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Abstract. In this article we study periodic solutions of a mathematical model
for brain tumor virotherapy by finding Hopf bifurcations with respect to a

biological significant parameter, the burst size of the oncolytic virus. The model

is derived from a PDE free boundary problem. Our model is an ODE system
with six variables, five of them represent different cell or virus populations,

and one represents tumor radius. We prove the existence of Hopf bifurcations,

and periodic solutions in a certain interval of the value of the burst size. The
evolution of the tumor radius is much influenced by the value of the burst size.

We also provide a numerical confirmation.

1. Introduction. Oncolytic viruses are genetically altered viruses which can in-
fect and reproduce in cancer cells but leave healthy normal cells unharmed. Over
the last decade, a great progress in understanding of the molecular mechanisms
of viral cytotoxicity of oncolytic viruses has been providing a fascinating possible
alternative of therapeutic approach to cancer patients. This alternative approach
could be especially beneficial in the case of malignant brain tumor, glioma, since the
standard therapy of surgery-radiation-chemotherapy does not typically destroy all
the tumor cells; survival rate in high grade glioma is measured in months. Recent
experiments in animals’ brain tumors using genetically engineered viral strains, such
as adenovirus, ONYX-15 and CV706, herpes simplex virus 1 and wild-type New-
castle disease virus show these viruses to be relatively non-toxic and tumor specific
[1]. However, translation of the new cancer therapy into human brain cancers, for
example, malignant glioma, has not yet lived up to its expectations. One reason is
that once inside the cells the oncolytic virus, such as herpes simplex virus type 1
hrR3, replicate poorly; this difficulty may be overcome with advanced technology.
Another more serious reason for the failure of efficacy of viral oncolytic therapy is
the rapid host innate immune response to the viral infection. Preliminary experi-
ments in animal models of brain tumors indicate that the process of viral oncolysis
may be hampered in its very first hours by the innate immune system, regardless of

2000 Mathematics Subject Classification. Primary: 92C37; Secondary: 34A34.
Key words and phrases. Periodic solutions, Hopf bifurcation, virotherapy, tumor model.

1587

http://dx.doi.org/10.3934/dcdss.2011.4.1587


1588 DANIEL VASILIU AND JIANJUN PAUL TIAN

the route of administration [2]. The experiments [2] also show that transient sup-
pression of the innate immunity increases the efficacy of viral oncolysis in the brain.
The drug that appears effective in suppressing the innate immune response and
thereby in augmenting oncolysis is cyclophosphamide (CPA) [3]. Successful ther-
apy requires an understanding of how oncolytic viruses, host cells, innate immune
cells and immunosuppression drug influence tumor load. Mathematical modelings
provide a good way to achieve a thorough understanding of the virotherapy treat-
ment.

In [7], the authors formulate a mathematical model of spherical glioma that has
been injected at its center with oncolytic viruses hrR3, which is a mutant of herpes
simplex virus. The model includes uninfected and infected tumor cells, necrotic
cells, free virus particles, innate immune cells, and cyclophosphamide. Their model
is a five-component PDE free boundary problem. We would like to focus on the
dynamics of interactions among five cell populations. Particularly, we study the
periodic solutions and Hopf bifurcation on the biologically important parameter,
namely, the burst size of virus. We therefore study an ODE version of the model in
the present article. Although our model is an ODE system, our model still counts
the spatial variable, tumor radius.

The article is organized as follows. In Section 2, we will introduce the ODE
version of the model from the original model established in[7]. In section 3, we
analyze Hopf bifurcation, and periodic solutions. One way of proving existence of
periodic solutions is through finding a Hopf bifurcation with respect to a chosen
control parameter. The control parameter here is chosen to be the burst size of the
oncolytic virus. The finding of periodic solutions for the dynamical system in this
case is important for proving existence of therapy success under a specific choice of
parameters. In section 4, we present some numerical study.

2. The nonlinear ODE model. The Figure 1 shows the interactions among dif-
ferent cell populations during virotherapy of glioma.

