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Cholera is a water and food borne infectious disease caused by the gram-negative bacterium, Vibrio cholerae.
Its dynamics are highly complex owing to the coupling among multiple transmission pathways and
different factors in pathogen ecology. Although various mathematical models and clinical studies published
in recent years have made important contribution to cholera epidemiology, our knowledge of the disease
mechanism remains incomplete at present, largely due to the limited understanding of the dynamics of
cholera. In this paper, we conduct global stability analysis for several deterministic cholera epidemic mod-
els. These models, incorporating both human population and pathogen V. cholerae concentration, constitute
four-dimensional non-linear autonomous systems where the classical Poincaré-Bendixson theory is not
applicable. We employ three different techniques, including the monotone dynamical systems, the
geometric approach, and Lyapunov functions, to investigate the endemic global stability for several biolog-
ically important cases. The analysis and results presented in this paper make building blocks towards a
comprehensive study and deeper understanding of the fundamental mechanism in cholera dynamics.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Cholera is an ancient disease that continues to cause epidemic
and pandemic infection despite ongoing efforts to limit its spread
[1,11,16,22,35,38,41,42,53]. Historically, six out of the seven chol-
era pandemics have swept the globe since 1816 [58–60]. Most re-
cently, the seventh pandemic started from Indonesia in 1961,
spread into Europe, South Pacific and Japan in the late 1970s,
reached South America in 1990s, and has continued (though much
diminished) to the present. The last few years have witnessed
many cholera outbreaks in developing countries, including India
(2007), Congo (2008), Iraq (2008), Zimbabwe (2008–2009), Viet-
nam (2009), Nigeria (2010), and Haiti (2010). In the year of 2010
alone, it is estimated that cholera affects 3–5 million people and
causes 100,000–130,000 deaths in the world [60]. Particularly,
cholera represents a significant public health burden to developing
countries and cholera continues receiving worldwide attention.

Cholera is an infection of the small intestine caused by the
gram-negative bacterium, Vibrio cholerae. Untreated individuals
suffer severely from diarrhea and vomiting. It can cause a rapid
dehydration and electrolyte imbalance, and can lead to death. As
a water/food-borne disease, cholera is typically infected through
pathogen ingestion, such as drinking sewage-contaminated water,
or eating food prepared by an individual with soiled hands. Mean-
while, different transmission pathways are possible. For example, a
ll rights reserved.
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cholera outbreak in a Singapore psychiatric hospital indicated that
the direct human-to-human transmission was a driving force [13].
In addition, several other aspects must be considered, including the
pathogen ecology outside of human hosts [10] and climatological
influence [39]. The present work aims to understand the global
dynamics of cholera epidemiology in a general mathematical mod-
el which has a potential to incorporate these different factors into a
unified framework. Such understanding is crucial for effective pre-
vention and intervention strategies against cholera outbreak.

Many mathematical models have already been proposed to
investigate the complex epidemic and endemic behavior of chol-
era. One difficulty in studying cholera dynamics is the coupling
between its multiple transmission pathways which involve both
direct human-to-human and indirect environment-to-human
modes and which lead to combined human-environment epidemi-
ological models. The earliest mathematical model was proposed by
Capasso and Paveri-Fontana [4] to study the 1973 cholera epidemic
in the Mediterranean region. The model consists of two compo-
nents, the concentration of the pathogen in water, x1, and the pop-
ulation of the infected people, x2. In their original notations, the
model is given by

dx1

dt
¼ �a11x1 þ a12x2; ð1:1Þ
dx2

dt
¼ gðx1Þ � a22x2; ð1:2Þ

where aij’s are positive constants. The function g(x1) is a continuous
piecewise-linear function which determines the incidence, i.e., the
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rate of new infection. Particularly, g(x1) obeys a ‘‘saturation’’
requirement: when the pathogen concentration (x1) is high, g ap-
proaches a constant representing a saturated state of the incidence.

Codeço [6] in 2001 extended the work in [4] and explicitly
accounted for the role of the aquatic reservoir in cholera dynamics.
She also included the susceptible population into her model to
consider the long-term dynamics. The model thus has three com-
ponents as follows

dS
dt
¼ nðH � SÞ � a

B
K þ B

S; ð1:3Þ

dI
dt
¼ a

B
K þ B

S� rI; ð1:4Þ

dB
dt
¼ eI � ðmb� nbÞB; ð1:5Þ

where S and I stand for the susceptible and infected individuals
respectively, and B is the concentration of the vibrios in water re-
source. H stands for the total human population under consider-
ation, n denotes the natural birth/death rate, r is the recovery
rate, e is the contribution of each infected person to the concentra-
tion of V. cholerae, and mb � nb > 0 represents the net death rate of
the vibrios. The incidence is a non-linear function in B, given by
f ðBÞ ¼ a B

KþB with a being the contact rate with contaminated water
and K the pathogen concentration that yields 50% chance of catch-
ing cholera. This incidence represents a logistic response to the in-
crease in B: when B� K, f grows linearly with B; when B� K, f
approaches a steady (or, constant) state, a, showing the effect of sat-
uration. Similar to the work of Capasso and Paveri-Fontana [4], this
model assumes the ingestion of contaminated water is the only
transmission route.

Using similar non-linear incidence in Codeço’s model, Hartley
et al. [14] in 2006 incorporated a hyper-infective stage of V. chol-
erae (i.e., freshly shed vibrios) into their model:

dS
dt
¼ bN � bLS

BL

jL þ BL
� bHS

BH

jH þ BH
� bS; ð1:6Þ

dI
dt
¼ bLS

BL

jL þ BL
þ bHS

BH

jH þ BH
� ðcþ bÞI; ð1:7Þ

dR
dt
¼ cI � bR; ð1:8Þ

BH

dt
¼ nI � vBH; ð1:9Þ

BL

dt
¼ vBH � dLBL: ð1:10Þ

Here R stands for recovered human population, BL and BH denote the
lower and hyper infective stages respectively; V. cholerae with hy-
per-infectivity decays into a state of lower infectivity at the rate
v. This model emphasizes the stage of ‘‘explosive’’ infectivity of
V. cholerae, based on the laboratory measurements that freshly shed
V. cholerae from human intestines outcompeted other V. cholerae by
as much as 700-fold for the first few hours in the environment
[1,35]. Consequently, this model tries to implicitly highlight the
importance of human-to-human interaction in cholera epidemics.

The work in [14] provides deeper insight into cholera epidem-
ics. However, as pointed out in [40], the role of the hyper-infective
stage of V. cholerae may be better represented by an explicit
description of the direct human-to-human interaction. Recently,
Mukandavire et al. [36] proposed a model to estimate the repro-
duction number for the 2008–2009 cholera outbreak in Zimbabwe.
Their model includes both environment-to-human and human-to-
human transmission pathways:

dS
dt
¼ lN � b1S

B
K þ B

� b2SI � lS; ð1:11Þ

dI
dt
¼ b1S

B
K þ B

þ b2SI � ðcþ lÞI; ð1:12Þ

dR
dt
¼ cI � lR; ð1:13Þ

dB
dt
¼ nI � dB: ð1:14Þ

In this model, l denotes the natural human birth/death rate, n the
rate of human contribution to V. cholerae, and d the net death rate
of vibrios. The parameter K is the same as that defined in Codeço’s
model (1.3)–(1.5). The parameters b1 and b2 are rates of ingesting
vibrios from contaminated water and through human-to-human
interaction, respectively. Thus, the incidence consists of two parts:
one is due to the environment-to-human transmission which is
again represented by a logistic response curve in B; the other is
b2SI which represents the human-to-human interaction, and this
factor is modeled as linear in I.

