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Abstract

The intracellular viral life-cycle is an important process in tumor

virotherapy. Most mathematical models for tumor virotherapy do not

incorporate the intracellular viral life-cycle. In this article, a model for

tumor virotherapy with the intracellular viral life-cycle is presented

and studied. The period of the intracellular viral life-cycle is mod-

eled as a delay parameter. The model is a nonlinear system of delay

differential equations. It displays interesting and rich dynamic behav-

iors. There exists two sets of stability switches as the period of the

intracellular viral life-cycle increases. One is around the infection free

equilibrium solution, and the other is the positive equilibrium solution.

This intracellular viral life-cycle may explain the oscillation phenom-

ena observed in many studies. An important clinic implication is that

the period of the intracellular viral life-cycle should also be modified

when a type of a virus is modified for virotherapy, so that the period of

the intracellular viral life-cycle is in a suitable range which can break

away the stability of the interior equilibrium solution.
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1 Introduction

The old hypothesis of viruses can be used to kill tumor cells has been ex-

tensively restudied over last 20 years. Oncolytic viruses have been identified

in many experiences [3]. Viruses that can infect and replicate in cancer

cells but leave healthy cells unharmed can serve as oncolytic viruses. In

an ideal situation, when oncolytic viruses are inoculated into a cancer pa-

tient or directly injected into a tumor, they spread throughout the tumor,

and infect tumor cells. The viruses that enter into tumor cells will repli-

cate themselves. Upon a lysis of an infected tumor cell, a swarm of new

viruses burst out and infect neighboring tumor cells. It was hypothesized

that all tumor cells would be infected and the tumor would be eradicated

since the beginning of the nineteenth century [8]. However, most often the

viral infection was stopped by the host immune system and failed to im-

pact on tumor growth. The later technology of reverse genetics has brought

about new methods to generate tumor-selective viruses, and progresses in

understanding of the molecular mechanism of viral cytotoxicity of oncolytic

viruses may provide a fascinating therapeutic approach to cancer patients.

Recent experiments in animal brain tumors using genetically engineered vi-

ral strains, such as adenovirus, ONYX-15 and CV706, herpes simplex virus

1 and wild-type Newcastle disease virus show these viruses to be relatively

non-toxic and tumor specific [9]. However, the therapeutic effects of these

oncolytic viruses are not well established yet.

There are many factors that influence the efficacy of tumor virotherapy.

The major factors include the intracellular viral life-cycle and viral repli-

cation within tumor cells, viral localization or virus distribution within a

tumor, and the immune responses that viral infection induce [12]. Many

experiments with animals and phase I clinical trials have been conducted

to investigate these factors. For example, a great deal of the intracellular

viral life cycle has been found out experimentally. In [3], the intracellular

viral life cycle for adenovirus and herpes simplex virus (HSV)-1 is detailed,

“the life cycle can be divided into several stages. During the infection stage,
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viral surface proteins, such as the adenovirus fibre or HSV glycoprotein D,

mediate attachment to cellular receptors, such as coxsackie and adenovirus

receptor (CAR) or HSV entry mediator C (HVEC), also known as nectin

1. Once inside the cell, viruses express several gene products that target

cellular proteins and modulate various cellular processes, such as preventing

apoptosis or inducing cell-cycle entry. These promote viral replication and

production of viral proteins that eventually lead to cell lysis and release of

viral progeny”. Each step is mediated by a diverse group of proteins, and

each step needs some time to complete [6, 7, 4, 13]. However, an integrated

and quantitative understanding of viral kinetics is required in order to find

predictive factors for the efficacy of virotherapy. Without such an under-

standing, much of the clinical research will continue to be based on trial

and error. In this aspect, mathematical modeling can allow us to see the

whole spectrum of possible outcomes, and provide the rationale to optimize

treatments. Several attempts have been made to understand and character-

ize viral dynamics by mathematical models [5, 14, 16, 15, 17, 18, 19, 1, 20].

These studies are largely of qualitative simulation in nature and examine

how variation in viral and host parameters influences the outcomes of treat-

ments. The outcomes of virotherapy depend in a complex way on interac-

tions between viruses and tumor cells. A clearer picture of the dynamics of

virotherapy needs to be developed.

Based on experimental results in [10] that glioma-selective HSV-1 mu-

tants (rQNestin34.5) have a high replication ability and doubles the life span

of glioma mice. The studies in [5, 14] have suggested that viral replication

ability is one of major factors for the success of virotherapy. The model

in [5] studies interactions among glioma cells, infected glioma cells, viruses,

immune cells, and also includes the immunosuppressive agent, cyclophos-

phamide. It is a nonlinear parabolic system with a free boundary as tumor

surface. The study of a space-free virotherapy model in [14] suggests that

the oscillation is an intrinsic property of virotherapy dynamics and relates to

virus replication ability. The present paper focuses on analyzing the effect of

the intracellular viral life-cycle on the dynamics of oncolysis in a relatively
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simpler setting and will only consider tumor cells and viruses in a space-free

setting.

