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Abstract. In this article, we establish a mathematical model for a complexity phenomenon

that emerges from epidemiology. After the low pathogenicity avian influenza (LPAI) A

virus (H5N2) outbreaks, most of time the high pathogenicity avian influenza (HPAI)

viruses will emerges. This superinfection property is a typical complexity emerging

from a system. Our model is based on traditional mathematical epidemiology models,

experimental and field evidences. It has several submodels which are traditional SEIR

models or SIR models. We analyze our model and their submodels. We carry out

comparisons between model predictions and experimental data, and answer several

important biological questions with our model. In addition, the complexity property is

not derived from bifurcation theory.
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1 Introduction

Complexity is a common phenomenon in ecological systems. Most of
mathematical descriptions for complexity use bifurcation theory where
systems are described by differential equations. In disease ecology,
particulary, in epidemiology, although it seems common that a new strain
of infectious virus emerges from the spreading of other viral infection in the
same population, a mathematical description seems lack. In this study, we
establish a mathematical model for emergence of high pathogenicity avian
influenza virus from outbreaks of low pathogenicity avian influenza viruses.
There is a parameter designed for emerging of the complexity. When this
parameter is zero, the system is for the spreading of low pathogenicity avian
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influenza viruses. When this parameter is positive, high pathogenicity avian
influenza viruses emerge. The model is a system coupled with two systems.
This emergence of the complexity is not derived from bifurcation theory.

Wild waterfowl are considered as natural hosts for all known subtypes of
influenza A viruses and believed to have carried these viruses for centuries
with none or limited harm [28, 32]. However, domestic poultry, such as
turkeys and chickens, can become very sick and die from avian influenza,
and some avian influenza A viruses also can cause serious disease and death
in wild birds [1, 2].

Infected birds shed influenza virus in their saliva, nasal secretions, and
feces. Susceptible birds become infected when they have contact with
contaminated secretions or excretions or with surfaces that are contaminated
with secretions or excretions from infected birds. Domesticated birds may
become infected with avian influenza virus through direct contact with
infected waterfowl or other infected poultry, or through contact with surfaces
(such as dirt or cages) or materials (such as water or food) that have been
contaminated with the virus [28].

Infection with avian influenza A viruses in domestic poultry causes two
main forms of disease that are distinguished by low and high extremes of
virulence [29]. Correspondingly, Avian influenza A virus strains are further
classified as low pathogenic (LPAI) or highly pathogenic (HPAI) on the basis
of specific molecular genetic and pathogenesis criteria. Most avian influenza
A viruses are LPAI viruses, and are associated with low pathogenic form
of disease that may go undetected and usually causes only mild symptoms
(such as ruffled feathers and a drop in egg production). In contrast, HPAI
viruses are associated with highly pathogenic form of disease that can cause
severe illness and high mortality. This highly pathogenic form of infection
spreads more rapidly through flocks of poultry. This form may cause disease
that affects multiple internal organs and has a mortality rate that can reach
90-100% often within two days.

One intriguing characteristic is that high pathogenicity avian influenza
(HPAI) viruses can emerge from outbreaks with low pathogenicity avian
influenza (LPAI) viruses. One example is the outbreak of LPAI in chickens
in Pennsylvania in 1983 [4]. This outbreak started in April 1983 with a low
pathogenicity virus that caused only limited death. By October 1983 the
virus circulating in the infected chicken population had transformed into a
state of high pathogenicity, HPAI virus, which caused a 80% mortality. In
1994, an outbreak of LPAI in Mexico had a similar transformation occurrence
[14]. The most recent outbreak of such a transformation occurrence is the
outbreak of HPAI H7N1 in December 1999 in Italian that started as an
outbreak of LPAI H7N1 in April of the same year [8]. During these outbreaks
two processes can be distinguished, one is the HPAI virus arises during the
LPAI outbreak and the other one is the HPAI supersedes the LPAI. Hence
the following questions arise naturally:

1. How do the HPAI viruses arise from the outbreak of the LPAI viruses?
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2. Are animals infected by HPAI virus more infectious than animals
infected by LPAI virus?

3. Are animals previously infected with LPAI virus protected against
infection with HPAI virus?

4. Is HPAI virus able to spread in a population in which LPAI is
circulating or has circulated before?

5. How many animals should have had an infection with LPAI virus in
order to prevent an outbreak of HPAI virus?

In [29] J. A. Van Der Goot, et al. asked similar questions. By means
of transmission experiments, they compared the transmission characteristics
in poultry of LPAI H5N2 (A/Chicken/Pennsylvania/83) and corresponding
HPAI virus and attempted to answer those questions. In the present paper,
we set up a mathematical model, compare it with the discrete experimental
data in [29], and provide answers to those questions.

The mathematical modeling of transmission of avian influenza A viruses
is an important current research topic. Related approaches can be found in
[11, 12, 13, 19, 20, 6, 18, 27, 5]. One of the mathematical tools we use in our
analysis is the Lyapunov function technique for SIR and SEIR type epidemic
models, which has been further developed in recent years, for example, [15,
21, 22, 23, 24, 25].

