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Abstract In the Drosophila germline stem cell ovary niche, two stem cells com-
pete with each other for niche occupancy to maintain stem cell quality by ensuring
that differentiated stem cells are rapidly pushed out the niche and replenished by
normal ones (Jin et al. in Cell Stem Cell 2:39-49, 2008). To gain a deeper under-
standing of this biological phenomenon, we have derived a mathematical model for
explaining the physical interactions between two stem cells. The model is a system
of two nonlinear first order and one second order differential equations coupled with
E-cadherins expression levels. The model can explain the dynamics of the competi-
tion process of two germline stem cells and may help to reveal missing information
obtained from experimental results. The model predicts several qualitative features in
the competition process, which may help to design rational experiments for a better
understanding of the stem cell competition process.

Keywords Germline stem cell competition - Stem cell niche

1 Introduction

Stem cells have the remarkable ability to undergo both self-renewal and differentia-
tion (Xi and Xie 2005). Adult stem cells are responsible for generating new cells to
replace lost cells in adult tissues due to natural cell turnover or injury. Age-dependent
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decrease in stem cell number or function can lead to age-dependent decline in tissue
functions. Without adult stem cells or even reduced adult stem cell activities, a given
tissue would not be able to maintain itself and then degenerate due to the limited lifes-
pan of differentiated adult cells (Pan et al. 2007). On the other hand, adult stem cells
keep self-renewing to maintain a stable population. Adult stem cells are known to
reside in a special microenvironment, called the niche (Kirilly and Xie 2007), where
they keep their identities and provide source cells for many types of differentiated
cells. It is only in their niche that stem cells can function as stem cells. Although
stem cells can bring a new hope for the treatment of many diseases such as Parkin-
son’s, diabetes, and heart diseases, as well as injuries for which there has previously
been no effective treatment (Clarke and Fuller 2006), uncontrolled stem cell growth
or dysregulation of stem cells might lead to tumorigenesis, or other fatal diseases
(Hombach-Klonisch et al. 2008). Understanding the mechanism of controlling stem
cell behavior in its niche is crucial to the use of stem cells in regenerative medicine,
as well as in understanding aging, tumor formation, and degenerative diseases (Reya
et al. 2001).

A number of experimental studies have demonstrated the importance of interac-
tions between stem cells and their niches in the control of self-renewal and differenti-
ation. Most of these interactions are via signal transduction. The niche provides sig-
naling molecules, and the signaling molecules activate membrane receptors of stem
cells that in turn alters intracellular molecules within stem cells to create responses.
These signals from niches strictly control stem cell’s self-renewal and differentiation
(Lin 2002; Li and Xie 2005). While none have investigated how stem cells within the
same niche interact with one another, it has recently been shown that stem cells in the
same niche interact with each other “physically” (Jin et al. 2008). In the process of
competition, two stem cells interact with one another via “physical” interaction, both
of them physically attach to their niche and physically push each other in competition
for niche occupancy. The competitiveness is largely determined by the strength of the
physical bonds between stem cells and their niches. This is a new mechanism of cell
interaction: non-signaling interaction. The competition will lead to one germline stem
cell forcing another out of the niche, ultimately resulting in one stem cell dominating
the niche.

The discovery of this biological phenomenon is very important because it may re-
veal the mechanism of stem cell quality control which ensures that accidentally dif-
ferentiated stem cells are rapidly removed from the niche and replaced by functional
ones. It may also be related to the molecular mechanism of how stem cell population
size is maintained and regulated. However, to understand the mechanism of how two
germline stem cells compete with each other is challenging, since it involves phys-
ical interaction. It is confirmed that the germline stem cell competition is mediated
by E-cadherins, a type of transmembrane proteins by which germline stem cells are
anchored in their niche (Song et al. 2002), and that the intensity of E-cadherins ap-
pears to be important for germline stem cell competition, because a germline stem
cell with more E-cadherin in the junction with its niche becomes more competitive
than the one with lower E-cadherin levels. Thus, it is important to find out the quan-
titative relationship between the competitiveness and the E-cadherin intensity on the
surface of a germline stem cell. An integrative modeling study will be helpful for
quantitatively understanding the competitive relationship between adult stem cells.
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In this article, we present a mathematical model for two germline stem cell compe-
tition which provides a first approximation of the physical interaction between stem
cells. Since the competition between two germline stem cells does not require BMP
signaling and dMys function, we will not consider signaling interaction in mathemat-
ical models. There are two key points in modeling germline stem cell competition
for niche space. First, instead of considering competition for niche space directly, we
model the competition for E-cadherins between germline stem cells and their niche.
E-cadherins can adhere together only when they match each other. The intensity of
E-cadherins is closely related to the contact area between a germline stem cell and its
niche. One model is proposed for this adhesion process. Second, germline stem cells
are approximately assumed to be as an elastic material, particularly, as springs. In
this study, we use two spring system coupled with the adhesion process to model the
germline stem cell competition. The model can describe the dynamics of the com-
petition process which can explain and recover some missing information in discrete
experimental results. The model predicts several qualitative features of the compe-
tition process, particularly it predicts that even for two germline stem cells with the
same carrying level of E-cadherins there still is a case of one stem cell pushing the
other one out of their niche when the E-cadherin level passes a bifurcation value.

The paper is organized as follows. In Sect. 2, the biological model is explained.
In Sect. 3, our mathematical models are derived. In Sect. 4, we present some bio-
logical justification and numerical simulations of our models. In Sect. 5, we conduct
mathematical analysis of the model to confirm numerical results. In Sect. 6, we draw
conclusions, and discuss several aspects of our models and the challenges in model-
ing of two stem cell competition.

