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Abstract

In this expository article, I propose new research topics and open problems on

evolution algebras, meanwhile I summarize my research on this new subject in order

to give a coherent perspective. Most of my results were published in my book [4], and

a few results are newly derived. For most of the open problems or topics, I provide my

suggestions about how to study them. I also describe a background story of evolution

algebras where the reader may enjoy the interaction history between algebras and

genetics. Evolution algebras have raised some interests in mathematics community.

However, it is my hope that the open research projects in this invitation will attract

more attention from both applied and pure mathematicians, be a welcome letter to

anyone who is interested in conducting research in this area, and eventually add new

dimensions to mathematics itself.
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1 Project objectives

In today’s cutting edge research area of mathematical biology, although much has been

emphasized on the importance of mathematics for research in the life science in this century,

it remains skeptical to most mathematicians whether it will have substantial impact on

mathematics itself. Some mathematicians are still unconvinced that biology will ever lead

to new theorems or theories. Unlikely as it may appear to be, a new algebra, which is

called evolution algebra, is a new mathematics subject that has actually already arisen from

biology.

Evolution algebra is a new type of algebra that is inspired from biological phenomena.

When I was studying stochastic processes and genetics, it occurred to me that there

exists an intrinsic and general mathematical structure behind the neutral Wright-Fisher

models in population genetics, asexual reproduction or generally non-Mendelian inheritance

including intracellular population genetics, and Markov chains. Then I defined them

as a type of algebra - evolution algebras. Evolution algebras are non-associative and

non-power-associative Banach algebras. Indeed, they are natural examples of non-associative

complete normed algebras arising from natural science. Evolution algebras, as abstract

mathematical representations, on the one hand, formulate our understanding of natural

processes in the biological world, and have many applications in problems of the real world.

On the other hand, it is established as a new mathematical subject. It turns out that

evolution algebras have many application to or connections with different mathematical

fields.

Being a new mathematics subject, evolution algebras have quite a few topics that

require further study. As the developer of evolution algebras, I also hope to demonstrate

that evolution algebras have extensive connections with or applications to various fields

of mathematics, besides evolution algebras as an effective tool in the research of biology
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and Markov chains. By using evolution algebras, we might be able to see problems in many

mathematical fields from a new perspective. A further study of evolution algebras themselves

and exploration of connections with other mathematics is worthwhile, since it will also render

evolution algebras more understandable, acceptable, and applicable in mathematical fields.

So, this invitation will present open projects that mainly focus on the mathematical aspect

of evolution algebras.

The objectives of this invitation to open research projects are:

1. To generalize several important theorems in evolution algebras

2. To explore connections between evolution algebras and graph theory, and lay a

foundation for a new “algebraic graph theory”

3. To explore connections between evolution algebras and group theory, knot theory, and

3-manifolds

4. To explore connections between evolution algebras and Ihara-Selberg zeta function

5. To establish structure theorems for infinite-dimensional evolution algebras

6. To develop continuous evolution algebras

2 Background

In history, mathematicians and geneticists once used non-associative algebras to study

Mendelian genetics. Mendel [6] first exploited symbols that is quite algebraically suggestive

to express his genetic laws. It was later termed “Mendelian algebras” by several other

authors. In the 1920s and 30s, genetic algebras were introduced. Serebrowsky [7] was the

first to give an algebraic interpretation of the sign “×”, which indicated sexual reproduction,
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and to give a mathematical formulation of Mendel’s laws. Glivenkov [8] introduced the

so-called Mendelian algebras for diploid populations with one locus or two unlinked loci.

Independently, Kostitzin [9] also introduced a “symbolic multiplication” to express Mendel’s

laws. The systematic study of algebras occurring in genetics was due to I. M. H. Etherington.

In his series of papers [10], he succeeded in giving a precise mathematical formulation

of Mendel’s laws in terms of non-associative algebras. Besides Etherington, important

contributions have been made by Gonshor [11], Schafer [12], Holgate [13, 14], Hench [15],

Reiser [16], Abraham [17], Lyubich [22, 23], and Worz-Busekos [21]. It is worth mentioning

two unpublished work in the field. One is the Ph.D thesis of Claude Shannon, the founder of

the modern information theory, which was submitted in 1940 (MIT) [18]. Shannon developed

an algebraic method to predict the genetic makeup in future generations of a population

starting with arbitrary frequencies. The other one is Charles Cotterman’s Ph.D thesis that

was also submitted in 1940 (Ohio State University) [19, 20]. Cotterman developed a similar

system as Shannon did. He also put forward a concept of derivative genes, now called

“identical by descent”.

