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FINITELY GENERATED NIL BUT NOT NILPOTENT

EVOLUTION ALGEBRAS

JIANJUN PAUL TIAN AND YI MING ZOU

Abstract. To use evolution algebras to model population dy-
namics that both allow extinction and introduction of certain ga-
metes in finite generations, nilpotency must be built into the alge-
braic structures of these algebras with the entire algebras not to
be nilpotent if the populations are assumed to evolve for a long pe-
riod of time. To adequately address this need, evolution algebras
over rings with nilpotent elements must be considered instead of
evolution algebras over fields. This paper develops some criteria,
which are computational in nature, about the nilpotency of these
algebras, and shows how to construct finitely generated evolution
algebras which are nil but not nilpotent.

1. Introduction

The non-associative algebras that naturally arise as one considers
the processes of genetic information getting passed down and evolving
through the generations are usually called genetic algebras [1, 2, 4,
5, 7, 8]. These algebras can be defined by a basis {xi : i ∈ I} over
a commutative ring1 R, where I is a fixed index set which usually is
taken to be finite, with the multiplication defined by

xixj =
∑

k∈I

ckijxk, ckij ∈ R, i, j ∈ I.(1.1)

When these algebras are used to describe a biological population, the
basis elements xi, i ∈ I, represent the gametes of the corresponding
population, and the product of two gametes represents the reproduction
process. Depending on the extra conditions that one imposes on the
coefficients ckij, these algebras can be used to model different biological
populations and are named differently in the literature. For example,
when the coefficients satisfy the extra condition:

ckij = 0, ∀ i 6= j,(1.2)

AMS 2000 MSC: 17D92, 92C15.
1The existing theory on these algebras was developed mainly over a field. We

will explain the need to consider these algebras over general commutative rings in
Section 2.
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the resulting algebras are the so-called evolution algebras [7], which are
used to describe biological systems of non-Mendelian inheritance.
Let A be a genetic algebra with a set of generators X . Then the

elements in X can be viewed as the original gametes of the population.
If some of these original gametes extinct after, say N generations, then
the subalgebra generated by Xn (see Section 2 for definition) will not
contain these gametes for all n > N . On the other hand, if new ga-
metes are introduced through the process of evolution, say the first
new gamete appears at generation M , then the subalgebra generated
by XM is not a subspace of the space spanned by original generators in
X . Therefore, certain nilpotent property is needed if some of the orig-
inal gametes (generators) disappear later on, and a sufficiently large
space is needed to allow the introduction of new gametes for the entire
evolution process. It is not uncommon that every gamete extincts af-
ter certain generations but the whole population will evolve for a long
period of time, so that we may assume that the population will not
extinct. In mathematics, these properties imply that the algebra is nil
but not nilpotent. Though there have been studies devoted to these
algebras when the coefficient ring is a field, the study of these algebras
over an arbitrary ring, to our best knowledge, seems to be virtually
nonexistent.
For evolution algebras over a field, say the real numbers, the extinc-

tion of gametes can be handled in two ways [7]: set the coefficients of
the corresponding gametes to 0, so that these gametes are not repro-
duced in the next generation; or take the limit and let the process go to
infinity so that the coefficients of these gametes approach 0. However,
these approaches do not adequately address the important interme-
diate cases where gametes extinct in finite generations. We will show
that nilpotent elements from the base ring is necessary if the extinction
process happens in the later generations instead of the second genera-
tion. If the associativity holds for the algebra2, then the construction
of a finitely generated nil but not nilpotent infinite dimensional alge-
bra with finite Gelfand-Kirillov dimension seems to be difficult if the
coefficients are taken over a field [3]. In this short note, our main goal
is to address the nil but not nilpotent property motivated by biologi-
cal systems mentioned before, and we will limit our discussions to the
nilpotency properties of evolution algebras over an arbitrary commuta-
tive ring. We will first discuss some basic properties on the nilpotency
of these evolution algebras, in such a way that these conditions can

2As usual, by “non-associative algebras” we mean that the associativity is not
assumed. For algebras such that associativity fails, we use “not associative”.
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be checked computationally. Then we will explain how to construct
finitely generated nil but not nilpotent evolution algebras over commu-
tative rings that have nilpotent elements.

2. Nilpotent Property

Let A be a generic algebra with a set of generators X as defined
in section 1. We call the ckij’s that appear on the right hand side of
(1.1) the structure coefficients of A. We also call the cardinality of X
the dimension of A, though we should use the term “rank” for a free
module over a general commutative ring.
The definition of A implies that in general A is not power-associative

and non-commutative. For further properties and examples of these
algebras when the coefficient ring R is a field, we refer the reader to
references [6, 7, 8].
We need the notion of principal powers and plenary powers of an

element in a non-associative commutative algebra. Let a ∈ A, then the
principal powers of a are defined by

a, a2, . . . , ai = ai−1a, . . . ;

and the plenary powers of a are defined by

a[1] = a2, a[2] = (a[1])(a[1]), . . . , a[i] = a[i−1]a[i−1], . . . .