The rest of the article is organized as follows. In Section 2, the mathe-

matical model is introduced. In Section 3, preliminary results on the model

are presented. In Section 4, the stability of the equilibrium solutions is stud-

ied, and some numerical analysis is also presented. In Section 5, we conclude

the paper by a discussion of biological implications of our results.

2 Mathematical models

Wodarz and Komarova in [11, 18, 19] proposed the following general model

of tumor cell and infected tumor cell growth based on the mass action law,

x′ =
dx

dt
= xF (x, y)− βyG(x, y),

y′ =
dy

dt
= βyG(x, y)− ay,

(1)

where x stands for the uninfected tumor cell population and y the infected

tumor cell population. The function F describes the growth properties of the

uninfected tumor cells with F (0, 0) representing their maximum growth rate,

and the function G describes the rate at which tumor cells become infected

by the virus. These two functions may take various forms, depending on how

much detail of the biology is incorporated into the model. The coefficient

β represents the strength of infectivity of the virus via infected tumor cells.

The infected tumor cells die at a rate ay. We would like to point out that

this is a reduced basic framework to describe the dynamics of virotherapy.

Generally, infected tumor cells can not infect uninfected tumor cells directly;

only free viruses that are in extracellular matrix can infect tumor cells. For

this reason, the above model shall be understood as an approximation of
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the following model with explicit virus dynamics

x′ =
dx

dt
= xF (x, y)− bvg(x, y),

y′ =
dy

dt
= bvg(x, y)− ay,

v′ =
dy

dt
= ky − dv,

(2)

where min{k, d} >> F (0, 0), and βyG(x, y) = bk
d yg(x, y). Here vg(x, y)

describes the contact rate of virus with uninfected tumor cells, b is the

virus infection coefficient (rate), k stands for the virus production rate of an

infected cell and d is the death rate of virus. In other words, one may take

advantage of the fact that virus dynamics is usually much faster than that

of tumor cell by approximating v with k
dy in the above model.

There are several stages in a typical viral life-cycle. The first stage is the

attachment stage. When a free virus is within a certain distance of a tumor

cell, chemical bonds form between the virus and receptor sites of the tumor

cell, and then attach to tumor cell surface. The second is the penetration

stage, where the viral DNA passes through the core and into the tumor

cell. Once the virus penetrates into the tumor cell, the biosynthesis stage

begins. Since the virus expresses several gene products that target cellular

proteins and modulate various cellular processes, the host protein synthesis

stop and the host transcription and translation are interfered. Meantime,

the virus uses host nucleotides to replicate its DNA and use host ribosomes,

enzymes and amino acids to synthesize its enzymes and proteins. During

the maturation stage, viral capsids are assembled, viral DNA are packed

into the heads and tails fibers are joined to the complexes. The last step is

the release stage. The newly-born viruses are released from the tumor cell,

and the tumor cell dies. The time period of the intracellular viral life-cycle

varies according to virus species, it changes from minutes to days. For the

details of the viral life-cycle, we refer the reader to [3, 6, 7, 4, 13] While

it may not be necessary to include all details of the viral life-cycle into a

mathematical model where we are mainly interested in tumor dynamics to

void complication, it is interesting to find out what dynamics maybe induced
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by the intracellular viral life-cycle in a tumor virotherapy. A simple way to

study the intracellular viral life-cycle induced dynamics is to incorporate a

cycle time delay parameter in a plausible model.

Let the cycle time of the intracellular viral life-cycle be τ , defined to be

the period of time from a virus attaching to a tumor cell to new viruses

bursting out. We assume a constant death rate for infected but not yet

virus-producing tumor cells to be n. Then the probability of infected tumor

cells surviving the time period from t− τ to t is e−nτ . (More generally, the

survival probability is given by some nonincreasing function p(τ) between

0 and 1.) For simplicity, we lump the natural death of infected tumor cells

and death by bursting together. This yields

dx

dt
= xF (x, y)− βyG(x, y),

dy

dt
= βy(t− τ)G(x(t− τ), y(t− τ))e−nτ − ay.

In the following, we take F (x, y) = r(1 − x+y
K ) and G(x, y) = x, where r is

per capital growth rate of the tumor, and K is the maximum of the tumor

cell load. Therefore, the model we will focus on is given by,

dx

dt
= rx(1− x+ y

K
)− βxy,

dy

dt
= βx(t− τ)y(t− τ)e−nτ − ay,

x(θ) ≥ 0, y(θ) ≥ 0, are continuous on [−τ, 0),

x(0) > 0, y(0) > 0.