2 Biological Model

The study of mechanisms which govern stem cell behaviors is of significant impor-
tance. One of the major obstacles in stem cell research is to accurately identify stem
cells in their native tissue environment due to their rarity and lack of unique molec-
ular marker. In contrast, the Drosophila ovary offers unique advantages for studying
molecular and genetic networks controlling stem cells because stem cells and the
niche in the Drosophila ovary are easy to identify. The female Drosophila germline
stem cell niche is identified at the tip of the germarium. Each female Drosophila has
a pair of ovaries, which is composed of 12 to 16 ovarioles (Kirilly and Xie 2007).
Each ovariole is a simple tubular structure known as the germarium. The most api-
cal cells in the germarium are a row of 8 to 10 terminal filament cells. Next to the
terminal filament cells, five to seven somatic cap cells form a germline stem cell
niche. Two or three germline stem cells can be reliably identified by their location and
size. Germline stem cells are anchored directly to the cap cells through E-cadherin-
mediated cell adhesion, and they are the largest germ cells at the tip of the germarium;
see Fig. 1.

E-cadherin is a type of transmembrane proteins. They play important roles in cell
adhesion, ensuring that cells within tissues are bond together. The current view about
E-cadherin mediated adhesion is that E-cadherins first associate with each other on
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Fig. 1 A schematic diagram
showing the germline stem cell
niche at the tip of the
germarium. The big yellow cells
are germline stem cells. The
blue cells are cap cells, and they
attach each other to form the
niche

Fig. 2 A schematic diagram
showing a germline stem cell
attach to its niche through
E-cadherin-mediated cell
adhesion

Vinculins

Cell surtace
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the same cell surface to form cis dimers. The dimers on one cell surface then adhere
to dimers on adjacent cells to form frans adhesive bonds (Leckband and Prakasam
2006). The E-cadherins on the surface of a germline stem cell can form adhesive
bonds with E-cadherins on the surface of a cap call (niche cell), but can not form
adhesive bonds with E-cadherins on the surface of other germline stem cell. Bonds
of E-cadherins may have different lengths. When one bond is formed and it becomes
short, its neighborhood E-cadherins can form more bonds. Thus, the bonding process
may serve as a driving force to extend the contact area between a germline stem cell
and its niche. Figure 2 shows how the bonding process to extend the contact area
between a stem cell and its niche.

The self-renewal of germline stem cells is mainly controlled by bone morpho-
genetic proteins (BMP) and PIWI gene mediated signals from the niche cells (cap
cells) (Cox et al. 2000). Bone morphogenetic proteins is a family of growth fac-
tors influencing bone and tissue growth within animals. PIWI gene encodes regu-
latory proteins which are responsible for maintaining incomplete differentiation in
stem cells and maintaining the stability of cell division rates in germline cells. These
signals from niche cells maintain germline stem cells by suppressing the expres-
sion of a differentiation-promoting gene, bag of marbles (bam) (Song et al. 2004),
while the differentiation of germline stem cells requires bam and bgcn (benign go-
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© capeell = cadherin junction O wild type GSC @ mutant GSC

Fig. 3 A biological model explaining bam/bgcn-mediated germline stem cell competition. Initially, the
bam/bgcn mutant germline stem cell (purple) has almost the same contact area with the niche (blue, cap
cells) as the wild-type germline stem cell (green) does with the niche, and both have almost the same
amount E-cadherin between them and the niche (red, E-cadherin). Over time, the mutant germline stem
cell expands its contact area with the niche, and more E-cadherin accumulates in between the mutant
germline stem cell and the niche. Eventually, the mutant germline stem cell pushes the wild-type germline
stem cell to a minimum position, until the wild-type germline stem cell is pushed out the niche

nial cell neoplasm) (McKearin and Ohlstein 1995). The bgcn is Drosophila cys-
toblast differentiation factor (Szakmary et al. 2005). In Jin et al. (2008), the au-
thors used loss-of-function and gain-of-function experiments to have showed that
the differentiation-defective bam and bgcn mutant germline stem cells outcompete
wild-type germline stem cells for niche occupancy. They further proved that this com-
petition is not through inducing differentiation and apoptosis of wild-type germline
stem cells. While the bam and bgcn mediated germline stem cell competition re-
quires E-cadherins, different levels of E-cadherin expression in germline stem cells
in the same niche can stimulate stem cell competition. It seems that the bam and
bgcn mutant germline stem cells express higher levels of E-cadherin in the stem cell-
niche junction and, thus, have a higher affinity with niche cells (cap cells). These ex-
perimental results suggest a novel mechanism of cell interaction: the bam and bgcn
mutant stem cells do not promote apoptosis or differentiation of their wild-type coun-
terparts in the same niche, instead they push their wild-type counterparts out of the
niche through their adhesive advantage. A biological model for two germline stem
cell competition was proposed as in Fig. 3.

3 Mathematical Model

As explained in Sect. 2, we assume that E-cadherins on the surface of a germline
stem cell produce an attractive force between the germline stem cell and its niche
(cap cells) within a certain distance (Geisbrecht and Montell 2002). We also assume
germline stem cells are elastic material, and they can be deformed by external forces
(Mofrad and Kamm 2006). For simplicity, we assume that a germline stem cell be-
haves like a spring (Evans and Calderwood 2007). The attractive force between the
stem cell surface and the niche will increase the contact area between the stem cell
and its niche by elongating or extending the stem cell. Although there are several
methods or models for general cell adhesions (Leckband and Prakasam 2006), for
example, biophysics method was applied in several studies (Armstrong et al. 2006;
Bell 1978; Hammer and Lauffenburger 1987; Shapiro et al. 1995), none of them have
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considered the E-cadherin intensity at cell level. For our purpose of modeling two
germline stem cell competition, we will develop a simple model for cell adhesion.

Since E-cadherins between two cell membranes have to match each other in or-
der to adhere, the E-cadherins in a germline stem cell surface only can match the
E-cadherins in its niche (cap cell surfaces). Thus, we only consider the intensity of
E-cadherins on the surfaces of germline stem cells. The intensity of E-cadherin be-
tween a germline stem cell and its niche will determines the contact area between the
germline stem cell and its niche, and somehow determines the competitive ability of
this stem cell. We will show experimental justification about this point in next section.