The rest of the paper is organized as follows. In Section 2, the model is
described. In Section 3, basic dynamic behaviors of the model are analyzed.
In Section 4, we compare the model predictions with experimental data, and
answer the questions. The paper is concluded in section 5.

2 Model description

We use a well-known compartmental model approach [3, 7, 16, 17]. The
population of animals under consideration is divided into several disjoint
classes. The susceptible class S consists of those individuals who can incur
the disease but are not yet infected. When there is an adequate contact of
a susceptible with the infective including direct contact and contact with
surface or materials that have been contaminated with viruses shed from an
infective, the susceptible enters the exposed class E of those in the latent
period, who are infected but not yet infectious. After the latent period ends,
the individual enters the class I of the infective, who are infectious in the
sense that they are capable of transmitting the infection. When the infectious
period ends, the individual enters the recovered class R consisting of those
with permanent infection-acquired immunity. We work with classic SEIR
model framework which is based on incidence principle [16]. Since there are
two strains, LPAI and HPAI, each of them has its own compartment classes.
More specifically, LPAI has latent class El, infectious class Il and recovered
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class Rl; HPAI has latent class Eh, infectious class Ih and recovered class Rh

and an additional class Xh of dead individuals. It is reasonable to assume
that an individual who is susceptible to LPAI is also susceptible to HPAI,
and an individual who is susceptible to HPAI is also susceptible to LPAI. So
there is one common susceptible class S. See the model diagram in Figure 1.

Figure 1: A compartmental diagram for emergence of high pathogenicity
avian influenza virus from outbreaks with low pathogenicity avian influenza
virus.

In order to consider the emergence of HPAI viruses from outbreaks with
LPAI viruses, the following assumption are made:

1. An individual infected with LPAI virus can be infected by HPAI virus
again, and become a superinfective, Ilh.

2. A superinfective can transmit infection to susceptible individuals.

3. A superinfective can enter the recovered class Rh.

4. A superinfective can transmit infection to individuals who is recovered
from LPAI.

5. LPAI viruses can evolve or mutate into HPAI viruses during the latent
period of LPAI viruses infection with animals.

The first four assumptions are based on experimental evidences. In [29],
they performed three sets of experiments: experiments with LPAI H5N2
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viruses, experiments with HPAI H5N2 viruses, and experiments with HPAI
H5N2 viruses but contact animals were previously infected with LPAI H5N2
viruses. They found that none of infected contact animals die in the third
set experiments, and they all become recovered. So we assume that all
superinfective can enter the recovered class Rh.

All avian influenza A viruses are RNA viruses. Since RNA viruses do
not have DNA polymerases which can find and fix mistakes, and therefore
are unable to conduct DNA repair of damaged genetic material, then
RNA viruses have very high mutation rates. In particular, influenza A
viruses can mutate in two different ways: antigenic drift and antigenic shift.
Antigenic drift refers to small, gradual changes that occur through point
mutations in two genes that contain the genetic material to produce the main
surface proteins, hemagglutinin, and neuraminidase. These point mutations
occur unpredictably and result in minor changes to these surface proteins.
Antigenic drift produces new virus strains that may not be recognized by
antibodies to earlier influenza strains. Antigenic shift refers to an abrupt,
major change to produce a novel influenza A virus subtype that was not
currently circulating among the population. Influenza A viruses are mutating
by antigenic drift all the time, but antigenic shift happens only occasionally.
For simplicity, we assume that the mutation from LPAI viruses to HPAI
viruses happens during the latent period of LPAI virus infection.

The model equations are given based on all assumptions above:

dS

dt
= −a1

Il
N

S − a2
Ih
N

S − a3
Ilh
N

S, (1)

dEl

dt
= a1

Il
N

S − b1El − µEl, (2)

dEh

dt
= a2

Ih
N

S − b2El + µEl, (3)

dIl
dt

= b1El − τ
IlIh
N

− c1Il, (4)

dIh
dt

= b2Eh − c2Ih, (5)

dIlh
dt

= τ
IlIh
N

+ a3
Ilh
N

S + ρ
Ih
N

Rl − c3Ilh, (6)

dRl

dt
= c1Il − ρ

Ih
N

Rl, (7)

dRh

dt
= pc2Ih + c3Ilh, (8)

dXh

dt
= (1− p)c2Ih. (9)
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3 Model analysis

The model (1)-(9) describes three infections: infection with LPAI viruses,
infection with HPAI viruses, and superinfection with LPAI viruses first and
then with HPAI viruses. In this section, we analyze the dynamics of the model
to understand how these infection emerge. Because the total population size
N = S(t) + El(t) + Il(t) + Rl(t) + Eh(t) + Ih(t) + Rh(t) + Ilh(t) + Xh(t)
remains a constant, we scale the variables:

s(t) =
S(t)

N
, i12(t) =

Ilh(t)

N
, x(t) =

Xh(t)

N
,

e1(t) =
El(t)

N
, i1(t) =

Il(t)

N
, r1(t) =

Rl(t)

N
,

e2(t) =
Eh(t)

N
, i2(t) =

Ih(t)

N
, r2(t) =

Rh(t)

N
.