Figure 1. Dynamic diagram of virotherapy within a solid tumor

In the Figure 1, x, y, n, z, v represent uninfected tumor cells, infected tumor cells,
necrotic cells, immune cells and free virus particles respectively. The parameter λ
represents the proliferation rate of tumor cells, δ is the infected cells lysis rate, µ is
the removal rate of necrotic cells, b is the burst size of the virus, β is the infection
rate, k is the immune killing rate, k0 is take-up rate of viruses, s is the stimulation
rate by infected cells and γ is the clearance rate of viruses.

The proliferation and removal of cells cause a movement of cells within the
tumor of radius R(t), with a convection term, for tumor cells x, in the form
1
r2

∂
∂r (r2u (r, t)x (r, t)), where u(r, t) is the radial velocity. The other cells undergo
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the same convection. The free virus particles undergo diffusion rather than con-
vection. By mass conservation and convection of cells, the following equations are
derived in [7]:



∂x(r,t)
∂t + 1

r2
∂
∂r (r2u(r, t)x(r, t)) = λx(r, t)− βx(r, t)v(r, t),

∂y(r,t)
∂t + 1

r2
∂
∂r (r2u(r, t)y(r, t)) = βx(r, t)v(r, t)− ky(r, t)z(r, t)− δy(r, t),

∂n(r,t)
∂t + 1

r2
∂
∂r (r2n(r, t)u(r, t)) = ky(r, t)z(r, t) + δy(r, t)− µn(r, t),

∂z(r,t)
∂t + 1

r2
∂
∂r (r2z(r, t)u(r, t)) = sy(r, t)z(r, t)− c(z(r, t))z(r, t)− P (r, t)z(r, t),

∂v(r,t)
∂t −D 1

r2
∂
∂r (r2 ∂v∂r ) = bδy(r, t)− k0v(r, t)z(r, t)− γv(r, t),

(1)
and the equation for velocity is

θ

r2
∂

∂r
(r2u(r, t)) = λx(r, t)−µn(r, t) + sy(r, t)z(r, t)− c(z(r, t))z(r, t)−P (r, t)z(r, t).

The free boundary is subject to the kinematic condition

dR(t)

dt
= u(R(t), t).

Here, P (t) is the concentration of cyclophosphamide, an immuno-suppressing drug,
and θ = x + y + z + n is the number density of cells within the tumor, which is a
constant. Thus, one equation is redundant.

Let’s take a domain transformation r = r(t)
R(t) , and then integrate the equation for

the velocity,

u(r, t) =
R

r2

∫ r

0

η2(λx(η, t)− µ(1− x− y − z) + syz − ωz2 − Pz)dη.

Thus, the tumor radius is given by

R′(t) = u(1, t).

Now we simply take out the spatial variable r from all equations in the system
1, we have



dx
dt = λx− βxv − (λx− µn+ syz − ωz2 − Pz)x
dy
dt = βxv − kyz − δy − (λx− µn+ syz − ωz2 − Pz)y
dz
dt = syz − ωz2 − (λx− µn+ syz − ωz2 − Pz)z − Pz
dv
dt = bδy − k0yv − γv
dR
dt = 1

3R(λx− µn+ syz − ωz2 − Pz)

(2)

We notice that the first four equations are decoupled from the last one, so it will
be sufficient to study formed by the first four equations of 2 in order to determine
the dynamics of virotherapy and the evolution of the radius of the tumor.

The coefficients were experimentally determined in [7] and they are given here
in order to compute bifurcation points, and to make some numerical comparisons.
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Proliferation rate of tumor cells λ 2× 10−2 l/h
Infected cells lysis rate δ 1/18 l/h
Removal rate of necrotic cells µ 1/48 l/h
Burst rate of infected cells b 50 viruses/cell
Density of tumor cells θ 106 Cells/mm3

Infection rate β 7/10× 10−9 mm3/h virus
Immune killing rate k 2× 10−8 mm3/h immune cell
Take-up rate of viruses k0 10−8 mm3/h immune cell
Stimulation rate by infected cells s 5.6× 10−7mm3/h infected cell
Clearance rate of immune cells ω 20× 10−8 mm3/h cell
Clearance rate of viruses γ 2.5× 10−7 l/h

We work with relative concentrations (i.e. x
θ , etc.). With this change the system

stays literally the same, and x + y + z + n = 1. The time is measured in hundred
of hours, the constants become

λ = 2, δ =
100

18
, µ =

100

48
, D =

36

10
, β =

7

100
, k = 2, k0 = 1, s = 56, ω = 20, γ =

25

10
.