In addition, Tien and Earn [52] in 2010 published a water-borne
disease model which also included the dual transmission path-
ways, with bilinear incidence rates employed for both the environ-
ment-to-human and human-to-human infection routes. No
saturation effect was considered in this work.

No doubt the afore-mentioned works have made important
contribution in the study of cholera dynamics. However, the inter-
action between V. cholerae and susceptible human could be more
complicated than being linear or logistic. Also, the bacterial growth
outside of human hosts does not have to follow linear dynamics.
For example, Jensen et al. [20] proposed a mathematical model
to study how lytic bacteriophage specific for V. cholerae affects
cholera outbreaks. Their model considers the vibrios (V), the phage
(P), the infection (I�) solely caused by V. cholerae, and the infection
(I+) caused by both V. cholerae and phage. The model is given

dS
dt
¼ �p V

CðaÞkþ V

� �a

S� dSþ dN; ð1:15Þ

I�
dt
¼ p l

lþ P

� �
V

CðaÞkþ V

� �a

S� ðl� þ dÞI�; ð1:16Þ

Iþ
dt
¼ p P

lþ P

� �
V

CðaÞkþ V

� �a

S� ðlþ þ dÞIþ; ð1:17Þ

dR
dt
¼ l�I� þ lþIþ � dR; ð1:18Þ

dV
dt
¼ m 1� V

Kv

� �
� cP

� �
V þ cðI� þ IþÞ; ð1:19Þ

dP
dt
¼ ðbcV �xÞP þ acIþ; ð1:20Þ

where a = 7 is a threshold parameter. If we are only interested in
cholera epidemics, we can lump I� and I+ as one variable. The inter-
action between human and V. cholerae is highly non-linear. The
growth of V. cholerae is also non-linear.

As mentioned above, two major differences among these chol-
era models are how the incidence is determined and how the envi-
ronmental vibrio concentration is formulated. The cholera
dynamics is a complex epidemic and endemic process. The
challenge in this study is not only due to the strong coupling
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among its multiple transmission pathways, but also stems from
the intricate V. cholera ecology outside of human hosts and clima-
tological influence. In order to include these different factors in-
volved in cholera dynamics, we recently proposed a generalized
cholera model [56]. The model unifies previous mathematical
models by introducing a general incidence function f(I,B) which
can include multiple transmission pathways, and a general patho-
gen growth rate h(I,B) which can represent varying environmental
factors such as cholera ecology in water and climatological influ-
ence. The model consists of the following differential equations:

dS
dt
¼ bN � Sf ðI;BÞ � bS; ð1:21Þ
dI
dt
¼ Sf ðI;BÞ � ðcþ bÞI; ð1:22Þ
dR
dt
¼ cI � bR; ð1:23Þ

dB
dt
¼ hðI;BÞ: ð1:24Þ

Based on biological feasibility, the following conditions for f(I,B) and
h(I,B) are assumed for I P 0, B P 0:

(a) f(0,0) = 0, h(0,0) = 0
(b) f(I,B) P 0
(c) @f

@I ðI;BÞP 0; @f
@B ðI;BÞP 0; @h

@I ðI;BÞP 0; @h
@B ðI;BÞ 6 0

(d) f(I,B) and h(I,B) are concave; i.e., the matrices D2f and D2h are
negative semi-definite.

(e) The equation h(I,B) = 0 implicitly defines a function B = g(I),
which satisfies g0(I) P 0 and g00(I) 6 0.

The article [56] conducted some analysis on this model. Based
on the next-generation matrix approach [54], the basic reproduc-
tion number R0 was found by

R0 ¼
N

cþ b
@f
@I
ð0;0Þ � @f

@B
ð0; 0Þ @h

@B
ð0;0Þ

� ��1
@h
@I
ð0;0Þ

" #
: ð1:25Þ

Or, using the assumption (e), one obtains

R0 ¼
N

cþ b
@f
@I
ð0;0Þ þ N

cþ b
@f
@B
ð0; 0Þg0ð0Þ , Rhh

0 þ Reh
0 ð1:26Þ

Eq. (1.26) clearly shows that R0 depends on two factors: one is due
to human-to-human transmission (Rhh

0 ) and the other is due to envi-

ronment-to-human transmission Reh
0

� �
. If @f

@I ð0;0Þ ¼ 0, then

R0 ¼ Reh
0 ; if @f

@B ð0;0Þ ¼ 0, then R0 ¼ Rhh
0 . In general, both Rhh

0 and Reh
0

contribute to the basic reproduction rate. Biologically speaking, R0

measures the average number of secondary infections that occur
when one infective is introduced into a completely susceptible host
population [18,54,55]. In Eq. (1.26), the term 1

cþb represents the
expected time of the infection, @f

@I ð0;0Þ represents the unit human-
to-human transmission rate, and N

cþb
@f
@I ð0; 0Þ measures the total

number of secondary infections caused by the human-to-human
transmission. Similarly, the product @f

@B ð0;0Þg0ð0Þ represents the unit
environment-to-human transmission rate, and N

cþb
@f
@B ð0;0Þg0ð0Þ

measures the total number of secondary infections caused by the
environment-to-human transmission.

It is also shown that there exists a forward transcritical bifurca-
tion at R0 = 1 for this model. Specifically, the following theorem
summarizes the dynamics known for the system (1.21)–(1.24).

Theorem 1.1 [56]. When R0 < 1, there is a unique disease-free
equilibrium (DFE) which is both locally and globally asymptotically
stable; when R0 > 1, the DFE becomes unstable, and there is a unique
positive endemic equilibrium which is locally asymptotically stable.
The global stability of the endemic equilibrium, however,
remains unresolved for the system (1.21)–(1.24). In fact, to our
knowledge, none of the previous works on cholera modeling have
addressed the global dynamics. Thus, the crucial questions of
whether the long-term disease dynamics approaches an equilib-
rium and how this depends on the initial size of the infection, re-
main to be answered. The study of the endemic global stability is
not only mathematically important, but also essential in predicting
the evolution of the disease in the long run so that prevention and
intervention strategies can be effectively designed, and public
health administrative efforts can be properly scaled. The challenge,
however, in the global analysis of cholera models is that due to the
incorporation of the environmental component B, the models usu-
ally constitute four-dimensional non-linear autonomous systems
for which the classical Poincaré–Bendixson theory [15] is no longer
valid. Hence, other analytical tools must be employed, and possibly
new methods need to be created, to overcome this challenge.

As a step towards completely answering this difficult question,
we apply three methods, i.e., those based on the monotone dynam-
ical systems [26,28,49–51], the geometric approach [9,29,31], and
Lyapunov functions [23,21], to conduct global stability analysis
for several cholera models in this paper. The theories of monotone
dynamical systems and geometric approach are relatively new
compared to the Poincaré-Bendixson framework. These new meth-
ods are much involved both conceptually and computationally.
Meanwhile, although the method of Lyapunov functions has been
widely applied to various dynamical systems, the essential part
of our analysis is based on the less well known results of Volter-
ra–Lyapunov stable matrices [45–47]. The models investigated in
this paper represent several important, and non-trivial, choices of
the incidence f(I,B) and the environment function h(I,B) in the gen-
eral model (1.21)–(1.24). These include the cases when f is bilinear
in I and B due to the standard mass action law, when f is only
depending on B in a non-linear manner so that human-to-human
transmission is not present, and when f has a linear dependence
on I and a non-linear dependence on B. We have found that it is
convenient and illustrative (and, in some case, necessary) to
employ different approaches to deal with these different situa-
tions. The analysis and results presented in this paper can be
viewed as building blocks towards a comprehensive study for the
global dynamics of the general model (1.21)–(1.24).