For simplicity, we consider the niche is in a plane with finite area, and germline
stem cells can move or be extended in one dimensional space. Let C(¢) represent
the intensity of E-cadherins on the surface of a given germline stem cell forming
bonds with its niche, x(¢) represent the deformation of a given germline stem cell.
For a given germline stem cell, there will be a maximum intensity of E-cadherin on its
surface. This maximum intensity is determined by its biological property. We will call
it the carrying level. (Notice that the term “intensity” is actually the word “amount” in
this article.) If there is only one germline stem cell in the niche, it will start to contact
the niche, and gradually “totally” attach to the niche. Here, “totally attach” means
the contact area between this germline stem cell and the niche reaches the maximum,
and the intensity of its E-cadherins also reaches its carrying level. To describe the
dynamics, we consider the intensity of E-cadherins follows a logistic process when
there is only one germline stem cell in the niche. As we assume, the germline stem
cell behaves like a Hook’s spring within a small deformation. If it is extended in one
direction by x, by Hook’s law, there will be a force which is equal to —sx, and this
force will make the germline stem cell compressed, where s is the Young’s modulus
coefficient (Mofrad and Kamm 2006). Therefore, by Newton’s second law, we have
the following equations to describe the dynamics of the adhesion process.

dC(@t) K(b) - C)

—; — e RO (€]
d*x (1)
m—— = —sx(t) +aC (D), 2)

Here, r (D) is the per capita increasing rate of E-cadherins, K (b) is the carrying level
of E-cadherins on the surface of the germline stem cell. The parameter () is deter-
mined by the biological property of the germline stem cell, particularly, by the gene
bam/bgcn. The carrying level of E-cadherins of a germline stem cell is also deter-
mined by its intrinsic biology, particularly, bam/bgcn expression. m is the mass of
the germline stem cell. The parameter « is the phenomenological coefficient which
measures how much E-cadherins are converted to deriving force.

In general, an ovary niche has two or three germline stem cells. The modeling
of the competition among three germline stem cells in one niche will be extremely
difficult. We here only consider the competition between two germline stem cells in
one niche.

When a niche has two germline stem cells, each of them has a trend to extend its
contact area with the niche because of the adhesion process. Since the niche area is
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limited, there will be a competition for the contact area with the niche (occupancy)
between two germline stem cells. Alternatively, there will be a competition for “the
common resource”, E-cadherins in the niche (on the surfaces of cap cells), by match-
ing E-cadherins on each surface of two germline stem cells. If we only consider this
competition process, we could adopt the standard competition model in population
dynamics.

Suppose the cell 1 is the differentiation-defective bam/bgcn mutant germline stem
cell with upregulated E-cadherins, the cell 2 is the wild-type germline stem cell.
Denote the intensity of E-cadherins of the stem cell 1 by C;(¢), the intensity of
E-cadherins of the stem cell 2 by C»(#). Then standard competition model gives the
following system:

dCi(t) Ki(b)—Ci(t)  ri(®)Bia(x)
5 =0 Ko KO Ci(HCa (1),
dCy(t) Ky(b) — Ca(t)  ra(b)Bai(x)
o = n®GO 5o KO Ci()C2(),

where parameters r;(b), K;(b) have similar meaning as in (1)-(2), i = 1,2. The
terms M?}‘%@‘)Cl(t)Cz(t) and %C 1(#)C2 (1) represent competition between
the cell 1 and the cell 2. If x is a constant, 812(x) and B> (x) both are constants, and
they may not be the same. S12(x)C2 can be thought of as the contribution made by
the cell 2 to a “decline in the increasing rate of E-cadherin” of the cell 1, and B12(x)
is the per capita decline (caused by E-cadherin of the cell 2 on the cell 1). B12(x)
measures the competitive effect of the cell 2 on the cell 1. Since B12(x) is a function
of the niche space (or cell deformation) x, we implicitly include the competition for
the niche space. Hence, an appropriate form of 812(x) will be given. f21(x) has a
similar interpretation.

Meanwhile, during the competition of two germline stem cells, the contact area
between a germline stem cell and the niche and thereby the size of a germline stem
cell, will also be changed. For simplicity, we assume that the physical interaction
between two germline stem cells is restricted in a plane (represented by a point) and
it moves in the straight line because of two cells pushing each other. We use x to
represent the fighting plane moving away from the position where there is no cell
deformation. Since we assume a germline stem cell can be treated as a spring when
there is small deformation by an external force, two germline stem cells pushing each
other can be described by the two spring system.

Suppose the cell 1 is in the left of the origin of the x-axis and the cell 2 is in
the right of the origin, and these two cells are in the x-axis. When x = 0, there is
no deformation of cells. As a first approximation, we assume the external force is
proportional to the intensity difference of E-cadherin between two germline stem
cells. Then we have the following equation to represent the interaction of these two
germline stem cells:

d*x (1)

m=—= = =s1(0)x(1) = s2(0)x (1) + & (C11) = C20)),

where s; (b) is the Young’s modulus coefficient of the cell i, i =1, 2.
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Thus, we get the model equations, two first-order differential equations and one
second-order differential equations. They are all nonlinear, and coupled to each other.
The initial position is x = 0 where the two stem cells have no deformation and they
just attach to each other. The initial E-cadherin levels for the two stem cells can be
chosen differently.

dCi(t) Ki(b) —Ci(1)  ri(b)fia(x)
7 =ri(b)Ci (1) X0 T TKLD) Ci(n)C2(1), (3)
dCy(1t) Ko (b) — Ca(t)  r2(b)Bo1(x)
o =r2(b)Ca (1) 0 T T K0) Ci()C2(1), 4)
2
m% = —s51(b)x(1) — s2(b)x (1) + (C1 (1) — C2(1)). %)

If we skip the parameters b (bam/bgcn) and the space x, this is a well-studied
Lotka—Volterra model for the competition of two species at the population level.
However, we model the competition for the space between two individual cells. The
introduction of functions 817 (x) and B> (x) and space equation of the spring system
changes the model from the population level of E-cadherins to the individual level
of cells. We need two specific forms of functions fB12(x) and B21(x). They could be
estimated from experimental data. In our study, we choose these two functions to be
linear functions of cell deformation as a first approximation.

_l—x _l—l—x
Bra(x) = 7, Br1(x) = o

Q)

where [ is the maximum of extension or deformation of germline stem cells.

