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Abstract This study revisits the minimal model for a plankton ecosystem proposed
by Scheffer with spatial diffusion of plankton and the delay of the maturation period
of herbivorous zooplankton. It deepens our understanding of effects of the nutrients
and the predation of fish upon zooplankton on the dynamical patterns of the plankton
system and also presents new phenomena induced by the delay with spatial diffu-
sion. When the nutrient level is sufficient low, the zooplankton population collapses
and the phytoplankton population reaches its carrying capacity. Mathematically, the
global stability of the boundary equilibrium is proved. As the nutrient level increases,
the system switches to coexistent equilibria or oscillations depending on the matura-
tion period of zooplankton and the predation rate of fish on herbivorous zooplankton.
Under an eutrophic condition, there is a unique coexistent homogeneous equilibrium,
and the equilibrium density of phytoplankton increases, while the equilibrium density
of herbivorous zooplankton decreases as the fish predation rate on herbivorous zoo-
plankton is increasing. The study shows that the system will never collapses under
the eutrophic condition unless the fish predation rate approaches infinite. The study
also finds a functional bifurcation relation between the delay parameter of the matu-
ration period of herbivorous zooplankton and the fish predation rate on herbivorous
zooplankton that, above a critical value of the fish predation rate, the system stays
at the coexistent equilibrium, and below that value, the system switches its dynam-
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ical patterns among stable and unstable equilibria and oscillations. The oscillations
emerge from Hopf bifurcations, and a detailed mathematical analysis about the Hopf
bifurcations is carried out to give relevant ecological predications.

Keywords Diffusive plankton ecosystem · Hopf bifurcation · Stability · Delay

1 Introduction

Plankton are floating organisms living in the pelagic of the sea, in large rivers, and in
freshwater lakes. According to trophic relations, plankton can be mainly grouped into
phytoplankton and zooplankton. Phytoplankton are microscopic plants that generate
half of the oxygen and absorb half of the carbon dioxide of the world by photosyn-
thesis (Williamson and Gribbin 1991; Duinker and Wefer 1994). Zooplankton are
small animals that have two classes, herbivorous and non-herbivorous zooplankton.
Herbivorous zooplankton graze on phytoplankton. Phytoplankton and herbivorous
zooplankton constitute the basis for all food chains in the sea and for the maintenance
of the world’s climate (Anderson 1997). It is evidently important to understand the
dynamics of plankton ecosystems.

The dynamics of plankton systems has been under investigation for many years.
The first mathematical model related to plankton systems appeared in 1939 (Fleming
1939). Since then, many mathematical models have been built for variety of aspects of
plankton ecosystems, for example, applications of predator–prey relations to describe
phytoplankton–zooplankton interactions (Freedman and Ruan 1994; Levin and Segel
1976; Mimura and Murray 1978; Malchow et al. 2004; Ruan 1995a). About the nutri-
ents in plankton systems, there have been several models with nutrient recycling
(Beretta et al. 1990; He and Ruan 1998; Ruan 1993, 1995b, 2001; Ruan andWolkow-
icz 1995; Yuan 2012). In particular, literature (Ruan 1995b) deals with a model with
a discrete delay in the response term. Some models consider the combined effect of
light and nutrients on the growth of phytoplankton (Du and Hsu 2010; Du and Mei
2011; Hsu and Lou 2010; Huisman and Weissing 1994, 1995), while recently some
field and modeling studies have conducted on the reduction of zooplankton due to
toxin production of phytoplankton (Chattopadhyay et al. 2002; Chattopadhyay and
Sarkar 2002; Hallegraeff 1993). For a review, the reader is referred to Medvinsky
et al. (2002). In this study, we will revisit a minimal model for a plankton ecosystem
with two extensions, the spatial diffusion and delays of the zooplankton maturation
period.

Considering three trophic levels, nutrients, phytoplankton and zooplankton, and
fish, Scheffer proposed a nutrient-phytoplankton–zooplankton–fishmodel for a plank-
ton ecosystem (Scheffer 1991). This model was originally formulated as a system
of ordinary differential equations, which has since been extended spatially as
reaction–diffusion systemmodels (Malchow 2000; Malchow et al. 2000, 2002, 2004;
Tikhonova et al. 2003; Sherratt et al. 1997). This model is called a minimal model in
the sense that only a few important interactions are taken into account. For example,
the model only counts the phytoplankton–zooplankton interaction as a predator–prey
relation, the growth rate of phytoplankton as a Monod function of nutrients, and the
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fish predation on zooplankton as a Holling type function, while the positive effect of
fish on the sediment nutrients is omitted. Nevertheless, such a minimal model of the
predator–prey systemwith external nutrients and fish predation built in displays a wide
range of ecologically relevant behaviors, for example, spiral and target waves (Sherratt
et al. 1997), diffusion-induced instability (Malchow et al. 2004; Dubey et al. 2009),
and Chaos (Medvinsky et al. 2002; Pascual 1993).We recommend a relevant literature
(Ruan 1998) which considers a plankton model with both diffusion and distributed
delays and studies traveling waves and Turing patterns in plankton models. For a his-
torical overview of modeling of plankton dynamical systems and pattern formations,
the reader is referred to Medvinsky et al. (2002), Malchow et al. (2001).

Within this minimal model framework, we observe that the plankton life cycle is
one of important factors that may affect the dynamics of plankton ecosystems. Each
individual of phytoplankton or zooplankton takes time to mature and then produces
new individuals to contribute its population. The life cycle varies. For example, some
phytoplankton have a life cycle of 6 days, and some zooplankton have a life cycle of 200
days (Larsson 1978;Allan 1976;Dasson andMontresor 2011;Meadows andCampbell
1988). In this article, we will only consider the maturation period of zooplankton as a
delay parameter, since thematuration period of phytoplankton ismuch shorter than that
of zooplankton. The delay is incorporated into the reaction–diffusion model extended
from the minimal model.

The functional reaction–diffusion system we consider is given as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂P(x, t)

∂t
= Dp�P(x, t) + αN P(x, t)

Hn + N
− βP2(x, t) − γ P(x, t)Z(x, t)

Hp + P(x, t)
,

∂Z(x, t)

∂t
= Dz�Z(x, t) + eγ P(x, t − τ̂ )Z(x, t)

Hp + P(x, t − τ̂ )
− δZ(x, t) − FZ2(x, t)

H2
z + Z2(x, t)

,

(1)
where

P is the phytoplankton biomass density;
Z is the herbivorous zooplankton biomass density;
N is the nutrient level of the system, while Hn is half-saturation constant of nutrient

limitation, and α is the possible maximal per capita growth rate of phytoplankton;
β is the competition intensity of phytoplankton, and γ is the possible maximal

grazing rate of herbivorous zooplankton on phytoplankton;
e is the conversion coefficient from phytoplankton into herbivorous zooplankton;
δ is the mortality rate of herbivorous zooplankton;
τ̂ is the maturation period of herbivorous zooplankton;

Dp and Dz are the diffusion coefficients of phytoplankton and zooplankton, respec-
tively;

Hp and Hz are half-saturation constants of phytoplankton and zooplankton density
for Holling type II and III functional response, respectively;

F is the possible maximal predation rate of fish on herbivorous zooplankton.

The phytoplankton diffuse within the considered habitat and follow the logistic growth
formulation whose growth rate is aMonod function of nutrients. In the absence of zoo-
plankton, phytoplankton growth will saturate at a carrying capacity αN

β(Hn+N )
, which
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is a function of nutrients. When the nutrient level is given, the growth is limited by the
nutrient level. The grazing of herbivorous zooplankton on phytoplankton is formulated
as a Holling type II functional response which is a Monod function of phytoplankton
density. The herbivorous zooplankton also diffuse within the habitat, will die out in
the absence of phytoplankton. The maturation period of herbivorous zooplankton τ̂ is
considered as a constant. The growth rate of herbivorous zooplankton is formulated to
be eγ P(x,t−τ̂ )

Hp+P(x,t−τ̂ )
. The predation of fish on zooplankton is modeled as a Holling type III

functional response which is a sigmoidal Monod function of herbivorous zooplankton
density. The spatial dimension of the habitat can be one, two, or three. Since our focus
in this research is to understand the effect of the zooplankton maturation period on the
dynamics of the plankton system, we only study the case of spatial dimension one.
However, the results about delay effects should be valid for spatial dimension two or
higher.