We organize the remainder of this paper as follows. In Section 2,
we apply the theory of monotone dynamical systems to analyze
models with non-linear environment-dependent-only incidence,
where the disease transmission is characterized solely by the envi-
ronment-to-human pathway. A typical example is given by Codeç-
o’s model [6], or the system (1.3)–(1.5). In Section 3, we apply the
geometric approach to investigate models with incidence depend-
ing linearly on human and non-linearly on environment, which in
general do not satisfy the requirement of monotone systems. A
representative example is the model of Mukandavire et al. [36],
or the system (1.11)–(1.14). In Section 4, we consider models with
bilinear incidence but with a general non-linear environment func-
tion of the pathogen growth rate. A special case of this type of
models was discussed in [52]. Such models are neither monotone
nor can be easily analyzed by the geometric approach. Fortunately,
the method of Lyapunov functions combined with the Volterra–
Lyapunov matrix properties lead to the proof of the endemic global
stability. Finally, we close the paper by conclusions and discussion.

2. Incidence with environment-to-human transmission only

We first consider the following model

dS
dt
¼ bN � Sf ðBÞ � bS; ð2:1Þ
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dI
dt
¼ Sf ðBÞ � ðcþ bÞI; ð2:2Þ

dB
dt
¼ eI �mB; ð2:3Þ

with the incidence function f(I,B) = f(B) depending only on the con-
centration of cholera vibrios in outside waters, considered as envi-
ronmental variable, B, and h(I,B) = eI �mB being linear. For
convenience of discussion, we have dropped the equation for R,
i.e., (1.23), since S(t) + I(t) + R(t) = N and R is not independent. Here
the parameter e represents the rate of contribution (e.g., shedding)
to V. cholerae and m represents the net death rate of vibrios in the
environment. From the assumptions (a)–(d) for the incidence func-
tion, we have

f ð0Þ ¼ 0; f 0 P 0; and f 00 6 0: ð2:4Þ

Note that

B0 ¼ eI �mB 6 eN �mB:

It is easy to obtain that BðtÞ 6 eN
m . Thus we will study system (2.1)–

(2.3) in the feasible region

D ¼ ðS; I;BÞjS P 0; I P 0;0 6 Sþ I 6 N;0 6 B 6
eN
m

� 	
: ð2:5Þ

It is easy to verify that D is positively invariant. For example, when
S = 0, one has S0 P 0, so S will increase. Similarly, when I = 0, I0 P 0,
so I will increase. It is known S + I + R = N, so S + I 6 N.

The result below directly follows Theorem 1.1.

Proposition 2.1. The basic reproduction number of the model (2.1)–
(2.3) is

R0 ¼
N

cþ b
f 0ð0Þ e

m
: ð2:6Þ

If R0 < 1, there is only one non-negative equilibrium point X0 = (N,0,0),
which is the disease free equilibrium, and it is globally asymptotically
stable. If R0 > 1, there are two non-negative equilibria, X0 and the ende-
mic equilibrium X⁄ = (S⁄, I⁄,B⁄), where X0 is unstable and X⁄ is locally
asymptotically stable.

In order to show the global stability of the endemic equilibrium
X⁄, we will use a method based on monotone dynamical systems,
as developed in [28]. Below we briefly review this method.

Given a C1 function x#FðxÞ 2 Rn for x in a bounded convex open
set D � Rn. Define the differential equation

dx
dt
¼ FðxÞ: ð2:7Þ

Denote by x(t,x0) the solution of (2.7) such that x(0,x0) = x0. A subset
K is said to be absorbing in D if x(t,K1) � K for any compact subset
K1 � D and sufficiently large t. To study the global stability of an
equilibrium solution, �x, we assume

(H1) There exists a compact absorbing set K � D.
(H2) The system (2.7) has a unique equilibrium point �x in D.

The system (2.7) is said to be uniformly persistent if there exists a
constant c > 0 such that each component of any solution x(t) with
x(0) = x0 2 D satisfies

lim inf
t!1

x1ðtÞ > c; lim inf
t!1

x2ðtÞ > c; . . . ; lim inf
t!1

xnðtÞ > c: ð2:8Þ

The boundedness of D and uniform persistence imply that the sys-
tem has a compact absorbing subset of D [3].

The system (2.7) is called competitive if there exists a diagonal
matrix H with entries ±1 such that each off-diagonal entry of
H @F
@x H is non-positive in D, where @F

@x is the variational matrix of
(2.7). It is known that three-dimensional competitive systems have
the Poincaré-Bendixson property:

Theorem 2.2 [49]. For a competitive system defined in a three-
dimensional convex open domain, if a non-empty compact x-limit set
contains no equilibria, then it is a closed orbit.

We recall here basic definitions related to orbital stability of a
periodic orbit [7]. Suppose (2.7) has a periodic solution x = p(t) with
the least period x > 0 and orbit c = {p(t)j0 6 t 6x}. This orbit is orb-
itally stable if for each e > 0, there exists a d > 0 such that any solu-
tion x(t), for which the distance of x(0) from c is less than d,
remains at a distance less than e from c for all t P 0. It is asymptot-
ically orbitally stable if the distance of x(t) from c also tends to zero
as t ?1. The orbit c is asymptotically orbitally stable with asymp-
totic phase if it is asymptotically orbitally stable and there is an g > 0
such that, any solution x(t), for which the distance of x(0) from c is
less than g, satisfies jx(t) � p(t � s)j? 0 as t ?1 for some s which
may depend on x(0). We now state a criterion given in [37] for the
asymptotic orbital stability of a periodic orbit of (2.7).

Theorem 2.3. A sufficient condition for a periodic orbit c =
{p(t)j0 6 t 6x} of (2.7) to be asymptotically orbitally stable with
asymptotic phase is that the linear system

dz
dt
¼ @F ½2�

@x
ðpðtÞÞ

 !
zðtÞ ð2:9Þ

is asymptotically stable, where @F½2�

@x is the second compound matrix of
the Jacobian @F

@x.
Recall for a n � n matrix A and integer 1 6 k 6 n, the kth additive

compound matrix of A, denoted by A[k], is defined by

A½k� ¼ DþðI þ hAÞðkÞjh¼0; ð2:10Þ

where (I + hA)(k) is the kth exterior power of (I + hA), and D+ is the
corresponding right-hand derivative [37].

Then we state a theorem implicitly given in [28].

Theorem 2.4. Assume that

(1) conditions (H1) and (H2) hold;
(2) �x is locally asymptotically stable;
(3) the system (2.7) satisfies the Poincaré–Bendixson Property;
(4) each periodic orbit of (2.7) in D is orbitally asymptotically

stable.

Then the unique equilibrium �x is globally asymptotically stable in D.
We now examine the system (2.1)–(2.3). We have two proposi-

tions which imply that the system is persistent.