During the early days in this area, it appeared that the genetic algebras or broadly defined

genetic algebras, could be developed into a field of independent mathematical interest,

because these algebras are in general not associative and do not belong to any of the

well-known classes of non-associative algebras such as Lie algebras, alternative algebras, or

Jordan algebras. They possess some distinguishing properties that lead to many interesting

mathematical results. For example, baric algebras, which have nontrivial representations

over the underlying field, and train algebras, whose coefficients of rank equations are just

functions of the images under these representations, are new concepts for mathematicians.

Until recent year, there are still some good research articles in different directions of genetic

algebras in literature although it is hard to study nonassociative algebras generally. Ljubic

published an algebraic methodology paper [25]. Fortini and Barakat studied algebraic
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characters of autotetraploid populations [26]. Campos and Holgate studied algebraic isotopy

in genetics [27]. Gonshor considered derivations in genetic algebras [28]. Bremner studies

some polynomial identities in genetic algebras [29]. There is some continuous time models

in genetic algebras [30, 31]. These models can be considered as an effort of introducing a

sort of continuous algebras. For the most comprehensive reference in this area, we refer to

Worz-Busekros’s book [21]. More recent results, such as genetic evolution in genetic algebras,

can be found in Lyubich’s book [22]. A good survey is Reed’s article [24].

Genetic algebras are the product of interaction between biology and mathematics.

Mendelian genetics introduced a new subject to mathematics: genetic algebras. The study

of these algebras reveals algebraic structures of Mendelian genetics, which always simplifies

and shortens the way to understand genetic and evolutionary phenomena. Indeed, it is the

interplay between purely mathematical structures and the corresponding genetic properties

that makes this area so fascinating. However, after Baur [32] and Correns [33] first detected

that chloroplast inheritance departed from Mendel’s rules, and much later, mitochondrial

gene inheritance was also identified in the same way, non-Mendelian inheritance of organelle

genes was recognized with two features — uniparental inheritance and vegetative segregation

[37]. Now, non-Mendelian genetics is a basic language of molecular geneticists. Logically,

we may ask what non-Mendelian genetics offer to mathematics. The answer is “evolution

algebras” [4].

I defined evolution algebras when observing phenomena in biology including uniparental

inheritance [35,36], particle reactions in physics, and Markov chains. It turns out that these

algebras have many unique properties. For instance, each evolution algebra possesses an

evolution operator. This evolution operator reveals the dynamic information of an evolution

algebra. However, what makes the theory of evolution algebras different from the classical

theory of algebras is that in evolution algebras, there are two different types of generators:

algebraically persistent generators and algebraically transient generators. The basic notions
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of algebraic persistency and algebraic transiency, and their relative versions, lead to a

hierarchical structure for an evolution algebra. Dynamically, this hierarchical structure

displays the direction of the flow induced by the evolution operator. Algebraically, this

hierarchical structure is given in the form of a sequence of semi-direct-sum decompositions

of an evolution algebra. Thus, this hierarchical structure demonstrates that an evolution

algebra is a mixed algebraic and dynamic subject. The algebraic nature of this hierarchical

structure allows us to have a skeleton-shape classification of evolution algebras. At the same

time, the dynamic nature of this hierarchical structure is what makes the notion of evolution

algebra applicable to the study of stochastic processes and many other subjects in different

fields. For example, when we apply the structure theorem to the evolution algebras induced

by Markov chains, it is easy to see that each Markov chain has a dynamic hierarchy and the

probabilistic flow is moving through this hierarchy, and that the collection of Markov chains

can be classified by the skeleton-shape classification of their induced evolution algebras.

Hierarchical structures of Markov chains may be stated in other terms. But, it is the first

time that we show algebraic properties of Markov chains and a complete skeleton-shape

classification of Markov chains.

Although evolution algebra theory is an abstract system, it gives insight into

understanding of non-Mendelian genetics. For instance, once we apply evolution algebra

theory to the inheritance of organelle genes, we can predict all the possible mechanisms

to establish the homoplasmy of cell populations [4, 41]. Actually in the current stage of

mitochondrial research, these mechanisms are hypothetical [38–40], which might shed light

on future biological research in mitochondria. It is also easy to understand the coexistence

of triplasmy in tissues of sporadic mitochondrial disorder patients by our algebra theory.