(10)

And the new system is

ds

dt
= −a1i1s− a2i2s− a3i12s, (11)

de1
dt

= a1i1s− b1e1 − µe1, (12)

de2
dt

= a2i2s− b2e2 + µe1, (13)

di1
dt

= b1e1 − τi1i2 − c1i1, (14)

di2
dt

= b2e2 − c2i2, (15)

di12
dt

= τi1i2 + a3i12s+ ρi2r1 − c3i12, (16)

dr1
dt

= c1i1 − ρi2r1, (17)

dr2
dt

= pc2i2 + c3i12, (18)

dx

dt
= (1− p)c2i2. (19)

3.1 Basic dynamics

The basic dynamics of the system is described as follows:

Theorem 3.1. Consider the system (11)-(19). Suppose that the parameters
satisfy bi, ci > 0, ai, ρ, p, µ ≥ 0. Then

1. The positive hyperplane

H = {(s, e1, e2, i1, i2, i12, r1, r2, x) ∈ R9
+ :

s+ e1 + e2 + i1 + i2 + i12 + r1 + r2 + x = 1}
(20)
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is invariant for the solutions of (11)-(19), where R9
+ is the non-negative

octant so that each coordinate is nonnegative;

2. There is no interior equilibrium point of (11)-(19) in R9
+, and a point

in R9
+ is an equilibrium point of (11)-(19) if and only if e1 = e2 = i1 =

i2 = i12 = 0 and s+ r1 + r2 + x = 1.

3. Suppose that s(0) > 0, i1(0) + i2(0) + i12(0) > 0 and s(0) + e1(0) +
e2(0)+ i1(0)+ i2(0)+ i12(0)+ r1(0)+ r2(0)+x(0) = 1, then there exist
two equilibrium points P± = (s±, 0, 0, 0, 0, 0, r±1 , r

±
2 , x

±) of (11)-(19) in
R9

+ such that s− > s+, r−2 < r+2 , and x− < x+, and the corresponding
non-negative solution P(t) satisfies

lim
t→−∞

P(t) = P−, lim
t→∞

P(t) = P+. (21)

Proof. In the following, we denote a solution of (11)-(19) with non-negative
initial valueP0 = (Pi(0))

9
i=1 byP(t) = (Pi(t))

9
i=1. From the previous remark,

we know that the sum of all sub-populations is invariant. If a solution
reaches the boundary of H, then at least one component Pi(t) of P(t) is
zero. Examining the equations (11)-(19), one can find that P ′

i ≥ 0 if Pi = 0
for each 1 ≤ i ≤ 9. This implies that the non-negative octant is invariant.
This proves the part 1.

If P ∈ H is an equilibrium point, then from (19), i2 = 0, hence there is
no interior equilibrium point. Since i2 = 0, then from (18), i12 = 0; from
(15), e2 = 0. From (11), either i1 = 0 or s = 0. In either case, e1 = 0 from
(12), which implies that e2 = 0 from (13) and i1 = 0 from (14). Therefore
e1 = e2 = i1 = i2 = i12 = 0 holds for any equilibrium point P ∈ H. From
part 1, remaining components (s, r1, r2, x) of P satisfies s+ r1 + r2 + x = 1.
On the other hand, it is easy to check that for any (s, r1, r2, x) satisfying
s+r1+r2+x = 1 and s, r1, r2, x ≥ 0, (s, 0, 0, 0, 0, 0, r1, r2, x) is an equilibrium
point of (11)-(19).

For part 3, we observe that if s(0) > 0 and i1(0) + i2(0) + i12(0) > 0,
then s(t) is strictly decreasing, r2(t) and x(t) are non-decreasing. Hence the
limits

s± = lim
t→±∞

s(t), r±2 = lim
t→±∞

r2(t), x± = lim
t→±∞

x(t),

all exist. In particular, i2(t) → 0 and i12(t) → 0 as t → ∞ from the
convergence of r2(t) at ∞. That in turn implies that when t → ∞, e2(t) → 0
from (15), then e1(t) → 0 from (13). Next the convergence of e1 and i2 to
zero yields that i1(t) → 0 as t → ∞ from (14). Finally the invariance that∑

Pi(t) = 1 implies that r1(t) → r+1 ≡ 1 − s+ − r+2 − x+ as t → ∞. For
t → −∞, notice that s− > 0, hence (11) and s′(t) → 0 implies that i1(t) → 0,
i2(t) → 0 and i12(t) → 0 as t → −∞, then e1(t) → 0 and e2(t) → 0 from (14)
and (15). Again the convergence of s(t), r2(t) and x(t) yields the convergence
of r1(t) as t → −∞.
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We remark that if some bi or ci is zero, then the corresponding component
ei(t) or ii(j)(t) can have a positive limit, for example, the solution of
the equation (26) in which c1 = 0. Several subsystems of (11)-(19) are
invariant with respect to the dynamics, and they describe different biological
sub-dynamics. Here we summarize the behavior of each sub-dynamics.

