotherapy (Shah
et al. 2003;Marchini et al. 2016), whichmakes use of genetically engineered oncolytic
viruses that are specific to tumor cells. Once entering the tumor (typically through
intralesional injection), the oncolytic viruses infect cancer cells and replicate inside
them, while leaving normal cells and tissues unharmed. Through the lysis of the
infected cells, the viruses spread within the tumor and go on to infect other cancer
cells. Distinct advantages of the virotherapy includes: (1) viruses infect and replicate
in a highly tumor-selective way and thus are relatively non-pathogenic to healthy
tissues; (2) viruses can utilize multiple genetic means to attack tumor cells and cause
cell lysis; (3) viruses can be genetically manipulated to include additional features
for improving safety and efficacy (Chiocca and Rabkin 2014). The therapy has shown
promising results in preclinical tests and clinical trials for a number of tumor types
(Kasuya et al. 2005; Kirn and McCormick 1996; Kirn et al. 1998; Parato et al. 2005).

Importantly, however, the tumor cell oncolysis process induces immune responses
for both the viruses and the tumor: the innate immunity tends to limit virus replication
and/or spread, whereas the adaptive immunity works in a manner against the tumor
(Chiocca and Rabkin 2014; Melcher et al. 2011; Lawler and Chiocca 2015). Thus, the
interactions of oncolytic viruses and the immune systemsmay contribute to therapeutic
outcomes in twoopposite fashions: negatively through the anti-virus immune response,
and positively through the anti-tumor immune response.

Despite the promising future of the virotherapy, our knowledge in the field is still
limited and several challenges remain in current clinical study (Shah et al. 2003;
Lawler and Chiocca 2015; Marchini et al. 2016). For example, what is the relative

123



Mathematical and Computational Modeling for Tumor…

contribution of direct viral oncolysis and indirect immune suppression to the overall
therapeutic efficacy? How to effectively combine the oncolysis and the virus-mediated
immunity, and how to strategicallymanipulate the balance between anti-virus and anti-
tumor immune responses? Meanwhile, genetically reprogramming the viruses so as
to improve tumor cell oncolysis, while provoking robust and long-lasting anti-tumor
immunity, will be particularly important for the success of the therapy (Woller et al.
2014). In addition, the mechanisms underlying tumor sensitivity and resistance under
the therapy are unclear at present and demand further investigation.

Mathematical modeling, analysis, and simulation, as a power means of theoretical
research, have long provided useful insight into the complications of tumor growth
and the effectiveness of various tumor treatments. Such findings can offer potentially
critical guidelines in the design, validation, and improvement in cancer management
strategies. Recent reviews on mathematical tumor modeling can be found in Wodarz
and Komarova (2005), Friedman (2007), Lowengrub et al. (2010), Araujo and McEl-
wain (2004), and representative work in the field can be found at the references therein.

In particular, a number ofmathematical studies have been devoted to the virotherapy
and its impact on tumor growth.Wodarz (2001) and Novozhilov et al. (2006) proposed
ordinary differential equation (ODE)-basedmodels,with two compartments represent-
ing the infected and uninfected tumor cell populations. Each cell population is assumed
to grow in a logistic fashion, and there is no separate equation for viral dynamics.Karev
et al. (2006) extended these models to a more general differential equation modeling
framework, with an emphasis on tumor cell heterogeneity. Tian (2011) analyzed the
interaction between tumor cells and viruses, also using an ODEmodel, and focused on
the bifurcation study of the virus replicability that is measured by the burst size. Wu
et al. (2001) formulated amodel using a system of partial differential equations (PDEs)
and compared the evolution of a tumor under different initial conditions that resulted
from three virus-injection strategies. Friedman et al. (2005) proposed a PDE-based
model to investigate tumor virotherapy with host immunity. Their model, however,
only considered the innate immune response anddid not include the adaptive immunity.

A goal of the present paper is to establish a new mathematical and computational
modeling framework for tumor virotherapy that can describe the complex interaction
among tumor cells, oncolytic viruses, and immune systems, and that can incorporate
both innate and adaptive immune responses. To that end, we construct a reaction–
convection–diffusion system, with the motion of cells represented by a convection
process and that of viruses represented by a diffusion process. The cell–virus inter-
action follows an ‘epidemic’ route: the viruses work as the pathogen that attack and
infect the normal (or, susceptible) tumor cells. The infected tumor cells stimulate
immune responses, both for the anti-virus innate immunity and the anti-tumor adap-
tive immunity. Meanwhile, new viruses are generated and spread through the lysis of
the infected tumor cells and continue infecting other tumor cells. Most importantly,
our model contains a moving boundary that explicitly describes the change of the
tumor size with time.