Further more, once the algebraic structure of asexual progenies of Phytophthora infectans is

obtained, we can make certain important predictions and suggestions to botany pathologists

[42–44].
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Evolution algebras have many connections with other fields of mathematics, such as

graph theory, group theory, knot theory, 3-manifolds, and Ihara-Selberg zeta functions.

Evolution algebras can be a theoretical framework to unify many phenomena. By using

evolution algebras, we might be able to see problems in many mathematical fields from a

new perspective. For example, we obtain a theorem of classification of directed graphs.

Because evolution algebras hold the intrinsic and coherent relation with graph theory, we

will be able to analyze graphs algebraically. The purpose for this is that we try to establish a

new theory “algebraic graph theory” to reach the goal of Gian-Carlo Rota — “Combinatorics

needs fewer theorems and more theory” [34].

Obviously, we are opening a door to a new subject of the mixture of algebras and

dynamics. Many new research topics in evolution algebras are confronting us. In this

proposed research, our focus is on mathematics of evolution algebras and applications to

and connections with other mathematical fields.

3 Preliminary research

Below is a brief description of what I have done about evolution algebras.

We have defined evolution algebras, investigated their basic properties, established

the principal theorem about evolution algebras — the hierarchical structure theorem.

Evolution algebras are defined in terms of generators and defining relations. We studied

their non-associativity and non-power-associativity. Various algebraic concepts are also

investigated, such as evolution subalgebras and evolution homomorphisms, the associative

multiplication algebra, the centroid and the derived Lie algebra of an evolution algebra etc..

The occurrence relation among generators of an evolution algebra and the connectedness of

an evolution algebra are defined. We utilize the occurrence relation to define the periodicity

of generators. We introduced an evolution operator for an evolution algebra that is actually
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a special right (left) multiplication operator. This evolution operator reveals the dynamic

information of an evolution algebra. To describe the evolution flow quantitatively, we

introduced a norm for an evolution algebra. Under this norm, a finite evolution algebra

becomes a Banach algebra. However, what makes the evolution algebra theory different from

the classical algebra theory is that in evolution algebras there are two different categories

of generators, algebraically persistent generators and algebraically transient generators.

Moreover, the difference between algebraic persistency and algebraic transiency suggests

a direction of dynamic flow as it displays in the hierarchy of an evolution algebra. The

hierarchy gives a picture of a dynamic process when one takes multiplication in an evolution

algebra as time-step in a discrete-time dynamic system. We also obtain the structure theorem

for a simple evolution algebra. We use homomorphisms to reduce a “big” evolution algebra

to a “small” one that still has the same hierarchy as that of the original algebra does. This

reducibility gives a classification of all evolution algebras up to skeleton-shapes. To illustrate,

I list several definitions and theorems as follows (for details, please look at my book [4]).

Let’s first consider a non-associative and non-commutative free algebra < with the set

of generators X = {ei | i ∈ Λ} over a field K, where Λ is a finite or infinite index set. Note

that its elements are polynomials of non-commutative variables ei with coefficients from

K and the basis consists of bracketed words. By a bracketed word, we mean a monomial

of variables e1, e2, · · · , with brackets inserted so that the order of multiplications in the

monomial is uniquely determined. We then specify some polynomials fl = e2
l +

∑
k∈Λ

alkek,

where almost every alk ∈ K is zero except finite many of them; fij = eiej where i 6= j. We

consider the ideal I in < generated by these elements, fl, fij, (i.e. the smallest ideal contains

these elements). The factor algebra </I is an evolution algebra defined by the generators

and the relations. That is, we define an evolution algebra to be

R(X) =

〈
e1, · · · , ev, · · · | e2

l +
∑
k∈Λ

alkek, eiej, i 6= j; i, j, l ∈ Λ

〉
.
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Let E be an evolution algebra with the generator set {ei | i ∈ Λ}. We say ei occurs in

x ∈ E, if αi 6= 0, where x =
∑v

j=1 αjej. When ei occurs in x, we write ei ≺ x. Note that

if ei ≺ e
[n]
i , then 〈ei〉 ⊆ 〈x〉, where 〈x〉 means the evolution subalgebra generated by x. We

define a period of a generator ej to be

d = g.c.d.
{

log2m | ej ≺
(
e

(m)
j

)}
,

where power e
(m)
j is some k − th plenary power, 2k = m. If d is 1, we say ej is aperiodic; if

the set
{

log2m | ej ≺ (e
(m)
j )

}
, is empty, we define d =∞.