4 Model Justification and Numerical Simulations

The experiments we have conducted were described in Jin et al. (2008). Adult fe-
male Drosophila were cultured. The Flp-mediated mitotic recombination technique
was used to generate mutant germline stem cell clones. Ovaries were dissected from
some of the females after 1, 2, and 3 weeks. The measurements of the contact area be-
tween the germline stem cell and its niche, measurements of intensity of E-cadherins
between the germline stem cell and its niche were taken. A typical data set is shown
in Fig. 4.

From these data, the maximum ratio of the contact area between the germline stem
cell 1 and its niche to the contact area between the germline stem cell 2 and its niche
is 5.45, while the minimum ratio is 0.63, and the average is 1.8. The maximum ratio
of the intensity between the germline stem cell 1 and its niche to the intensity be-
tween germline stem cell 2 and its niche is 10.89, while the minimum ratio is 0.56,
and the average is 2.31. There is a rough correlation between the contact area and
the intensity of a germline stem cell. It seems apparent that some wild-type germline
stem cell is pushed out of its niche, while in a different niche the wild-type germline
stem cell even pushes its mutant counterpart back. Therefore, an oscillation of the
interaction between the germline stem cell and its mutant counterpart seems to be a
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Clones Area Area ratio Cadherin intensity Intensity ratio
LacZ-positve-clone | LacZ-negetive -clone  LacZ- vs LacZ+ LacZ-positve-clone  LacZ-negetive -clone  LacZ-vs LacZ+
bam-001 23.00900078 125.2850037 5.45 769471 8378833 10.89
bam-010 9.251000404 31.30300002 3.38 199646 1037321 5.20
bam-009 7.504000187 23.93600082 3.19 401486 1847424 4.60
bam-006 48.55500031 110 2480011 227 1864592 5088920 2.73
bam-015 29 46500015 58.61500168 1.99 778066 1551986 1.99
bam-007 11.39099979 2213100052 1.94 435752 967813 2.22
bam-022 70.27999878 117.8909988 1.68 5005139 5945037 1.39
bam-012 75.67500305 121.6220016 1.61 3909388 5913809 1.51
bam-003 4410900116 86.18699646 2.00 1886809 3724403 1.97
bam-018 52.97900009 80.00099945 151 2517391 3949620 1.57
bam-019 56.2820015 83.41100311 148 3679092 6629402 1.80
bam-013 84.73400116 124.2850037 147 3820042 6652591 1.79
bam-016 57.7620015 81.08799744 1.40 3577654 5438817 1.52
bam-017 50.86299896 67.9280014 1.3 2469154 4661610 1.89
bam-011 446780014 47.31900024 1.06 2544294 2250546 0.88
bam-002 32 48699841 31.04899979 0.96 1134017 1416003 1.25
bam-008 27.07999992 254640007 0.94 1277021 895968 0.70
bam-020 89.54000092 75.9469986 0.85 4271531 3538942 0.83
bam-023 80.67900085 68.23400116 0.85 4414240 4078026 0.92
bam-003 26.83300018 18.04000092 0.63 1001277 561261 0.56
Average 46.26 70.10 1.80 2297803.10 3786566.60 23

Fig. 4 A set of data about contact areas, E-cadherin intensities of bam mutant germline stem cells and
their niches, and that of wild-type germline stem cells and their niches. These data were measured at
week 3

very plausible explanatory mechanism. The average numbers may be not very signif-
icant since they were taken from 20 different niches. This set of data was measured at
week 3. The other data which were measured at week 1, week 2, week 4, and longer
(not showing here) have the similar pattern. These experimental results suggest that
each pair of germline stem cells in one niche may have its own dynamics, particularly
may have its own time scale. In Sect. 3, we present niche-based simplified models in
order to catch the basic dynamics of one germline stem cell adhesion to its niche and
the competition of two germline stem cells in the same niche. Instead of fitting the
data at the average, we are interested in describing and predicting the dynamic pro-
cess of competition between two germline stem cells. We will numerically solve the
models, and present some representative numerical results to demonstrate the model
predictions in the following. In the next section, we give mathematical analysis to
confirm these numerical predictions.

The system (1)—(2) describes the dynamics of adhesion process when the niche
has only one germline stem cell. Figure 5 shows the intensity of E-cadherins between
the stem cell and its niche will reach the carrying level as the cell has the maximum
deformation (extension). However, the germline stem cell will not stop to move and,
instead, it will oscillate with a small amplitude around the maximum extension. We
do not show the change of the intensity or the extension of the germline stem cell
over time, since we are interested in the relation between the extension and intensity
of the cell.

The system (3)—(5) describes the competition between two germline stem cells in
the same niche. The model predicts there are two equilibrium solutions when one
germline stem cell without E-cadherins for whatever parameter values are chosen.
Figure 6 shows the dynamic relation between the intensity of E-cadherins and the
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Fig. 5 The left figure shows the relation between the deformation of the germline stem cell and the in-
tensity of E-cadherins. The horizontal axis, “x-axis,” represents the deformation of the germline stem cell,
while the vertical axis represents the intensity of E-cadherins. The right figure shows how the germline
stem cell extends with E-cadherins in space. There is an extra dimension for the velocity of the germline
stem cell. The system (1)—(2) was simulated when r =0.1, K =10, s =0.1,« =0.04,and m = 1
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Fig. 6 The left figure shows the deformation of the cell 1 with E-cadherins, and the cell 1 is originally in
the left of the origin of x-axis. The right figure shows the deformation of the cell 2 with E-cadherins, and
the cell 2 is originally in the right of the origin of x-axis. The system (3)—-(5) was simulated when r| = 0.1,
rp =0.1, K1 =20, K, =10, s1 =0.05, 55 =0.05,1 =10, =0.04,and m = 1

extension of each cells. This is similar to the dynamics shown in Fig. 5 except one
cell serves as an extra spring.