The aim of this paper is to undertake a rigorous mathematical analysis for the
functional reaction–diffusion system (1) and to present biological implications of the
mathematical results. To investigate how the nutrients affect the system we define a
parameter

h = b

a + 1
− c = eγ /r

Hp/w + 1
− δ

r
= 1

r

(

eγ
w

Hp + w
− δ

)

,

a scaledmaximal net growth rate of herbivorous zooplankton. h is an creasing function
of nutrients N . When the nutrient level is sufficient low so that h < 0, the herbivorous
zooplankton population cannot grow anymore no matter how long their maturation
period could be. In this situation, herbivorous zooplankton will collapse and then phy-
toplankton population will grow to its carrying capacity. Mathematically, we prove
that the boundary equilibrium is globally stable. When the nutrient level increases
so that h > 0, and other two conditions that nutrients are not too high and the half-
saturation rate (defined in Sect. 2.3) is not too fast, forming an eutrophic condition
(H), are satisfied, the system has a unique homogeneous coexistent equilibrium E∗.
The equilibrium density of phytoplankton increases while the equilibrium density of
herbivorous zooplankton decreases as the fish predation rate is increasing. However,
the system will never collapses under the eutrophic condition unless the fish preda-
tion rate approaches infinite. This is one of new phenomena we derived. For the fish
predation rate on herbivorous zooplankton, we find a critical value F∗, the coexistent
equilibrium is locally asymptotical stable when the fish predation rate is above F∗.
When the fish predation rate is below this critical value, the coexistent equilibrium
may stable or unstable or the system oscillates depending on the delay parameter of
the zooplankton maturation period. We find a functional relation between the fish pre-
dation rate F and the maturation period of zooplankton τ , a bifurcation curve. That
is, for each F which is smaller than F∗, there is a critical value τ ∗ of the maturation
period of zooplankton at which the system undergoes Hopf bifurcations and oscil-
lations appear, and the coexistent equilibrium E∗ is still stable when τ is below τ ∗.
This functional relation of two biological significant parameters is also a new phe-
nomenon we obtained, which ecologically implies that, under the eutrophic condition
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and the fish predation rate is below the critical value, increasing the fish predation
delays the occurrence of oscillations. However, the system will be in the coexistent
equilibrium when the fish predation rate is above the critical value, which means that
the fish predation damps oscillations. We will see that the nutrient, the predation of
fish on zooplankton, the maturation period of zooplankton, and spatial diffusion all
play important roles in the dynamical patterns of plankton ecosystems.

The rest of the article is organized as follows. Section2presents equilibriumanalysis
about the system, which has three subsections. Section 2.1 studies the global stability
of the homogeneous boundary equilibrium state. Section 2.2 investigates the exis-
tence and stability of a unique coexistent homogeneous equilibrium state. Section 2.3
explores the biological implications of equilibrium analysis. Section 3 investigates
the zooplankton maturation period delay induced Hopf bifurcations and oscillations,
which also has three subsections. Section 3.1 studies the emergence of Hopf bifur-
cations and a bifurcation curve in the parameter space. Section 3.2 investigates the
stability and directions of the Hopf bifurcations. Section 3.3 explains the biological
implications of the Hopf bifurcations and periodical solutions. Section 4 gives two
examples to numerically demonstrate analysis results. Section 5 concludes the article
with our major conclusions, discussion of the original minimal model, and some ideas
for further studies.

2 Equilibrium Analysis

In this section, we conduct equilibrium analysis for the system (1) and describe some
biological implications. We find a biologically significant parameter h and condition
(H). h actually is a scaled maximal net growth rate of herbivorous zooplankton that
is limited by nutrient levels. (H) is an eutrophic condition that, the herbivorous zoo-
plankton population is under growth, the nutrient level for the growth is not too high
(upper-bounded), and the half-saturation rate (defined in Sect. 2.3) of fish predation
is not too fast such that the herbivorous zooplankton population can be established.
When h < 0, the system has a boundary homogeneous equilibrium state (the phyto-
plankton population reaches its carrying capacity while the herbivorous zooplankton
population collapses) which is globally asymptotical stable. When the condition (H)

is satisfied, the system has a unique coexistent homogeneous equilibrium state which
is locally asymptotical stable for the delay parameter τ = 0. We also find that how the
fish predation on zooplankton affects the dynamics of the system under the eutrophic
condition. That is, increasing predation rate F of fish on herbivorous zooplankton, the
equilibrium density of phytoplankton will increase while the equilibrium density of
herbivorous zooplankton will decrease. However, under the condition (H) the system
will never come back to the boundary equilibrium state, unless the predation rate F
of fish on herbivorous zooplankton approaches infinite. There are three subsections
in this section, global stability of the boundary equilibrium, stability of coexistent
equilibria, and biological implications of equilibrium analysis.

To reduce the difficulty of analysis, we re-scale the system to nondimensional form.
We define combined parameters as follows, and some of them will be of biological
significance:
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r = αN

Hn + N
, w = r

β
, x̃ = x

(
r

DP

) 1
2

, t̃ = r t, τ = r τ̂ ,

D = Dz

Dp
, u(x̃, t̃) = P(x, t)

w
, v(x̃, t̃) = γ Z(x, t)

wr
a = Hp

w
,

b = eγ

r
, c = δ

r
, d = γ HZ

rw
, f = γ F

wr2
.

For example, r is the per capita growth rate of phytoplankton, and w is the carrying
capacity of phytoplankton at a nutrient level in a concerned habitat. It is obvious that
a, b, c, d, f, D are nonnegative constants.

Dropping the bars for simplification, specifying the spatial location as an interval
x ∈ [0, π ] and Neumann boundary conditions, the system (1) takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x, t)

∂t
= �u(x, t) + u(x, t)(1 − u(x, t)) − u(x, t)v(x, t)

a + u(x, t)
,

∂v(x, t)

∂t
= D�v(x, t) + bu(x, t − τ)v(x, t)

a + u(x, t − τ)
− cv(x, t) − f v2(x, t)

d2 + v2(x, t)
,

t > 0, x ∈ (0, π),

∂u(x, t)

∂ν
= ∂v(x, t)

∂ν
= 0, t ≥ 0, x = 0 or π,

u(x, t) = u0(x, t) ≥ 0, v(x, t) = v0(x, t) ≥ 0, t ∈ [−τ, 0], x ∈ [0, π ].
(2)

2.1 Global Stability of the Boundary Equilibrium

The system (2) always has a trivial equilibrium E0(0, 0) and a boundary equilibrium
E1(1, 0). It is easy to see that the trivial equilibrium E0 is an unstable saddle point. In
this subsection, we use the method proposed in Pao (2002) to analyze the stability of
the boundary equilibrium E1.

Define a parameter h
de f= b/(a + 1) − c, and we will explain some biological

significance of this parameter in Sect. 2.3. Consider the case h < 0 first.
Denote

g1(ϕ, ψ) = ϕ1(1 − ϕ1) − ϕ1ϕ2

a + ϕ1
, g2(ϕ, ψ) = bψ1ϕ2

a + ψ1
− cϕ2 − f ϕ2

2

d2 + ϕ2
2

,

where ϕ = (ϕ1, ϕ2)
T, ψ = (ψ1, ψ2)

T. It is easy to see that g = (g1, g2) is mixed

quasi-monotone in R
2
+ × R

2
+. Let (û, v̂) = (0, 0) and (ũ, ṽ) = (M1, M2), where

M1 ≥ 1 and M2 ≥ bM1
a+M1

. Then (ũ, ṽ) and (û, v̂) are coupled upper and lower
solutions of the system (2), since

ũ(1 − ũ) − ũv̂

a + ũ
≤ 0,

bũṽ

a + ũ
− cṽ − f ṽ2

d2 + ṽ2
≤ 0,

123



Minimal Model of Plankton Systems Revisited with Spatial…

û(1 − û) − ûṽ

a + û
≥ 0,

bûv̂

a + û
− cv̂ − f v̂2

d2 + v̂2
≥ 0.

Because M1 and M2 can be chosen sufficiently large, from Theorem 2.1 in Pao (2002),
we see that there exists a unique global nonnegative solution (u, v) to the system (2)
with nonnegative initial value

(u0(x, t), v0(x, t)), (x, t) ∈ [0, π ] × [−τ, 0]

and u0(x, t) �≡ 0, v0(x, t) �≡ 0. Furthermore, the maximum principe implies that
u(x, t), v(x, t) > 0 for t > 0.

Let (û, v̂) = (ε, 0) and (ũ, ṽ) = (1, δ(ε)), where ε is a small positive number and
δ(ε) = (1 − ε)(a + ε). It is easy to verify that (ε, 0) and (1, δ(ε)) are also coupled
upper and lower solutions of the system (2). When

ε ≤ ϕ1, ψ1 ≤ 1, 0 ≤ ϕ2, ψ2 ≤ δ(ε),

from the boundedness of the partial derivative of gi (i = 1, 2) with respect to ϕ, ψ ,
we know that gi satisfy the Lipschitz condition. We denote the Lipschitz constants
by Ki , i = 1, 2. From Theorem 2.1 in Pao (2002), we see that there exists a unique
global solution (u, v) to the system (2) and it satisfies (ε, 0) ≤ (u, v) ≤ (1, δ(ε))
whenever (ε, 0) ≤ (u0(x, t), v0(x, t)) ≤ (1, δ(ε)).

We define two sequences {u(m), v(m)} and {u(m), v(m)} as follows,

u(m) = u(m−1) + 1

K1

[

u(m−1)(1 − u(m−1)) − u(m−1)v(m−1)

a + u(m−1)

]

,

u(m) = u(m−1) + 1

K1

[

u(m−1)(1 − u(m−1)) − u(m−1)v(m−1)

a + u(m−1)

]

,

v(m) = v(m−1) + 1

K2

[
bu(m−1)v(m−1)

a + u(m−1)
− cv(m−1) − f v2(m−1)

d2 + v2(m−1)

]

,

v(m) = v(m−1) + 1

K2

[
bu(m−1)v(m−1)

a + u(m−1)
− cv(m−1) − f v2(m−1)

d2 + v2(m−1)

]

,

for m = 1, 2, . . . (3)

where (u(0), v(0)) = (1, δ(ε)), (u(0), v(0)) = (ε, 0). From Lemma 2.1 in Pao (2002),
we know that {u(m), v(m)} and {u(m), v(m)} converge monotonically to some limits
{u, v} and {u, v}, respectively, and

ε ≤ u ≤ u ≤ 1, 0 ≤ v ≤ v ≤ (1 − ε)(a + ε).