Proposition 2.5. The disease-free equilibrium point E0 is the only x-
limit point of the system (2.1)–(2.3) on the boundary, @D, of D.
Proof. The boundary of D has 5 faces. In each face, the vector field
of the system (2.1)–(2.3) is transversal to it. For example, in the
face of ðS; I;BÞjSþ I ¼ N;0 6 B 6 eN

m


 �
, the vectors point to inside

of D. Meanwhile, @D has 9 edges. Except for the edge on the S-axis,
for other edges the vector fields are transversal to them. On the
S-axis, the system reduces to dS

dt ¼ bN � bS, since f(0) = 0. We have
S(t) ? N as t ? +1. Thus, X0 is the only x-limit point of the system
(2.1)–(2.3) on the boundary @D. h
Proposition 2.6. When R0 > 1, X0 cannot be the x-limit point of any
orbit starting in the interior, D�, of D.
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Proof. We define a function

L ¼ eI þ ðcþ bÞB P 0:

We consider a small neighborhood of X0 in D� such that B > 0 is suf-
ficiently small and S > 0 is sufficiently close to N. In this neighbor-
hood the orbital derivative of L is

L0 ¼ eI0 þ ðcþ bÞB0 ¼ eSf ðBÞ �mðcþ bÞB ¼ mðcþ bÞ eSf ðBÞ
mðcþ bÞ � B
� �

P mðcþ bÞ e
m

S
cþ b

f 0ð0ÞB� B
� �

¼ Bmðcþ bÞ e
m

f 0ð0Þ N
cþ b

S
N
� 1

� �
> 0;

where we have used the facts R0 ¼ e
m

N
cþb f 0ð0Þ and f(B) =

f(0) + f0(0)B + f00(0)B2 + � � �P f0(0)B, and f(0) = 0, f0 P 0, f00 6 0, B is po-
sitive but small. Therefore, X0 = (N, 0,0) cannot be the x-limit point
of any orbit starting in D�. h

The following corollary is immediately obtained based on
Propositions 2.5 and 2.6.

Corollary 2.7. The system (2.1)–(2.3) is uniformly persistent.

The variational matrix of the system (2.1)–(2.3) is given by

J ¼
�f ðBÞ � b 0 �Sf 0ðBÞ

f ðBÞ �ðcþ bÞ Sf 0ðBÞ
0 e �m

0B@
1CA:

If we set H = diag{1,�1,1}, then HJH has non-positive off-diagonal
entries. Hence, it is a three-dimensional competitive system which
possesses the Poincaré–Bendixson property [49]. We have the fol-
lowing theorem.

Theorem 2.8. Any compact x-limit set of the system (2.1)–(2.3) in
the interior of D is either a closed orbit or the endemic equilibrium X⁄.
Proof. Suppose c is an x-limit set of the system (2.1)–(2.3) in the
interior of D. If c does not contain X⁄, then it contains no equilibria
since X⁄ is the only interior equilibrium point. Theorem 2.2 implies
that c is a closed orbit. If, instead, c contains X⁄, then any orbit that
gets arbitrarily close to X⁄ will converge to X⁄ since X⁄ is locally
asymptotically stable. Thus c = X⁄. h

A closed orbit corresponds to a periodic solution. If it exists for
the system (2.1)–(2.3), it will be stable. Specifically, we have the
following result.

Theorem 2.9. The trajectory of any non-constant periodic solution of
the system (2.1)–(2.3), if it exists, is asymptotically orbitally stable
with asymptotic phase.
Proof. The second compound matrix of the system (2.1)–(2.3) is
given by

J½2� ¼
�2b� c� f ðBÞ Sf 0ðBÞ Sf 0ðBÞ

e �b�m� f ðBÞ 0
0 f ðBÞ �b�m� c

0B@
1CA:

Then the second compound system defined along the periodic solu-
tion (S(t), I(t),B(t)) of the system (2.1)–(2.3) is given by

X0ðtÞ ¼ �ð2bþ cþ f ðBÞÞX þ Sf 0ðBÞðY þ ZÞ ð2:11Þ

Y 0ðtÞ ¼ eX � ðbþmþ f ðBÞÞY ð2:12Þ
Z0ðtÞ ¼ f ðBÞY � ðbþmþ cÞZ ð2:13Þ

Based on Theorem 2.3, if we can prove the system (2.11)–(2.13) is
asymptotically stable, then the periodic solution is asymptotically
orbitally stable with asymptotic phase.

We define a Lyapunov function

VðX;Y; Z; S; I;BÞ ¼ sup jXj; I
B
ðjYj þ jZjÞ

� 	
:

Since the system (2.1)–(2.3) is persistent, any periodic solution
(S(t), I(t),B(t)) is at a positive distance from the boundary @D. So I

B

is well-defined, and there is a constant c > 0 such that I
B > c. Hence,

for some positive constant c0, we have

VðX;Y; Z; S; I;BÞP c0 supfjXj; jYj; jZjg;

for any ðX;Y ; ZÞ 2 R3 and any periodic solution (S(t), I(t),B(t)) of the
system (2.1)–(2.3).

Let us estimate the right-derivative of V along a solution
(X(t),Y(t),Z(t)) of the system (2.11)–(2.13) and (S(t), I(t),B(t)) of the
system (2.1)–(2.3).

DþjXðtÞj 6 �ð2bþ cþ f ðBÞÞjXj þ Sf 0 ðBÞB
I

I
B ðjYj þ jZjÞ;

DþjYðtÞj 6 ejXj � ðbþmþ f ðBÞÞjYj;
DþjZðtÞj 6 f ðBÞjYj � ðbþmþ cÞjZj;

and

Dþ
I
B
ðjY j þ jZjÞ ¼ I0

I
� B0

B

� �
I
B
ðjY j þ jZjÞ þ I

B
DþðjYj þ jZjÞ

6
I0

I
� B0

B

� �
I
B
ðjYj þ jZjÞ þ I

B
ðejXj � ðbþmÞðjYj þ jZjÞÞ

¼ e
I
B
jXj þ I0

I
� B0

B
� ðbþmÞ

� �
I
B
ðjY j þ jZjÞ:

We then need to estimate the following two functions

g1ðtÞ ¼ �2b� c� f ðBÞ þ Sf 0ðBÞB
I

;

g2ðtÞ ¼ e
I
B
þ I0

I
� B0

B
� ðbþmÞ:

From the system (2.1)–(2.3), we have B0

B ¼ e I
B�m. Then

g2ðtÞ ¼
I0

I
� b:

Similarly, I0

I ¼
Sf ðBÞ

I � ðcþ bÞ. Then S
I ¼ I0

I þ ðcþ bÞ
� 


1
f ðBÞ. Since f(0) = 0,

f00 6 0 (which implies f0 is decreasing), we obtain f ðBÞ
B ¼

f ðBÞ�f ð0Þ
B�0 ¼

f 0ðgÞ > f 0ðBÞ, where 0 < g < B. Thus f(B) > f0(B)B, and

g1ðtÞ ¼ �2b� c� f ðBÞ þ f 0ðBÞB I0

I
þ ðcþ bÞ

� �
1

f ðBÞ

¼ �2b� c� f ðBÞ þ f 0ðBÞB
f ðBÞ

I0

I
þ ðcþ bÞ

� �
6 �2b� c� f ðBÞ þ I0

I
þ ðcþ bÞ ¼ �b� f ðBÞ þ I0

I
6

I0

I
� b:

Therefore,
DþVðtÞ 6 maxfg1ðtÞ; g2ðtÞgVðtÞ; ð2:14Þ

and

maxfg1ðtÞ; g2ðtÞg 6
I0

I
� b: ð2:15Þ

Denote the period of the periodic solution (S(t), I(t),B(t)) by s. We
haveZ s

0
maxfg1ðtÞ;g2ðtÞgdt 6

Z s

0

I0

I
� b

� �
dt ¼ ln IðtÞjs0 � bs¼�bs< 0:

ð2:16Þ
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Thus, the system (2.11)–(2.13) is asymptotically stable. Then, the
periodic solution (S(t), I(t),B(t)) is asymptotically orbitally stable
with asymptotic phase. h

Summing up these results together, we have

Theorem 2.10. The endemic equilibrium X⁄ of the system (2.1)–(2.3)
is globally asymptotically stable in D.