When the two germline stem cells in the same niche have different carrying lev-
els of E-cadherins on their surfaces, as one is mutant and the other is wild-type,
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Fig. 7 The left figure shows the competition of two germline stem cells where the cell 1 is a winner.
The cell 1 has the carrying level of E-cadherins above the carrying level of E-cadherins in the cell 2 for
three cases. For illustrative purpose, fixed K1 = 180 for the cell 1, the cell 2 has three different levels of
E-cadherins: E-level 1 is Ko = 170, E-level 2 is K = 150, E-level 3 is K> = 100. The right figure shows
the competition of two cells where the cell 2 is a winner. Similarly, fixed K, = 180 for the cell 2, the
cell 1 has three different levels of E-cadherins: E-level 1 is K = 170, E-level 2 is K| = 150, E-level 3 is
K1 = 100. For all these computations, other parameter values are the same: r{ =rp =0.5, s1 =sp =0.5,
=10, =0.055,and m =1

the E-cadherin up-regulated cell will push the other out of their niche. Figure 7
shows several cases where one cell has a high E-cadherin carrying level which al-
ways pushes the other one out of their niche.

When the two germline cells in the same niche have the same carrying level of
E-cadherins on their surfaces, the model predicts there is a threshold for the carrying
level of E-cadherins. Below this threshold, two cells will reach equilibrium, and both
stay in the niche. While above this threshold, one cell will push the other out of the
niche. Actually, this threshold is a bifurcation value of the intensity of E-cadherins.
Figure 8 shows when two germline stem cells “coexistence peacefully”, and when
one cell must get out of their niche.

5 Mathematical Analysis of the Models
5.1 Analysis of the Model for Adhesion Process

The system (1)—(2) can be treated as a three-dimensional system, where the third
dimension is for the velocity of the cell extension during adhesion process. It has
two equilibrium solutions, the trivial equilibrium (0, 0, 0), and nontrivial equilibrium
(K, %, 0). At the trivial equilibrium point, the variational matrix has eigenvalues,
r and =+i./s. Hence, the trivial equilibrium is unstable. At the nontrivial equilib-
rium point, the variational matrix has eigenvalues, —r and +i./s. So, the nontriv-
ial equilibrium solution is locally stable, but not locally asymptotically stable. In
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Fig. 8 The left figure shows intensities of E-cadherins of both germline stem cells reach equilibrium val-
ues, and they both reside in the niche when the carrying level of E-cadherins, K| = K>, below the thresh-
old. The right figure shows the intensity of E-cadherins of one cell reaches its carrying level, while the other
decreases to a low level and eventually is pushed out when the carrying level of E-cadherins, K| = K>,
but above the threshold. For the left figure, K| = Ko = 100, and for the right figure, K1 = Ko = 200. All
other parameter values are the same: r; =0.8,r =0.2,51 =0.7,50 =04,/ =10, « =0.06, and m = 1

fact, when the initial intensity of E-cadherins is cp, which satisfies 0 < ¢gp < K,

. . . oKe't . . . .
tbe solut?on to'(l) is glye'n' by C(.t.) = % .smce th'e equation is a logis-
tic equation. Given the initial position and the initial velocity xo and vg respec-

tively, the equatlon maE — _5x and m 4 o s =

dt dr2
Xpcos /= ol t and x(t) = xqcos / t + \;OI sin t + £ ms, respec-
tively. Since —sx "o sx + aC(t) < —sx + a K, by using comparison theorem, we
have an estimation for the extension of the germline stem cell which is given in the
following lemma.

= —sx + « K have solutions x(t) =

Lemma 5.1 For the initial values cg, xo and vy = x'(0), the solution of the system

()—(2) satisfies
XpCos, |/ — t+ s1n/ t<x(t)<xocos/ t+ sin, [ — t+—
K +cole’ —1)°

i L
m m

coKe''
Ct)=

Therefore, any solution of the system (1)—(2) will approach the nontrivial equilib-
rium point or a periodic solution on the center manifold as ¢ approaches the infinity.
The center manifold is in the plane C = K. This is observed in Fig. 5.
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5.2 Analysis of the Model for Two Germline Stem Cell Competition

The model for the competition of two germline stem cells (3)—(5) can be considered
as a four-dimensional system, where the fourth dimension is for the velocity of the
cell deformation. We will not non-dimensionalize the model since we would like to
make the importance of some parameters apparent. The equilibrium solutions are

aKi(b)
Ey=1(0,0,0,0), E; = K1(b),0, ,0),
s1+ 52
K> (b
=(0,Kz(b>,—“ 2 ),0>,
s1+ 52

and

(K1(b)—/312(f)1<2(b) K20) - @K B) - 0)
1= Br®pu®) 1= Bu®pax = ’

where x satisfies

(1= Br2(x)Ba1 (x)) (51 + 52)x —aK1(B) (1 + B21(x)) + K2 (b) (1 + Bi2(x)) =0.

It is possible there are more equilibrium solutions.

For simplicity, we will drop the parameter b, and consider the related functions to
be constants.

The variational matrix of the system (3)—(5) is given by

r— g Q2C1+ Br2(x)C2) — & B12(x)C — & Bp®)CIC 0
—&Bu(C: r— £ QC+ B (x)C) —Z By x)C1C2 0

0 0 0 1

: -2 4-% 0

For the equilibrium points Ey, E1, and E», one can easily obtain their stability by
computing eigenvalues of the variational matrix.

The trivial equilibrium Eg = (0, 0,0, 0) is unstable since the variational matrix at
this point has at least two positive eigenvalues, r; and r».

For the equilibrium point E; = (K1, 0, S‘T +s‘2 0), the variational matrix has eigen-

K I(si+s2)+aK; s1+s2 S1+s2 K
K>~ 2I(si+s2) )s l\/i and — . Hence, when X

2 + W15 (51 +S 3 this equilibrium point is locally stable. Since there is a pair of purely
imaginary elgenvalues, it is not locally asymptotically stable, and it is possible the
solutions close to this equilibrium point are oscillating around this equilibrium point.

For the equilibrium point E; = (0, K>, S‘Tfszz 0), the variational matrix has eigen-

. Ko I(s;+s2)—aK S1+s: S|+ K
values: —r2, rn(l — ﬁ <§l(sfim 2), iy/ 52, and —i /=-=2 S, when K—; <
1

3 blm, this equilibrium point is locally stable, but not locally asymptotically
stable

values: —rl, r(l — <
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The Fig. 6 shows two cases of the stability at the equilibrium points £ and E;. We
observe that there are small oscillations around these equilibrium points in x-space,
but the intensity of E-cadherins keep the same value. It is similar to the adhesion
process.