(3)
The concentration of cyclophosphamide is a piecewise defined function:

P (t) =


5
2 , 0 < t ≤ 18

25
5
96 (120− 100t), 18

25 < t ≤ 6
5

0, t ≥ 6
5

Given the fact that the system (2) is polynomial in each component, we have
global existence and uniqueness of solutions for any choice of initial condition. By
using uniqueness of solutions and the method of the variation of constants we get
that the set Q = {(x, y, z, v, R)|(x, y, z) ∈ [0, 1]3, v ≥ 0, R ≥ 0} is invariant set for
the system (2).

3. Hopf bifurcation and periodic solution analysis. Let F be the vector field
defined the system, namely, defined as follows

F(x, y, z, v, b) =


λx− βxv − (λx− µ+ µx+ µy + µz + syz − ωz2)x

βxv − kyz − δy − (λx− µ+ µx+ µy + µz + syz − ωz2)y
syz − ωz2 − (λx− µ+ µx+ µy + µz + syz − ωz2)z

bδy − k0yv − γv

 (4)

Thus the system (2) could be written
dx
dt = F1(x, y, z, v, b)
dy
dt = F2(x, y, z, v, b)
dz
dt = F3(x, y, z, v, b)
dv
dt = F4(x, y, z, v, b)

We denote by DF the Fréchet derivative of the vector field F with respect to the
first four variables. In order to determine the equilibrium solutions of system (2),
we must solve:

F(x, y, z, v, b) = 0R4. (5)

considering b as a parameter. We note that equation (5) is polynomial in each
component and by applying the elimination method and the fundamental theorem
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of algebra could be shown that is has 14 solutions. Some of the equilibrium points
are quite obvious to obtain, e.g.

{x = 0, y = 0, z = 0, v = 0}, {x = 1, y = 0, z = 0, v = 0}, {x = 0, y = 0, z = 1, v = 0},

{x = 0, y = 0, z =
µ

ω
, v = 0}, {x =

ω + λ

ω
, y = 0, z = −λ

ω
, v = 0}

{x = 0, y =
−δ + µ

µ
, z = 0, v =

bδ (−δ + µ)

−δ k0 + k0µ+ γ µ
},

However, we are mainly interested in those equilibrium points that are satisfying
0 < x < 1, 0 < y < 1, 0 < z < 1, v > 0. Notice b as a parameter which takes values
between 50 and 1500. Such interval for b is motivated by experimentalists in [7].

Our goal now is to find and study the stability of the equilibrium solutions
satisfying x 6= 0, y 6= 0, z 6= 0 and v 6= 0. In this case we can solve the system of
equations resulting from (5) by elimination and obtain:

v =
bδy

k0y + γ
(6a)

z =
1

ω

(
sy − λ+

βbδy

k0y + γ

)
(6b)

x =
1

λ+ µ
(sy − ωz + µ− µy − µz − syz + ωz2) (6c)

where y is the root of a quartic polynomial with variable coeficients in b

c4(b)y4 + c3(b)y3 + c2(b)y2 + c1(b)y + c0(b) (7)

and the coefficients are:

c4(b) = ks(λ+ µ)k30
c3(b) = −k0b2sβ2δ2 + k20 ((3ksγ + b(k + s)βδ)(λ+ µ)− bβδλω)

−k20(λ+ µ)(kλ− (δ + λ)ω)
c2(b) = (−b2β2δ2(sγ + bβδ) + k0 (kγ(3sγ + 2bβδ)(λ+ µ) + bβδ( 2sγ(λ+ µ)

−2γλω + bβδ(2λ+ µ+ ω))− (λ+ µ)(3kγλ− 3γ(δ + λ)ω
+bβδ(λ+ ω))k0

c1(b) = γ(kγ(sγ + bβδ)(λ+ µ) + bβδ(sγ(λ+ µ)− γλω + bβδ(2λ+ µ+ ω))
−(λ+ µ)(3kγλ− 3γ(δ + λ)ω + 2bβδ(λ+ ω))k0)

c0(b) = (−γ2(λ+ µ)(kγλ− γ(δ + λ)ω + bβδ(λ+ ω))

If we substitute in (7) all non-dimensionalized constants except b, we have that y is
an implicit function of b and is given by:

y4 + 1
1372

(
108829

9 + 8267b
36 −

686b2

27

)
y3 + 1

1372

(
235445

6 + 18781b
18 − 66983b2

1296 −
343b3

1944

)
y2

+ 1
1372

(
662725

12 + 131215b
144 + 76685b2

2592

)
y + 1

1372

(
2027375

72 − 94325b
144

)
= 0

(8)
In order to study the roots of equation (7) we introduce some results from the

general theory of binary forms.