The proof follows Theorem 2.4 by combining Theorems 2.1, 2.7
and 2.9.

A typical example with non-linear environment-dependent-
only incidence is Codeço’s model (1.3)–(1.5). The local stability of
the endemic equilibrium for this model was originally analyzed
in [6], and can also be obtained from Theorem 1.1 as a special case,
whereas the global endemic stability is obtained by Theorem 2.10.

3. Incidence depending linearly on human and non-linearly on
environment

Next, we consider models with incidence depending linearly on I
and non-linearly on B. A representative example in this category is
the model of Mukandavire et al. given in the system (1.11)–(1.14).
For convenience of discussion, we rewrite the equations below:

dS
dt
¼ lN � b1

SB
K þ B

� b2SI � lS; ð3:1Þ

dI
dt
¼ b1

SB
K þ B

þ b2SI � ðcþ lÞI; ð3:2Þ

dB
dt
¼ nI � dB: ð3:3Þ

We have dropped the equation for R, i.e., (1.13). Also note that, sim-
ilar to the model (2.1)–(2.3), the environmental function h(I,B) = -
nI � dB is linear. Using the same argument as before, it is clear to
see the region

D ¼ ðS; I;BÞjS P 0; I P 0;0 6 Sþ I 6 N;0 6 B 6
n
d

N
� 	

ð3:4Þ

is a positive invariant domain of the system (3.1)–(3.3).
The result below follows Theorem 1.1 and is similar to

Proposition 2.1.

Proposition 3.1. The basic reproduction number of the model (3.1)–
(3.3) is

R0 ¼
N

cþ l
b1

n
Kd
þ b2

� �
: ð3:5Þ

If R0 < 1, there is only one non-negative equilibrium point X0 = (N,0,0),
which is the disease free equilibrium, and it is globally asymptotically
stable. If R0 > 1, there are two non-negative equilibria, X0 and the ende-
mic equilibrium X⁄ = (S⁄, I⁄,B⁄), where X0 is unstable and X⁄ is locally
asymptotically stable.

Similar to the model (2.1)–(2.3), the system (3.1)–(3.3) is uni-
formly persistent which can be derived from the following two
propositions.

Proposition 3.2. The disease-free equilibrium point X0 is the only
x-limit point of the system (3.1)–(3.3) on the boundary @D of D.

We skip the proof since it is very similar to that of Proposition
2.5.

Proposition 3.3. When R0 > 1, X0 cannot be the x-limit point of any
orbit starting in the interior D� of D.
Proof. Take the initial value (S0, I0,B0) close to X0 = (N,0,0). If B0 > 0,
then B > 0 and is increasing, thus moving away from X0. If, instead,
B0 6 0, then B P n

d I. Assuming B is small, we have

dI
dt
¼ b1

SB
K

1
1þ B=K

þ b2SI � ðcþ lÞI ¼: b1

K
SBþ b2SI � ðcþ lÞI

P
b1

K
n
d

SI þ b2SI � ðcþ lÞI ¼ ðcþ lÞ N
cþ l

b1n
Kd
þ b2

� �
S
N
� 1

� �
I

¼ ðcþ lÞ R0
S
N
� 1

� �
I > 0;

as long as S is close to N. Therefore, the trajectory always moves
away from X0. h

Combining these two propositions and Theorem 3.1, we obtain

Corollary 3.4. The system (3.1)–(3.3) is uniformly persistent, and
satisfies the assumptions (H1) and (H2).

It can be easily verified, however, that the model (3.1)–(3.3) is
not monotone or competitive due to the incidence depending on
both B and I. Thus the analysis conducted in the previous section
cannot be extended to this case. Instead, we employ the geometric
approach [9,29,31] to analyze the global stability of this model.

To that end, we first recall a Bendixson criterion in Rn developed
in [27,31]. Consider the system (2.7). A Bendixson criterion is a
condition satisfied by F which precludes the existence of non-con-
stant periodic solutions. For any solution x(t,x0) in D, define the
second compound equation

dz
dt
¼ @F ½2�

@x
ðxðt; x0ÞÞzðtÞ: ð3:6Þ

If D is simply connected, the uniformly asymptotical stability of
solutions of (3.6) and uniformly exponential decay of solutions with
respect to initial values in each compact subset of D preclude the
existence of any invariant simple closed rectifiable curve of the sys-
tem (2.7) in D. A very useful criterion is given in [31] to characterize
this stability, which is a Bendixson criterion for high dimensional
systems. The detail is provided below.

Let x ´ P(x) be a n
2

� �
� n

2

� �
matrix-valued C1 function in D.

Assume P�1 exists and is continuous in a compact subset K of D. Set

Q ¼ PFP�1 þ P
@F ½2�

@x
P�1; ð3:7Þ

where PF is the derivative of P (entry-wise) along the direction of F.
Let m(Q) be the Lozinski�i measure of Q with respect to a matrix
norm [7], i.e.,

mðQÞ ¼ lim
h!0þ

jI þ hQ j � 1
h

: ð3:8Þ

Define a quantity �q2 as

�q2 ¼ lim sup
t!1

sup
x02K

1
t

Z t

0
mðQðxðs; x0ÞÞÞds: ð3:9Þ

Then the Bendixson criterion is given by

�q2 < 0: ð3:10Þ

Recall that a local �-perturbation of F in a neighborhood U of x1 2 D
is a function g 2 C1ðD! RnÞ such that the support, Supp(F � g) � U,
and jF � gjC1 < �, where

jF � gjC1 ¼ sup jFðxÞ � gðxÞj þ @F
@x
ðxÞ � @g

@x
ðxÞ

���� ���� : x 2 D
� 	

: ð3:11Þ

A Bendixson criterion is said to be robust under C1 local perturbations
of F if for each local �-perturbation g of F at x1 2 D, g also satisfies the
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Bendixson criterion. A point x0 2 D is wandering for (2.7) if there ex-
ists a neighborhood U of x0 and T > 0 such that U \ x(t,U) is empty
for all t > T. For example, all equilibria and limit points are non-
wandering.

Now we state the closing lemma of Pugh [19,43,44].

Lemma 3.5. Let F 2 C1ðD! RnÞ. Suppose that x0 is a non-wandering
point of (2.7) and that F(x0) – 0. Also assume that the positive semi-
orbit of x0 has compact closure. Then, for each neighborhood U of x0

and � > 0, there exists a C1 local �-perturbation g of F at x0 such that

(1) Supp(F � g) � U; and
(2) the perturbed system dx

dt ¼ gðxÞ has a non-constant periodic
solution whose trajectory passes through x0.

Using the closing lemma, the following two theorems were
established in [29].

Theorem 3.6. Suppose that assumptions (H1) and (H2) hold, and
assume that (2.7) satisfies a Bendixson criterion which is robust under
C1 local perturbations of F at all non-equilibrium non-wandering
points for (2.7). Then the unique equilibrium �x is globally stable in D
provided it is locally asymptotically stable.
Theorem 3.7. Assume that D is simply connected and the assump-
tions (H1) and (H2) hold. Then the unique equilibrium �x of (2.7) is
globally stable in D if �q2 < 0.