Since v(0) = 0, we have v(m) = 0, for m = 1, 2, . . .. This implies v = 0. From (3),
we obtain that u, v and u satisfy
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u(1 − u) = 0, u(1 − u) − uv

a + u
= 0,

buv

a + u
− cv − f v2

d2 + v2
= 0.

Notice that 0 < ε ≤ u ≤ u ≤ 1 and h < 0, we have u = u = 1, v = v = 0. Since ε

can be sufficiently small, from Theorem 2.2 in Pao (2002), we know that the solution
((u, t), v(x, t)) of (2) converges to (1, 0) as t → ∞ when 0 < u0(x, t) ≤ 1 and
0 ≤ v0(x, t) ≤ δ(ε) in [0, π ] × [−τ, 0].

From a comparison theorem for parabolic boundary-value problems, we have
u(x, t) < U (x, t) in�×[0,∞), whereU (x, t) is the positive solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂U

∂t
= �U +U (1 −U ), x ∈ (0, π), t > 0,

∂U

∂ν
= 0, x = 0 or π, t > 0,

U (x, 0) = u0(x, 0) ≥ 0( �≡ 0), x ∈ [0, π ].

It is well known that U (x, t) → 1 as t → ∞. So we see that there exists T1 > 0
such that u(x, t) < 1 + ε in [0, π ] × [T1,∞). Since ε can be sufficiently small,
u(x, t) ≤ 1 in [0, π ] × [T1,∞). Furthermore, the comparison theorem for parabolic
boundary-value problems implies that v(x, t) < V (x, t) when t > T1, where V (x, t)
is the solution of the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂V

∂t
= D�V + hV, x ∈ (0, π), t > T1,

∂V

∂ν
= 0, x = 0 or π, t > T1,

V (x, T1) = v(x, T1) > 0, x ∈ [0, π ].

Because h < 0, V (x, t) → 0 when t → ∞. There exists T2 > T1 such that v(x, t) <

δ(ε) in [0, π ]× [T2,∞). From the discussions above and Corollary 2.1 in Pao (2002),
we have the following conclusion.

Theorem 2.1 If h = b/(a + 1) − c < 0, then the system (2) with u0(x, t) �≡
0 and v0(x, t) �≡ 0 has a unique global positive solution (u(x, t), v(x, t)) which
satisfies

lim
t→∞(u(x, t), v(x, t)) = (1, 0), x ∈ [0, π ].

The linearization of the system (2) at the boundary equilibrium E1(1, 0) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x, t)

∂t
= �u(x, t) − u(x, t), t > 0, x ∈ (0, π),

∂v(x, t)

∂t
= D�v(x, t) + hv, t > 0, x ∈ (0, π),

∂u(x, t)

∂ν
= ∂v(x, t)

∂ν
= 0, t ≥ 0, x = 0 or π,

u(x, t) = u0(x, t) ≥ 0, v(x, t) = v0(x, t) ≥ 0, t ∈ [−τ, 0], x ∈ [0, π ].

(4)
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From Wu (1996), the characteristic equation of (4) is

(
λ + n2 + 1

) (
λ + Dn2 − h

)
= 0, n ∈ N0 = {0, 1, 2, . . .}. (5)

So the eigenvalues are

λ1,n = −n2 − 1 < 0, λ2,n = −Dn2 + h, n ∈ N0.

Since h < 0, we have λ2,n < 0 for n ∈ N0. This implies that the boundary equilibrium
E1(1, 0) is asymptotically stable. Combining Theorem 2.1, we obtain the following
theorem.

Theorem 2.2 If h = b/(a + 1) − c < 0, the boundary equilibrium E1(1, 0) of the
system (2) is globally asymptotically stable on {(u, v)|u > 0, v ≥ 0}.

2.2 Stability of Coexistent Equilibria

In this subsection, the sufficient conditions for the existence and uniqueness of a
coexistent homogeneous equilibrium state E∗(u∗, v∗) of the system (2) are given. The
stability of the coexistent equilibrium state E∗ is also studied for the delay parameter
τ = 0. The influence of the delay on the stability of the coexistent equilibrium will be
studied in the next section.

If a positive coexistent equilibrium state E∗(u∗, v∗) exists, then u∗ and v∗ should
satisfy the following algebraic equations:

v = (1 − u)(a + u), (6)
f v

d2 + v2
= bu

a + u
− c. (7)

From (6), we have

when v = 0, then u = 1, as a + u > 0,
when u = 0, then v = a,

dv

du
= 1 − a − 2u is

⎧
⎪⎨

⎪⎩

> 0, if u < (1 − a)/2,

= 0, if u = (1 − a)/2,

< 0, if u > (1 − a)/2.

From (7), we have

when v = 0, then u = ac/(b − c) is

⎧
⎪⎨

⎪⎩

< 1, if h > 0,

= 1, if h = 0,

> 1, if h < 0.
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0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

u

v

(2.5)

(2.6) f=1 (2.6) f=1.5 (2.6) f=2

Fig. 1 a = 0.5, b = 2, c = 1, d = 2.5, f = 1 (red line), f = 1.5 (green line) or f = 2 (yellow line). A
positive equilibrium E∗(u∗, v∗) is obtained at the intersection of two isoclines (6) and (7). We also observe
that u∗ increases and v∗ decreases as f increases under certain parameter range (Color figure online)

du

dv
= f (d2 − v2)(a + u)2

ab(d2 + v2)2
is

⎧
⎪⎨

⎪⎩

> 0, if 0 < v < d,

= 0, if v = d,

< 0, if v > d.

We summarize these information graphically in Fig. 1.
Eliminate variablev from theEqs. (6) and (7), and suppose (u∗, v∗) is an intersection

of two curves in Fig. 1, we obtain the following fifth-order algebraic equation that u∗
must be satisfied:

p5u
5 + p4u

4 + p3u
3 + p2u

2 + p1u + p0 = 0, (8)

where

p0 = −(a2 + d2)ac − f a2,

p1 = (a2 + d2)(b − c) − 2ca2(1 − a) − 2 f a + f a2,

p2 = 2a(1 − a)(b − c) − (1 − 4a + a2)ac − f + 2 f a,

p3 = (1 − 4a + a2)(b − c) + 2ac(1 − a) + f,

p4 = −2(1 − a)(b − c) − ac,

p5 = b − c.

Since all parameters are nonnegative, p0 = −(a2 + d2)ac − f a2 < 0. If h ≥ 0,
then p5 = b − c > 0, and so, (8) exists at least one positive solution. Under other
conditions specified in the following theorem, the system of the Eqs. (6) and (7) has a
unique intersection. Therefore, the system (2) exists the unique positive equilibrium
point under these conditions. It is summarized as a theorem.
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Theorem 2.3 If

(H) : h > 0,
1 − a

2
≤ ac

b − c
, d ≥ (1 + a)2

4
,

then the system (2) has a unique positive equilibrium E∗(u∗, v∗), where v∗ = (1 −
u∗)(a + u∗), u∗ is the unique positive solution of (8) and u∗ < 1.

Notice that

1 − u∗ − v∗

a + u∗ = 0,
bu∗

a + u∗ − c − f v∗

d2 + v∗2 = 0,

the linearization of the system (2) at the positive equilibrium E∗(u∗, v∗) is

⎛

⎜
⎜
⎝

∂u(x, t)

∂t
∂v(x, t)

∂t

⎞

⎟
⎟
⎠ =

(
�u(x, t)
D�v(x, t)

)

+ L1

(
u(x, t)
v(x, t)

)

+ L2

(
u(x, t − τ)

v(x, t − τ)

)

, (9)

where

L1 =

⎛

⎜
⎜
⎝

−u∗ + u∗v∗

(a + u∗)2
− u∗

a + u∗

0
f v∗(v∗2 − d2)

(d2 + v∗2)2

⎞

⎟
⎟
⎠ , L2 =

⎛

⎝
0 0

abv∗

(a + u∗)2
0

⎞

⎠ .

The characteristic equation of the Eq. (9) is

det(λI2 − Mn − L1 − L2e
−λτ ) = 0, n ∈ N0, (10)

where I2 is the 2×2 identitymatrix andMn = −n2diag(1, D). That is, each eigenvalue
λ is a root of an equation

λ2 + Tnλ + Dn + Be−λτ = 0, n ∈ N0, (11)

where

Tn = (1 + D)n2 + u∗ − u∗v∗

(a + u∗)2
− f v∗(v∗2 − d2)

(d2 + v∗2)2
,

Dn =
[

n2 + u∗ − u∗v∗

(a + u∗)2

][

Dn2 − f v∗(v∗2 − d2)

(d2 + v∗2)2

]

,

B = abu∗v∗

(a + u∗)3
> 0.
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When τ = 0, the characteristic equation (11) becomes the following sequence of
equations

λ2 + Tnλ + Dn + B = 0, n ∈ N0. (12)

If Tn > 0, Dn + B > 0 for n ∈ N0, then all roots of the Eq. (12) have negative real
parts.