When B12(x) = 5% and o1 (x) = £,

(1= Br2(x)B21(x)) (s1 4 52)x — aK1(b)(1 4 B21(x)) + ¢ K2 (b)(1 + B12(x)) =0
reduces to
(s1+ 52)x7 + (3s1% = 201(K1 + K2))x + 6al* (K2 — K1) =0. @)

Since there is a maximum extension (deformation) for a germline stem cell, de-
noted by /, we can assume that a germline stem cell will leave the niche when the
deformation of its counterpart in the same niche exceeds the length /. The following
Theorem 5.1 gives some conditions for one germline stem cell leaving its niche.

Theorem 5.1 Given Ky < K1, if 2K1 — K> > W, or2K| — Ky < (SIZ—SZ)Z and
5K1 — Ky > W then the cell 1 will push the cell 2 out of their niche. Sym-
metrically, given K> > Ky, if 2K, — K1 > (S“;—SZ)I, or 2K, — K| < (SH'TSZ)I and
5K, — K; > w, then the cell 2 will push the cell 1 out of their niche.

Proof Denote f(x) = (s +52)x> 4+ B3(s1 + 2)I2 — 20l (K| + K»))x + 6al* (K> —
K1). When K> < K1, one has f(0) < 0. Since (s1 4 s2) > 0, there must be a positive
number at which f(x) is positive. Then from the intermediate value theorem, there
exists a positive number at which f (x) takes zero. Hence, (7) has at least one positive
root.

If () <0, then there exists a root X of (7), and x > [. The system (3)—(5) has the
eq.uilibri.u.m Point ('1123:2/3(1)6_2)(;;11%’ 15}9@%)%35%) X, O)'. When the §ystem approaches
this equilibrium point, the cell 1 will reach its maximum extension, and the cell 2
will be compressed and has to leave its niche. From the condition f (/) <0, we have
f) =4(s1 + 52)13 — 8al’K; + 4al?K, < 0. Furthermore, (s1 + $2)l — 2aK;| +
a K> < 0. Hence, (SIZ—‘Z)I <2K; — K». It is easy to see that the condition W <
2K1 — Ky means f(I) <O0.

If f(I) >0 and f(2]) <O, then f(x) has a zero between [ and 2/. A similar
argument gives the conclusion. While from the f (/) > 0, one easily gets 2K — K> <
&)l From f(21) < 0, one has f(20) = 8(s1 +s2)I> +20(3(s1 + 52)I% — 2l (K +

K») + 60([2(K2 — K1) < 0. Thatis, 7(s1 + s2)] —a(5K1 — K) < 0. Hence, 5K —
Ky > T(s1+s2)1
—_—

Similarly, one can get the proof for the case K7 > K. g

This theorem confirms the observation in Fig. 7. Most importantly, it confirms the
experimental results in Jin et al. (2008), also mentioned in Sect. 2.
Consider the case when K> = K1, (7) has the root x = 0, and other possible two

_ 1 [2al(K | +K>2) 5 e 20l(K1+K>2) 2 . . .
roots x =+ # — 3[4 if # — 3/ > 0. When x = 0, the third equi-

librium solution is (%K , 2K ,0,0), where K> = K1 = K. The variational matrix at
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this point is given by

2 1 21 K
-3 —3N1 o 0

1 2rn K
-3 —3n o~ O

0 0 0 1

o _a S1+52

m m m O

The characteristic polynomial is given by

M4 2(ry +r2))\3+ 3(s1 +sz)+r1r2mk3 n 2(r1 +12)(3(s1 + 52)1 _aK)x
3 3m 9ml
r1ira(3(sy + s2)l —4a K
L 2(3(s1 +52) ) _ ®)
9ml

Theorem 5.2 Suppose K1 = Ko = K, at K = 3(”47?2)1, the system (3)—(5) has

w, the system has the

a supercritical pitchfork bifurcation. When K <
fourth equilibrium point E3z = (%K ,2K,0,0) which is locally asymptotically sta-
ble. When K > 3(“"’82)[, the system has two more equilibrium points Eq =

20(+%) o 20— X1) AU+%) pr 2d=%p) Xz) s
(3124"?12 K, 30 K ,X1,0), Es5 = (312_~_)22 Y K Xx2,0) where x; =

Y % -3 and X2 = —,/ % — 312, and E3 is unstable.

Proof Given K| = K, = K. When K < 3(“474;2)1, (7) has only one real root, 0.
When K > w, (7) has three real roots, 0 and x = =%,/ % — 32, Corre-
spondingly, the system (3)—(5) has the fourth equilibrium point E3 = (%K ,2K,0,0)
when K < w When K > 3(‘““2)1 , the system has fifth and sixth equilibrium
points, E4 = (2450 g 2= "l)K %1, 0), E5—(2I(1+x2)K 20=3) g %, 0) where

32457 7 3124 324 312453
X1=,/ % —312 and X, = —,/ % — 3[2. A supercritical pitchfork bifurcation oc-
curs at K = w.

Now we verify the stability of the equilibrium point E3. If all eigenvalues of the
variational matrix at this point have negative real part, then it is locally asymptotically
stable. We check this by using the Routh—Hurwitz criteria.

Hy = (@)

this is a positive number.

2(r1+r2) 1
Hy = ;
2(r1+r2)B(s1+s)l—aK)  3(s1+s2)+rirnm

9ml 3m

and det(H,) = 2ntrdnnmiak) .
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2(r1;-r2) 1 0
Hy = 20r1+r2)B(s1ts2)—aK) 3(s1ts2)+rirm 2(r1+rp)
9ml 3m 3 ’
0 rira3si+sp)l—4aK)  2(r1+r)BGsi+s2)l—aK)
Iml 9ml

and det(Hz) = 22K () + r2)2Blriram + 3(s1 + 52)] — aK). When K < 20082,
det(H3) > 0.