(3)

3 Preliminaries

For the convenience of analysis, we non-dimensionalize the system by setting

x̄ = x
K , ȳ = y

K , and then drop the bar over the variables. We get the non-

dimensionalized system,
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dx

dt
= rx(1− x− y)− bxy,

dy

dt
= bx(t− τ)y(t− τ)e−nτ − ay,

x(θ) ≥ 0, y(θ) ≥ 0, x(θ), y(θ) ∈ C[−τ, 0],

(4)

where b = βK. We remark that all parameters here are nonnegative.

As an epidemiology model at the cell population level, the basic repro-

duction number is given by

R0 =
β

a
e−nτ =

b

aK
e−nτ .

However, we will not use this quantity as a critical value to characterize the

dynamics of the model (4), since there is the parameter τ presenting the

period of the intracellular viral life-cycle, and we are more interested in how

this parameter affects the dynamics.

We will study the feasible region and positivity of the solutions of this

system, and the existence of equilibrium solutions.

Proposition 3.1. Let 0 ≤ x(θ), y(θ) ≤ 1 for θ ∈ [−τ, 0), and x(0) > 0,

y(0) > 0. Then the solution of the system (4) x(t) > 0, y(t) > 0, and

x(t) < 1. When x(0) + y(0) < 1, we have x(t) + y(t) < 1 + b
re
−nτ for t ≥ 0.

Proof. When 0 ≤ t ≤ τ , we see that y′ = bx(t − τ)y(t − τ)e−nτ − ay ≥
−ay, so y(t) > y(0)e−at > 0. In addition, x′ = rx(1 − x − y) − bxy, so

x(t) = x(0)e
∫ t
0 r(1−x(s)−y(s)−

b
r
y(s))ds > 0. By the method of steps, x(t) > 0

and y(t) > 0 for all t > 0.

For x′ = rx(1− x− y)− bxy < rx(1− x), so, x(t) < 1.

For 0 ≤ t ≤ τ , adding the two equations of the system (4) together, we

have x′+ y′ = rx(1−x− y)− bxy+ be−nτx(t− τ)y(t− τ)− ay ≤ rx(1−x−
y)− bxy+ be−nτ −ay ≤ rx(1−x−y) + be−nτ ≤ r(1 + b

re
−nτ −x−y). When

x(0) + y(0) < 1, by a standard comparison argument, we have x(t) + y(t) <

1 + b
re
−nτ . By the method of steps, the estimate holds for t ≥ 0.
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Therefore, We will consider our system over this region, and the global

word will refer to this region.

The system always has equilibria (0, 0) and (1, 0) for any values of pa-

rameters. The interior equilibrium solution (x∗, y∗) is given by

E∗ = (x∗(τ), y∗(τ)) = (
a

b
enτ ,

1− a
b e
nτ

1 + b
r

).

It should be noticed that the interior equilibrium is a function of the model

parameters, and we will mainly consider it as a function of delay parameter

τ .

Since the time delay parameter τ can not be negative in our case, when

b ≤ a, there are only two nonnegative equilibria, (0, 0) and (1, 0). When

b > a, there are two cases. If 0 < τ < 1
n ln b

a , there are three nonnegative

equilibria. At τ = 1
n ln b

a , the interior equilibrium (x∗, y∗) merges to (1, 0).

If τ > 1
n ln b

a , the interior equilibrium has negative components and goes out

of the feasible region. We will not consider this case. So, when τ ≥ 1
n ln b

a ,

there are only two nonnegative equilibria, (0, 0) and (1, 0).

The Figure 1 shows the planar analysis of isoclines and the interior equi-

librium curve as the delay parameter τ. It also makes clear how the interior

equilibrium point (x∗(τ), y∗(τ)) depends on the delay τ and other parame-

ters. For instant, increasing τ moves the y-isoline towards right, and causes

the coincidence of (x∗(τ), y∗(τ)) with (1, 0) at a finite value of τ . For large τ

there is no positive interior equilibrium point. We will track how the interior

equilibrium depends on the parameters in all our analysis.

4 Analysis of the model

In this section, the local stability analysis of the three equilibria and some

global stability analysis will be conducted. The stability switches around

the equilibria (1, 0) and (x∗(τ), y∗(τ)) will also be studied.
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Figure 1: For various values of the delay parameter τ , the isoclines of the

system are obtained from (4) by removing the delay parameters from the

argument. The arrows indicate the y-isoclines change as τ increases, while

the dots indicate equilibria.

4.1 Stability of the equilibrium (0, 0)

At the equilibrium point (0, 0), the linearization is

dx

dt
= rx,

dy

dt
= −ay.

The eigenvalues are r and −a. It is a saddle point. The stable manifold is in

y−aixs, and the unstable manifold is in x−axis. This means that the tumor

will grow when it starts with a very small size, while the tumor with only

infected cells will shrink to zero.
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4.2 Stability of the equilibrium (1, 0)

At the equilibrium point (1, 0), we linearize the system by setting x = 1 + x̄

and y = ȳ, we have

x̄′ = −rx̄− rȳ − rx̄2 − rx̄ȳ − bȳ + · · ·,

ȳ′ = −ay + bȳ(t− τ)e−nτ + bx̄(t− τ)ȳ(t− τ)e−nτ .