The strongly nonlinear PDE system and the presence of an unknownmoving bound-
ary make our model analytically intractable. Nevertheless, using carefully designed
computational methods that ensure high accuracy and robust numerical stability, we
are able to conduct an extensive numerical study. In particular, we have investigated
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the growth pattern of the tumor, which is a direct indication for the efficacy of the
tumor therapy, under a wide range of settings that include variations of several key
parameters and comparisons of tumor growth with and without delay in the adaptive
immunity, as well as different types of viral dose administrations.

The remainder of this paper is organized as follows. In Sect. 2, we present details of
our mathematical model, together with useful notations and necessary assumptions. In
Sect. 3, we conduct numerical simulation, present representative results for a number
of scenarios, and explain the biological relevance of our findings. Finally, we conclude
the paper with some discussion in Sect. 4.

2 Mathematical Formulation

We first present our mathematical model that describes the interaction among tumor
cells, oncolytic viruses, and immune responses, and the growth of the tumor that results
from such interaction.

We consider a radially symmetric tumor. Let t denote the time and ρ denote the
spatial distance measured from the center of the tumor. Let also R(t) be the moving
boundary of the tumor (that is changing with time). In addition, we define

X (ρ, t) = number density of tumor cells not yet infected by the viruses;
Y (ρ, t) = number density of tumor cells already infected by the viruses;
Z1(ρ, t) = number density of innate immune cells;
Z2(ρ, t) = number density of adaptive immune cells;
V (ρ, t) = number density of viruses;
N (ρ, t) = number density of dead tumor cells;
U (ρ, t) = radial velocity of the tumor cells.

We assume that all the above mentioned cells have the same size and are uniformly
distributed in the tumor. We also assume that the total cell density is a constant, i.e.,

X + Y + Z1 + Z2 + N = θ = Const. (1)

where θ ≈ 106 cells mm−3 (Friedman et al. 2005). For convenience of discussion, we
will normalize the total cell density such that θ = 1. Consequently, X , Y , Z1 , Z2,
and N become the percentages (or volume fractions) out of the constant total for their
respective cell densities.

The uninfected tumor cells grow at a proliferation rate λ. Meanwhile, they are
infected by the viruses (through cell–virus contact) at a rate β and subsequently enter
the class of infected tumor cells. In addition, the anti-tumor adaptive immune response
kills these tumor cells (through cell–cell contact) at a rate k2 and these subsequently
enter the class of dead tumor cells. In contrast, the innate immune response works
against the virotherapy and kills the infected tumor cells at a rate k1 . Additionally,
the infected tumor cells have a lysis rate of δ . The innate and adaptive immune cells
are stimulated through their interaction with the infected tumor cells at rates of s1 and
s2 , respectively, and are cleared at rates of c1 and c2 . The dead cells are removed
at a rate μ . New viruses are produced through the lysis of the infected tumor cells
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Fig. 1 (Color figure online) The interaction among oncolytic viruses, tumor cells, and immune responses
[picture modified from Fig. 1 in Ref. Chiocca and Rabkin (2014)]

with a burst size b. Moreover, the viruses are cleared at a rate γ , as well as killed
by the innate immune response (through cell–virus contact) at a rate k0 . Finally, we
assume that all cells undergo a convection process along the radial direction of the
tumor with a convection velocityU . Viruses, on the other hand, are much smaller than
cells in size (typically, the diameter of a cell is 100 times larger than that of a virus)
and their motion tends to be random and non-unidirectional. Thus, we assume that
viruses follow a diffusion process with a diffusion rate D. A picture illustrating the
virus-tumor-immune interaction is shown in Fig. 1.

These assumptions yield the following differential equations

∂X

∂t
+ 1

ρ2

∂

∂ρ
(ρ2UX) = λX − βXV − k2X Z2, (2a)

∂Y

∂t
+ 1

ρ2

∂

∂ρ
(ρ2UY ) = βXV − k1Y Z1 − δY, (2b)

∂Z1

∂t
+ 1

ρ2

∂

∂ρ
(ρ2UZ1) = s1Y Z1 − c1Z1, (2c)

∂Z2

∂t
+ 1

ρ2

∂

∂ρ
(ρ2UZ2) = s2Y Z2 − c2Z2, (2d)

∂N

∂t
+ 1

ρ2

∂

∂ρ
(ρ2UN ) = k1Y Z1 + k2X Z2 + δY − μN , (2e)

∂V

∂t
− D

1

ρ2

∂

∂ρ

(
ρ2 ∂V

∂ρ

)
= bδY − k0Z1V − γ V, (2f)

1

ρ2

∂

∂ρ
(ρ2U ) = λX + s1Y Z1 + s2Y Z2 − c1Z1 − c2Z2 − μN . (2g)
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Here the last equation is obtained by adding up the first five equations and using the
fact that the total cell density is a constant. These equations hold on the spherical
domain 0 ≤ ρ ≤ R(t) for t ≥ 0. Meanwhile, the free boundary, R(t), satisfies the
kinematic condition,

dR

dt
= U (R(t), t). (3)