3.2 LPAI-only dynamics

If µ = 0, s(0) > 0, e1(0) ≥ 0, i1(0) > 0, r1(0) ≥ 0, e2(0) = 0, i2(0) = 0,
i12(0) = 0, r2(0) = 0, x(0) = 0, then e2(t) ≡ 0, i2(t) ≡ 0, i12(t) ≡ 0,
r2(t) ≡ 0, x(t) ≡ 0 from the uniqueness of the solution. Hence (11)-(19) is
reduced to a SEIR model with no birth/death for LPAI epidemics:

s′ = −a1i1s,

e′1 = a1i1s− b1e1,

i′1 = b1e1 − c1i1,

r′1 = c1i1.

(22)

In (22), s(t)+e1(t)+i1(t)+r1(t) = 1, hence we only need to consider the first
three equations. The dynamics of (22) is well-known, which we summarize
here:

1. When t → ∞, (s(t), e1(t), i1(t)) → (s+1 , 0, 0);

2. The function V1(s, e1, i1) = s + e1 + i1 − (c1/a1) ln s remains constant
on a solution curve (s(t), e1(t), i1(t)), hence the final susceptible size
s+1 can be determined by

s0 + e01 + i01 −
c1
a1

ln s0 = s+1 − c1
a1

ln s+1 , (23)

where s0 = s(0) and similar notations for other variables.

3. The basic reproduction number ℜ0,1 = a1s
0/c1. If ℜ0,1 < 1, then

(e1(t)+ i1(t))
′ < 0 for t > 0 and the infection dies out; if ℜ0,1 > 1, then

for some t0 > 0, (e1(t)+i1(t))
′ > 0 for t ∈ (0, t0) and (e1(t)+i1(t))

′ < 0
for t > t0, thus an outbreak occurs.

3.3 HPAI-only dynamics

If µ = 0, s(0) > 0, e1(0) = 0, i1(0) = 0, r1(0) = 0, e2(0) ≥ 0, i2(0) > 0,
i12(0) = 0, r2(0) ≥ 0, x(0) ≥ 0, then e1(t) ≡ 0, i1(t) ≡ 0, i12(t) ≡ 0, r1(t) ≡ 0
from the uniqueness of the solution. Hence (11)-(19) is reduced to a SEIR
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model with no birth/death for HPAI epidemics:

s′ = −a2i2s,

e′2 = a2i2s− b2e2,

i′2 = b2e2 − c2i2,

r′2 = c2i2,

x′ = (1− p)c2i2.

(24)

Again only the first three equations are essential, hence (24) has the same
dynamical properties as (22):

1. When t → ∞, (s(t), e2(t), i2(t)) → (s+2 , 0, 0);

2. The function V2(s, e2, i2) = s + e2 + i2 − (c2/a2) ln s remains constant
on a solution curve (s(t), e2(t), i2(t)), hence the final susceptible size
s+2 can be determined by

s0 + e02 + i02 −
c2
a2

ln s0 = s+2 − c2
a2

ln s+2 .

3. The basic reproduction number ℜ0,2 = a2s
0/c2. If ℜ0,2 < 1, then

(e2 + i2(t))
′ < 0 for t > 0 and the infection dies out; if ℜ0,2 > 1, then

for some t0 > 0, (e2(t)+i2(t))
′ > 0 for t ∈ (0, t0) and (e2(t)+i2(t))

′ < 0
for t > t0, thus an outbreak occurs.

3.4 superinfection only dynamics

If s(0) > 0, e1(0) = e2(0) = 0, i1(0) = i2(0) = 0, r1(0) = 0, i12(0) > 0,
r2(0) ≥ 0, x(0) ≥ 0, then e1(t) = e2(t) ≡ 0, i1(t) = i2(t) ≡ 0, r1(t) ≡ 0 from
the uniqueness of the solution. Hence (11)-(19) is reduced to a SIR model
with no birth/death: 

s′ = −a3i12s,

i′12 = a3i12s− c3i12,

r′2 = c3i12.

(25)

The dynamics of (25) is the one of classical Kermack-McKendrick SIR model:

1. When t → ∞, (s(t), i12(t)) → (s+3 , 0);

2. The function V3(s, i12) = s + i12 − (c3/a3) ln s remains constant on a
solution curve (s(t), i12(t)), hence the final susceptible size s+3 can be
determined by

s0 + i012 −
c3
a3

ln s0 = s+3 − c3
a3

ln s+3 .

3. The basic reproduction number ℜ0,3 = a3s
0/c3. If ℜ0,3 < 1, then

i′12(t) < 0 for t > 0 and the infection dies out; if ℜ0,3 > 1, then for
some t0 > 0, i′12(t) > 0 for t ∈ (0, t0) and i′12(t) < 0 for t > t0, thus an
outbreak occurs.
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3.5 A special L-H-LH dynamics

In [29], one set of experiments is to treat animals infected by LPAI viruses
as susceptible class, and animals infected by HPAI viruses as infectious class.
After they conducted transmission experiments from animals infected by
HPAI viruses to animals infected by LPAI viruses, they only considered
the recovery from co-infected animals and HPAI virus infected animals.
This setting corresponds to another subsystem of the full system (11)-(19).
Suppose that µ = 0 and c1 = 0, and s(0) = 0, e1(0) = 0, e2(0) = 0, r1(0) = 0,
then these four variables remain zero for all t ≥ 0. The system (11)-(19) is
reduced to the following system:

i′1 = −τi1i2,

i′2 = −c2i2,

i′12 = τi1i2 − c3i12,

r′2 = pc2i2 + c3i12,

x′ = (1− p)c2i2.