The linear system then is given by(
x̄′

ȳ′

)
=

(
−r −r − b
0 −a

)(
x̄

ȳ

)
+

(
0 0

0 be−nτ

)(
x̄(t− τ)

ȳ(t− τ)

)
. (5)

The characteristic equation is |λI − A − Be−λτ | = 0, where the matrices

A and B are given in (5). Or, (λ + r)(λ + a − be−nτe−λτ ) = 0. So, one

eigenvalue is −r, the other eigenvalues are given by

λ+ a− be−nτe−λτ = 0. (6)

We study the roots of the equation (6) according to the relation between

a and b. Denote the root by λ(τ) = α(τ) + iω(τ).

When b < a, λ(0) = b − a < 0. Suppose λ = iω is a root of (6), where

ω > 0. Then, substitute it into (6), we have iω+a−be−nτe−iωτ = 0. Separate

the real parts and imaginary parts. One has, ω + be−nτ sinωτ = 0 and

a− be−nτ cosωτ = 0. By sin2 ωτ + cos2 ωτ = 1, one gets b2e−2nτ = ω2 + a2.

Then, ω2 = b2e−2nτ − a2 < 0. This is impossible. Therefore, the sign of

the real part of the root λ(τ) keeps unchangeable for all τ ≥ 0. Namely,

α(τ) < 0 for any τ ≥ 0. In this case, the equilibrium point (1, 0) is locally

asymptotical stable for any (zero or positive) delay. Consequently, there is

no stability switches around the equilibrium point (1, 0) when b < a. For

the details about stability switching, we refer the paper [2] by Beretta and

Kuang.

If a = b, we claim that the real part of any root of the characteristic

equation (6) is negative. Suppose λ = u + iv, then substitute it into the

equation. Separate the real part and imaginary part, we have u + a −
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ae−(n+u)τ cos vτ = 0 and v + ae−(n+u)τ sin vτ = 0. Square them and add

them together, we have (u + a)2 + v2 = a2e−2(n+u)τ . For any τ > 0 and

positive parameter n, if u > 0, then (u + a)2 + v2 > a2 and a2e−2(n+u)τ <

a2. This is a contradiction. If u = 0, we arrive the same contradiction.

Therefore, when a = b, the equilibrium (1, 0) is still asymptotically stable

for any positive delay τ > 0.

When b > a, λ(0) = α(0) + iω(0) = b− a > 0. Then, there is a positive

eigenvalue at τ = 0. We search for the values of the delay τ at which the sign

of the real part of λ(τ) changes, where we have stability switches. Suppose

λ = iω is a root, ω > 0. One again obtains iω + a − be−nτe−iωτ = 0.

Separate the real part and imaginary part, we have ω + be−nτ sinωτ = 0

and a− be−nτ cosωτ = 0, and ω2 = b2e−2nτ − a2. Then

ω(τ) = (b2e−2nτ − a2)
1
2 ,

where τ < τc = 1
n ln b

a . When τ > τc, there is no stability switches. As the

method in [2], we define the angle θ(τ) ∈ [0, 2π] which are the solutions of

the equations for the real part and imaginary part as follows,

sin θ(τ) = −ω(τ)

b
enτ , cos θ(τ) =

a

b
enτ .

It is easy to see that θ(τ) is in between 3
2π and 2π since a, b, and ω are

positive. So, θ(τ) = 2π − arcsin ω(τ)
b enτ . We define

τm(τ) =
θ(τ) + 2mπ

ω(τ)
=

2(m+ 1)π − arcsin
√
b2e−2nτ−a2enτ

b√
b2e−2nτ − a2

for m ∈ N0. The occurrence of stability switches may take place at the zeros

of the functions

Sm := τ − τm(τ), m ∈ N0. (7)

To determine how many zeros of the functions (7) can have, we study

the function

Zm(τ) = τ
√
b2e−2nτ − a2 + arcsin

enτ

b

√
b2e−2nτ − a2 − 2(m+ 1)π. (8)
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The function (8) has the same zeros as the function (7). The derivative of

the function (8) is given by

Z ′m =
b2(1− nτ)e−2nτ − a2(n+ 1)√

b2e−2nτ − a2
. (9)

The critical points of Zm, namely zeros of Z ′m are the same as its numerator,

b2(1−nτ)e−2nτ −a2(n+1) = 0. Then we have (2−2nτ) = 2a2(n+1)
b2

e2nτ . By

simply plotting functions y = 2−x and y = Aex, it is easy to conclude that

there is only one positive critical point for Zm when a2(n+1)
b2

< 1, there is

only one zero critical point when a2(n+1)
b2

= 1, and there is only one negative

critical point when a2(n+1)
b2

> 1. Since there is only one critical point, it easy

to check at the critical point the function Zm reaches its global maximum.