Definition 3.1. A general quartic binary form is any polynomial in x and y,

q(x, y) =

4∑
k=0

(
4

k

)
akx

ky4−k. (9)
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Let (cij) ∈ GL2(R) be a linear change of variables, i.e. a transformation of the
variables x and y given by

x = c11x̄+ c12ȳ, y = c21x̄+ c22ȳ.

The quartic binary form q(x, y) is transformed into another quartic binary form
q̄(x̄, ȳ) in the new variables x̄ and ȳ defined by

q̄(x̄, ȳ) =

4∑
k=0

(
4

k

)
ak(c11x̄+ c12ȳ)k(c21x̄+ c22ȳ)n−k.

After expanding and regrouping terms, we obtain

q̄(x̄, ȳ) =

4∑
k=0

(
4

k

)
ākx̄

kȳ4−k

where the coefficients āk are polynomials in ai and cij .

Definition 3.2. A nonconstant polynomial p(A0, A1, A2, A3, A4) in the variables
A0, A1, A2, A3 and A4 is said to be an invariant of index g of the quartic binary
forms if for all quartic binary forms q(x, y) and all linear changes of variables we
have

p(ā0, ā1, ā2, ā3, ā4) = (c11c22 − c21c12)gp(a0, a1, a2, a3, a4).

Below, for the convenience, we quote a few results presented in [9].

Lemma 3.1. We have that

i(a0, a1, a2, a3, a4) = a0a4 − 4a1a3 + 3a22

and

j(a0, a1, a2, a3, a4) = det

 a0 a1 a2
a1 a2 a3
a2 a3 a4


are invariants of index 4 and of index 6, respectively, for any quartic binary forms.

Lemma 3.2. Let ∆ = i3 − 27j2. The binary form has only simple roots (i.e.
multiplicity 1) if and only if the discriminant ∆ 6= 0.

The next Lemma can be shown easily by using symbolic calculation.

Lemma 3.3. The solutions of the equation q(1, x) = 0, i.e. a4x
4 +4a3x

3 +6a2x
2 +

4a1x+ a0 = 0, are

xmn = −a3a4 + (−1)m
√

1
6a24

(
6a23 +

3√9ia4
r + a4

3
√

3r − 6a2a4

)
+

(−1)n

√√√√√√√√− 1

6a3
4

−12a23a4+ 3√9ia4
r +a24r+12a2a24+(−1)m 6

√
6(2a3

3−3a2a3a4+a1a2
4)√√√√ 1

6a2
4

(
6a2

3+
3√9ia4

r
+a4

3√3r−6a2a4

)


(10)

where m,n = 1, 2 and r = 3
√
−9j +

√
−3∆.

Now we return to analyzing the case for equilibrium solutions (x(b), y(b), z(b), v(b))
of the decoupled ODE system (2) when all components are non-zero simultaneously
(i.e. x 6= 0, y 6= 0, z 6= 0.)
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Theorem 3.1. For the chosen set of the constant values (3) and any b ∈ (50, 1500),
the solutions of the equation (5) with all components non-zero simultaneously are
differentiable functions of the parameter b.

Proof. For any polynomial with variable coefficients

xn + cn−1(ξ)xn−1 + cn−2(ξ)xn−2 + ...+ c1(ξ)x1 + c0(ξ)

it is known that the roots have the same smoothness as the coefficients if the mul-
tiplicity of the roots is constant. In general, at the points where the multiplicity of
the roots changes the roots may loose the smoothness property. For the given set
of constants (3) if we solve ∆ = 0, where ∆ is the discriminant associated with the
equation (8), we obtain

b = 0 (with multiplicity 6) , b = −23.07639773, b = 35.73236461,
b = −304.5746522± 289.6509340i, b = −1.2581694375± 0.4454333074i,

b = 89.4795363± 148.8296778i.