(26)

The system is determined by the first 3 equations. Indeed (26) is solvable with
initial value (i01, i

0
2, i

0
12, r

0
2, x

0), and the solution of the initial value problem
is given by

i1(t) =i01 exp(τc
−1
2 i02(exp(−c2t)− 1)), i2(t) = i02 exp(−c2t),

i12(t) = exp(−c3t)
(
i012 + τi01i

0
2

∫ t

0

exp[τc−1
2 i02(exp(−c2s)− 1) + (c3 − c2)s]ds

)
,

(27)

and r2(t), x(t) can be integrated from (26) and form of (i1(t), i2(t), i12(t)) in
(27). Notice that since c1 = 0, then the limit of i1(t) as t → ∞ is not zero,
but

i+1 = lim
t→∞

i1(t) = i01 exp(−τc−1
2 i02). (28)

This is because (26) is essentially an SIR type model with i1 and i2 playing
the role of susceptible class, and i12 being the infective class. Compared with
earlier subsystems, we have

1. When t → ∞, (i1(t), i2(t), i12(t), r2(t), x(t)) → (i+1 , 0, 0, r
+
2 , x

+).

2. There is no conserved quantity as previous subsystems, but the
equation is solvable and the final size of i1(t) is given by (28). On
the other hand, from the expression of i2(t), the equation of x(t) and
(28), we obtain

x+ = x0 + (1− p)i02, and r+2 = i01 + pi02 + i012 + r02 − i01 exp(−τc−1
2 i02).
(29)

Hence the final size is completely determined.
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3. The basic reproduction number is given by ℜ0,4 =
τi01i

0
2

c3i012
. If ℜ0,4 < 1,

then i′12(t) < 0 for t > 0. So the co-infection dies out. If ℜ0,4 > 1,
there will be a outbreak of co-infection.

3.6 A complete L-H-LH dynamics

Finally we consider a subsystem without class s and ei. Assume that µ = 0,
s(0) = 0, e1(0) = 0 and e2(0) = 0. Hence the system (11)-(19) becomes

i′1 = −τi1i2 − c1i1,

i′2 = −c2i2,

i′12 = τi1i2 + ρi2r1 − c3i12,

r′1 = c1i1 − ρi2r1,

r′2 = pc2i2 + c3i12,

x′ = (1− p)c2i2.

(30)

Similar to (26), (30) is explicitly solvable:

i1(t) = i01 exp(τc
−1
2 i02(exp(−c2t)− 1)− c1t), i2(t) = i02 exp(−c2t), (31)

and other components can be also expressed but we omit the cumbersome
form for the simplicity. For our purpose, we only point out that when t → ∞,
(i1(t), i2(t), i12(t), r1(t), r2(t), x(t)) → (0, 0, 0, r+1 , r

+
2 , x

+). From (31) and the
integration of the equation of r2(t), we obtain the final sizes:

r+1 =r01 exp(−ρc−1
2 i02) + c1i

0
1

∫ ∞

0

exp[(τ − ρ)c−1
2 i02 exp(−c2t)− τc−1

2 i02 − c1t]dt,

x+ =x0 + (1− p)i02, and r+2 = i01 + pi02 + i012 + r01 + r02 − r+1 .

(32)

One can compare the final size formula in (32) with the ones in (28) and (29).
In fact this comparison can be described as follows:

Proposition 3.1. Consider the full system (11)-(19) with µ = 0,
and suppose the initial distribution is P0 = (0, 0, 0, i01, i

0
2, i

0
12, 0, r

0
2, x

0),
hence the dynamics is effectively described by (30). Let

(i1(t), i2(t), i12(t), r1(t), r2(t), x(t)) and (̃i1(t), ĩ2(t), ĩ12(t), r̃1(t), r̃2(t), x̃(t))
be the solutions to the system (30) with c1 = 0 and c1 > 0 respectively,
satisfying the same initial condition P0. Let the final size of the two solutions
be (0, 0, 0, i1, 0, 0, r2, x) and (0, 0, 0, 0, 0, 0, r̃1, r̃2, x̃) respectively. Then

i1 + r2 = r̃1 + r̃2.

The proof is clear from calculation above since x = x̃.
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3.7 Final size of the full system

To consider the final susceptible size we construct an “anti-Lyapunov
function”:

Proposition 3.2. Let P(t) be a solution of (11)-(19). Define a function

V (t) = s(t) + e1(t) + e2(t) + i1(t) + i2(t) + i12(t)−K ln s(t), (33)

where K = max{c1/a1, c2/a2, c3/a3}. Then V ′(t) ≥ 0.