Denote the critical point by τc, we arrive the conclusion that there will be

two positive zeros for the function Sm when a2(n+1)
b2

< 1 and Zm(τc) > 0 for

some m. Although there would be one positive zero for Sm when a2(n+1)
b2

≥ 1

and Zm(0) > 0 for some m, we know the number of zeros of Sm only can be

an even number.

To determine the ranges of parameter values where the pair of simple

conjugate purely imaginary roots crosses the imaginary axis from left to right

or from right to left, we use the theorems 3.1 and 3.2 in [2] to determine

the sign of the derivative of the eigenvalue with respective to τ , R(τ) =

sign{dReλdτ |λ=iω(τ∗)}, and

R(τ) =sign {a2(τ)ω(τ)ω′(τ)(a(τ)b(τ) + c(τ)2τ)

+ ω2(τ)a2(τ)(a′(τ)b(τ)− a(τ)b′(τ) + c2(τ))},

where a(τ) = 1, b(τ) = a and c(τ) = −be−nτ for the characteristic equation

(6). Then we have

R(τ) = sign {ωω′(a+ b2e−2nττ) + ω2b2e−2nτ}

= sign {b2e−2nτ (−na− a2 − nb2τe−2nτ + b2e−2nτ )}

= sign {b2e−2nτ [−a(a+ n) + (1− nτ)b2e−2nτ ]}

Therefore, R(τ) = +1 if and only if (1−nτ)e−2nτ > a(a+n)
b2

, and R(τ) = −1

if and only if (1− nτ)e−2nτ < a(a+n)
b2

.
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We summarize what we get above as a theorem.

Theorem 4.1. When b < a, the equilibrium (1, 0) is locally asymptotically

stable for τ ≥ 0. When b ≤ a, the equilibrium (1, 0) is locally asymptotically

stable for τ > 0. When b > a, b2 > a2(1 + n), and Zm(τc) > 0, there

are two values, τ1 < τ2, of the delays, at which the stability switches occur.

Moreover, R(τ1) = −1 if (1 − nτ)e−2nτ < a(a+n)
b2

, and R(τ2) = +1 if (1 −
nτ)e−2nτ < a(a+n)

b2
, the equilibrium (1, 0) is unstable when 0 ≤ τ < τ1 or

τ > τ2, it is locally asymptotically stable when τ1 < τ < τ2.

In fact, the equilibrium solution (1, 0) is globally stable when b < a or

b ≤ a.

Theorem 4.2. When b ≤ a, the equilibrium solution (1, 0) is globally stable

on the region ∆ for any positive time delay τ > 0. When b < a, the equilib-

rium (1, 0) is globally stable on the region ∆ for any nonnegative time delay

τ ≥ 0.

Proof. From the proposition (3.1), y(t) ≥ 0 and 0 ≤ x(t) ≤ 1, we have

lim inft→∞ y(t) ≥ 0 and lim supt→∞ x(t) ≤ 1.

To estimate y(t), we have y′ = bx(t− τ)y(t− τ)e−nτ − ay ≤ be−nτy(t−
τ)−ay. To use comparison theorem, we look at the equation u̇ = be−nτu(t−
τ) − au. Since be−nτ < b ≤ a for τ > 0 or be−nτ ≤ b < a for τ ≥ 0, then

limt→∞ u(t) = 0. Thus, y(t) ≤ u(t), and lim supt→∞ y(t) ≤ 0. Therefore,

limt→∞ y(t) = 0.

For any ε, there is T > τ , such that y(t) < ε when t > T . Then, we have

x′ = rx(1−x−y)−bxy ≥ rx(1−x−ε)−bεx = rx(1−ε−bε−x). By a standard

comparison argument, x(t) ≥ 1 − ε − bε, and lim inft→∞ x(t) ≥ 1 − ε − bε.
Since ε is arbitrary, one has lim inft→∞ x(t) ≥ 1. Therefore, limt→∞ = 1.

To verify the stability switches, we numerically solve the system with

some values of the parameters. Specifically, we choose values of the pa-

rameters according to [5], that b = 1, a = 0.2, n = 0.01. We then plot

the function Zm(τ). The Figure (2) shows some interesting property. For
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0 ≤ m ≤ 4, each graph has two zeros within the feasible range of the delay

parameter τ .

Figure 2: Plots of the functions Zm(τ), m = 0, 1, 2, 3, 4, 5. Taking b = 1,

a = 0.2, n = 0.01, the feasible range is 0 ≤ τ ≤ 1
n ln b

a ≈ 160. From the

top curve to the bottom curve, they are the graphs of Z0(τ), Z1(τ), ...,

and Z5(τ) respectively. It shows that for 0 ≤ m ≤ 4, each Zm(τ) has two

intersection points with the horizontal line τ = 0, and stability switch occur

for each of Zm(τ). When m ≥ 5, Zm(τ) has no intersection points with the

horizontal line τ = 0.