In the following we give some sufficient conditions to ensure the stability of the
positive equilibrium state E∗(u∗, v∗).

Theorem 2.4 Assume that (H) holds, then all roots of the characteristic equation (11)
have negative real parts for τ = 0. Furthermore, the equilibrium state E∗(u∗, v∗) of
the system (2) is locally asymptotically stable when τ = 0.

Proof If the condition (H) holds, then u∗ > (1 − a)/2 and v∗ ≤ d. Now, we only
need to show Tn > 0, Dn + B > 0 when u∗ > (1 − a)/2 and v∗ ≤ d.

u∗ > (1 − a)/2 ⇔ a + u∗ > 1 − u∗ ⇔ (a + u∗)2 > (1 − u∗)(a + u∗).

From v∗ = (1− u∗)(a + u∗), we have (a + u∗)2 > v∗, i.e. u∗ − u∗v∗/(a + u∗)2 > 0.
Notice that v∗ ≤ d, we get

Tn > Tn−1 > · · · > T0 > 0, Dn + B > Dn−1 + B > · · · > D0 + B > 0 for n ∈ N.

The proof is complete. ��

2.3 Biological Implications of Equilibrium Analysis

We defined a combined parameter h = b/(a+1)−c, and according to the sign of this
parameter the system will display different dynamical behaviors. When h < 0, the
system will reach the equilibrium E1(1, 0) no matter where it starts as stated in Theo-
rem 2.1 and Theorem 2.2. When h > 0, the system will reach the positive coexistent
homogeneous equilibrium E∗(u∗, v∗) under other extra conditions as stated in Theo-
rem 2.3, or will have more complicated dynamical behaviors which will be explored in
the next section. In this subsection, we explore the possible biological implications of
this parameter, the extra conditions, and related statements about equilibrium analysis.

We notice that h = b
a+1 − c = eγ /r

Hp/w+1 − δ
r = 1

r (eγ
w

Hp+w
− δ). At a fixed nutrient

level, γ w
Hp+w

is the maximal grazing rate of herbivorous zooplankton on phytoplank-

ton since w is the carrying capacity of phytoplankton. So eγ w
Hp+w

is the maximal
per capita growth rate of herbivorous zooplankton. Since δ is the mortality rate of
herbivorous zooplankton, eγ w

Hp+w
− δ is the maximal net growth rate of herbivo-

rous zooplankton. Therefore, h is a scaled maximal net growth rate of herbivorous
zooplankton (scaled by the per capita growth rate of phytoplankton r ). If h < 0, the
herbivorous zooplankton population cannot grow anymore no matter how long their
maturation period could be. In this situation, the herbivorous zooplankton will col-
lapse and then phytoplankton population will grow into its carrying capacity. The fish
population plays no role in this situation.
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To understand how the parameter h changes as the nutrient level changes, we
should consider h as a function of the nutrient parameter N . However, since the per
capita growth rate r of phytoplankton is an increasing function of N , and to simplify
calculation, we consider h(r) is a function of r . Then

dh

dr
= − 1

r2

(

eγ
w

Hp + w
− δ

)

+ 1

r

eγ Hp

(Hp + w)2β
.

It is easy to see that, when r ≥ (eγ w
Hp+w

− δ)
(Hp+w)2β

eγ Hp
, we have dh

dr ≥ 0. When the

maximal net growth rate of herbivorous zooplankton is negative (eγ w
Hp+w

−δ < 0), if
the nutrient level is increased, h(r) will increase. At the critical point of nutrient level
where h(r) = 0, but the derivative dh

dr > 0. Therefore, the system shifts its behavior
from the collapsing of herbivorous zooplankton population to coexistence stages.

We know that only the condition h > 0, that is, the system has a positive maximal
net growth rate of herbivorous zooplankton, will ensure the system has at least one
positive equilibrium state. In general, the system may have four equilibria. To ensure
the system has a unique positive equilibrium state, we need some extra conditions.
It turns out that these conditions have some biological significance. We first define
a half-saturation rate for Holling type functional responses. Let g2(x) = ax

b+x and

g3(x) = ax2

b2+x2
be Holling type II and III function, respectively, we define the half-

saturation rate to be the average of rate of change:

gi (b) − gi (0)

b − 0
= a

2b
, i = 2, 3.

When the maximal value of the function is given, the half-saturation rate measures
how fast the function reaches its half-saturation value.

We look into the details of the condition (H) in Theorem 2.3 or Theorem 2.4.
We know that w is the carrying capacity of phytoplankton, Hp is the half-saturation
of phytoplankton as predation of herbivorous zooplankton on phytoplankton, and
so Hp ≤ w. Thus, 1 − a ≥ 0, and then 1−a

2 ≤ ac
b−c implies b − c > 0. But,

b − c = 1
r (eγ − δ) > 0. eγ is the theoretical maximum of per capita growth rate

of herbivorous zooplankton, and eγ w
Hp+w

is the maximum of per capita growth rate.

Therefore, h = 1
r (eγ

w
Hp+w

− δ) > 0 implies b − c > 0. Thus, we do not need

the extra condition b − c > 0. Now, from the condition 1−a
2 ≤ ac

b−c , we can easily

derive w ≤ eγ+δ
eγ−δ

Hp. Then, we have 1
β

αN
Hn+N ≤ eγ+δ

eγ−δ
Hp. If we are concerned with

the nutrient level, we have
N

Hn + N
≤ β(eγ + δ)

α(eγ − δ)
Hp.

This relation means that the nutrient level cannot be too high to ensure that the system
has a unique positive stable equilibrium state. This is consistentwith some early studies
(Scheffer 1991; Dubey et al. 2009). The nutrient level changes the dynamics of the

system. From the condition d ≥ (1+a)2

4 , we easily get β(Hp+w)2

4γ ≤ Hz , or
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1

Hz
≤ 4γ

β(Hp + w)2
.

This relation means that the half-saturation rate cannot exceed a limitation to ensure
that the system has a unique positive stable equilibrium state when the predation rate
of fish on herbivorous zooplankton is fixed. The system needs time to establish the
herbivorous zooplankton population.

Putting together, the condition (H) says that, to have the system stays at a coex-
istence equilibrium state, the herbivorous zooplankton population must grow (that is,
the maximal net growth rate of herbivorous zooplankton must be positive), the growth
needs nutrient but the nutrient level cannot be too high and the half-saturation rate
of predation of fish also cannot be too fast such that it ensures the establishment of
the herbivorous zooplankton population. We may call the condition (H) an eutrophic
condition.

To understand how the fish population affects the system, particularly, the coex-
istence equilibrium state E∗(u∗, v∗), we look at how u∗ and v∗ change as the
predation rate F of fish on herbivorous zooplankton changes, or the combined para-
meter f changes. From the condition (H), we know that (1 − a)/2 < u∗ < 1, and
v∗ ≤ (1 + a)2/4 ≤ d. With respect to f , differentiating

⎧
⎨

⎩

v∗ = (1 − u∗)(a + u∗),
f v∗

d2 + v∗2 = bu∗

a + u∗ − c,

we get
∂v∗

∂ f
= (1 − a − 2u∗)∂u

∗

∂ f
,

and
v∗

d2 + v∗2 + f (d2 − v∗2)
(d2 + v∗2)2

∂v∗

∂ f
= ab

(a + u∗)2
∂u∗

∂ f
.

After a little bit changes, we have

∂u∗

∂ f
= v∗

d2 + v∗2

[
ab

(a + u∗)2
− f (d2 − v∗2)

(d2 + v∗2)2
(1 − a − 2u∗)

]−1

.

With the constraints u∗ > (1 − a)/2 and v∗ ≤ d, we have

⎧
⎪⎪⎨

⎪⎪⎩

∂u∗

∂ f
> 0,

∂v∗

∂ f
< 0.

(13)

Weknow f = γ F
wr2

, where the carrying capacity of phytoplankton populationw and per
capita growth rate r are constants when the nutrient level is fixed. Therefore, increas-
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ing predation rate F of fish on herbivorous zooplankton, the equilibrium density of
phytoplankton will increase while the equilibrium density of herbivorous zooplankton
will decrease. We also see that, as long as the equilibrium density of phytoplankton
is above certain level u∗ > (1 − a)/2, the equilibrium density of herbivorous zoo-
plankton cannot increase as predation of fish increases. This pattern seems to counter
intuitive. However, it may explain why the equilibrium density of phytoplankton must
be above certain limit, since theremust be sufficient phytoplankton to establish herbiv-
orous zooplankton population. Once the equilibrium is established, predation of fish
on herbivorous zooplankton will naturally decrease herbivorous zooplankton while
increase phytoplankton near the coexistence equilibrium.