We also define the principal powers of the algebra A to be

A,A2, . . . , Ai = Ai−1A, . . . .

Definition 2.1. We call A a nil algebra if for every a ∈ A, an = 0 for
some n ∈ N, and we call A nilpotent if An = (0) for some n ∈ N.

Note that in a non-associative algebra, an = 0 does not imply that
a[n] = 0 in general. Note also that our definition of a nilpotent algebra
is different than the one in [6], which we term as strongly nilpotent.

Definition 2.2. We call A strongly nilpotent if there exists an integer
n > 0 such that any product a1a2 · · ·an of n elements in A, no matter
how associated, is 0.

According to the definitions, strongly nilpotent implies nilpotent,
but not conversely.
There is a well-known result on strongly nilpotent algebras over a

field. To state this result, for each a ∈ A, we define a linear transfor-
mation of A by

La : x −→ ax, ∀ x ∈ A.
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We let L(A) be the associative algebra generated by all La, a ∈ A,
and call it the associated algebra of A. In the case of an evolution alge-
bra, due to the commutativity of the multiplication in A, the algebra
L(A) is the same as the associated algebra generated by all the right
multiplications defined by the elements of A. We have

(LaLb)(x) = La(Lb(x)), ∀ a, b, x ∈ A.(2.1)

However, Lab 6= LaLb in general. For each generator xi, we abbreviate
Lxi

as Li. If a =
∑

i aixi, then we have

La =
∑

i

aiLi.(2.2)

The following theorem is contained in [6].

Theorem 2.1. If the base ring R is a field, the algebra A is strongly
nilpotent if and only if the associated algebra L(A) is nilpotent.

From now on, we assume our algebra A is an evolution algebra, i.e.
ckij = 0 for all i 6= j, and we simplify our writing of the structure
coefficients to cki.
To motivate our study for evolution algebras over arbitrary commu-

tative rings, we make a simple observation.

Lemma 2.1. Let A be nil. Then for each 1 ≤ i ≤ n, there exists a
positive integer ki such that ckiii = 0.

Proof. We have the following formula:

xk
i = ck−2

ii x2
i , for all integers k > 2,

which holds in any evolution algebra. If A is nil, then each generator
xi is nilpotent, and the lemma follows from the above formula. �

This lemma implies that if the coefficient ring R is a domain, then in
order for xi to be nilpotent, it is necessary that cii = 0. In biology, this
means that a gamete does not reproduce itself. To model the situations
where xi reproduces itself for a number of generations but disappears
later on, the coefficient ring must contain nilpotent elements. In the
rest of this section, we will describe some criteria about the nilpotency
of an evolution algebra based on the structure coefficients.
We now derive a criterion for checking whether a finite dimensional

evolution algebra is nil. Let

X = {x1, x2, . . . , xN}.
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Then we have

(x2
1, x

2
2, . . . , x

2
N ) = (x1, x2, . . . , xN)(cki)N×N(2.3)

: = (x1, x2, . . . , xN)C,

where the jth column of the N × N matrix C is (c1j , c2j, . . . , cNj)
T .

For each α = (a1, a2, . . . , aN) ∈ RN , define an N × N matrix Cα by
multiplying aj to the jth column of the structure coefficient matrix C:

Cα = (ajckj).(2.4)

Theorem 2.2. If X = {x1, x2, . . . , xN}, then the evolution algebra A
is nil if and only if for every α ∈ RN , there exists a positive integer kα
such that

Ckα
α αT = 0.(2.5)

Proof. Each a ∈ A can be written as

a = (x1, x2, . . . , xN )α
T

for some α ∈ RN . We use induction on n to prove the following formula:

an = (x1, x2, . . . , xN )C
n−1
α αT , ∀ n ≥ 2.(2.6)

For n = 2, we have

a2 =

N∑

i=1

a2ix
2
i =

N∑

i,k=1

a2i ckixk =

N∑

i,k=1

xk(ckiai)ai

= (x1, x2, . . . , xN)Cαα
T .

Thus the formula holds in this case. Assume that the formula holds
for n ≥ 2. Then

an+1 = (an)a = ((x1, x2, . . . , xN)C
n−1
α αT )a

= ((x1, x2, . . . , xN )β
T )a,

where

βT = (b1, b2, . . . , bN )
T := Cn−1

α αT .