Unlike other stability switches causing by time delay where a solution of

the system without delay is stable and it becomes unstable for some interval

of the delay time and then it returns to stable status for even large delay

times, the equilibrium solution (1, 0) of the system (4) is unstable when the

delay τ = 0 under the condition b > a. As the delay time τ increases, it

becomes stable within some delay time interval. Then, it becomes unstable

again as the delay time increases. To demonstrate the stability switches,

for chosen values of the parameters, a = 0.2, b = 1, n = 0.01 and r = 1.5,
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each function Zm(τ) for m = 0, 1, 2, 3, 4 has two zeros. The smaller root

of Z0(τ) is τ0,1 ≈ 2.5, and the smaller root of Z4(τ) is τ4,1 ≈ 62. The

equilibrium solution (1, 0) is unstable when 0 ≤ τ ≤ τ0,1, and it is stable

when τ0,1 ≤ τ ≤ τ4,1, it is unstable when τ > τ4,1. However, when τ0,1 ≤
τ ≤ τ4,1, the corresponding periodic solutions are stable. The pictures in

the left columns of the Figures (4)-(8) show these cases with various values

of the delay parameter τ .

4.3 Stability of the interior equilibria (x∗(τ), y∗(τ))

At the interior equilibrium points (x∗(τ), y∗(τ)), where x∗(τ) = a
b e
nτ , y∗(τ) =

1−a
b
enτ

1+ b
r

, set x = x∗ + x̄, y = y∗ + ȳ. Since each component of the interior

equilibrium solutions is a function of the delay parameter τ , we write x∗

as x∗(τ) when we would emphasize the delay parameter τ . The linearized

system at (x∗, y∗) is given by:

X ′ =

(
r − 2rx∗ − ry∗ −rx∗

0 −a

)(
x̄

ȳ

)
+(

−by∗e−nτ −bx∗e−nτ

by∗e−nτ bx∗e−nτ

)(
x̄(t− τ)

ȳ(t− τ)

)
.

The characteristic equation is

λ2 + (a− (r − 2rx∗ − ry∗))λ+ b(y∗ − x∗)e−nτe−λτλ

− a(r − 2rx∗ − ry∗) + b(rx∗ − 2rx20 + ay∗)e−nτe−λτ = 0.

Substitute x∗ and y∗, we have the characteristic equation,

λ2 + a(τ)λ+ b(τ)λe−λτ + c(τ) + d(τ)e−λτ = 0, (10)

where

a(τ) = a−
b− (2a+ ar

b )enτ

1 + b
r

, b(τ) =
be−nτ − (2a+ ab

r )

1 + b
r

,

c(τ) =
−ab+ a(2a+ ar

b )enτ

1 + b
r

, d(τ) =
abe−nτ + (ab+ ar − a2)− 2a2r+2a2b

b enτ

1 + b
r

.
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Assume the characteristic equation (10) has purely imaginary roots, iω,

where ω > 0. Then substituting it back to the equation, separating the real

part and imaginary part, and using the identity sin2 θ + cos2 θ = 1, we get

ω4 − (b2(τ) + 2c(τ)− a2(τ))ω2 + (c2(τ)− d2(τ)) = 0. (11)

The roots of (11) are given by

ω+(τ) =
1√
2

√
b2(τ) + 2c(τ)− a2(τ) + ∆1/2,

ω−(τ) =
1√
2

√
b2(τ) + 2c(τ)− a2(τ)−∆1/2,

(12)

where

∆ = (b2(τ) + 2c(τ)− a2(τ))2 − 4(c2(τ)− d2(τ)). (13)

As in [2], we look for the values of the delay τ where the characteristic

equation has purely imaginary roots, and they are given by zeros of the

following functions

S+
m = τ − θ+(τ) + 2mπ

ω+(τ)
, S−m = τ − θ−(τ) + 2mπ

ω−(τ)
, (14)

where

θ±(τ) = arcsin
(ω±(τ)2 − c(τ))b(τ)− a(τ)d(τ)

ω±(τ)2b2(τ) + d2(τ)
ω±(τ).

We can compute the roots of the equation (11) by substituting coefficient

functions a(τ), b(τ), c(τ) and d(τ). However, the symbolical computation

will be extremely cumbersome. In stead, we will look at cases for given

parameter values.

When τ = 0, The characteristic equation (10) is reduced to

λ2 +
ar

b
λ+

ar(b− a)

b
= 0. (15)

When b > a, we have λ1(0)λ2(0) = ar(b−a)
b > 0 and λ1(0) + λ2(0) = ar

b > 0.

Then, the real parts of two eigenvalues of the equation (15) are negative.

Thus, the equilibrium point (x∗, y∗) is locally asymptotically stable, when

τ = 0.
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Taking b = 1, a = 0.2, n = 0.01, these coefficients become,

a(τ) =
0.2− 0.8r + r(0.4 + 0.2r)e

τ
100

1 + r
, b(τ) =

re−
τ

100 − (0.2 + 0.4r)

1 + r
,

c(τ) =
−0.2r + 0.2r(0.4 + 0.2r)e

τ
100

1 + r
, d(τ) =

0.2re−
τ

100 + r(0.08 + 0.12r)

1 + r
.