Boundary and initial conditions are necessary to complete the model. In particular,
we need to prescribe the boundary conditions for V , which is governed by a parabolic
equation, and U , which satisfies an ordinary differential equation. We consider the
ideal situation that all the free viruses remain in the tumor and impose a homogeneous
Neumann condition for V at the tumor boundary:

∂V

∂ρ
(R(t), t) = 0. (4a)

At the tumor center, the spherical symmetry implies that

U (0, t) = 0, (4b)

∂V

∂ρ
(0, t) = 0. (4c)

3 Results

Mathematical analysis of the system (2) is challenging since it is strongly nonlinear
with mixed types of PDEs. Meanwhile, the presence of an unknown moving bound-
ary adds more difficulty. Instead, we have chosen to utilize numerical simulation in
order to gain useful biological insight. Details of our numerical algorithms are pro-
vided in “Appendix A”. Essentially, we map the original spatial domain with a moving
boundary, 0 ≤ ρ ≤ R(t), into a fixed domain, 0 ≤ r ≤ 1, through a time-dependent
coordinate transformation, which enables us to design and implement numerical meth-
ods of second-order accuracy and robust stability.

Using such algorithms, we have conducted extensive numerical simulation to our
model. We then present the simulation results throughout this section with detailed
explanations. The base values of the model parameters used in our simulation are
listed in Table1. Most of these parameter values are taken from the literature but with
necessary adjustments to be consistent with our normalized variables. In particular,
the value of the burst size b in our study is rescaled from that inWang and Tian (2008),
Friedman et al. (2005)—the base value b = 1 here corresponds to a realistic viral burst
size of 50, for the oncolytic virus hrR3 (Fulci et al. 2006). Meanwhile, the values of
the tumor proliferation rate λ, the viral infection rate β, the lysis rate δ, the take-up rate
k0, and the removal rates γ and μ are obtained based on experimental observations
in Fulci et al. (2006), Pecora et al. (2002). The diffusion coefficient D is calculated
approximately using the Einstein formula (Chaplain et al. 1998). Additionally, the
killing rate k1, the stimulation rate s1, and the clearance rate c1 for the innate immune
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Table 1 Parameters and baseline values

Symbol Description Value

λ Proliferation rate of tumor cells 2.0 h−1

β Viral infection rate 3.5mm3 h−1 virus−1

k1 Innate immune killing rate 2.0mm3 h−1 cell−1

k2 Adaptive immune killing rate 2.0mm3 h−1 cell−1

s1 Innate immunity stimulation rate 56.0mm3 h−1 cell−1

s2 Adaptive immunity stimulation rate 56.0mm3 h−1 cell−1

c1 Clearance rate of innate immune cells 2.0 h−1

c2 Clearance rate of adaptive immune cells 2.0 h−1

D Diffusion coefficient of viruses 3.6mm2 h−1

δ Infected cell lysis rate 5.6 h−1

k0 Take-up rate of viruses by innate immunity 1.0mm3 h−1 cell−1

γ Clearance rate of viruses 2.5 h−1

μ Removal rate of dead cells 2.1 h−1

b Viral burst size 1.0 virus cell−1

response are estimated in Friedman et al. (2005). We have not found any relevant
data to quantify the characteristics of the adaptive immune response in tumor growth.
Hence, in this study we have assumed that the killing rate k2, the stimulation rate s2
and the clearance rate c2 for the adaptive immunity take the same base values as those
for the innate immunity.

Weuse the same initial conditions as given inFriedmanet al. (2005),which are based
on laboratory experiments conducted on rats with brain tumors. (For completeness, we
list these initial conditions in “Appendix A”). The tumor size is initialized as R(0) = 2
mm, at which time the oncolytic viruses are injected into the center of the tumor and
the process of virotherapy starts. AGaussian distribution is used to represent the initial
profile of the viruses inside the tumor.

Throughout the numerical simulation, we focus our attention on the change of the
tumor size with respect to time. The tumor size is a crucial factor in the measurement
of the degree of cancer and the efficacy of a therapy; continual growth of a tumor is
typically an indication of the malignancy (and progressive worsening) of the tumor.
(As reported in Fulci et al. (2006) for the experiments on rats, when the brain tumor
grows to a size with 6 mm in radius, it usually kills a rat). Thus, in our numerical
study, we will especially examine the time evolution of the tumor boundary R(t),
which directly measures the size of the tumor, to help us understand the effects of the
virotherapy.