The property (13) also gives some interesting consequence that seems to counter
intuitive very much. u∗ is a increasing function and v∗ is a decreasing function of f
while u∗ ≤ 1 and v∗ ≥ 0. We may think there should exist a value of f at which
the herbivorous zooplankton population collapses (v = 0) or the phytoplankton pop-
ulation reaches its carrying capacity. However, under the condition (H) (an eutrophic
condition), the system will never come back to the boundary equilibrium state, that
is, the herbivorous zooplankton population collapses, unless the predation rate f of
fish on herbivorous zooplankton approaches infinite. Therefore, under the eutrophic
condition, the system will not collapse no matter how predation of fish on herbivo-
rous zooplankton could be. We also obtain a range for the predation rate of fish on
herbivorous zooplankton

0 ≤ f < ∞, or 0 ≤ F < ∞. (14)

3 Delay Induced Hopf Bifurcations and Oscillations

In this section, we study how the maturation period of herbivorous zooplankton, con-
sidered as a parameter of delay τ , affects the dynamics of the system (1). Under the
eutrophic condition (H), we find that there exists a value of the predation rate of
fish on herbivorous zooplankton, F∗. The coexistent equilibrium state E∗ is locally
asymptotical stable when F ≥ F∗ no matter what the zooplankton maturation period
is. However, when 0 < F < F∗, the zooplanktonmaturation period comes to effect on
the dynamics of the system. Corresponding to each 0 < F < F∗, we obtain a critical
value of the delay parameter at which the system undergoes Hopf bifurcations, above
that value the system will display oscillating behavior, while below that value the
coexistent equilibrium state is still stable. We actually obtain a bifurcation curve in the
parameter space of the delay and the fish predation rate.We also study the stability and
direction of the Hopf bifurcations and give some conditions under which the system
has stable or unstable periodical solutions. In this section, there are three subsections,
delay induced Hopf bifurcations, stability and directions of the Hopf bifurcations, and
biological implications of oscillations induced by delay.

3.1 Delay Induced Hopf Bifurcations

In this subsection, we assume that the condition (H) is satisfied. We see that, 0 is not
the solution of (11). We need to seek critical values of the delay parameter τ such that
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there exist a pair of simple purely imaginary eigenvalues. Suppose ±iω(ω > 0) is
solutions of the (n + 1)th equation (11). Then we have

−ω2 + Tniω + Dn + Be−iωτ = 0.

Separating the real and imaginary parts, we get that ω and τ satisfy

{
B cosωτ = ω2 − Dn,

B sinωτ = Tnω.
(15)

It follows from (15) that

ω4 + (T 2
n − 2Dn)ω

2 + D2
n − B2 = 0. (16)

Let z = ω2, then (16) can be rewritten as the following form

z2 + (T 2
n − 2Dn)z + D2

n − B2 = 0. (17)

Under the condition (H), we have

T 2
n − 2Dn = (1 + D)2n4 + 2(l11 + Dl22)n

2 + l211 + l222 > 0, for n ∈ N0,

where

l11 = u∗ − u∗v∗

(a + u∗)2
> 0, l22 = − f v∗(v∗2 − d2)

(d2 + v∗2)2
> 0.

Therefore, if D2
n − B2 < 0, the Eq. (17) has positive roots

Zn = 2Dn − T 2
n + √

T 4
n − 4T 2

n Dn + 4B2

2
.

However, when D2
n − B2 ≥ 0, the Eq. (17) has no positive roots. We see that, D2

n − B2

is monotonically increasing in n, and tends to ∞ as n → ∞. So, if D2
0 − B2 < 0,

then there exists N ∈ N such that

D2
n − B2 ≥ 0 for n ≥ N , and D2

n − B2 < 0 for 0 ≤ n < N . (18)

If the condition (H) holds, then

D0 > 0, (a + u∗)2 − v∗ > 0, and d2 − v∗2 ≤ 0.

Therefore

D2
0 − B2 < 0 ⇔ D0 < B ⇔ f <

ab(d2 + v∗2)2

(a + u∗)[(a + u∗)2 − v∗](d2 − v∗2)
.
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Notice (13), if we define a value f ∗ as follows, we will be able to study the impact of
predation of fish on the dynamics of the system. So, we define

f ∗ = ab(d2 + v∗2)2

(a + u∗)[(a + u∗)2 − v∗](d2 − v∗2)
. (19)

Since f is a nonnegative parameter, it is easy to see that, if f < f ∗, then D2
0−B2 < 0;

if f ≥ f ∗, then D2
0 − B2 ≥ 0.

Let ωn = √
Zn and

τ
j
n = 1

ωn

(

arccos
ω2
n − Dn

B
+ 2 jπ

)

, j ∈ N0, 0 ≤ n < N . (20)

Then Eq. (15) has a pair of purely imaginary roots ±iωn provided that f < f ∗ and
τ = τ

j
n . Now, we are ready to define the critical value of the delay parameter in the

following,
τ ∗ = τ 0k0 = min{τ 0n : 0 ≤ n < N }, ω∗ = ωk0 . (21)

It is easy to see that τ ∗ can be viewed as a function of f since τ
j
n is a function of f

from the equation (11). We consider the eigenvalue λ as a function of τ . Then, we
have the following statement about the sign of the derivative of λ(τ) at τ

j
n , and then

the sign of the derivative λ(τ) at τ ∗.

Theorem 3.1 Suppose that the condition (H) is satisfied. If 0 < f < f ∗, then

Reλ′(τ j
n ) > 0, f or j ∈ N0, 0 ≤ n < N ,

where N is defined by (18).

Proof Differentiating the two sides of (11) with respect to τ , it follows that

(2λ + Tn − Bτe−λτ )
dλ

dτ
− Bλe−λτ = 0.

Thus

(
dλ

dτ

)−1

= 2λ + Tn − Bτe−λτ

Bλe−λτ
.

From (15)-(17), we have

Re

(
dλ

dτ

)−1
∣
∣
∣
∣
∣
∣
τ=τ

j
n

= Re

(
(iωn + Tn)(cosωnτ

j
n + i sinωnτ

j
n ) − Bτ

j
n

Biωn

)
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= 2ωn cosωnτ
j
n + Tn sinωnτ

j
n

Bωn

= 2ωn(ω
2
n − Dn) + T 2

n ωn

B2ωn

=
√
T 4
n − 4T 2

n Dn + 4B2

B2 > 0.

The proof is completed. ��

According to the discussion above and Corollary 2.4 in Ruan and Wei (2003), we
know that the roots of (11) have negative real parts when 0 ≤ τ < τ ∗, and the (n+1)th
equation of (11) has a pair of simple purely imaginary roots when τ = τ

j
n . We can

also get that (11) has at least one pair of conjugate complex roots with positive real
parts when τ > τ ∗. Combining the property (14) and Equation (19), we write the
results above as the following theorem.

Theorem 3.2 Suppose the condition (H) is satisfied.

(1) If f ∗ ≤ f < ∞, then the equilibrium state E∗(u∗, v∗) of the system (2) is locally
asymptotically stable for τ ≥ 0.

(2) If 0 < f < f ∗, then
(a) the equilibrium state E∗(u∗, v∗) of the system (2) is locally asymptotically

stable for 0 ≤ τ < τ ∗, the equilibrium state E∗(u∗, v∗) is unstable for τ > τ ∗,
where τ ∗ is a function of f .

(b) the system (2) undergoes Hopf bifurcations at the equilibrium point E∗(u∗, v∗)
when τ = τ

j
n for j ∈ N0, 0 ≤ n < N with N satisfying (18).

3.2 Stability and Direction of the Hopf Bifurcations

Theorem 3.2 says that a family of spatially homogeneous or inhomogeneous peri-
odic solutions may bifurcate from the positive homogeneous equilibrium state E∗ of
the system (2) when τ crosses through the critical value τ ∗. In this subsection, we
investigate the stability and direction of Hopf bifurcations by using the center mani-
fold theorem and the normal formal theory of partial functional differential equation
(Faria 2000; Wu 1996). Basically, the system (2) firstly is represented as an abstract
ODE system. Secondly, at the center manifold of the ODE system corresponding to
E∗, the normal form or Taylor expansion of the ODE system is computed. Then, the
coefficients of the first 4 terms of the normal form will reveal all the properties of the
periodical solutions (Hassard et al. 1981).

To write the system (2) as an ODE system, we need to define some function spaces.
Let’s define a function space

X =
{

(u1, u2) ∈ W 2,2(0, π) : ∂u1
∂x

= ∂u2
∂x

= 0, at x = 0, π

}

,
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where u1(·, t) = u(·, τ t) − u∗, u2(·, t) = v(·, τ t) − v∗,U (t) = (u1(·, t), u2(·, t))T.
Then the system (2) can be written as an equation in the function space C =
C([−1, 0], X) :

dU (t)

dt
= τ D̃�U (t) + L(τ )(Ut ) + f (Ut , τ ), (22)

where D̃ = diag(1, D), L(τ )(·) : C → X and f : C×R → X are given, respectively,
by

L(τ )(ϕ) = τ L1ϕ(0) + τ L2ϕ(−1),

f (ϕ, τ ) = τ( f1(ϕ, τ ), f2(ϕ, τ ))T,

with

f1(ϕ, τ ) = a1ϕ
2
1(0) + a2ϕ1(0)ϕ2(0) + a3ϕ

3
1(0) + a4ϕ

2
1(0)ϕ2(0) + O(4),

f2(ϕ, τ ) = a5ϕ
2
1(−1) + a6ϕ1(−1)ϕ2(0) + a7ϕ

2
2(0) + a8ϕ

3
1(−1)

+a9ϕ
2
1(−1)ϕ2(0) + a10ϕ

3
2(0) + O(4),

a1 = av∗

(a + u∗)3
− 1, a2 = −a

(a + u∗)2
, a3 = −av∗

(a + u∗)4
, a4 = a

(a + u∗)3
,

a5 = −abv∗

(a + u∗)3
, a6 = ab

(a + u∗)2
, a7 = f d2(3v∗2 − d2)

(d2 + v∗2)3
,

a8 = abv∗

(a + u∗)4
, a9 = −ab

(a + u∗)3
, a10 = 4 f d2v(d2 − v∗2)

(d2 + v∗2)4
,

for ϕ = (ϕ1, ϕ2)
T ∈ C .