When r > 0.5, ∆ > 0 for τ ≥ 0. If r = 1.5, (ω+)2 > 0 for 0 ≤ τ ≤ 79.2,

while (ω−)2 < 0 for all feasible τ . Thus, we only consider S+
m. In the

feasible range, S+
0 (τ) has one zero, µ0,1 ≈ 1.98. S+

1 (τ) has two zeros, the

bigger one is µ2,2 ≈ 77. Therefore, there exist stability switches start from

this equilibrium solution (ab ,
1−a

b

1+ b
r

). Figure (3) shows plots of functions S+
m.

0 10 20 30 40 50 60 70 80
−150

−100

−50

0

50

100

tau

S

S+
0
 

S+
1
 

Figure 3: Plots of the functions S+
m(τ), m = 0, 1. The parameter values

are b = 1, a = 0.2, n = 0.01 and r = 1.5. Since the scale in the picture is

relatively big, the intersection point of the function S+
0 (τ) and τ = 0 is not

clearly shown. However, the function S+
0 (τ) has a root, µ0,1 ≈ 1.98. The

function S+
1 (τ) has two roots, µ2,1 ≈ 14 and µ2,2 ≈ 77.

The interior equilibrium is the function of the delay parameter τ , (x∗(τ), y∗(τ)).

The interior equilibrium solution is locally asymptotical stable when 0 ≤ τ <

17



µ0,1. The interior equilibrium solution is unstable when µ0,1 < τ < µ2,2, and

is unstable when τ > µ2,2. The pictures in the right columns of the Figures

(4)-(8) show these cases with various values of the delay parameter τ .

Comparing the stability of the equilibrium solutions (1, 0) and (x∗(τ), y∗(τ)),

we observe that in some intervals of the delay parameter τ one equilibrium

is stable while the other is unstable as shown in Figures (4)-(8). We obtain a

rough picture of the dynamics of the model (4) as follows. The equilibrium

(0, 0) is always unstable. Without the delay, the equilibrium (1, 0) is un-

stable while the equilibrium (ab ,
1−a

b

1+ b
r

) is locally asymptotical stable. When

the delay parameter τ is small, the interior equilibrium (x∗(τ), y∗(τ)) is still

locally asymptotical stable and (1, 0) is unstable. When the delay parameter

τ is becoming greater, the equilibrium (x∗(τ), y∗(τ)) is unstable. When τ is

even bigger, the equilibrium (x∗(τ), y∗(τ)) is stable again.

5 Discussion

The parameter b represents the non-dimensionalized infectivity of the virus

while a represents the death rate of infected tumor cells. The theorem (4.2)

states how these two parameters effect the virotherapy. When b < a, the

equilibrium solution x = 1 and y = 0 is globally stable for any time delay.

The tumor reaches its maximum size, and the therapy fails. On the other

hand, from the viewpoint of epidemiology modeling, the condition b < a

implies the basic reproduction number

R0 =
β

a
e−nτ =

b

aK
e−nτ =

b

a

1

K
e−nτ < 1,

since the maximum size of the tumor is obviously greater than 1 and e−nτ ≤
1. Therefore, the infection can not spread out, and the infection free equi-

librium is stable.

The relative sizes of the parameter a and b are dominant factors in

virotherapy. In animal experiments, the viruses have high possibility to kill

the tumor if the virus is more infectious. The virus has a high infectivity

if it is more infectious to tumor cells. There are various genetic methods
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Figure 4: The pictures (a) and (c) show the equilibrium (1,0) is unstable,

and the solutions start closely to (1,0) will diverge away to some interior

equilibria, where τ = 1 and τ = 2 respectively and the history x(θ) = 0.91

and y(θ) = 0.08. The pictures (b) and (d) show the interior equilibria are

locally asymptotical stable. Since the interior equilibria is the function of τ ,

the interior equilibria are corresponding to the delay parameter τ .
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Figure 5: The pictures (a) and (c) show some solutions which start closely to

(1,0), and they are periodic solutions, where τ = 3 and τ = 10 respectively,

and the history x(θ) = 0.95 and y(θ) = 0.07. The pictures (b) and (d) show

some solutions with the history x(θ) = 0.29 and y(θ) = 0.41, and τ = 3 and

τ = 10 respectively.