We now apply these theorems to our model (3.1)–(3.3). Based
on Corollary 3.4, we only need to check the Bendixson criterion
�q2 < 0.

The Jacobian matrix of the system (3.1)–(3.3) is

J ¼
� b1B

KþB� b2I � l �b2S � b1KS
ðKþBÞ2

b1B
KþBþ b2I b2S� ðcþ lÞ b1KS

ðKþBÞ2

0 n �d

0BB@
1CCA:

The second compound matrix of the system (3.1)–(3.3) is

J½2� ¼

� b1B
KþB�b2Iþb2S�c�2l b1KS

ðKþBÞ2
b1KS
ðKþBÞ2

n � b1B
KþB�b2I�l�d �b2S

0 b1B
KþBþb2I b2S�c�l�d

0BB@
1CCA:

We set the matrix function P by

PðS; I;BÞ ¼ diag 1;
I
B
;

I
B

� 	
:

Then

PF P�1 ¼ diag 0;
I0

I
� B0

B
;
I0

I
� B0

B

� 	
;

and

PJ½2�P�1¼

� b1B
KþB�b2Iþb2S�c�2l b1KS

ðKþBÞ2
B
I

b1KS
ðKþBÞ2

B
I

n I
B � b1B

KþB�b2I�l�d �b2S

0 b1B
KþBþb2I b2S�c�l�d

0BB@
1CCA:

The matrix PFP�1 + PJ[2]P�1 defined in (3.7) can then be written in a
block form:

Q ¼
Q 11 Q12

Q 21 Q22

� �
;

with

Q 11 ¼�
b1B

K þ B
� b2Iþ b2S� c�2l; Q 12 ¼

b1KS

ðK þ BÞ2
B
I
;

b1KS

ðK þ BÞ2
B
I

" #
;

Q 21 ¼
n I

B

0

� �
;

Q 22 ¼
� b1B

KþB� b2I�l� dþ I0

I � B0

B �b2S
b1B
KþBþ b2I b2S� c�l� dþ I0

I � B0

B

" #
:

Now we define a norm in R3 as

jðu; v;wÞj ¼maxfjuj; jv j þ jwjg

for any vector ðu;v ;wÞ 2 R3. Let m denote the Lozinski�i measure
with respect to this norm. We can then obtain

mðQÞ 6 supfg1; g2g; ð3:12Þ

with

g1 ¼ m1ðQ 11Þ þ jQ 12j;
g2 ¼ jQ21j þm1ðQ 22Þ;

where jQ12j and jQ21j are matrix norms induced by the L1 vector
norm, and m1 denotes the Lozinski�i measure with respect to the
L1 norm. Specifically,

m1ðQ 22Þ ¼
I0

I
� B0

B
� l� dþ supf2b2S� c;0g;

and

g2 ¼
I0

I
� B0

B
� l� dþ supf2b2S� c;0g þ n

I
B

¼ I0

I
� lþ supf2b2S� c;0g 6 I0

I
� l;

provided that

N 6
c

2b2
:

Meanwhile,

g1 ¼ �
b1B

K þ B
� b2I þ b2S� c� 2lþ b1KS

ðK þ BÞ2
B
I

¼ � b1B
K þ B

� b2I þ b2S� c� 2lþ K
K þ B

I0

I
� b2Sþ cþ l

� �
6 � b1B

K þ B
� b2I þ b2S� c� 2lþ I0

I
� b2Sþ cþ l

¼ I0

I
� l� b1B

K þ B
� b2I 6

I0

I
� l:

Therefore,

mðQÞ 6 I0

I
� l: ð3:13Þ

Since 0 6 I(t) 6 N, there exists T > 0 such that when t > T,
ln IðtÞ�ln Ið0Þ

t < l
2. As a result,

1
t

Z t

0
mðQÞdt 6

1
t

Z t

0

I0

I
� l

� �
dt ¼ ln IðtÞ � ln Ið0Þ

t
� l < �l

2
;

ð3:14Þ

which imples �q2 6 � l
2 < 0. Hence, we have established the follow-

ing theorem:

Theorem 3.8. The endemic equilibrium X⁄ of the system (3.1)–(3.3) is
globally asymptotically stable in D.
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4. Bilinear incidence and non-linear environmental function

Now we consider models of the following type:

dS
dt
¼ bN � Sf ðI;BÞ � bS; ð4:1Þ

dI
dt
¼ Sf ðI;BÞ � ðcþ bÞI; ð4:2Þ

dB
dt
¼ gðIÞ � dB; ð4:3Þ

where, again, we have dropped the equation for R, i.e., (1.23). Now
the function f is bilinear in I and B,

f ðI;BÞ ¼ b1Bþ b2I; ð4:4Þ

with b1 P 0, b2 P 0, which represents the classical mass action inci-
dence. Such an incidence function is also used in a recent work of
Tien and Earn [52] in their water-borne disease model. However,
the difference between our model (4.1)–(4.3) and the model in
[52] is that we consider more general, non-linear pathogen function
g(I). The function g(I) describes the growth rate of the vibrios in the
environment due to the contribution from the infected people (such
as shedding V. cholerae), which generally does not have to follow
linear dynamics. Based on the assumption (e), we recast the condi-
tions for the non-linear function g(I) as follows:

(A1) g(0) = 0; g(I) > 0 if I > 0.
(A2) g0(I) > 0; g00(I) < 0.

The assumption (A1) is natural; it also ensures the existence of
a unique disease-free equilibrium X0 = (N,0,0). The assumption
(A2) regulates g(I) as biologically realistic based on a consequence
of saturation effects: increased infection leads to higher pathogen
growth; however, when the number of the infective is high, the
growth of the pathogen concentration will respond more slowly
than linearly to the increase in I.

Based on the assumption (A2), we can easily obtain the follow-
ing results:

Lemma 4.1. The function gðIÞ
I is strictly decreasing on (0,1).
Proof. For any I > 0, we have

gðIÞ
I
¼ gðIÞ � gð0Þ

I � 0
¼ g0ðbÞ

for some b between 0 and I due to the mean value theorem. Since
g00 < 0 on (0,1), we obtain g0(I) < g0(b). Thus g0(I) < g(I)/I, or
Ig0(I) � g(I) < 0. Hence,

gðIÞ
I

� �0
¼ Ig0ðIÞ � gðIÞ

I2 < 0;

which establishes this lemma. h
Lemma 4.2. Let I⁄ be a point in (0,1). Then

gðIÞ � gðI	Þ
I � I	

<
gðI	Þ

I	
ð4:5Þ

for all I > 0 and I – I⁄.
Proof. When I < I⁄, we have gðIÞ
I > gðI	Þ

I	 due to Lemma 4.1. Thus
I⁄g(I) > Ig(I⁄), or

I	gðIÞ � I	gðI	Þ > IgðI	Þ � I	gðI	Þ
Using the fact I � I⁄ < 0, we obtain (4.5). Similarly, when I > I⁄, we
obtain

I	gðIÞ � I	gðI	Þ < IgðI	Þ � I	gðI	Þ

which yields (4.5) as well. h

Below we summarize the dynamics already known for the sys-
tem (4.1)–(4.3), which follows Theorem 1.1.