3.1 Baseline Solutions

Figure2 displays the change of R(t) with respect to time under the virotherapy, using
parameter values described in Table1, referred to as the base values. We observe that
the tumor grows almost linearly for the first 50 h, due to the fact that the viruses are
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Fig. 2 (Color figure online) Change of tumor radius with time

injected into the center of the tumor and it takes time for the viruses to spread, to
interact with the tumor cells, and to stimulate immune response throughout the tumor.
Thus, the efficacy of the therapy is not fully reflected in this initial period. During
the next 150 h or so, however, the tumor completely stops growing and even decays
slightly, indicating that the virotherapy is taking effect. Finally, the tumor starts to
regrow after the effective period of the treatment. Despite the re-growth of the tumor,
the contribution of the therapy is clear: it has suppressed the tumor growth for a
significant period of time (around 150 h).

Figure3 shows the profiles of the densities for the uninfected tumor cells (X ), the
innate immune cells (Z1) and the adaptive immune cells (Z2) at several times during
this process, under the same setting as in Fig. 2. The uninfected tumor cells are initially
set at 80% with a uniform distribution on the transformed spatial domain, 0 ≤ r ≤ 1
(see Fig. 3a). At t = 100 h, their density has been reduced to a much lower level,
ranging between 9 and 20%, due to the interaction with the oncolytic viruses. The
reduction is most significant for the region near the center of the domain (r = 0),
where the viruses have the highest concentration. We also note that the time falls
within the period of non-growth of the tumor in Fig. 2. When t = 200 h, however, X
has increased to a level of 45–65% (again the lowest density occurs near the center);
correspondingly, we see from Fig. 2 that the tumor has started to regrow. As time goes
on, X continues increasing and, at t = 360 h, it is already close to 100%. On the
other hand, the densities of the immune cells, Z1 and Z2 , show an opposite trend (see
Fig. 3b, c). They are initially set as 5% uniformly for each and then increase owing to
the stimulation of the infected tumor cells. At t = 100 h, Z1 reaches a level ranging
between 30 and 40%, with the highest density occurring near the center of the domain,
whereas Z2 ranges between 12 and 20%, with the highest density near the boundary
of the domain. Afterward the densities of the immune cells start decreasing and, at
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Fig. 3 (Color figure online) Distribution of uninfected tumor cells and immune cells at different times, a
uninfected tumor cells, b innate immune cells, c adaptive immune cells

t = 360 h, both Z1 and Z2 are almost 0%. These are consistent with the pattern of the
tumor growth exhibited in Fig. 2.

3.2 Effects of Parameter Variation

Naturally, we hope to improve the baseline result presented in Figs. 2 and 3. To that
end, it is necessary that we understand, and quantify, the contribution of the various
parameters that appear in the model (2). Hence, we proceed to analyze the effects of
the variation of a few key parameters and conditions on the growth of the tumor.

Figure4 displays the results of varying the two immune killing rates: k1 for the
innate immunity and k2 for the adaptive immunity. As we know, the innate immune
response works in an anti-viral manner, whereas the adaptive immune response tends
to be anti-tumor. Figure4 shows thatwhenfixing k2 = 2 at its base value and increasing
k1 from its base value to 20, the tumor would grow faster than its baseline scenario
after an initial transient period. In contrast, when fixing k1 = 2 at the base value
and increasing k2 to 20, the tumor would grow slower, and eventually decay in size,

123



A. Timalsina et al.

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

9

time(hr)

tu
m

or
 ra

di
us

(m
m

)
k1=k2=2

k1=2, k2=20

k1=20, k2=2

k1=k 2=200

k1=k2=0.2

Fig. 4 (Color figure online) Tumor growth with different immune killing rates

Fig. 5 (Color figure online) A
bifurcation diagram for tumor
growth with respect to the two
immune killing rates

demonstrating a higher level of anti-tumor effectwith the increased adaptive immunity.
In addition, when k1 and k2 are both decreased to a small value, 0.2, the tumor would
grow significantly faster; when both parameters are at a large value, 200, the tumor
would decay from the very beginning, implying that immune responses are necessary
for the success of the virotherapy. To gain more insight into the effects of the two
immune killing rates on tumor growth, we have created a bifurcation diagram in the
(k1, k2) plane, shown in Fig. 5. The red curve in Fig. 5 displays the boundary that
separates two parameter regions, i.e., the tumor grows in one region and decays in the
other.
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Fig. 6 (Color figure online) Tumor growth with different values of viral burst size

Next, we perform a study on the viral burst size, b, representing the number of new
viruses coming out from a lysis of an infected tumor cell. The burst size is a direct
measurement of the replicability of the viruses and is expected to play an important
role in the virotherapy. With higher values of b, new viruses are generated faster
which could promote the efficacy of the therapy. Figure6 shows the growth of the
tumor with respect to several different values of b, while fixing all other parameters at
their base values. The pattern is clear: when b decreases, the tumor grows faster; when
b increases, the growth of the tumor slows down. In particular, with a relatively big
value b = 8, the tumor decreases in size for a period as long as 250 h (50 ≤ t ≤ 300),
before it starts re-growing.