2(r1;-r2) 1
2(r1+r2)B3(s1ts2)l—a K) 3(s1+s2)+r1rom
H 9ml 3m
4 =
0 rira(3(si+s2)—4aK)
9ml
0 0
0 0
2(r14r2) 1
3
2(r1+r2) B(s1+s2)—aK) 3(s14s2)+rirom
9ml 3m
0 r1ro(3(s1+s2)—4aK)
Iml

and det(Hzy) = det(Hz) 1208EI40K) yyhep g < 361492)L de(Hy) > 0.
Hence, the equilibrium solution (% K, 2K,0,0) is locally asymptotically stable

if K < w If K > 3(”4“2)1 then det(H,) or det(H3) is negative. So, Ej is
unstable. O

As mentioned above, if the deformation of one germline stem cell exceeds its max-
imum extension, the other germline stem cell will be pushed out of the niche. If K >

(“J“TSZ)I 3(“;&”)1 (7) has roots, x = 4,/ %~ 4"”( —3/2. Since % —

312 = (4“K —3)I% > [?, one root X is greater than [, and the other root x; is smaller
than —/. The system (3)—(5) have equilibrium points (ZZ(H’C ) K, 2d=x ‘) K, x1,0) and

324 324
20+%) g 20=%) g %, (). Both of them are out of the range of the ermline stem
3124x3 312452 g g
~ 2 2

cell extension, therefore, there is a chance one cell leave its niche. We write this point
as a corollary.

, of course, K >

Corollary 5.1 When K1 = K = K and K > W, there are equilibrium points
whose x— components are greater than | or smaller than —I. In other words, there is
a chance that one cell will leave its niche.

Figure 8 shows two cases of the model behaviors when both germline stem cells
have the same carrying levels of E-cadherins. One case shows two germline stem
cells coexist, and the other shows one stem cell is pushed out.

We summarize some analytical results in Fig. 9. Since we are mostly interested in
the intensity of E-cadherins in this study, all other parameters are held as constants
when the results were produced in this picture.
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Fig. 9 Bifurcation diagram.
The horizontal axis is the
carrying level of E-cadherins of
the cell 1, and the vertical axis is 6 -
the carrying level of E-cadherins

of the cell 2. To illustrate, the

(»\‘1‘;“2)1 is 5

7 =
Fighting rang

combined parameter
taken to be a constant. For 4 ;
example, (51+Tv2)l is set to be 1 i
here. One bifurcation point is in
the diagonal, the big black point.
Below this point in the diagonal, 34
two germline stem cells coexist
peacefully, while above it, they

will strongly push each other. In
the “fighting range,” above the E

diagonal, the cell 2 will push the A :
1 = % - T
—1/6_ AL 2 3 4 5 6 T
0 e

cell 1 out of their niche, while

below the diagonal, the cell 1

will push the cell 2 out

6 Conclusions and Discussion

We present a simplified model for the competition of two germline stem cells for the
niche occupancy in the same niche. To establish this model, a model for germline
stem cell adhesion process has been proposed, which consists of a logistical equation
for E-cadherins and a linear spring equation. Based on the model for germline stem
cell adhesion process, the model for the competition of two germline stem cells con-
sists of Lotka—Volterra type model for the competition of matching E-cadherins and
the equation for two spring system, where the deformation of cells contributes com-
petition coefficients and the difference of intensity of E-cadherins in two germline
stem cells acts as external force to the spring system. The model is a coupled system
of two nonlinear first order and one second order differential equations. By numer-
ically solving the model and simulating the dynamics, it is observed that the model
catches the basic biological phenomenon, can explain the data variation, and may
recover the missing information in the discrete data in Jin et al. (2008). The model
confirms the major results in Jin et al. (2008) that the germline stem cell that has a
higher carrying level of E-cadherins on its surface will eventually have a larger con-
tact area with its niche (it is measured by the extension of a cell in x space), and will
have a higher possibility to push the other cell out of their niche. Since each niche
with two germline stem cells has its own dynamics of competition, the model may
also offer an explanation to the oscillation pattern in discrete data at population level.
The model predicts that there is a coexistence of two germline stem cells for two stem
cells with the same carrying level of E-cadherins on their surface. However, the model
also predicts that even for these two germline stem cells with the same carrying level
of E-cadherins there still is a case of one stem cell pushing out the other one out of
their niche. This means that for two wild-type germline stem cells in the same niche
there still is a possibility that one cell can push the other one out of their niche as
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some parameter has a small change. This may offer a theoretical explanation for the
stem cell quality control that a stem cell can push another stem cell that accidentally
changes its properties (some parameters).

More subtly, the model may recover some missing information in the discrete
experimental data. The competition of two germline stem cells for the niche occu-
pancy is mediated by E-cadherins. The biological experimental results seem to reveal
that there is a correlation between the intensity of E-cadherins on the surface of the
germline stem cell and the contact area between the germline stem cell and its niche.
However, each data set measured at the same time point has a big range of variation
among different niches. A deep dynamics needs to be recovered. Our model discovers
that the intensity of E-cadherins and the contact area of the germline stem cell are not
linearly related to each other, and it is a nonlinear relation and oscillates in time. Each
niche may have its own specific biological parameters, for instance, the E-cadherin
increasing rate r, Young coefficient s, the carrying level of E-cadherins, therefore,
has its own dynamics and time scales. The measurements taken over different niches
may have different states because of oscillations even at the same time. Therefore it
is expected that there is a big range of variation in a data set.

It is clear that the models we present here are first approximations, rough and
simplified models. There are several important issues which we do not consider
or we need to modify. For example, a real germline stem cell is not a spring. Al-
though many mechanical experiments reveal that a cell behave like an elastic mate-
rial, treating a cell as a spring is only a rough approximation. Nevertheless, the models
may be improved by considering a cell as a three dimensional spring in the current
model framework. Secondly, the adhesion process involves biochemical interactions
of E-cadherins. Our models only consider the intensity of E-cadherins instead of bio-
chemical interactions. To include these biochemical interactions will require a new
model, which must include the reaction diffusion process on the surface of a germline
stem cell. Thirdly, modeling physical interaction between two germline stem cells is
a real challenge for current mathematics and physics. There are many mathematical
theories about elastic materials. However, we still do not have a complete understand-
ing of the cell shape and its mechanics (Mofrad and Kamm 2006). Two cell physical
interaction involves biophysical processes and biochemical interactions at molecular
level while it involves the cell geometry and mechanics at cellular level. Although it
is reasonable to model two cell physical interaction by using two spring system as a
first approximation, a new idea is needed in the study of two cell physical interac-
tion.