Now

an+1 = (
N∑

i=1

bixi)(
N∑

j=1

ajxj) =
N∑

i=1

biaix
2
i

=

N∑

i=1

biai

N∑

j=1

cjixj

= (x1, x2, . . . , xN)Caβ
T

= (x1, x2, . . . , xN)C
n
aα

T .
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Thus (2.6) holds for all n ≥ 2. Now the theorem follows from (2.6). �

As for nilpotent evolution algebras, we have

Theorem 2.3. The evolution algebra A (finite or infinite dimensional)
is nilpotent, i.e. An = (0) for some positive integer n, if and only if for
any sequence of indexes i1, i2, . . . , in the structure coefficients satisfy

cinin−1
cin−1in−2

· · · ci2i1 = 0.(2.7)

Proof. If An = (0), then we have

(((ab)c) · · · )
︸ ︷︷ ︸

n terms

= 0, a, b, c, . . . ∈ A.(2.8)

In particular, we have for any sequence of indexes i1, i2, . . . , in−1

(((x2
i1
)xi2) · · ·xin−1

) = cin−1in−2
· · · ci2i1

∑

k

ckin−1
xk = 0,(2.9)

which implies (2.7). Conversely, (2.7) implies (2.9). Since the left hand
side of (2.8), after expressing each term as a linear combination of the
xi’s and multiplying out, is a sum of terms similar to the one on the
left hand side of (2.9), it must equal to 0, i.e. A is nilpotent. �

Let

I1 = spanR{xi ∈ X | x2
i = 0}.

Then I1 is an ideal of A and AI1 = (0).

Lemma 2.2. The evolution algebra A is nilpotent if and only if the
quotient algebra A/I1 is nilpotent.

Proof. If A is nilpotent, then all its quotients are nilpotent. If A/I1 is
nilpotent, then there is an n such that (A/I1)

n = (0), which implies that
An ⊆ I1. By the comment just before the lemma, An+1 ⊆ AI1 = (0),
so A is nilpotent. �

Note that A/I1 is spanned by the images of those xi such that x2
i 6= 0.

If

X ′ = {xi | x
2
i 6= 0 and x2

i ∈ I1} 6= ∅

then

I2 = span(I1 ∪X ′) ) I1

is an ideal of A and I22 ⊆ I1. Continuing this way, we get a filtration
of ideals of A:

A ⊃ · · · ⊃ I2 ⊃ I1 ⊃ I0 = (0),
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such that (Ii+1/Ii)
2 = (0) for i ≥ 0. If A is finite dimensional, then

there are two possibilities: The above process produces a complete
filtration, i.e.

A = Ik ⊃ Ik−1 ⊃ · · · ⊃ I2 ⊃ I1 ⊃ I0 = (0)

such that (Ii+1/Ii)
2 = (0) for i ≥ 0; or for some index s, A/Is 6= (0)

and

{xi | x
2
i 6= 0 and x2

i ∈ Is} = ∅.

In the first case, we rearrange the generators xi, 1 ≤ i ≤ N , if
necessary, such that

I0 = span{x1, . . . , xi0},

I1 = span{xi0+1, . . . , xi1},
...

Ik = span{xik−1+1, . . . , xik}.

Under this order of the generators, the structure coefficient matrix C
of A is a strict upper triangular matrix.
In the second case, let B = A/Is and let yi = xi be the image of xi

in B. Then B is spanned by

Y = {yi | xi /∈ Is} := {y1, y2, . . . , ym},

and y2i 6= 0, ∀ yi ∈ Y . If in addition we have that the coefficient ring
R is a domain, then Y is not nilpotent. This can be seen as follows.
Since y21 6= 0, there is a ci11 6= 0, thus

(y21)yi1 = ci11y
2
i1
.

Since y2i1 6= 0, there is a ci2i1 6= 0, and so on, we can obtain a sequence of
nonzero elements of arbitrary length such that their product is nonzero
since R is a domain. Thus by Theorem 2.4, B is not nilpotent. Sum-
marizing our discussion, we have the following theorem.

Theorem 2.4. If R is a domain and A is finite dimensional over R,
then A is nilpotent if and only if there is an ordering of the generators
xi, 1 ≤ i ≤ N , such that under this ordering, the structure coefficient
matrix C of A is strictly upper triangular.

3. Examples

Using the theorems of Section 2, we can construct examples of evo-
lution algebras with desired properties easily.
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Example 3.1. Let R = Z36, let X = {x1, x2}, and let the structure
coefficient matrix be

(
6 3
2 12

)

.

Then the evolution algebra A is nilpotent: A5 = (0).

Example 3.2. Again, let R = Z36, let X = {x1, x2}. But let the
structure coefficient matrix be

(
6 2
2 12

)

.

Then the evolution algebra A is not nilpotent, since the product

c21c12c21c12 · · ·
︸ ︷︷ ︸

n terms

= 2n

is never zero, so Theorem 2.3 implies the result. In fact, A is not even
nil since a = x1 + x2 is not nilpotent.