The evolution operator of E is defined to be a map L from E to itself that sends ei to

e2
i . Or using a formal notation θ =

∑
i∈Λ

ei , L can be defined L as follows:

L(x) = θ · x = (
∑
i∈Λ

ei) · x,

for any x ∈ E, a special right multiplication operator.

A norm for an evolution algebra is defined to be N(x) =
∑

i |ai|, where x ∈ E and

x =
∑

i aiei. Under this norm, a finite dimensional evolution algebra becomes a Banach

algebra.

We say that generator ej is algebraically persistent if the evolution subalgebra 〈ej〉,

generated by ej, is a simple subalgebra, and ei is algebraically transient if the subalgebra

〈ei〉 is not simple.

Theorem 3.1. All generators have the same period in a nonnegative simple evolution

algebra.

Theorem 3.2. 1) Let E be a connected evolution algebra, then E has a proper evolution

subalgebra if and only if E has an algebraically transient generator.

2) Let E be a connected evolution algebra, then E is a simple evolution algebra if and

only if E has no algebraically transient generator.
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Theorem 3.3. Any finite dimensional evolution algebra has a simple evolution subalgebra.

Theorem 3.4. Let E be a connected finite-dimensional evolution algebra. As a vector space,

E has a decomposition of direct sum of subspaces:

E = A0,1 ⊕ A0,2 ⊕ · · · ⊕ A0,n0

•
+ B0,

where A0,i, i = 1, 2, · · · , n0, are all simple evolution subalgebras, A0,i ∩ A0,j = {0} for i 6= j,

and B0 is a subspace spanned by algebraically transient generators (which is called the 0− th

transient space). The summation A0,1⊕A0,2⊕· · ·⊕A0,n0 is also a direct sum of subalgebras.

Symbol
•
+ indicates the summation is not a direct sum of subalgebras, just a direct sum

of subspaces. We call this decomposition a semi-direct-sum decomposition of an evolution

algebra.

We can establish a semi-direct-sum decomposition for B0 by using induced relative

concepts on B0. This procedure can continue until where we can not decompose the transient

spaces. We get the hierarchy as follows

E = A0,1 ⊕ A0,2 ⊕ · · · ⊕ A0,n0

•
+ B0

B0 = A1,1 ⊕ A1,2 ⊕ · · · ⊕ A1,n1

•
+ B1

B1 = A2,1 ⊕ A2,2 ⊕ · · · ⊕ A2,n2

•
+ B2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Bm−1 = Am,1 ⊕ Am,2 ⊕ · · · ⊕ Am,nm

•
+ Bm

Bm = Bm,1 ⊕Bm,2 ⊕ · · · ⊕Bm,h,

where Ak,l is a k− th simple evolution subalgebra, Ak,l∩Ak,l′ = {0} if l 6= l′, Bk is the k− th

transient space. Bm can be decomposed as a direct sum of (m+ 1) − th simple evolution

subalgebras. We may call these (m+ 1)− th simple evolution subalgebras the heads of the

hierarchy, and h is the number of heads.
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Theorem 3.5. Every evolution algebra E is homomorphic to a unique evolution algebra Er

such that its evolution subalgebras in its hierarchy are all one dimensional subalgebras. This

unique evolution algebra Er is called the skeleton-shape of E.

Theorem 3.6. Given the numbers of levels and subalgebras at each level, an evolution algebra

can be determined up to the skeleton-shape homomorphism.

To demonstrate the applicability of evolution algebras, we studied evolution algebras

that correspond to or are determined by Markov chains. Denote the collection of all Markov

chains with a finite state space by C(M), the collection of all finite-dimensional evolution

algebras over the real number field R by CR(A). We defined a map Φ from C(M) to

CR(A), for each Markov chain X, its image is the algebra defined by taking X’s transition

probabilities to be the structural coefficients. This map is well-defined. CR(A) is a category

with objectives as evolution algebras and morphisms as homomorphisms of algebras. If we

identify a Markov chain X and its image Φ(X), then C(M) becomes a subcategory of CR(A).