Proof. From straight forward calculation, we obtain

V ′(t) = s′(t) + e′1(t) + e′2(t) + i′1(t) + i′2(t) + i′12(t)−Ks′(t)/s(t)

= a1i1(t)

(
K − c1

a1

)
+ a2i2(t)

(
K − c2

a1

)
+ a3i12(t)

(
K − c3

a3

)
+ ρi2(t)r1(t).

Then V ′(t) ≥ 0 from the definition of K.

The information in Proposition 3.2 is useful in comparing the final
susceptible size s+ for the full system (11)-(19) with the ones in subsystems
considered above. For example, we assume that K = c1/a1, so that LPAI
has smaller basic reproduction number than HPAI and the mixed type. We
assume that s(0) > 0, e1(0) ≥ 0, i1(0) > 0, r1(0) ≥ 0, e2(0) = 0, i2(0) = 0,
i12(0) = 0, r2(0) = 0, and x(0) = 0. Then in the case of µ = 0, then the
LPAI-only dynamics above implies that final size is given by s+1 in (23). On
the other hand, if µ > 0, then HPAI is possible, and from Proposition 3.2,
we obtain

s0 + e01 + i01 −
c1
a1

ln s0 < s+ − c1
a1

ln s+. (34)

Hence in light of (23), we find that

s+1 − c1
a1

ln s+1 < s+ − c1
a1

ln s+. (35)

This implies s+ < s+1 .

3.8 Basic reproduction number of the full system

The disease free equilibria (DFEs) are (s0, 0, 0, 0, 0, 0, r01, r
0
2, x

0), where s0 +
r01+r02+x0 = 1. The basic reproduction number, ℜ0, is an essential summary
parameter. It is defined as the average number of secondary infections caused
when a single infected individual is introduced into a host population where
everyone is susceptible. It is know that, if ℜ0 < 1, then the disease free
equilibrium is locally asymptotically stable; whereas if ℜ0 > 1, then it is
unstable, and a local disease outbreak is possible. A precise mathematical
definition of ℜ0 for one infection is the spectral radius of the next generation
matrix (Diekmann and Heesterbeek [10], van den Driessche and Watmough
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[30, 31]). To compute the next generation matrix for the full model (11)-(19),
we only need to consider the infected compartments as follows.

d

dt


e1
e2
i1
i2
i12

 = f−v =


a1i1s
a2i2s
0
0

τi1i2 + a3i12s+ ρi2r1

−


b1e1 + µe1
b2e2 − µe1

τi1i2 + c1i1 − b1e1
c2i2 − b2e2

c3i12

 ,

where f denotes the rate of new infections and v denotes the rate of
transfer (by other means) between compartments. Let F and V be the
corresponding Jacobian matrices at the DFE, which linearize the system

at the equilibrium point. Then F =


0 0 a1s

0 0 0
0 0 0 a2s

0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 ρr01 a3s

0

 , and

V =


b1 + µ 0 0 0 0
−µ b2 0 0 0
−b1 0 c1 0 0
0 −b2 0 c2 0
0 0 0 0 c3

 . Then,

V −1 =


1

b1+µ 0 0 0 0
µ

(b1+µ)b2
1
b2

0 0 0
b1

(b1+µ)c1
0 1

c1
0 0

µ
(b1+µ)c2

1
c2

0 1
c2

0

0 0 0 0 1
c3

 ,

and the next generation matrix is given by

FV −1 =



a1b1s
0

(b1+µ)c1
0 a1s

0

c1
0 0

a2µs
0

(b1+µ)c2
a2s

0

c2
0 a2s

0

c2
0

0 0 0 0 0
0 0 0 0 0

ρr01µ
(b1+µ)c2

ρr01
c2

0
ρr01
c2

a3s
0

c3

 .

Hence the basic reproduction number of the full system (11)-(19) is given by
the spectral radius of the matrix FV −1, which is

max

{
a1b1s

0

(b1 + µ)c1
,
a2s

0

c2
,
a3s

0

c3

}
. (36)

We interpret the matrices above and the basic reproduction number in a
biological meaningful way. The diagonal entries of the matrix V −1 have the
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interpretation of the average waiting time. Once an individual animal enters
into the latent stage El, it will spend the average length of time 1

b1+µ in

this stage, transit to the stage Eh with probability µ
b1+µ , and transit to the

stage Il with probability b1
b1+µ , and transit to the Ih with probability µ

b1+µ .
Similarly if an individual enters into the latent stage Eh, it will spend the
average length of time 1

b2
and 1

c2
in the stages Eh and Ih respectively. Also

if an individual enters into the infectious stage Il (or Ih, or Ilh), it will spend
the average length of time 1

c1
(or 1

c2
, or 1

c3
) in this infectious stage.

The entries of the matrix F have the interpretation of the reproduction
rate. For example, a1s

0 is the rate at which Il infected individuals
produce new infections into the compartment El; a2s

0 is the rate at which
Ih infected individuals produce new infections into the compartment Eh.
Most interestingly, Ih infected individuals produce new infections into the
compartment Ilh, co-infections, at the rate ρr01.