Let τ = τ ∗ + μ. Then (22) can be rewritten as

dU (t)

dt
= τ ∗ D̃�U (t) + L(τ ∗)(Ut ) + F(Ut , μ), (23)

where

F(ϕ, μ) = μD̃�ϕ(0) + L(μ)(ϕ) + f (ϕ, τ ∗ + μ),

for ϕ ∈ C .
From the previous subsection, whenμ = 0 (i.e. τ = τ ∗), the system (23) undergoes

Hopf bifurcation at the equilibrium (0, 0). It is also clear that±iω∗τ ∗ are simply purely
imaginary eigenvalues of the linearized system of (23) at the origin

dU (t)

dt
= (τ ∗ + μ)D̃�U (t) + L(τ ∗ + μ)(Ut ), (24)

with μ = 0 and all other eigenvalues of (24) at μ = 0 have negative real parts.
The eigenvalues of τ D̃� on X are −τk2 and −τDk2, k ∈ N0, with corresponding

eigenfunctions β1
k (x) = (γk(x), 0)T and β2

k (x) = (0, γk(x))T, where γk = cos kx
‖ cos kx‖2,2 .
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We define a space as Mk = span{〈ϕ, β i
k〉β i

k : ϕ ∈ C , i = 1, 2}, k ∈ N0, and the
inner product 〈·, ·〉 is defined by

〈u, v〉 =
∫ π

0
uTvdx, for u, v ∈ X.

Then, on Mk , the Eq. (24) is equivalent to the ODE on R
2:

dU (t)

dt
= −(τ ∗ + μ)k2 D̃U (t) + L(τ ∗ + μ)(Ut ). (25)

Now, we compute the normal form in the center manifold. There are several steps.
We first compute eigenvectors of the infinitesimal generator of the semigroup defined
by linearized system at τ = τ ∗. From the Riesz representation theorem, there exists a
bounded variation function ηk(μ, θ) for θ ∈ [−1, 0], such that

− (τ ∗ + μ)k2 D̃ϕ(0) + L(τ ∗ + μ)(ϕ) =
∫ 0

−1
dηk(μ, θ)ϕ(θ) (26)

for ϕ ∈ C([−1, 0],R2). In fact, we can choose

ηk(μ, θ) =

⎧
⎪⎨

⎪⎩

(τ ∗ + μ)(L1 − k2 D̃), θ = 0,

0, θ ∈ (−1, 0),

−(τ ∗ + μ)L2, θ = −1.

Let A denote the infinitesimal generator of the semigroup defined by (25) with μ =
0, k = k0 and A∗ denote the formal adjoint of A under the bilinear form

(ψk, φk)k = ψk(0)φk(0) −
∫ 0

−1

∫ θ

0
ψk(ξ − θ)dηk(μ, θ)φk(ξ)dξ (27)

for φk ∈ C([−1, 0],R2) and ψk ∈ C([0, 1],R2T). Then, we know that ±iω∗τ ∗ are
simple purely imaginary eigenvalues of A, and they are also eigenvalues of A∗. By
direct computations, we get q(θ) = q(0)eiω

∗τ∗θ = (1,C1)
Teiω

∗τ∗θ is eigenvector of
A corresponding to iω∗τ ∗, where

C1 = −a + u∗

u∗

[

iω∗ + k20 + u∗ − u∗v∗

(a + u∗)2

]

.

Similarly, we get q∗(s) = e−iω∗τ∗s(C2, 1) is eigenvector of A∗ corresponding to
iω∗τ ∗, where

C2 = −a + u∗

u∗

[

iω∗ + Dk20 − f v∗(v∗2 − d2)

(d2 + v∗2)2

]

.
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Let � = (�1,�2) = (Req, Imq) and �∗ = (�∗
1 , �∗

2 )T = (Req∗, Imq∗)T. After
some straightforward calculations using (27), we obtain

(�∗,�)k0 =
(

(�∗
1 ,�1)k0 (�∗

1 ,�2)k0
(�∗

2 ,�1)k0 (�∗
2 ,�2)k0

)

with

(�∗
1 ,�1)k0 = Re(C1 + C2) + M

(

cosω∗τ ∗ + sinω∗τ ∗

ω∗τ ∗

)

,

(�∗
1 ,�2)k0 = ImC1 − M sinω∗τ ∗,

(�∗
2 ,�1)k0 = ImC2 + M sinω∗τ ∗,

(�∗
2 ,�2)k0 = M

(

cosω∗τ ∗ − sinω∗τ ∗

ω∗τ ∗

)

,

where M = abv∗τ∗
2(a+u∗)2 . Let � = (�1, �2)

T = (�∗,�)−1
k0

�∗, (�,�)k0 = I2, and I2 is
a 2 × 2 identity matrix.

We now write the reduced equation on the center manifold. The center subspace of
linear equation (24) with μ = 0 is given by PCNC , where

PCNϕ = ϕ(�, 〈ϕ, βk0〉)k0 · βk0 , ϕ ∈ C ,

with βk0 = (β1
k0

, β2
k0

) and c · βk0 = c1β1
k0

+ c2β2
k0

for c = (c1, c2)T ∈ C . Let
PSC denote the stable subspace of linear equation (24) with μ = 0, then C =
PCNC

⊕
PSC .

Using the decomposition C = PCNC
⊕

PSC and following Wu (1996), Zuo and
Wei (2011), the flowof (23)withμ = 0 in the centermanifold is given by the following
formulae:

(x1(t), x2(t))
T = (�, 〈Ut , βk0〉)k0 ,

Ut = �(x1(t), x2(t))
T · βk0 + h(x1, x2, 0), (28)

(
ẋ1(t)
ẋ2(t)

)

=
(

0 ω∗τ ∗
−ω∗τ ∗ 0

)(
x1(t)
x2(t)

)

+ �(0)〈F(Ut , 0), βk0〉, (29)

with h(0, 0, 0) = 0 and Dh(0, 0, 0) = 0.
Let us write the reduced equation in complex form. Set z = x1 − i x2 and �(0) =

(�1(0),�2(0))T, then q = �1 + i�2 and �(x1(t), x2(t))T · βk0 = (qz + qz) · βk0/2.
Thus, (28) can be written as

Ut = 1

2
(qz + qz) · βk0 + w(z, z), (30)
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where

w(z, z) = h

(
z + z

2
,
i(z − z)

2
, 0

)

.

From (29) and (30), we obtain that z satisfies

ż = iω∗τ ∗z + g(z, z), (31)

where

g(z, z) = (�1(0) − i�2(0))〈F(Ut , 0), βk0〉 = (�1(0) − i�2(0))〈 f (Ut , τ
∗), βk0〉.

Now, let’s compute g(z, z). Set

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · ,

w(z, z) = w20
z2

2
+ w11zz + w02

z2

2
+ · · · . (32)

Let (ψ1, ψ2) = �1(0)− i�2(0). From (28), (30) and (31), we can get the following
quantities:

g20 = τ ∗

2

∫ π

0
γ 3
k0dx

[
(a1 + a2C1)ψ1 +

(
a5e

−2iω∗τ∗ + a6C1e
−iω∗τ∗ + a7C

2
1

)
ψ2

]
,

g11 = τ ∗

4

∫ π

0
γ 3
k0dx

{
[2a1 + a2(C1 + C1)]ψ1

+
[
2a5 + a6

(
C1e

iω∗τ∗ + C1e
−iω∗τ∗) + 2a7C1C1

]
ψ2

}
,

g02 = τ ∗

2

∫ π

0
γ 3
k0dx

[
(a1 + a2C1)ψ1 +

(
a5e

2iω∗τ∗ + a6C1e
iω∗τ∗ + a7C

2
1

)
ψ2

]
,

and

g21 = τ ∗

4

∫ π

0
γ 4
k0dx[3a3 + a4(2C1 + C1)]ψ1

+τ ∗

4

∫ π

0
γ 4
k0dx

[
3a8e

−iω∗τ∗ + a9
(
2C1 + C1e

−2iω∗τ∗) + 3a10C
2
1C1

]
ψ2

+τ ∗

2

〈[
a1

(
4w(1)

11 (0) + 2w(1)
20 (0)

)

+a2
(
2w(2)

11 (0) + w
(2)
20 (0) + 2C1w

(1)
11 (0) + C1w

(1)
20 (0)

)]
γk0 , γk0

〉
ψ1

+τ ∗

2

〈[
a5

(
4w(1)

11 (−1)e−iω∗τ∗ + 2w(1)
20 (−1)eiω

∗τ∗)
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+a6
(
2w(2)

11 (0)e−iω∗τ∗ + w
(2)
20 (0)eiω

∗τ∗ + 2C1w
(1)
11 (−1) + C1w

(1)
20 (−1)

)

+a7(4C1w
(2)
11 (0) + 2C1w

(2)
20 (0))

]
γk0 , γk0

〉
ψ2.