C(M) now has algebraic structures. For instance, homomorphisms between Markov chains,

and they preserves skeleton-shape of hierarchy of a Markov chain. By applying Theorem 3.5,

we can classify all Markov chains, and each Markov chain in the same class shares the same

skeleton-shape of hierarchy. By using evolution algebras, the algebraic properties of Markov

chains can also be revealed. For example, a Markov chain is irreducible if and only if its

evolution algebra is simple, and a subset of state space of a Markov chain is closed in the

sense of probability if and only if it generates an evolution subalgebra. An element has the

algebraic period of d if and only if it has the probabilistic period of d. In general, a generator

is probabilistically transient if it is algebraically transient, and a generator is algebraically

persistent if it is probabilistically persistent. When the dimension of the evolution algebra

is finite, algebraic concepts and analytic concepts are equivalent. Although the dynamic

behavior of an evolution algebra is embodied by various powers of its elements, the evolution

operator seems to represent a “total” principal powers. We studied the spectrum of evolution
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operators at the 0− th level in the hierarchy of Φ(X). We also gave formulae of the sojourn

times during each simple evolution subalgebra at each level on the hierarchy.

4 Proposed open research topics

4.1 To generalize several important theorems in evolution

algebras

The framework of evolution algebra theory was already established in my book “Evolution

Algebras and Their Applications”. Further more detailed studies are needed now. The most

important thing to do, however, is to generalize several theorems in order to make evolution

algebras more understandable and applicable.

Structures of simple evolution algebras: For finite-dimensional simple evolution

algebras over R, we know they do not have hierarchic structure. For finite-dimensional

nonnegative simple evolution algebras, however, we have proved they have an interesting

cyclic dynamic structure. A nonnegative evolution algebra means coefficients in its defining

relations are nonnegative. We have the following two theorems to describe the structures of

nonnegative simple evolution algebras.

Theorem 4.1. All generators have the same period in a nonnegative simple evolution

algebra.

Theorem 4.2. Let E be a nonnegative simple evolution algebra with generator set {ei | i ∈

Λ}. There is a partition of generators with d disjointed classes C0, C2, · · · , Cd−1, such that

L(∆k) ⊆ ∆k+1(modd), or ∆2
k ⊆ ∆k+1(modd), k = 1, 2, · · · d − 1, where d is the period of

ei, ∆k = Span (Ck), and L is the evolution operator of E, mod is taken with respect to the
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index of the class of generators. There is also a direct sum of linear subspaces

E = ∆0 ⊕∆1 ⊕ · · · ⊕∆d−1.

Since simple evolution algebras are the basic blocks for building general evolution

algebras, it is necessary to make a detailed study of the structures of simple evolution

algebras. To characterize simple evolution algebras, it is necessary to generalize these two

theorems for general finite-dimensional simple evolution algebras. Here the difficulty lies in

how to prove the existence of transitive occurrence relations. In order to investigate this

question, I suggest to study simple evolution algebras over finite fields. These study will

shed light on the study of general proofs. For general simple evolution algebras over R, I

suggest to construct an index map over the algebra in order to get a proof. I also suggest

to study how to relax the conditions for occurrence relations so that the new definition of

occurrence relations will still preserve all old relations.

Structures of simple evolution algebras at high levels: Another basically

important question that we would like to propose to study is what is the structure of a

simple evolution algebra, when it is not at the 0−th level of the hierarchy of some evolution

algebra, but at a high level of the hierarchy. It is expected that simple evolution algebras at

a high level of the hierarchy have similar structures to those at the 0−th level.

Spectrum study at high levels: For finite-dimensional evolution algebras determined

by Markov chains, we have studies their spectral structures in the 0−th levels in their

hierarchy, and got two main theorems:

Theorem 4.3. Let MX be a finite-dimensional simple evolution algebra with period d

determined by Markov chain X, then the evolution operator has d eigenvalues that are the

roots of unity. Each of them has an eigenspace of dimension one. And there are no other

eigenvalues of modulus one.
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Theorem 4.4. Let MX be an evolution algebra of finite dimension, then the geometric

multiplicity of the eigenvalue one of its evolution operator is equal to the number of simple

evolution subalgebras of MX .

It is important to generalize these results to high levels of their hierarchy in order to better

understand the details of dynamic systems. So it is needed to study these generalizations.