This shows that the discriminant ∆ does not vanish for the given set of constants
(3) when b ∈ (50, 1500). By Lemma 3.3, the roots of the equation (8) are simple
and therefore smooth with respect to the parameter b. Using also the set of the
equations (6) we obtain the conclusion of the theorem.

It turns out, following the construction of roots for quartic polynomials written in
closed form (Lemma 3.3) that, for the given set of the constant values (3), only the
case m = 1, n = 2 produces a solution that concurs with the physical meaning of
our problem(y(b) being the value of a non-zero concentration i.e. 0 < y(b) ≤ 1 when
b ∈ (50, 1500).) We would also like to point out that, by the help of Lemma 3.3 we
can approximate the equilibrium solutions in this case (of all non-zero components)
with arbitrary precision.

Theorem 3.2. The system (2), using the given set of constant values (3) and b as
a parameter, has a Hopf bifurcation point.

Proof. In this proof we are going to check the set of well known sufficient conditions
for the existence of a Hopf bifurcation point:

(H1) There exists b0 and a smooth branch of equilibrium solutions
(x(b), y(b), z(b), v(b), b) for b ∈ (b0 − ε, b0 + ε), with
F(x(b0), y(b0), z(b0), v(b0), b0) = 0 and (x(b0), y(b0), z(b0), v(b0)) is an isolated
solution of F(x, y, z, v, b0) = 0.

(H2) F is sufficiently smooth in a neighborhood of (x(b0), y(b0), z(b0), v(b0), b0)
(H3) The Jacobian matrix of the vector field F evaluated at the equilibrium so-

lution, i.e. DF(x(b), y(b), z(b), v(b), b) with b ∈ (b0 − ε, b0 + ε) has a pair of

simple complex conjugate eigenvalues Λ(b), Λ(b) such that Im(Λ(b0)) > 0,
Re(Λ(b0)) = 0 and d

dbRe(Λ(b0)) 6= 0
(H4) DF(x(b0), y(b0), z(b0), v(b0), b0) has no eigenvalues of the form kIm(Λ(b0))i

where i is the imaginary unit and k ∈ {0, 2, 3, 4, ...}.
Since the vector field is polynomial in each component and by Theorem 3.1 the
equilibrium solutions depend smoothly on the parameter b, condition (H2) holds.
We notice that the characteristic polynomial for the Jacobian of the vector field (4) is
also quartic. The discriminant of the characteristic polynomial, when 50 < b < 1500
and consider the set of constants (3), vanishes only for b = 51.57242982. Thus for
52 < b < 1500, by repeating a similar argument as in Theorem 3.1 the roots of
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the characteristic polynomial are also differentiable functions of parameter b. Let
Λmn(b) where m,n = 1, 2 represent the roots of the characteristic polynomial (where
m,n have the meaning given by Lemma 3.3). When b = 550 the eigenvalues are

(Λm,n(550)) =

(
−7.618277765 −3.388867230

−7.3 · 10−6 + 2.2734867506i −7.3 · 10−6 − 2.2734867506i

)
and for b = 551 we have

(Λm,n(551)) =

(
−7.616911353 −3.386713853

0.000788256 + 2.273610580i 0.000788256− 2.273610580i

)
This shows the existence of a point 550 < b0 < 551 that satisfies (H1). Let

Λ4 + C3(b)Λ3 + C2(b)Λ2 + C1(b)Λ + C0(b)

be the characteristic polynomial. The coefficient C3(b) is

sy+γ+δ+λ+µ+
(sy − λ)(k + λ)

ω
+y

(
k0 −

b2yβ2δ2

ω (γ + yk0) 2
+
bβδ(k − sy + 2λ− ω)

ω (γ + yk0)

)
(11)

If we substitute the non-dimensionalized constants (3) we obtain

475425+3142440y−4410by+2285748y2−19404by2−49b2y2+441936y3−7056by3
1620(5+2y)2. (12)

where y satisfies equation (8). It can be shown numerically that given y satisfies (8)
the coefficient of Λ3 from the characteristic polynomial cannot vanish for any 50 <
b < 1500. This fact guarantees, by a simple application of the Viète formulae, that
for the given range of the parameter b the solutions of the characteristic polynomial
cannot have zero real part simultaneously. Also, it can be shown numerically that
d
dbRe(Λ21(b)) 6= 0 when 550 < b < 551 by using a very accurate representation of
the coefficients Ci(b) and implicit differentiation with respect to the characteristic
equation. Thus, conditions (H3) and (H4) are also satisfied.