Herew11 andw20 are need to be computed. The calculation ofw11 andw20 is somewhat
tedious. Let AU denote the generator of the semigroup generated by the linear system
(24) with μ = 0. From (30) and (31), we have

ẇ = U̇t − 1

2
(qż + qż) · βk0

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

AUw − 1

2
(qg + qg) · βk0 , θ ∈ [−1, 0],

AUw − 1

2
(qg + qg) · βk0 + f

(
1

2
(qż + qz) · βk0 + w, τ ∗

)

, θ = 0,

= AUw + H(z, z, θ), (33)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · .

Let

f

(
1

2
(qż + qz) · βk0 + w, τ ∗

)

= fz2
z2

2
+ fzz zz + fz2

z2

2
+ · · · .

Furthermore, by comparing the coefficients, we obtain that

H20(θ) =

⎧
⎪⎨

⎪⎩

−1

2
(q(θ)g20 + q(θ)g02) · βk0 , θ ∈ [−1, 0),

−1

2
(q(θ)g20 + q(θ)g02) · βk0 + fz2 , θ = 0,

H11(θ) =

⎧
⎪⎨

⎪⎩

−1

2
(q(θ)g11 + q(θ)g11) · βk0 , θ ∈ [−1, 0),

−1

2
(q(θ)g11 + q(θ)g11) · βk0 + fzz, θ = 0.

(34)

By using the chain rule

ẇ = ∂w(z, z)

∂z
ż + ∂w(z, z)

∂z
ż,

we obtain, from (32) and (33), that

{
H20 = (2iω∗τ ∗ − AU )w20,

H11 = −AUw11.
(35)
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As 2iω∗τ ∗ and 0 are not characteristic values of (24), (35) has unique solutions w20
and w11 in PSC , given by

{
w20 = (2iω∗τ ∗ − AU )−1H20,

w11 = −A−1
U H11.

(36)

Using the definition of AU , we get, from the first equation (34) and (35), that for
θ ∈ [−1, 0],

ẇ20 = 2iω∗τ ∗w20(θ) + 1

2
(q(θ)g20 + q(θ)g02) · βk0 .

Therefore

w20(θ) = 1

2

[
ig20
ω∗τ ∗ q(θ) + i g02

3ω∗τ ∗ q(θ)

]

· βk0 + Ee2iω
∗τ∗θ ,

where E is a 2-dimensional vectors in X . Notice that

τ ∗ D̃�q(0) · βk0 + L(τ ∗)(q(θ) · βk0) = iω∗q(0) · βk0 ,

τ ∗ D̃�q(0) · βk0 + L(τ ∗)(q(θ) · βk0) = −iω∗q(0) · βk0 ,

From (35), we get that

2iω∗τ ∗E − τ ∗ D̃�E − L(τ ∗)(Ee2iω∗τ∗θ ) = fz2 . (37)

Representing E and fz2 by series: E = ∑∞
k=0 Ek · βk = ∑∞

k=0 Ekγk (Ek ∈ R
2), and

fz2 = ∑∞
k=0〈 fz2 , βk〉 · βk = ∑∞

k=0〈 fz2 , βk〉γk , we get from (37) that

2iω∗τ ∗Ek + τ ∗ D̃k2Ek − L(τ ∗)(Eke
2iω∗τ∗·) = 〈 fz2 , βk〉, k ∈ N0.

So, Ek could be calculated by

Ek = Ẽ−1
k 〈 fz2 , βk〉,

where

Ẽk = τ ∗

⎛

⎜
⎜
⎝

2iω∗ + k2 + u∗ − u∗v∗

(a + u∗)2
u∗

a + u∗
abv∗

(a + u∗)2
e−2iω∗τ∗

2iω∗ + Dk2 − f v∗(v∗2 − d2)

(d2 + v∗2)2

⎞

⎟
⎟
⎠ ,

〈 fz2 , βk〉 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1√
π
f̃z2 , k0 �= 0, k = 0,

1√
2π

f̃z2 , k0 �= 0, k = 2k0,
1√
π
f̃z2 , k0 = 0, k = 0,

0, other,
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with

f̃z2 = τ ∗

2

(
a1 + a2C1

a5e−2iω∗τ∗ + a6C1e−iω∗τ∗ + a7C2
1

)

.

Similarly, we get

w11(θ) = 1

2

[−ig11
ω∗τ ∗ q(θ) + i g11

ω∗τ ∗ q(θ)

]

· βk0 + F,

F =
∞∑

k=0

Fkγk (Fk ∈ R
2), Fk = F̃−1

k < fzz, βk >,

where

F̃k = τ ∗

⎛

⎜
⎜
⎝

k2 + u∗ − u∗v∗

(a + u∗)2
u∗

a + u∗
abv∗

(a + u∗)2
Dk2 − f v∗(v∗2 − d2)

(d2 + v∗2)2

⎞

⎟
⎟
⎠ ,

〈 fzz, βk〉 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1√
π
f̃zz, k0 �= 0, k = 0,

1√
2π

f̃zz, k0 �= 0, k = 2k0,
1√
π
f̃zz, k0 = 0, k = 0,

0, other,

with

f̃zz = τ ∗

4

(
2a1 + a2(C1 + C1)

2a5 + a6(C1eiω
∗τ∗ + C1e−iω∗τ∗

) + 2a7C1C1

)

.

So, the coefficient g21 is completely determined.
Let λ(τ) = α(τ) + iω(τ) denote the eigenvalues of (24). Thus we can compute

the following quantities:

c1(0) = i

2ω∗τ ∗ (g20g11 − 2|g11|2 − 1

3
|g02|2) + 1

2
g21,

μ2 = −Re(c1(0))

α′(τ ∗)
,

β2 = 2Re(c1(0)),

T2 = − 1

ω∗τ ∗ (Im(c1(0)) + μ2ω
′(τ ∗)).

(38)

According to the Hopf bifurcation theory (see Hassard et al. 1981), we know that
μ2 determines the direction of the Hopf bifurcation (forward if μ2 > 0, backward if
μ2 < 0); β2 determines the stability of the bifurcating periodic solutions (stable if
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β2 < 0, unstable if β2 > 0); and T2 determines the period of the bifurcating periodic
solutions (the period increases if T2 > 0, decreases if T2 < 0).

Since Re(λ′(τ ∗)) > 0, from Theorem 3.1, we obtain the following conclusions:
If Re(c1(0)) < 0(> 0), then μ2 > 0(< 0), β2 < 0(> 0), the bifurcating periodic
solutions exists for τ > τ ∗(< τ ∗) and are orbitally stable(unstable).

The symbolic formula of c1(0) is difficult to obtain for our problem. However, we
will demonstrate some cases of numerical computation in the next Sect. 3.3. Particu-
larly, we will be interested in how the sign of c1(0) is related to the predation rate f
of fish on herbivorous zooplankton.

3.3 Biological Implications of Oscillations Induced by Delay

It is well known that the delay may drive a stable positive equilibrium state to an unsta-
ble one and may cause oscillations in the system. This mechanism of destabilising is
different from Turing instability. For the plankton ecosystem we studied, the matura-
tion period of herbivorous zooplankton is built into the model as a delay parameter
τ . The plankton ecosystem has nutrient supplied and also has predator population of
fish. The nutrient levels and predation of fish both have impacts on the dynamics of
the system. When the nutrient level is fixed, the per capita growth rate and carrying
capacity of phytoplankton are constants in our model. We look at how the predation
rate of the present fish on herbivorous zooplankton, F = f wr2

γ
, influences the system.

We already know from the Sect. 2.3, under eutrophic condition (H), F has no upper
bounds. Now, under the same biologically reasonable condition (H), we found that,
there is a critical value for the predation rate of fish on herbivorous zooplankton, F∗,
the equilibrium state E∗ is locally asymptotically stable when F ≥ F∗ no matter
what the maturation period of herbivorous zooplankton τ is, while the equilibrium
E∗ will be unstable or the system will oscillate when 0 < F < F∗ and τ > τ ∗.
Ecologically, the predation of fish on zooplankton must be great enough to keep the
plankton ecosystem stable at the equilibrium without influence of life cycle of her-
bivorous zooplankton. This seems to counter intuitive, since the predation of fish on
zooplankton will reduce the density of herbivorous zooplankton and the equilibrium
density of herbivorous zooplankton is decreasing as the predation rate of fish increases
(see Sect. 2.3), and so it may increase a collapsibility of herbivorous zooplankton pop-
ulation. However, under the eutrophic condition (H), the plankton ecosystem is still
able to maintain its equilibrium state. The ecological implication is that, under the
eutrophic condition and the fish predation rate is below the critical value, increasing
the fish predation delays occurrence of oscillations. However, the system will be in
the coexistent equilibrium when the fish predation rate is above the critical value. This
means that the fish predation damps oscillations. This conclusion is consistent with
that planktivorous fish tends to damp zooplankton-phytoplankton oscillation in the
early study (Scheffer 1991).