The (i, j) entry of the matrix FV −1 is the expected number of new
infections in the compartment i produced by the infected individual original
entered into compartment j. When one infected individual is introduced

into the compartment El, the number a1b1s
0

(b1+µ)c1
is the average number of

secondary infections in the compartment El that occur; the number a2µs
0

(b1+µ)c2
is the average number of secondary infections in the compartment Eh that

occur; the number
ρr01µ

(b1+µ)c2
is the average number of secondary infections in

the compartment Elh that occur. When one infected individual is introduced
into the compartment Eh, the average number of secondary infections occur

in this compartment is a2s
0

c2
. When one infected individual is introduced into

the compartment Ilh, the average number of secondary infections occur in

this compartment is a3s
0

c3
.

If we consider three different infections together in our full system, then
the basic reproduction rate will be the spectral radius of the matrix FV −1,
which is given in (36). From the biological significance of the entries of
the matrix FV −1, if µ = 0, and view these three infections separately,
each infection (LPAI, HPAI and mixed) has it own basic reproduction rate,
described in subsections 3.2-3.4:

ℜ0,1 =
a1s

0

c1
, ℜ0,2 =

a2s
0

c2
, ℜ0,3 =

a3s
0

c3
.

However, the next generation matrix gives us more information about
subthreshold for each infection within the whole dynamics of the full model.
From the biological interpretation, we can see that the entries in the first
column of the matrix FV −1 sever as the thresholds of infection spreading.

For example, for the low pathogenicity avian influenza virus, ℜl =
a1b1s

0

(b1+µ)c1
;

for the high pathogenicity avian influenza virus, ℜh = a2µs
0

(b1+µ)c2
; and for the

co-infection, ℜlh =
ρr01µ

(b1+µ)c2
. If µ = 0, then ℜh = 0. This is biologically

significant. It indicates the emergency of high pathogenicity infection from
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spreading of low pathogenicity avian influenza. To establish the co-infection,
the outbreak of low pathogenicity avian influenza is necessary, since it
requires µ ̸= 0 and r01 ̸= 0.

For the application of basic reproduction number defined in [30, 31], we
cautiously point out that the disease-free equilibrium in [30, 31] is unique
and asymptotically stable for the disease-free system. This is not satisfied
in our system, but nevertheless the setting in [30, 31] can be applied in this
particular model with same biological meaning.

Parameter names Parameters Values Units
LPAI virus infection rate a1 1 1/day
LPAI virus latent period 1/b1 2 day
LPAI virus infectious period 1/c1 4.8 day
HPAI virus infection rate a2 15 1/day
HPAI virus latent period 1/b2 4 day
HPAI virus infectious period 1/c2 3.5 day
Co-infection rate a3 1.7 1/day
Co-infectious period 1/c3 3.5 day
Death rate p 0.02 none
HPAI infecting LPAI rate τ 0.7 1/day
HPAI infecting LPAI recovered rate ρ 1 1/day
LPAI virus mutating to HPAI viruses µ 1/100 - 1/1000 1/day

Table 1: Table of parameters used in numerical simulation.

4 Comparison of the model predictions and
experimental data

In [29] the first set of experiments were conducted by J. A. Van Der Goot,
et al. were four replicate experiments with LPAI H5N2 isolated from an
outbreak in Pennsylvania in 1983. They housed chickens in cages. In each
cage five chickens were inoculated at day 0. After 24 hours, they added five
susceptible contact chickens. During the first 7 days they tested infection
every day; and after day 7, they tested it twice a week. In [29] they used
statistical tools such as generalized linear model to analyze the data. They
obtained values of the transmission parameter and infectious period, and
they estimated the length of the latent period. Here we choose the parameter
values within the ranges of the parameter values in [29], see Table 1.

As we show in Section 3, our full model (11)-(19) can induce a submodel
on LPAI dynamics, which is given by the system (22). Fig. 2-A shows the
comparison between the submodel (22) and the experimental data in [29].
The latent chickens and infectious chickens were not distinguished in their
time series data. For the purpose of comparison, we plot the summation of the
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Figure 2: Comparison of the LPAI submodel model (22) and the data in [29]. (A)
Left: Predictions from (22) and experimental data; (B) Right: The full dynamics
of 22. The missing data is taken to be zero. Initial conditions are half latent and
half susceptible as in the experiments.

latent chickens and infectious chickens. Keeping the same initial conditions
as they are in experiments, we plot the full dynamics of the submodel on
LPAI (22) in Figure 2-B.
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Figure 3: Comparison of the HPAI submodel model (24) and the data in [29]. (A)
Left: Predictions from (24) and experimental data; (B) Right: The full dynamics
of 24. The missing data is taken to be zero. Initial conditions are half latent and
half susceptible as in the experiments.

The second set of experiments were two replicate experiments with the
corresponding HPAI H5N2. Our full model also can induce a submodel on
the dynamics of the HPAI, which is given by the system (24). We choose
the parameter values from the ranges of the corresponding parameter given
in [29]. The comparison between the experimental data and the submodel
predictions are showed in Fig. 3-A. Keeping the same initial conditions as
they are in experiments, we plot the full dynamics of the submodel on HPAI
24 in Figure 3-B.