Mathematically, we present some basic analysis for the two models. It is well stud-
ied that the oscillation is forced by periodic external forces. Our model for germline
stem cell adhesion process can be considered as an oscillation with an logistic ex-
ternal force. Most solutions will approach periodic solutions around the equilibrium
point and more precisely, will approach periodic solutions in the center manifold
given by the maximum force. As for the model for two germline stem cell competi-
tion, we have analyzed the equilibrium points and their stability, and we have found
a pitchfork bifurcation for the intensity of E-cadherins. It may be important to study
other parameters to see how they effect the whole dynamics. It may also be interest-
ing to further the analysis we have done in the direction of global dynamics of the

@ Springer



Mathematical Model for Two Germline Stem Cells Competing 1225

model systems. For example, searching for a range of model variables and parameters
in which the model global behavior (trajectories) can be clearly described would be
interesting. However, it will be challenging.

Acknowledgements We would like to thank P. Maini, S. Bakshi, Y. Kuang, B.-L. Li, J. Shi, and J. Wang
for comments, the members in Xie’s laboratory for stimulating discussions, the Stowers Institute facilities
for services, and Caitlin Flournoy for editorial and administrative assistance. We would also like to thank
the reviewers’ suggestions which help to improve our manuscript. This work is partially supported by the
start-up grant to J.P. Tian and a grant from the NIH (IRO1 GM64428-01) to T. Xie.

References

Armstrong, N. J., Painter, K. J., & Sherratt, J. A. (2006). A continuum approach to modelling cell—cell
adhesion. J. Theor. Biol., 243(1), 98-113.

Bell, G. I. (1978). Models for the specific adhesion of cells to cells. Science, 200(4342), 618-627.

Clarke, M. F., & Fuller, M. (2006). Stem cells and cancer: two faces of eve. Cell, 124(6), 1111-1115.

Cox, D. N., Chao, A., & Lin, H. (2000). Piwi encodes a nucleoplasmic factor whose activity modulates
the number and division rate of germline stem cells. Development, 127, 503-514.

Evans, E. A., & Calderwood, D. A. (2007). Forces and bond dynamics in cell adhesion. Science, 316(5828),
1148-1153.

Geisbrecht, E. R., & Montell, D. J. (2002). Myosin VI is required for E-cadherin-mediated border cell
migration. Nat. Cell Biol., 4, 616-620.

Hammer, D. A., & Lauffenburger, D. A. (1987). A dynamical model for receptor-mediated cell adhesion
to surfaces. Biophys. J., 52, 475-487.

Hombach-Klonisch, S., Panigrahi, S., Rashedi, I., Seifert, A., Alberti, E., Pocar, P., et al. (2008). Adult
stem cells and their trans-differentiation potential—perspectives and therapeutic applications. J. Mol.
Med., 86, 1301-1314.

Jin, Z., Kirilly, D., Weng, C., Kawase, E., Song, X., Smith, S., Schwartz, J., & Xie, T. (2008).
Differentiation-defective stem cells outcompete normal stem cells for niche occupancy in the
Drosophila ovary. Cell Stem Cell, 2, 39-49.

Kirilly, D., & Xie, T. (2007). The Drosophila ovary: an active stem cell community. Cell Res. 17, 15-25.

Leckband, D., & Prakasam, A. (2006). Mechanism and dynamics of cadherin adhesion. Annu. Rev. Biomed.
Eng., 8, 259-287.

Li, L., & Xie, T. (2005). Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol., 21, 605-631.

Lin, H. (2002). The stem-cell niche theory: lessons from flies. Nat. Rev. Genet., 3, 931-940.

McKearin, D., & Ohlstein, B. (1995). A role for the Drosophila bag-of-marbles protein in the differentia-
tion of cystoblasts from germline stem cells. Development, 121, 2937-2947.

Mofrad, M. R. K., & Kamm, R. D. (2006). Cytoskeletal mechanics, models and measurements. Cambridge:
Cambridge University Press.

Pan, L., Chen, S., Weng, C., Call, G., Zhu, D., Tang, H., Zhang, N., & Xie, T. (2007). Stem cell aging is
controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell, 1, 458—469.

Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem
cells. Nature, 414, 105-111.

Shapiro, L., Fannon, A. M., Kwong, P. D., Thompson, A., Lehmann, M. G., et al. (1995). Structural basis
of cell-cell adhesion of cadherins. Nature, 374, 327-337.

Song, X., Zhu, C. H., Doan, C., & Xie, T. (2002). Germline stem cells anchored by adherens junctions in
the Drosophila ovary niches. Science, 296, 1855-1857.

Song, X., Wong, M. D., Kawase, E., Xi, R., Ding, B. C., McCarthy, J. J., & Xie, T. (2004). Bmp signals
from niche cells directly repress transcription of a differentiation-promoting gene, bag of marbles, in
germline stem cells in the Drosophila ovary. Development, 131, 1353-1364.

Szakmary, A., Cox, D. N., Wang, Z., & Lin, H. (2005). Regulatory Relationship among piwi, pumilio,
and bag-of-marbles in Drosophila germline stem cell self-renewal and differentiation. Curr. Biol., 15,
171-178.

Xi, R., & Xie, T. (2005). Stem cell self-renewal controlled by chromatin remodeling factors. Science, 310,
1487-1489.

@ Springer



	Mathematical Model for Two Germline Stem Cells Competing for Niche Occupancy
	Abstract
	Introduction
	Biological Model
	Mathematical Model
	Model Justification and Numerical Simulations
	Mathematical Analysis of the Models
	Analysis of the Model for Adhesion Process
	Analysis of the Model for Two Germline Stem Cell Competition

	Conclusions and Discussion
	Acknowledgements
	References