For the type of evolution algebra that has more than two levels, I suggest to adopt methods

of operator decomposition at 0−th level to study the spectrum in high level. Since scales

are different at different levels when we use operator decomposition methods, normalization

of the subalgebras at the same level will become necessary. It is expected results similar to

these two theorems will be obtained at each level.

4.2 To explore connections between evolution algebras and graph

theory, and lay a foundation to establish a new theory —

“algebraic graph theory”

For each graph, we can define an evolution algebra as follows.

Definition 4.1. Let G = (V, E) be a graph, V be the set of vertices of G, E be the set of

edges of G. We define an algebra as follows: taking V = {e1, e2, · · · , er} as the generator set

and

R =

e2
i =

∑
ek∈Γ(ei)

ek; ei · ej = 0, i 6= j; i, j = 1, 2, · · · , r


as the set of defining relations, where Γ(ei) is the set of neighbors of ei. Then the evolution

algebra determined by this graph is a quotient algebra

A (G) = 〈V | R〉

=

〈
e1, e2, · · · , er | e2

i −
∑

ek∈Γ(ei)

ek; ei · ej, i 6= j; i, j = 1, 2, · · · , r

〉
.
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Let’s denote the collection of all finite graphs (the number of vertices is finite and the

number of edges is also finite) by C(G), and the collection of all finite-dimensional evolution

algebras over the R by CR(A). Then this definition defines a map Ψ from C(G) to CR(A)

that Ψ(G) = A(G). Below is the theorem to guarantee this map is well defined.

Theorem 4.5. If graphs G1 and G2 are isomorphic as graphs, then A(G1) and A(G2) are

also isomorphic as evolution algebras.

If a graph is weighted, weights will be used as coefficients in the defining relations 4.1. If a

graph is directed, for a vertex we can choose +1 as outgoing weight and −1 as ingoing weight,

or other way around. So in one words, for any graph, we can define a corresponding evolution

algebra, and this algebra contains all the information about this graph. CR(A) is a category

that has rich algebraic structures. Once we identify a graph G and its image Ψ(G), C(G)

becomes a subcategory of CR(A). Then a nice algebraic concept, algebraic homomorphisms,

can be obtained in the C(G), and C(G) thus becomes an algebraic subject. All knowledge

about evolution algebras can be applied to the study of graphs. For instance, we can apply

Theorem 3.5 to C(G) to give a classification theorem of all finite graphs. However, a deep

study for graph hierarchy is required.

Algebraic terms can also be interpreted in term of graph theory. For example, if G

is a graph with the vertex set V (G) = {e1, e2, · · · , er}, L is the evolution operator of the

corresponding algebra A(G), and suppose

Ln(ei) = ni1e1 + ni2e2 + · · ·+ nirer,

then nij is the total number of paths with length n from vertex ei to vertex ej. If nij = 0,

this means there is no path with length n from vertex ei to vertex ej. We can also have

graph interpretation for the destination operator in evolution algebras

Di =
∞∑
k=1

ρiL(ρ0
iL)k−1.
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Suppose we start from x and our destination is the vertex ei. Then, in one step, the number

of paths from x to ei is given by ρiL(x); in two steps when the first arrival at ei happens in

the second step, the number of paths from x to ei is given by ρiL(ρ0
iL) (x); in three steps

when the first arrival at ei happens in the third step, the number of paths from x to ei is

given by ρiL(ρ0
iL)2(x); and so on. Within n steps, the total number of paths from x to ei is

given by

Dn
i (x) =

n∑
k=1

ρiL(ρ0
iL)k−1(x).

As we see, the map Ψ converts each graph into an evolution algebra, and by studying this

algebra, problems in the graph can be resolved. In this way, evolution algebras will become

a systemized method to study graphs. This algebraic method has conspicuous advantages

over the combinatorial method in graph theory. A well-known fact about combinatorics

is that it lacks a systematized method despite its importance in application. Gian-Carlo

Rota hoped about combinatorics — “Combinatorics needs fewer theorems and more theory”

[34]. Evolution algebra theory may direct combinatorics towards a trend that will be more

systematized and more theory-like.

To establish this new “algebraic graph theory”, I propose the following problems.

1. By using map Ψ, convert or translate every major statement in graph theory

into evolution algebras. We know C(G) is a subcategory of CR(A) under the

identification graph G and Ψ(G). The homomorphism of two graphs under Ψ is a

homomorphism that preserves hierarchies of the image algebras of graphs. Via Ψ back

to graph category, it is expected this homomorphism preserves dynamic connection or

hierarchies of graphs. Obviously, algebraic theory render more tools available to study

C(G).