In addition, we are interested in explicitly assessing the contribution from each
of the two types of immune responses. We do this through comparing the baseline
solution with two hypothetical (and extreme) cases: (1) only the innate immunity is
present; (2) only the adaptive immunity is present. As can be observed from the system
(2), if Z1 = 0 at t = 0, then Z1 would stay at 0 for all the time. The same is true for
Z2 . Thus, we may remove one type of immunity from the model, while retaining the
other, by changing the initial conditions. Figure7 shows several scenarios along this
line. We see that for the two cases where the adaptive immunity is absent (Z2 = 0),
the tumor grows faster in comparison with the baseline growth curve, and the one with
higher initial value of Z1 outcompetes the other. In contrast, for the two cases where
the innate immunity is absent (Z1 = 0), the tumor grows slower and has amuch longer
non-growth period, than that for the baseline curve.
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Fig. 7 (Color figure online) Impact of the two immune systems on tumor growth, where x , z1 and z2
denote the initial profiles of X , Z1 and Z2 , respectively

3.3 Effects of Delayed Adaptive Immunity

In the model (2), we have assumed that the two types of immune responses, innate
and adaptive, would be stimulated simultaneously and get started at the same time.
In reality, however, it is observed that although the innate immune response is fast
and can be treated as instantaneous, the adaptive immune response is typically on
a slower pace; it may take a time frame ranging from several hours to a few days
to activate the adaptive immune system after the viruses are injected into, and start
interacting with, the tumor (Lawler and Chiocca 2015; Melcher et al. 2011). Thus,
there could be a gap between the starting times of the two immune responses, and such
non-synchronization may have additional impact on the efficacy of the virotherapy.

To investigate this issue, we introduce a time delay to our equation for the adaptive
immunity (Z2). Thus, Eq. (2d) becomes

∂Z2

∂t
+ 1

ρ2

∂

∂ρ
(ρ2UZ2) = s2Y (ρ, t − T )Z2(ρ, t − T ) − c2Z2 , (5)

where T is a constant that represents the delay in the stimulation of the adaptive
immune response. Consequently, Eq. (2g) will be replaced by

1

ρ2

∂

∂ρ
(ρ2U ) = λX+s1Y Z1+s2Y (ρ, t−T )Z2(ρ, t−T )−c1Z1−c2Z2−μN . (6)
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Fig. 8 (Color figure online) Tumor growth with and without delay in the adaptive immune response

Other equations in the system (2) will remain the same.
The numerical methods described in “Appendix A” can be applied, with minor

modification, to compute our tumor model with the time delay. Results are presented
below.

Figure8 shows the comparison for the growth of the tumor without delay (T = 0)
andwith several different delays (T = 5, 10, 80, 100 h), using the baseline parameter
values given in Table1. For the first 100 h or so, there is little difference among the five
cases, as the cell–virus interaction is in the initial phase of adjustment and the tumor is
still growing for most of this initial period. The difference becomes apparent later on,
especially when the tumor starts re-growing after the non-growth period (t > 200).
It appears that the re-growth rate increases with T ; the case with the largest delay
(T = 100 h) grows the fastest among the five, though the two curves with T = 80
and T = 100 almost coincide with each other. An implication is that a delayed start
of the adaptive immune response would not significantly impact the virotherapy in
the short term, i.e., the first few days, when the therapy is not yet, or just starts being,
fully effective. Instead, the delayed adaptive immunity would make a difference for
the longer-term development of the tumor, in a negative way: the more delayed (up to
T = 100 h), the faster the tumor regrows.

With the delayed adaptive immunity,wehave also performeda studyon thevariation
of a few key model parameters, and we observe similar patterns as shown in Fig. 4
for different immune killing rates, Fig. 6 for different burst sizes, as well as Fig. 7 for
different initializations of the two immune responses. For illustration, Fig. 9 compares
the two cases of T = 0 (without delay) and T = 5 h (with delay) for two sets of
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Fig. 9 (Color figure online) Tumor growth with and without delay for two different sets of immune killing
rates

hypothetical values of the immune killing rates. For each set of values for k1 and
k2 , the anti-tumor immune effects have been strong enough so that the tumor radius
would quickly decrease immediately after the initial growth, and there is no re-growth
happening. For each case, however, there is a difference between the scenario of no
delay and that of 5 h delay: the curve with T = 5 is above the one with T = 0,
showing a slower decay rate. The difference is only apparent during the decay phase
of the tumor and is not noticeable during the initial growth period. Meanwhile, Fig. 10
shows two choices of the burst size for the cases T = 0 and T = 5, while other model
parameters are fixed at their base values. For each choice of b, the tumor development
exhibits three phases: initial growth, non-growth (decay), and re-growth. The two
curves T = 0 and T = 5, for each b, almost coincide with each other during the
first two phases, but only move away from each other during the re-growth phase; the
one with delay regrows faster than the other. In all these results, a delayed adaptive
immunity appears to have a negative impact on the efficacy of the virotherapy, but
only for the longer-term development of the tumor.