20



0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The infection free equilibrium, tau = 20

x,
 y

time t

x 

y 

(a)

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
The interior equilibrium, tau = 20

time t

x,
 y

x 

y 

(b)

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The infection free equilibrium, tau = 30

time t

x,
 y

x 

y 

(c)

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
The interior equilibrium, tau = 30

time t

x,
 y

x 

y 

(d)

Figure 6: The pictures (a) and (c) show some solutions which start closely to

(1,0), and they are periodic solutions, where τ = 20 and τ = 30 respectively,

and the history x(θ) = 0.95 and y(θ) = 0.07. The pictures (b) and (d) show

some solutions with the history x(θ) = 0.28 and y(θ) = 0.45, and τ = 20

and τ = 30 respectively.
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Figure 7: The pictures (a) and (c) show some solutions which start closely to

(1,0), and they are periodic solutions, where τ = 40 and τ = 50 respectively,

and the history x(θ) = 0.95 and y(θ) = 0.07. The pictures (b) and (d) show

some solutions with the history x(θ) = 0.30 and y(θ) = 0.45, and τ = 40

and τ = 50 respectively.

22



0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
The infection free equilibrium

time t

x,
 y

x 

y 

tau = 60, the history x = 0.95 and y = 0.07 

(a)

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
The interior equilibrium

time t
x,

 y

x 

y 

tau = 60, the history x = 0.23 and y = 0.45 

(b)

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time t

x,
 y

The infection free equilibrium

x 

y 

tau = 70, the history x = 0.95 and y = 0.1  

(c)

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
The interior equilibrium

time t

x,
 y

x 

y 

tau = 70, the history x = 0.23, y = 0.45 

(d)

Figure 8: The pictures (a) and (c) show some solutions which start closely to

(1,0), and they diverge but converge to some interior equilibrium solutions,

where τ = 60 and τ = 70 respectively, and the history x(θ) = 0.95 and

y(θ) = 0.07. The pictures (b) and (d) show some solutions with the history

x(θ) = 0.30 and y(θ) = 0.45, and τ = 60 and τ = 70 respectively. These

solutions converge to the corresponding interior equilibrium solutions.
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that can be applied to modify the genomes of viruses so that the viruses

have high infectivity [3]. Therefore, the virus with a low infectivity b that

is smaller than the death rate of infected tumor cells can not be used to

eradicate the tumor. However, when the infectivity is greater than the

death rate of infected tumor cells b > a, the dynamics of virotherapy is

much more complicated, where the intracellular viral life-cycle comes to

play an important role.

Theoretically, when the infectivity b is greater than the death rate a of

infected tumor cells, the viruses can not eradicate the tumor if the period

of the intracellular viral life-cycle is ignored. As the equation (15) shown,

it has two eigenvalues with negative real parts. The interior equilibrium

solution (x∗, y∗) is locally asymptotical stable. In the feasible domain Σ of

the model, there is a large port of the domain which is in the attractive

range of this equilibrium point. That means, the tumor cells and infected

tumor cells coexist, and the viruses can not eradicate the tumor. We also

can see this point from the expression of the basic reproduction number

R0 = β
a e
−nτ = b

aK e
−nτ = b

a
1
K . The condition b > a alone can not guarantee

R0 > 1. Even b is big enough such that R0 > 1, it only makes the interior

equilibrium solution is locally asymptotical stable.

When the period of the intracellular viral life-cycle is incorporated into

the model, but with the period modeled as the delay parameter, the tumor

cells still can not be completely eradicated. When the delay parameter

has a small value, tumor cells and infected tumor cells coexist, and the

coexisting equilibrium solution is still locally asymptotical stable. If the

viruses have a longer period of the intracellular viral life-cycle, the stability of

the coexisting equilibrium solution will be broken. This creates a possibility

of killing the tumor. Since the interior equilibrium solution is unstable in this

case, the tumor cell population and the infected tumor cell population will

not rest on a fixed level. Instead, they will periodically change over time or

diverge away. The virotherapy seeks to decrease the tumor cell amount even

it can not eradicate the tumor. The success of the therapy is determined

by detectability of the tumor cells. Thus, it is considered as a successful
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therapy if the tumor cell amount is below a detective level. In our case, it is

possible that other parameters like the survival probability function can be

chosen so that the periodic solution with lower tumor component. We then

can obtain a good result of the virotherapy.

In many clinical and theoretical studies of virotherapy, the periodic phe-

nomena were observed. When the value of the delay parameter is in this

middle range, our model has stable periodic solutions. Thus, the intracel-

lular viral life-cycle can explain periodic phenomena observed in [5, 14, 16]

and other work.

However, when the intracellular viral life-cycle is too long, the interior

equilibrium solution becomes locally asymptotical stable again. In this situ-

ation, the tumor cell component has even big quantity as a
b e
nτ is increasing

function of τ . This is undesirable. When the intracellular viral life-cycle

is even longer, the virotherapy totally fails since the interior equilibrium

solution will be lost and there are only two equilibria (0, 0) and (1, 0).

Overall, a clinic implication is that the period of the intracellular vi-

ral life-cycle should also be modified when a type of a virus is modified

for virotherapy, so that the period of the intracellular viral life-cycle is in

a suitable range which can break the stability of the interior equilibrium

solution.
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