Comparing Figure 2-B and Figure 3-B, we can see the following
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differences. For LPAI the number of the latent animals drop down from
the beginning. But, for HPAI the number of the latent animals increase,
and after it reaches a maximum the number drop down. This gives HPAI
more chances to spread. Although the infected patterns are similar, most
of animals infected by LPAI are recovered while most of animals infected
by HPAI are dead. So, animals infected by HPAI are more infectious then
animals infected by LPAI. This is the answer to the second question in the
Introduction.
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Figure 4: Comparison of the HPAI submodel model (26) and the data in [29]. (A)
Left: Predictions from (24) and experimental data; (B) Right: The full dynamics
of 26. The missing data is taken to be zero. Initial condition are half LPAI chickens
and half HPAI chickens as in the experiments.

The third set of their experiments are two replicate experiments with the
HPAI H5N2 taking contact chickens to be already infected by LPAI. There
were a large amount of chickens that had died during the experiments. We
take this fact into account. Since in the experiments they did not count the
recovered animals from LPAI, we also don’t count them in this submodel,
which is given by the system (26). This submodel is also induced for our full
model. Fig. 4-A shows a comparison between the experimental results and
the model results.

If we also take the recovery of the animals infected by LPAI into account,
we need to use the submodel (30), which is also induced from the full model.
Some details of the dynamics will be different from that of the submodel
(26). All chickens infected by LPAI will be recovered eventually, and some
of them move to the LPAI recovered compartment, and some move to the
HPAI recovered compartment. As Proposition 3.1 states, the summation of
the infected by LPAI treated as the susceptible class and the HPAI recovered
and the summation of the LPAI recovered class and HPAI recovered class are
the same, although two quantities of HPAI recovered classes are different.
To compare the differences between these two submodels, we plot each
component for each submodel. Fig. 4-B shows the dynamics of the submodel
26, and Fig. 5-A shows dynamics of the submodel of (30). Whichever
model for the superinfection is chosen, the basic feature of the superinfection
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is similar. Although the number of the double infected animals increase
first and then decrease, the maximum value is much lower than that where
susceptible animals are not infected by LPAI. So animals previously infected
by LPAI are protected against infection with HPAI. We answered the third
question in the Introduction.
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Figure 5: (A) Left: The full dynamics of the submodel (30); (B) Right: Emergence
of HPAI viruses from an outbreak of LPAI viruses. The initial conditions are
s(0) = 0.8, e1(0) = 0.05, i1(0) = 0.15, and the rest are all zeroes.

In order to answer the rest three questions, we need computational results
from our full model. The experiments done by [29] give no information about
the mutation of LPAI viruses. From some literature [4, 14], we know it takes
3 months or half year to evolve HPAI viruses for LPAI viruses outbreak.
Therefor we take a value of the mutation parameter µ to be about 1/100 −
1/1000 over a day. From our computational study, when the infection with
LPAI viruses is currently circulating in a population, the infection with HPAI
viruses could spread in a very low level. This spreading actually depends on
the initial state of the infection with LPAI viruses in the population. Figure
5-B shows one result with a specific initial conditions. This figure also shows
how HPAI viruses emerge from an outbreak of LPAI viruses. It also shows
that superinfection occurs.

To answer the last question, we choose different initial conditions for the
portion of the infection with LPAI viruses. One computation result shows
that the level of HPAI viruses infection will go as low as 1/1000 if the initial
condition for the portion of the infection with LPAI viruses is 40/100.

5 Conclusions

We build a mathematical model to study the complexity phenomenon
that high pathogenicity avian influenza virus emerges from outbreaks with
low pathogenicity avian influenza virus. It may be more interesting to
use stochastic models to study the experimental results in [29] since the
population size was small. However, we want to consider more general
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situations. We then still keep in continuous model framework. The model is
based on traditional epidemiology model. The model has several submodels
which can be used to explain each set of experiments in [29]. Its purpose is to
explain how high pathogenicity avian influenza virus emerge from outbreaks
of low pathogenicity avian influenza virus. We integrate all transmission
characters of low and high pathogenicity avian influenza viruses into the
model. We thus could answer basically important questions about avian
influenza virus evolution. However, we did not consider long-term population
dynamics. Since the experiments with H5N2 only last two weeks or one
month, and even in natural setting an outbreak last one month to three
month, it is reasonable to study a short-term model without birth firstly.
Secondly, we only use experimental data to estimate parameter values when
we conduct computational study. It is important to use natural data when
we apply the model to predict real pandemics.

Mathematically the system we propose here (11)-(19) is an epidemic
model with multiple parallel infectious groups, see some similar models
in [9, 22]. It is shown in Section 3 that (11)-(19) possesses two SEIR
subdynamics and one SIR subdynamics through parallel infectious channels.
But on the other hand, the superinfection between different channels make
our model more complicated than the canonical ones in [9, 22]. We noticed
a PDE version of the model was numerically studied [26].
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