In addition, we remark that our model provides an explicit means to represent the
delay of the adaptive immune response. Alternatively, such a delay may be incor-
porated in an implicit manner. For example, if we assume that the innate immune
response plays a role in triggering the adaptive immune response [see more discus-
sion in Parish and O’Neill (1997)], we may modify the right-hand side of Eq. (5) by
s2Y Z1Z2−c2Z2 , without explicit dependence on the delay T . We have found through
our numerical simulation that such an implicit approach could reproduce some of the
results shown here for our explicit delay model.
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Fig. 10 (Color figure online) Tumor growth with and without delay for two different choices of viral burst
size

3.4 Effects of Large Burst Size

It has been shown that the viral burst size, b, plays an important role in the process
of virotherapy. In particular, increased efficacy of the therapy has been observed with
higher values of b (see Figs. 6, 10). Biomedically, the oncolytic viruses can be engi-
neered so as to produce different burst sizes, possibly at large values. For example,
Kambara et al. (2005) reported a new glioma-specific virus (herpes simplex virus type
1mutant) with a high replication capability that led to significantly increased survivals
of animals (mice) with brain tumors. Additionally, it is known that for some wild-type
herpes simplex viruses, the burst size ranges in the thousands (Friedman et al. 2005).
Thus, a natural question in our study is to explore the consequence of large burst size
(hence high replicability) regarding the tumor development, in the complex interaction
among tumor cells, viruses, and immune responses, and even with delayed adaptive
immunity.

As shown in Fig. 6, when increasing the value of b slightly above its baseline value,
the length of the non-growth period is increased, though the tumor would eventually
regrow. Additional numerical investigation reveals that when b gets even larger, the
efficacy will be further increased: when b ≥ 10, the tumor will eventually shrink to a
level almost at 0, after several cycles of decay and re-growth; when b ≥ 50, there will
be no re-growth taking place for the tumor. Figure11 illustrates the situationswith three
larger burst sizes: 10, 25, 100. For b = 10 and 25, we still observe some re-growth
trends, but all happening after t = 300 h. For b = 100, the tumor development only
exhibits two phases: an initial growth, followed by a quick decay to a size very close
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Fig. 11 (Color figure online) Tumor growth with large values of viral burst size

to 0 at t ≈ 700. Once approaching there, the tumor size remains at that extremely low
level for all the time t > 700, indicating that the tumor has essentially been eliminated.

Figure12 shows the time evolution of the distributions for the uninfected tumor
cells and the two types of immune cells, with the same initial settings as those in
Fig. 3, but with a large burst size b = 100. In contrast to the results in Fig. 3, we now
observe that X keeps decreasing and, at t = 12.5 h, the value of X is already very
close to 0. Though not shown here, X will stay at that level for all the later times,
an indication of the success of the therapy. Meanwhile, the values of Z1 and Z2 keep
increasing and eventually reach the levels around 65 and 15%, respectively, due to the
continuing stimulation of the viruses and infected tumor cells. These are consistent
with the tumor growth pattern shown in Fig. 11.

3.5 Effects of Repeated Virus Injection

Our study so far has focused on the case with a single virus injection which is admin-
istered in the beginning of the treatment (t = 0). In a recent virotherapy clinical trial
(Andtbacka et al. 2015), a virus dose was administered (via intratumoral injection)
every 2 weeks to several hundreds of patients with skin cancer and the outcomes
were encouraging, with demonstrated therapeutic benefit for patients with metastatic
tumors. This result suggests the importance of continuing treatment through repeated
virus injection.

We proceed to numerically test this scenario by re-setting the virus distribution to
its initial configuration (see Eq.10b) in every 2 weeks, or 336 h. This represents a
biweekly injection of viruses into the tumor center. Other conditions and parameters
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Fig. 12 (Color figure online) Distribution of uninfected tumor cells and immune cells at different times
with a large burst size b = 100, a uninfected tumor cells, b innate immune cells, c adaptive immune cells

are kept at their default (or, baseline) values. Figure13 compares the tumor growth
with such a biweekly virus injection and with a single virus injection (at t = 0), where
b = 1, 10 and 100, respectively. For the first two cases, the improvement in efficacy
with the repeated virus doses is evident; particularly, for b = 10, the tumor shrinks
much faster than that with a single virus dose in the beginning. For the third case,
b = 100, the two types of virus administrations do not make any difference, as the
viral burst size has been large enough so that only a single virus dose is needed to
quickly control (and conquer) the tumor.