When the predation rate of fish on herbivorous zooplankton is satisfied 0 < F <

F∗, thematuration period of herbivorous zooplankton comes to effect on the dynamics
of the plankton ecosystem. We found that there is a critical length for the maturation
period of herbivorous zooplankton, τ ∗ for each F . When the maturation period τ is
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Fig. 2 Bifurcation diagram in the space of parameters: scaled fish predation rate f on zooplankton and
the critical length τ∗ of the maturation period of herbivorous zooplankton. The second and third plot are a
part of the first one zoomed in. The parameter values are taken as a = 0.5, b = 2, c = 1, d = 2.5, D = 2
and f ∗ = 4.1418

smaller than τ ∗, the equilibrium state E∗ is still locally asymptotical stable; when the
maturation period τ is greater than τ ∗, the equilibrium state E∗ is unstable. Around the
equilibrium point E∗, the system undergoes a Hopf bifurcation. That is, the model sys-
temoscillates, and it has periodical solutions. The plankton ecosystemhas been studied
experimentally and theoretically for a long period of time. It has been established that
the predator–prey mechanism is a major cause of plankton oscillation (Mccauley and
Murdoch 1987; Scheffer 1991). However, the predator–prey mechanism is largely
caused by life cycles of plankton (phytoplankton and zooplankton), while life cycles
of plankton gowith or are controlled by the annual seasonality. The seasonal growth of
phytoplankton causes growth of herbivorous zooplankton; the growth of herbivorous
zooplankton influence back on phytoplankton while predation of fish on zooplankton
also impacts the plankton system. It is biologically obvious that, if the growth period
of herbivorous zooplankton is too long, say exceeding one year, there would be no
oscillation at all; if the growth period of herbivorous zooplankton is too short com-
paring with the growth period of phytoplankton (which is not included in this study),
it is also difficult to expect population oscillations. From the literatures, we know that
some zooplankton have a life cycle of 200 days while some phytoplankton has a life
cycle of 6 days (Larsson 1978; Allan 1976; Dasson andMontresor 2011;Meadows and
Campbell 1988). The annual seasonality is reflected in the life cycle of zooplankton.
So, we may conclude that the maturation period of herbivorous zooplankton plays a
major role in the oscillation of the plankton ecosystem.

We are also curious about how the predation rate of fish on zooplankton is related to
the critical length of thematuration period of herbivorous zooplankton τ ∗, althoughwe
know there is an abstract functional relation. However, an analytical relation between
these two parameters is difficult to obtain. To demonstrate, we produce some numerical
plots as the bifurcation curve in the parameter space as shown in Fig. 2.

From the plots in Fig. 2, we get some qualitative view that, the critical length τ ∗
of the maturation period of herbivorous zooplankton is increasing as f increases. We
also obtain that there is a critical value f ∗ of f , which corresponds to F∗, that τ ∗ will
increase indefinitely when f approaches f ∗. When f is greater than f ∗, E∗ is stable.
So, the influence of the fish predation upon zooplankton on the plankton ecosystem
is complex. We may say that within certain range the fish predation would delay the
occurrence of oscillations.
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Fig. 3 The relation between the predation rate f of fish on herbivorous zooplankton and the real part of
c1(0), where a = 0.5, b = 2, c = 1, d = 2.5, D = 2

It is interesting to know how the predation of fish on herbivorous zooplankton
affects the stability of oscillation in the plankton system (1). In the previous subsec-
tion, we did the calculation about the properties of the Hopf bifurcations. But, the
analytical formulas are difficult to reach. We conduct some numerical computation
as shown in Fig. 3. From Fig. 3, we see that Re(c1(0)) < 0 with the choices of the
parameter values. That means that the Hopf bifurcation occurs just after the critical
value τ ∗ (supercritical), and the oscillations as periodic solutions are orbitally stable.
The predation of fish on herbivorous zooplankton does not influence the stability of
the oscillations, and also does not change the direction of the Hopf bifurcations.

4 Numerical Simulations

To demonstrate our analytical results, we conduct some numerical simulations in this
section.

Example 1 Taking a = 2, b = 2, f = 8, c = 0.8, d = 2.5, D = 2, τ = 1
such that h = −0.1333 < 0. For this set of parameter values we observe that h < 0
and the boundary equilibrium E1(1, 0) of (2) is globally asymptotically stable(see
Fig. 4). In the numerical simulations for Fig. 4, the initial conditions are u(x, t) =
1 − 0.2 cos 2x, v(x, t) = 0.01 + 0.01 cos x, (x, t) ∈ [0, π ] × [−τ, 0].

Example 2 If we choose a = 0.5, b = 2, f = 2, c = 1, d = 2.5, D = 2 such
that the condition (H) holds. Then we get that system (2) exits a unique positive
equilibrium E∗(0.6451, 0.4064) and E∗ is asymptotically stable for τ = 0. From
calculation, we find f ∗ = 4.1418 and only for n = 0 equation (17) has positive roots,
and
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Fig. 4 Numerical simulations of the system (2) for a = 2, b = 2, f = 8, c = 0.8, d = 2.5, D = 2, τ = 1.
The boundary equilibrium E1(1, 0) of (2) is asymptotically stable

Fig. 5 Numerical simulations of system (2) for a = 0.5, b = 2, f = 2, c = 1, d = 2.5, D = 2 and
τ = 3 < τ∗. The positive equilibrium E∗(0.6451, 0.4064) of (2) is asymptotically stable

τ
j
0 ≈ 4.4896 + 20.8288 j, for j ∈ N0.

So, τ ∗ = τ 00 ≈ 4.4896. From Theorem 3.2, we know that the equilibrium point E∗ of
system (2) is locally asymptotically stable for 0 ≤ τ < τ ∗ (see Fig. 5), the equilibrium
point E∗(u∗, v∗) is unstable for τ > τ ∗, and system (2) undergoes Hopf bifurcation
at the equilibrium E∗ when τ = τ

j
0 for j ∈ N0. By the formulas derived in previous

section, we get c1(0) ≈ −0.7918 + 0.0810i . Because Re(c1(0)) ≈ −0.7918 < 0, so
we know that when τ > τ ∗, there exits orbitally stable periodic solutions (see Fig. 6).
In the numerical simulations for Figs. 5 and 6, the initial conditions are u(x, t) =
0.5 + 0.3 cos 2x, v(x, t) = 0.4 − 0.2 cos 2x, (x, t) ∈ [0, π ] × [−τ, 0].

5 Conclusions and Discussion

We revisited the minimal model proposed by Scheffer (1991) with extensions – spa-
tial diffusion of both phytoplankton and herbivorous zooplankton and the delay of
zooplankton maturation period. Since our focus is effects of zooplankton maturation
period on the dynamics of plankton systems, we only study the case of spatial dimen-
sion 1 for spatial diffusion. However, the results about delay effects should be valid
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Fig. 6 Numerical simulations of system (2) for a = 0.5, b = 2, f = 2, c = 1, d = 2.5, D = 2 and
τ = 6 > τ∗. The positive equilibrium E∗(0.6451, 0.4064) of (2) is unstable and there exist stable spatially
homogeneous periodic solutions

for spatial dimension 2 or higher. The dynamics picture of the plankton system we
obtained is as follows. When the nutrient level is sufficient low such that the maximal
per capita growth rate eγ w

Hp+w
of herbivorous zooplankton is less than its death rate δ,

that is, the parameter h, a scaled maximal net growth rate of herbivorous zooplankton,
is negative, herbivorous zooplankton will collapse and then phytoplankton population
will grow into its carrying capacity. Mathematically, the boundary equilibrium is glob-
ally stable. When the nutrient level increases so that h > 0, and other two conditions
that nutrients is not too high and the half-saturation rate is not too fast, forming an
eutrophic condition (H), are satisfied, the system has a unique coexistent homoge-
neous equilibrium E∗. The equilibrium density of phytoplankton increases, while the
equilibrium density of herbivorous zooplankton decreases as the fish predation rate
is increasing. However, the system will never collapses under the eutrophic condition
unless the fish predation rate approaches infinite. This is one of new phenomena we
derived. For the fish predation rate, we find a critical value F∗, the coexistent equi-
librium is locally asymptotical stable when the fish predation rate is above F∗. When
the fish predation rate is below this critical value, the coexistent equilibrium may sta-
ble or unstable or the system oscillates, which depends on the delay parameter τ . It
means that fish predation damps oscillations. This functional relation of two biological
significant parameters is also a new phenomenon we obtained.

Comparing with the study in Scheffer (1991), we not only largely enhance its con-
clusions in more mathematical ways under a broader setting where spatial diffusion
and maturation delays are counted, but also obtain new dynamical patterns. We see
that under eutrophic conditions (or the condition (H)), the gradual change of fish
density (represented by the predation rate of fish on zooplankton F) leads the system
to switch its dynamical behaviors. We concluded that planktivorous fish is one of
major players who change the dynamical patterns of plankton systems. In addition,
phytoplankton–zooplankton oscillations are largely attributed to the predator–prey
mechanism. However, we argue that the phytoplankton–zooplankton oscillations orig-
inate from the annually seasonal changeswhich is represented as thematuration period
of herbivorous zooplankton (see Sect. 3.3). We may conclude that oscillations are
mainly caused by maturation periods of zooplankton in plankton ecosystems.
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A review of field or experimental data would be important for the mathematical
analysis to be verified, although our focus in this study is to explore the new dynamical
patterns induced by the delay of the maturation period of zooplankton in the extended
minimal model. We will leave the data review and verification and the following pos-
sible improvements as our future studies. We know that phytoplankton also need time
to be mature and their maturation period have different lengthes. We will consider to
include two delay parameters for both phytoplankton and zooplankton in the minimal
model for further study. It is known that there are many fish that feed on both phyto-
plankton and zooplankton. We will also consider to build this fact into the minimal
model in the future.
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