For associative algebras over a field, the problem of constructing
a finitely generated infinite dimensional nil but not nilpotent algebra
with finite Gelfand-Kirillov dimension seems to be complicated: the
sole purpose of [3] is to construct such an example. However, it is
quite easy to construct a nil but not nilpotent infinite dimensional
evolution algebra which is singly generated over a ring. In view of
possible interests from different applications, we give such an example
next. This algebra A is defined over R = Z4 with basisX = {xi : i ∈ N}
and with the defining relations (1.1) specified to:

xixj =

{
2xi + xi+1, i = j,

0, i 6= j;
∀ i, j ∈ N.(3.1)

Note that from (3.1), we immediately see that the subalgebra of A
generated by x1 is equal to A.
The choice of the base ring Z4 is for the reason of simplicity of the

presentation here. It will be clear that the base ring can be replaced
by other commutative rings with nilpotent elements. In particular, one
can take Zm

2 , where m is any integer ≥ 2, as the base ring. We will
provide another example at the end of section 4.

Theorem 3.1. The evolution algebra A defined over Z4 with basis
X = {xi : i ∈ N} subjected to relation (3.1) is a nil but not nilpotent
algebra generated by x1. Furthermore, A is not associative.
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Proof. First we show that A is not associative. By definition we have

x2
1 = 2x1 + x2, x3

1 = 2x2, x4
1 = 0,

and

(x2
1)(x

2
1) = (2x1 + x2)(2x1 + x2) = x2

2 = 2x2 + x3.

Thus the algebra A is not associative (in fact, not even power-associative).
Next we show that A is generated by x1. More precisely, we claim

that

x
[n]
1 = 2xn + xn+1, ∀ n ≥ 1.

This is true for n = 1 by the definition of the plenary powers. Assume
that it holds for n, then

x
[n+1]
1 = (x

[n]
1 )(x

[n]
1 )

= (2xn + xn+1)(2xn + xn+1)

= xn+1xn+1 = 2xn+1 + xn+2.

Thus A is generated by x1. Note this also shows that A is not nilpotent.
Now we show that A is nil. For an arbitrary element a ∈ A, we can

always write

a =
∑

1≤i≤t

aixi,(3.2)

where ai ∈ R (since we can always insert terms with zero coefficients).
For j ≥ 1, let

Aj = span{xi : i ≥ j}.

Then each Aj is an ideal of A and

Ajxi = (0), ∀ 1 ≤ i < j.(3.3)

We claim that for the element a specified by (3.2) we have

a3+2j ∈ Aj+2, ∀ j ≥ 0.(3.4)

The following computations show that (3.4) holds for j = 0:

a2 ≡ (a1x1)
2 (mod A2) = a21(2x1 + x2),

a3 ≡ 2a31x2 ≡ 0 (mod A2).

Assume (3.4) holds for j = k. Then we have

a3+2k ≡ bk+2xk+2 (mod Ak+3),
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for some bk+3 ∈ R. Hence

a3+2(k+1) = ((a3+2k)a)a

≡ ((bk+2xk+2)(ak+2xk+2))(ak+2xk+2) (mod Ak+3)

≡ 0 (mod Ak+3).

Therefore (3.4) holds as claimed. Now let n = 2t+1, then (3.4) implies
that an ∈ At+1. Thus (3.3) implies an+1 = 0. This completes the proof
of Theorem 3.1. �

The above arguments work for arbitrary commutative rings with
nilpotent elements, for example, we have:

Example 3.3. Let R be the set of real numbers and let R[t] be the set
of polynomials with real coefficients. Consider R = R[t]/(t2). Then the
evolution algebra A defined over R with basis X = {xi : i ∈ N} and the
defining relations:

xixj =

{
txi + xi+1, i = j,

0, i 6= j;
∀ i, j ∈ N,(3.5)

is nil but not nilpotent.

It is now clear that one can construct finitely generated nil but not
nilpotent evolution algebras with any number of generators: since for
an evolution algebra, xixj = 0 if i 6= j, one can easily combine singly
generated nil but not nilpotent evolution algebras together to form the
algebra desired.

4. Concluding Remark

Genetic algebras over fields have been studied in detail in the lit-
eratures. In modeling biological systems, one also needs to consider
genetic algebras over arbitrary commutative rings. Our goal here is
to address the need of using evolution algebras to model populations
such that certain gametes extinct in the process but the population
evolves for a long period of time. This cannot be adequately addressed
by using evolution algebras over fields. This motivates our considera-
tion of evolution algebras over general commutative ring, and leads to
our construction of finitely generated nil but not nilpotent evolution
algebras over commutative rings which have nilpotent elements. A gen-
eral theory about genetic algebras over arbitrary commutative rings is
desirable for applications and deserves further attention.
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