4 Discussion

We have presented a new mathematical model for tumor virotherapy with virus-
mediated immune responses. The model is a system of PDEs that couples tumor
growth with cell–virus–immune interactions and that describes the motion of tumor
cells and viruses on a domain with a moving boundary. A distinctive feature of our
model is the incorporation of both innate and adaptive immune responses in the course
of tumor oncolysis, which, to our knowledge, has not been investigated in prior mathe-
matical models and studies. The modeling framework and the computational methods
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Fig. 13 (Color figure online) Tumor growth with single virus injection and repeated biweekly virus injec-
tion, using different values of viral burst size, a b = 1, b b = 10, c b = 100
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presented in this paper allow us to conduct a novel and careful study on tumor dynam-
ics under the virotherapy, in a wide range of settings that include varied parameters
and initial conditions, delay in the adaptive immunity, and repeated viral doses.

Our results show that a typical scenario of tumor evolution under the virotherapy
may exhibit three phases: initial growth, non-growth or even shrinking in size (which
may correspond to a period of cancer dormancy), and re-growth (representing cancer
recurrence). We have found, however, when the adaptive immune killing rate and/or
the viral burst size are increased, the efficacy of the therapy is significantly improved.
Particularly, with sufficiently large values for these parameters, tumor re-growth will
not occur and the tumor will shrink to, and stabilize at, a size very close to 0. The
findings suggest that genetically manipulating oncolytic viruses so as to promote the
anti-tumor adaptive immunity and the viral replicability, would be potentially useful
means to enhance the efficacy of the virotherapy. In addition, our results demonstrate
that repeated administration of viral doses on regular intervals (e.g., 2 weeks) leads to
improved efficacy, which is consistent with the clinical observation.

The presence of two different types of immune responses and their coupling with
tumor growth and host–virus interaction are an emphasis of this work. We find that
the immune responses are necessary for the success of the virotherapy. The ideal
therapeutic outcome, i.e., removal of both the tumor and viruses can be possibly
achieved through genetically engineered viruses with enhanced oncolytic capability
and through a right combination of the virus-mediated innate and adaptive immune
responses, particularly represented by the sizes of the two immune killing rates. A
delay in the start of the adaptive immune response may not have a notable effect
on the short-term dynamics of tumor growth, but may negatively impact the effi-
cacy of the virotherapy in the longer-term, especially during the tumor re-growth
phase.

The findings in this study can help us better understand the complications in
tumor–viral dynamics and can provide useful guidelines to design and improve the
virotherapy.A limitation in ourmodel is the relatively simple geometry; the assumption
of spherical symmetry, though mathematically natural and computationally efficient,
may not be able to reflect the realistic, often irregular, shapes of many tumors, and
the related intricacy in tumor growth. Our modeling framework can be extended to
three-dimensional spatial domain for a more general investigation of tumor growth,
though with a higher level of computational challenge. We also hope to utilize clinical
data to fit and validate our general mathematical formulation. Another limitation in
our study is the assumption of homogeneity among all tumor cells. Practically, tumor
cells may exhibit spatial heterogeneity that involves different levels of susceptibility
and resistance to viral infection, varied strength of immune responses, and anisotropic
movement of tumor cells and viruses. Incorporation of such heterogeneity into the
modeling framework will potentially lead to deeper insight into tumor dynamics under
the virotherapy.
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for helpful comments which led to an improvement in this paper.
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Appendix A: Numerical Methods

A difficulty in the design of numerical algorithms for the model (2) is the presence of a
moving boundary, R(t), which describes the growth of the tumor with time and which
has to be determined as part of the solution. To partially overcome this challenge, we
choose to map the original domain with the moving boundary into a fixed domain, by
introducing a new coordinate:

r = ρ

R(t)
. (7)

Obviously, Eq. (7) transforms the original domain, 0 ≤ ρ ≤ R(t), into a regular
interval, 0 ≤ r ≤ 1. Based on such a mapping, we are able to develop accurate and
robust numerical methods.