Proposition 4.3. The basic reproduction number of the model (4.1)–
(4.3) is

R0 ¼
N

cþ b
b2 þ

b1

d
g0ð0Þ

� �
: ð4:6Þ

When R0 < 1, there is a unique DFE, X0 = (N,0,0), which is globally
asymptotically stable; when R0 > 1, the DFE becomes unstable, and
there is a unique positive endemic equilibrium, X⁄ = (S⁄, I⁄, B⁄), which
is locally asymptotically stable.

At the endemic equilibrium, we have

bN � S	f ðI	;B	Þ � bS	 ¼ 0; ð4:7Þ

S	f ðI	;B	Þ � ðcþ bÞI	 ¼ 0; ð4:8Þ

gðI	Þ � dB	 ¼ 0: ð4:9Þ

Our goal here is to show that the endemic equilibrium is globally
asymptotically stable. With the incidence f depending on both I
and B, such models are not monotone or competitive dynamical
systems. Meanwhile, since the environmental function g(I) can be
arbitrary, the geometric approach may not be easily applied. It is,
however, interesting to note that the classical method of Lyapunov
functions combined with the Volterra–Lyapunov matrix properties
[45,46] can lead to the proof of the endemic global stability. The
details are provided below.

We will study the system (4.1)–(4.3) in the biologically feasible
domain

D ¼ fðS; I;BÞjS P 0; I P 0; Sþ I 6 N;B P 0g ð4:10Þ

which is clearly a positively invariant set in R3.
We construct a Lyapunov function in the form of

VðS; I;BÞ ¼ w1ðS� S	Þ2 þw2ðI � I	Þ2 þw3ðB� B	Þ2; ð4:11Þ

where w1, w2 and w3 are positive constants, the specific values of
which are usually difficult to determine and are not of our interest
here.

We have

dV
dt
¼rV � dX

dt
¼ 2w1ðS� S	Þ½bN� Sf ðI;BÞ� bS� þ 2w2ðI� I	Þ½Sf ðI;BÞ

� ðcþ bÞI� þ2w3ðB� B	Þ½gðIÞ � dB�: ð4:12Þ
Obviously, when X = X⁄, dV

dt ¼ 0; when X is on the S-axis (i.e.,
I = B = 0), the sign of dV

dt is indefinite. We aim to show that when
X – X⁄ and (I,B) – (0,0), dV

dt < 0 holds everywhere.
Substituting Eqs. (4.7)–(4.9) into Eq. (4.12), we obtain

dV
dt
¼ 2w1ðS� S	Þf�bðS� S	Þ � f ðI;BÞðS� S	Þ � S	½f ðI;BÞ

� f ðI	;B	Þ�g þ 2w2ðI � I	Þ½Sf ðI;BÞ � S	f ðI	;B	Þ � ðcþ bÞðI � I	Þ�
þ 2w3ðB� B	Þ½gðIÞ � dB� ¼ �2w1½bþ f ðI;BÞ�ðS� S	Þ2

� 2w1S	ðS� S	Þ½f ðI;BÞ � f ðI	;B	Þ� � 2w2ðcþ bÞðI � I	Þ2

þ 2w2f ðI;BÞðI � I	ÞðS� S	Þ þ 2w2S	ðI � I	Þ½f ðI;BÞ � f ðI	;B	Þ�
þ 2w3ðB� B	Þ½gðIÞ � dB� ðgðI	Þ � dB	Þ�: ð4:13Þ

Now expanding f(I,B) and using the bilinear assumption (4.4), we
obtain

f ðI;BÞ ¼ f ðI	;B	Þ þ b2ðI � I	Þ þ b1ðB� B	Þ: ð4:14Þ
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Meanwhile, applying the mean value theorem to g(I), we obtain

gðIÞ � gðI	Þ ¼ g0ðIÞðI � I	Þ ð4:15Þ

for some I between I and I⁄. Substitution of Eqs. (4.14) and (4.15)
into Eq. (4.13) yields

dV
dt
¼ ðX � X	ÞðWAþ AT WTÞðX � X	ÞT ; ð4:16Þ

where the matrices W and A are given by

W ¼
w1 0 0
0 w2 0
0 0 w3

264
375; A¼

� bþ f ðI;BÞ½ � �b2S	 �b1S	

f ðI;BÞ �½cþb�b2S	� b1S	

0 g0ðIÞ �d

264
375:

Assume X – X⁄ and X is not on the S axis. Below we show that there
exist w1 > 0, w2 > 0 and w3 > 0 such that the matrix WA + ATWTis
negative definite.

Notation 4.4. For convenience, we write a matrix B > 0(<0) if B is
positive (negative) definite.
Definition 4.5. We say a non-singular n � n matrix B is Volterra–
Lyapunov stable if there exists a positive diagonal n � n matrix M
such that MB + BTMT < 0.
Notation 4.6. For any n � n matrix B, we let eB denote the
(n � 1) � (n � 1) matrix obtained from B by deleting its last row
and last column. This notation will be frequently used in what
follows.

Lemma 4.7 ([8,47]). Let D ¼ d11 d12

d21 d22

� �
be a 2 � 2 matrix. Then D is

a Volterra–Lyapunov stable matrix if and only if d11 < 0, d22 < 0, and

det (D) = d11d22 � d12d21 > 0.
Lemma 4.8 ([45,46]). Let D = [dij] be a non-singular n � n matrix
(n P 2) and M = diag(m1, . . . ,mn) be a positive diagonal n � n matrix.
Let E = D�1. Then, if dnn > 0; eM eD þ ð eM eDÞT > 0, and eMeE þ ð eMeEÞT > 0,
it is possible to choose mn > 0 such that MD + DTMT > 0.
Lemma 4.9. For the matrix A defined in Eq. (4.16), eA is Volterra–
Lyapunov stable.
Proof

eA ¼ a11 a12

a21 a22

� �
¼
�½bþ f ðI;BÞ� �b2S	

f ðI;BÞ �½cþ b� b2S	�

� �
:

Clearly a11 < 0. Next we show a22 < 0, i.e.,

cþ b� b2S	 > 0: ð4:17Þ

Setting I = 0, B = B⁄ in Eq. (4.14), we obtain

0 < f ð0;B	Þ ¼ f ðI	;B	Þ � b2I	:

Thus f(I⁄,B⁄) > b2I⁄. Meanwhile, at the endemic equilibrium we have
S⁄f(I⁄,B⁄) = (c + b) I⁄. Hence,

cþ b ¼ S	f ðI	;B	Þ
I	

> b2S	:

Finally, it is clear to see detðeAÞ ¼ a11a22 � a12a21 > 0 since a12 < 0,
a21 > 0. Therefore, eA is Volterra–Lyapunov stable based on Lemma
4.7. h
Lemma 4.10. When (I,B) – (0,0), the determinant of �A is positive,
where the matrix A is defined in Eq. (4.16).
Proof. Expanding the matrix �A by the first column, we obtain

detð�AÞ ¼ ½bþ f ðI;BÞ�½dðbþ cÞ � db2S	 � b1g0ðIÞS	� þ f ðI;BÞ½db2S	

þ b1g0ðIÞS	�:

The second part of det(�A) is clearly positive. Next we show

dðbþ cÞ � db2S	 � b1g0ðIÞS	 > 0: ð4:18Þ

Based on Lemma 4.2 and Eq. (4.15), we have, for all I > 0 and I – I⁄,

g0ðIÞ ¼ gðIÞ � gðI	Þ
I � I	

<
gðI	Þ

I	
¼ dB	

I	
: ð4:19Þ

Thus I	g0ðIÞ � dB	 < 0, which yields

B1 , B	 � g0ðIÞ
d

I	 > 0: ð4:20Þ

Now, substitute the point (I,B) = (0,B1) into Eq. (4.14) to obtain

0 < f ð0;B1Þ ¼ f ðI	;B	Þ � b2I	 þ b1
g0ðIÞ

d
I	: ð4:21Þ

Combining the results in (4.21) and (4.8), we obtain (4.18). Hence,
det(�A) > 0. h