2. The study of Ψ(C(G)) is important to both graph theory and evolution algebras. For

example, we can get a classification of all objects in Ψ(C(G)) by algebra theory, a
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classification of all graphs. As algebraic subject induced from graphs, Ψ(C(G)) must

possess some properties that reflect graphs’ properties. It is important to dig out these

properties and to understand what the hierarchy of evolution algebras means to graphs,

which is what I would like to suggest to study.

3. Random walks on graphs, an interesting topic, have many applications. While random

walks can be mapped into evolution algebras by Φ, and graphs into evolution algebras

by Ψ, then what is the relationships between the evolution algebras determined by

random walks on a graph and the evolution algebra determined by the same graph.

It is very interesting to investigate this problem, which will add a new landscape in

discrete geometry.

4. I once introduced “multi-person random walk”on graph or coalescent random walk on

graphs [1, 3]. Now I suggest to study this type of random walk by using evolution

algebras. It is actually a study of several evolution algebras with the same generator

set.

5. Random graphs and their evolution algebras will be another interesting topic. Random

graph theory studies the processes of forming graphs when vertices are given. We may

consider a random graph as a type of evolution algebra, whose structure coefficients

are random variables. I suggest to study this type of evolution algebra with random

coefficients following some given probability distributions. Actually, evolution algebras

are Banach algebras, the norm is convenient for studying random variable.
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4.3 To explore connections between evolution algebras and group

theory, knot theory and 3-manifolds

Any group can be associated with an evolution algebra. Specifically, let G be a group, E be

a finite set of generators of the group G, and K be a field. To define an evolution algebra,

we take G as the generator set, and the defining relations are:

g ∗ g =
∑
e∈E

kege,

and

g ∗ h = 0,

where ∗ is the algebraic multiplication, ke ∈ K. One question is how the evolution algebra

reflects the properties of the corresponding group. Another question is how we can use

evolution algebras to study groups or use group theory to study evolution algebras. I suggest

to investigate the relations between groups and the associated evolution algebras.

Here is a simple example for illustration. Let G be a cyclic group with generator g or

g−1, and we take the underlying field to be the real number field R. If we define

gr ∗ gr = gr(g + g−1) = gr+1 + gr−1.,

after a computation, we have

(gr)[n] =
n∑
k=0

 k

n

 gr+n−2k.

Now if the group G is infinite, then each element of the group has a period 2, except for the

unit element of the group, as we can see form the above formula. If the group has order m,

then each element has a period 2+m, except for the unit. So, infiniteness of cyclic group can

be reflected by the period of non-unit elements in the evolution algebra. A very interesting

case is for braid groups, which are the fundamental algebraic structures behind 3-manifolds
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and knot theory. We need to study whether anything deep about knots can be obtained

from the associated evolution algebras.

By a different association, we can study how to use evolution algebras associated with

braids to compute Burau representations (a Markov chain method in [45]). Given b ∈ Bn,

and b is a word of generators σi, σ
−1
i with length k, i = 1, 2, · · · , n − 1. We define the

n−dimensional evolution algebras with generators {e1, e2, · · · , en}. One multiplication in

algebras corresponds to one step move up in the diagram of braids. Let us start from the

bottom. When we pass σi, we do multiplication e2
i = (1− t)ei+ tei+1 and e2

i+1 = ei; when we

pass σ−1
i , we do multiplication e2

i = ei+1 and e2
i+1 = tei + (1 − t)ei+1, where t = t−1. Using

non associative computation in evolution algebras, we will get

(ei · ei) · (e1 + e2 + · · ·+ en)[k−1] = Pi1(t)e1 + Pi2(t)e2 + · · ·+ Pin(t)en,

where Pij(t) is a Laurent polynomial, i = 1, 2, · · · , n. I conjecture that P (t) = (Pij(t))n×n

is Burau matrix for the braid b, which need to be proved.

There is a natural way to connect evolution algebras with 3-manifold structure. For a

triangulation t1 of a 3-manifold M, we can define an evolution algebra A(M, t1) as we assign

an evolution algebra to a graph. When taking the barycentric subdivision t2 of t1, we will

have another evolution algebra A(M, t2). We can keep this procedure until get an infinite

sequence of evolution algebras

{A (M, tn)}∞n=1 .