Equation (1) enables us to drop one variable, N . Using the change of coordinates,
the original equations in (2) can be written as

∂X

∂t
+ U − r R′

R

∂X

∂r
= F1, (8a)

∂Y

∂t
+ U − r R′

R

∂Y

∂r
= F2, (8b)

∂Z1

∂t
+ U − r R′

R

∂Z1

∂r
= F3a, (8c)

∂Z2

∂t
+ U − r R′

R

∂Z2

∂r
= F3b, (8d)

∂V

∂t
−

(r R′

R
+ 2D

R2r

)∂V

∂r
− D

R2

∂2V

∂r2
= F4, (8e)

1

Rr2
∂

∂ρ
(r2U ) = F5, (8f)

for 0 � r � 1 and t > 0, where R′ = dR
dt . The terms on the right-hand sides are:

F1 = λX − βXV − k2X Z2 − FX,

F2 = βXV − k1Y Z1 − δY − FY,

F3a = s1Y Z1 − c1Z1 − FZ1,

F3b = s2Y (t)Z2(t) − c2Z2 − FZ2,

F4 = bδY − k0Z1V − γ V,

F5 = F,

where

F = λX + s1Y Z1 + s2Y (t)Z2(t) − c1Z1 − c2Z2 − μ(1 − X − Y − Z1 − Z2).
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The kinematic condition in Eq. (3) and boundary conditions in Eq. (4) become

dR

dt
(t) = U (1, t), (9a)

∂V

∂r
(1, t) = 0, (9b)

U (0, t) = 0, (9c)

∂V

∂r
(0, t) = 0. (9d)

The initial conditions are given below. In particular, the initial values for R and V
are taken from Friedman et al. (2005), based on laboratory experiments conducted on
rats with brain tumors. When the virotherapy starts, the oncolytic viruses are injected
into the center of the tumor, which is measured at 2 mm at that time. Meanwhile, a
Gaussian distribution centered at 0 is used to represent the initial profile of the viruses
inside the tumor. Additionally, we note that all the cell densities have been normalized
so that the total is θ = 1 cell mm−3.

R(0) = 2 mm , (10a)

V (r, 0) = αe
− 4r2

a2 , where α

∫ 1

0
r2e− 4r2

a2 dr = 0.45, (10b)

X (r, 0) = 0.8 cell mm−3, Y(r, 0) = 0.1 cell mm−3, (10c)

Z1(r, 0) = 0.05 cell mm−3, Z2(r, 0) = 0.05 cell mm−3. (10d)

The numerical simulation of Eq. (8) is essentially a time marching problem. We
denote the numerical solution at the nth time step by

(
Rn, Xn,Yn, Zn

1 , Z
n
2 ,U

n, V n) .

We use the second-order Adams–Bashforth method to advance R in time. Applying
it to Eq. (10a) yields

Rn+1 = Rn + 
t

2
(3Un −Un−1). (11)

The hyperbolic type equations, for example Eq. (8a), is solved by a leapfrog scheme:

Xn+1
j − Xn−1

j

2
t
+ An

j

Xn
j+1 − Xn

j−1

2
r
= (F1)

n
j , (12a)

where

A = U − r R′

R
, (12b)

and the subscript j refers to the j th spatial grid point in the radial direction.Meanwhile,
we supplement the leapfrog method with a simple average in time: Xn

j = 1
2 (X

n+1
j +
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Xn−1
j ), implemented in our code for every 10 steps. This additional time-average

procedure is introduced to overcome potential mesh drifting instability (Press et al.
1996) when applying the leapfrog method to nonlinear equations, yet retaining its
second-order accuracy (Wang and Tian 2008). In addition, Y , Z1, and Z2 are updated
in a similar way.

Once we have Xn+1, Yn+1, Zn+1
1 and Zn+1

2 calculated, we compute Un+1 using
the Trapezoidal Rule for Eq. (8f):

r2j+1U
n+1
j+1 − r2j U

n+1
j = Rn+1

2

r

(
r2j+1(F5)

n+1
j+1 + r2j (F5)

n+1
j

)
. (13)

Finally, we solve the parabolic Eq. (8e). For convenience, we write the equation in the
following form:

∂V

∂t
+ A1

∂V

∂r
+ A2

∂2V

∂r2
= F4, (14a)

with

A1 = −
(r R′

R
+ 2D

R2r

)
, A2 = − D

R2 . (14b)

Since F4 is a linear function of V n+1, the above equation is a linear parabolic equation
at time step n + 1. We use the second-order Backward Difference Formula (BDF) in
time and central differences in space to approximate Eq. (14a):

3V n+1
j − 4V n

j + V n−1
j

2
t
+ (A1)

n+1
j

V n+1
j+1 − V n+1

j−1

2
r

+ (A2)
n+1
j

V n+1
j+1 − 2V n+1

j + V n+1
j−1

(
r)2
= (F4)

n+1
j . (15)

The discretized equation can then be written in a tridiagonal algebraic form which can
be computed efficiently (Golub and Loan 2012). Once solved, a full cycle of the time
marching is completed, and the procedure repeats at the next cycle.

The methods presented here achieve second-order accuracy in both time and space
and possess strong numerical stability, which allows us to conduct a careful numeri-
cal study on the complex interaction among the tumor, the viruses, and the immune
systems involved in the tumor virotherapy.
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