Using the transpose of the matrix of cofactors, we write the
inverse of �A by

ð�AÞ�1 ¼ 1
detð�AÞ

c11ðþÞ c21ð�Þ c31ð�Þ
c12ðþÞ c22ðþÞ c32ðþÞ
c13ðþÞ c23ðþÞ c33ðþÞ

264
375; ð4:22Þ

where cij denotes the cofactor of the (i, j) entry of the matrix �A, and
the + or � in the parenthesis indicates the sign of cij. Note that det
(�A) > 0 based on Lemma 4.10. Specifically, we have

c11 ¼ dðbþ cÞ � db2S	 � b1g0ðIÞS	 > 0;

c21 ¼ �ðdb2S	 þ g0ðIÞb1S	Þ < 0;

c31 ¼ �b1b2ðS	Þ
2 � b1S	½cþ b� b2S	� < 0;

c12 ¼ df ðI;BÞ > 0;

c22 ¼ dðbþ f ðI;BÞÞ > 0;

c32 ¼ bb1S	 > 0;

c13 ¼ f ðI;BÞg0ðIÞ > 0;

c23 ¼ g0ðIÞðbþ f ðI;BÞÞ > 0;

c33 ¼ ðbþ f ðI;BÞÞ½cþ b� b2S	� þ S	b2f ðI;BÞ > 0;

where we have applied (4.18) to obtain c11 > 0, and (4.17) to show
c31 < 0 and c33 > 0.

Lemma 4.11. Let D = �A and E = (�A)�1, where A is defined in Eq.

(4.16). Then there exists a positive 2 � 2 diagonal matrix fW ¼
w1 0
0 w2

� �
such that fW eD þ ðfW eDÞT > 0 and fW eE þ fW eE� �T

> 0.
Proof. Note that A�1 = �E. Using Eq. (4.22), we obtain

gA�1 ¼ 1
detð�AÞ

�c11 �c21

�c12 �c22

� �
:

Based on Lemma 4.7, it is straightforward to verify that gA�1 is
Volterra–Lyapunov stable. Hence, there exists a positive 2 � 2 diag-

onal matrix fWsuch that fWgA�1 þ ðfWgA�1ÞT < 0. Since E = (�A)�1, we
obtain fW eE þ ðfW eEÞT > 0, i.e.,
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1
detð�AÞ

2w1c11 w1c21 þw2c12

w1c21 þw2c12 2w2c22

� �
> 0:

Hence, the determinant of the above matrix must be positive, i.e.,

4w1w2c11c22 � ðw1c21 þw2c12Þ2 > 0:

Substituting the expressions for cij (i, j = 1,2) and manipulating the
algebra, we obtain

0 < 4w1w2c11c22 � ðw1c21 þw2c12Þ2

¼ J � 2w1w2ð2bþ f ðI;BÞÞg0ðIÞb1S	 � ðw1S	Þ2b1g0ðIÞ½2b2 þ b1g0ðIÞ�;

where

J ¼ 4w1w2ðbþ f ðI;BÞÞ½cþ b� b2S	� � ½w2f ðI;BÞ �w1b2S	�2:

Clearly we must have J > 0. Now,

fW eD þ fW eD� �T
¼

2w1½bþ f ðI;BÞ� w1b2S	 �w2f ðI; BÞ
w1b2S	 �w2f ðI; BÞ 2w2½cþ b� b2S	�

� �
:

Note that the (1,1) and (2,2) entries of this 2 � 2 matrix are
positive, and that its determinant is exactly J. Hence, it is clear to
see fW eD þ fW eD� �T

> 0. The proof is then complete. h

Theorem 4.12. The matrix A defined in Eq. (4.16) is Volterra-Lyapu-
nov stable.
Proof. Based on Lemmas 4.8 and 4.11, there exists a positive 3 � 3
diagonal matrix W such that W(�A) + (�A)TWT > 0. Thus
WA + ATWT < 0. h

Therefore, we obtain dV
dt < 0 when X – X⁄ and X is not on the S-

axis (a set of measure zero). Thus we have established the follow-
ing theorem:

Theorem 4.13. The endemic equilibrium of the model system (4.1)–
(4.3) is globally asymptotically stable.
5. Conclusions and discussion

With the environmental component incorporated and multiple
transmission pathways coupled, the cholera models distinguish
themselves from regular SIR and SEIR epidemiological models which
have been extensively studied and whose global dynamics
have been relatively well established (see [5,25,17,18,26,28,30,
32,34,48,57], among others). Using the methods of monotone
dynamical systems, geometric approach, and Lyapunov functions,
we have investigated in this paper the global asymptotic stability
of the endemic equilibria for several deterministic cholera models
and obtained new global stability results. These models represent
biologically important, and mathematically non-trivial, cases in
the study of cholera dynamics. The analysis and results presented
in this paper build a solid base for future work on the global dynam-
ics of the most general cholera model and for deeper understanding
of the fundamental disease mechanism. However, it should be no-
ticed that all models we analyzed in the article do not include sea-
sonal fluctuations. These models also do not consider the natural
cycle of growth and dispersal of vibrios in the environment. Further
research on building more realistic models for dynamics of cholera is
highly demanded.

In this paper, the three techniques we employed all have
strength and weakness. The method of monotone dynamical sys-
tems [12,28,49], when applicable, is easier to implement than the
geometric approach, since it essentially treats a three-dimensional
autonomous system as a two-dimensional one. Unfortunately,
most high-dimensional infectious disease models do not possess
the nice properties of monotone systems, which limits the applica-
tion of this approach. The geometric approach, originally proposed
by Li and Muldowney [9,29,31], has gained some popularity in re-
cent years (see, e.g., [2,24]) as it has less constraints on the model
systems. Among the three, this method seems to have the best po-
tential to deal with more general model systems. The disadvan-
tage, however, is that the implementation of the geometric
approach is not straightforward and involves extra non-trivial
technical details, particularly the estimate of the Lozinski�i mea-
sure. In addition, the method of Lyapunov functions has been
known for many decades. The challenge in the application of this
method is that there is no systematic way to construct Lyapunov
functions (particularly, the determination of the appropriate coef-
ficients is often a matter of luck), so that its success largely de-
pends on trial and error as well as on specific problems. In this
paper, by combining this classical approach with the Volterra–
Lyapunov matrix analysis [45–47], we have leveraged the difficulty
of determining specific coefficient values and, as such, wider appli-
cation of Lyapunov functions to dynamical systems could be pro-
moted. As can been seen from our analysis in Section 4, the
extension of this approach to even higher dimensional systems is
possible but becomes much harder, since the proof of Volterra–
Lyapunov stable matrices involves considerably more work in
higher dimensions.

The work presented in this paper is not limited to cholera models.
Indeed, a number of known infectious diseases [33,52], such as Ty-
phoid fever, Amebiasis, Dracunculiasis, Giardia, Cryptosporidium,
and Campylobacter, involve environmental components (typically
water-borne pathogen) and can be modeled in a similar manner as
those for cholera. The analysis and results from this work can thus
contribute to a wide range of problems in epidemiological studies.
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