Here arise a lot of interesting questions: what is the limit of this sequence? what kind of

properties of the 3-manifold can be reflected by this sequence of algebras? My conjecture is

that the limit of this sequence is closely related to the Laplace-Beltrami operator

of 3-manifold M . I suggest to explore this conjecture.
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4.4 To explore connections between evolution algebras and

Ihara-Selberg zeta functions

For a finite graph X, we have the Ihara-Selberg zeta function Z(u) given by Z(u) =∏
w∈W (1 − u|w|)−1, where W denotes the set of all prime, reduced cycles in X, |w| denotes

the length of the cycle w [46,47]. When a graph is mapped as an evolution algebra, we will

have an algebraic version of Ihara-Selberg-zeta function. To demonstrate the advantage of

evolution algebra methods, I suggest to study this combinatoric topic by evolution algebras.

Let A be an evolution algebra, denote the collection of all its simple evolution subalgebras

at all level by Σ(A). For any simple evolution algebra E ∈ Σ(A), denote the period of E by

ρ(E), the maximum dimension of the cyclic subspace decomposition of E by δ(E). Then,

the Ihara-Selberg zeta function for algebra A is given

Z(u) =
∏

E∈Σ(A)

(1− uρ(E))−δ(E).

Denote the evolution operator of A by LA, LE is the evolution operator of the subalgebras

E. In terms of evolution operators, we have

(uI − LA)−1 =
∏

E∈Σ(A)

(uI − Lρ(E)
E )−δ(E).

This formula needs to be proved algebraically.

4.5 To establish hierarchic structure theorem for infinite

dimensional evolution algebras

For finite-dimensional evolution algebras, the hierarchic structure theorem was already

obtained, as stated in Preliminary results section. Now I suggest to generalize this result to

infinite-dimensional evolution algebras. Obviously, this is a very difficult problem. I would
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suggest first to study infinite-dimensional simple evolution algebras. Since there is some

similarity between evolution algebras and Lie algebras, it might be helpful to borrow some

tools in the well studied field of Lie algebra, particularly, for the case of infinite dimensional

algebras. One useful reference is Cartan’s work about the classification of infinite-dimensional

Lie algebras [48]. I expect an infinite-dimensional simple evolution algebra has a finite period

(each generator has the same period) or the maximum of periods of its generators is finite.

To study general infinite dimensional evolution algebras, I would also suggest to borrow

some ideas from denumerable Markov chains [49], and infinite matrices theory [50,51]. I also

suggest to construct a Hilbert space for any given evolution algebra so that each element of

the evolution algebra can be viewed as an operator of this Hilbert space. Further more, this

evolution algebra is a subset of or equal to von Neumann algebra of the Hilbert space [52].

Then it is expected that a classification theory of infinite dimensional evolution algebras will

be obtained.

4.6 To develop continuous evolution algebras

The continuous version of evolution algebras is of considerable significance in application

since most natural processes are continuous-time processes. In genetic algebras, for example,

although some effort has been attempted in order to introduce continuous-time evolution over

evolutionary history [30, 31], it seems to be impossible to incorporate discrete genotypes in

the population with continuous-time evolution. However, within the framework of evolution

algebras, it can be possible. Here we propose some basic definitions about continuous

evolution algebras.

The theory of continuous-time Markov chains over discrete state space gives us hints to

define continuous evolution algebras. One way to define continuous evolution algebras is to

take coefficients in the defining relations to be differential functions over the underlying field

21



(we use the real number field R). For example, let the generator set to be {ei|i ∈ Λ}, the

defining relations are

ei · ei =
∑

j∈Λ aij(t)ej,

ei · ej = 0;∑
k∈Λ aik(t)akj(s) = aij(t+ s),

where aij(t) is differentiable function, i, j ∈ Λ.

Another way to define continuous evolution algebras is to use differential equations.

Then algebraic methods and differential equation methods can be used to study continuous

evolution algebras. It is expected that continuous evolution algebras will have similar

relations with continuous-time Markov chains, just as (discrete) evolution algebras have

the relations with discrete-time Markov chains. From viewpoint of category, I expect the

set of all continuous-time Markov chains will be a subcategory of the category of continuous

evolution algebras. It is also expected that continuous evolution algebras will be a powerful

tool to study evolution of dynamic systems, and biological processes.
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