In [11] it describes a direct method for the computation of Hopf bifurcation
points. Let φ10 + iφ20 represent an eigenvector of the pure imaginary eigenvalue
Λ21(b0). It is shown that a Hopf bifurcation point could be located by solving the
nonlinear system 

F(x, y, z, v, b) = 0

[(DF(x, y, z, v, b))2 + ζI4]p̄ = 0

< p̄, p̄ > −1 = 0

< q̄, p̄ >= 0

where q̄ is a vector in R4 with nonzero projection on span{φ10, φ20}. By the application
of this method we find b0 = 550.00923219396759996.

Thus we proved that the system (2) has periodic solutions for appropriate values
of the parameter b. In the next section we address the natural question that arises,
namely whether the periodicity of solutions intrinsically has an influence over the
tumor radius in a finite time period.

4. Numerical study and discussion. For the numerical simulations we work
with the following set of non-dimensionalized initial data are given in [7]:

x(0) = 0.84, y(0) = .10, z(0) = 0.06, 2.6 · b ≤ v(0) ≤ 5.6 · b.
We here numerically analyze the behavior of the velocity field given by f(x, y, z, v)

= λx− µn+ syz − ωz2 − Pz. The behavior of the velocity field is directly related
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to the behavior of the solutions to the system (2). We also notice that, from (2),
the radius of the tumor is given by

R(t) = R0exp(
1

3

∫ t

0

f(x(s, b), y(s, b), z(s, b), v(s, b))ds) (13)

where R0 is the initial tumor radius. In the following numerical calculations R0 =
2mm.
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(b) 2.5 < t ≤ 120

Figure 2. The velocity field when b = 300.
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(b) 2.5 < t ≤ 120

Figure 3. The velocity field when b = 551.

Figure 2 shows the profile of the velocity field when the value of the parameter
b is 300. Figure 3 shows the profile of the velocity field when the value of the
parameter b is 551. We notice that, up to t = 2.5 (which in real time means 250
hours, a little over 10 days,), the shapes of the velocity field for both b = 300
and b = 551 are almost identical. The major differences start only for t ≥ 20
(about three months). It is interesting that both cases share an oscillation behavior
between t = 2.5 and t = 20. We also notice that this oscillation is not due to the
perturbation of cyclophosphamide, which may seem a somehow counterintuitive [8].

Figure 4 shows the evolution of the tumor radius under different values of the
parameter b. Although the radius of the tumor eventually goes to zero, that is, the
tumor will be eradicated eventually, the radius of the tumor decreases more rapidly
when the value of the parameter b is big.
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Figure 4. The tumor radius when 0 < t < 15.

When b = 550 the solution expresses oscillations with or without the presence
of cyclophosphamide. We also present a numerical comparison for the evolution of
the velocity field in this case, in Figure 5 and Figure 6.
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(a) When b=550 at 0 < t < 2.5 wtih P ≡ 0
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(b) When b=550 at 0 < t < 2.5 with P 6≡ 0

Figure 5. The evolution of the tumor velocity field show that the
tumor radius decreases faster in the presence of cyclophosphamide

The conclusion that we draw from this numerical comparison is that the period-
icity of the solutions to system (2) may not be a major factor for shrinking of the
tumor radius in the first two months period after the virotherapy treatment, but
the value of the burst size b.

In this study we focus on the parameter burst size, and get a range of its values
in which the system has periodic solutions once we fix all other parameters. This
confirms some observation in experiments [4][5]. Since there are ten parameters, it is
possible that some other parameters could also have Hopf bifurcations, and therefore
produce periodic solutions of the system. The search for other Hopf bifurcations
in the full parameter space is a huge amount of work. Only when we have some
suggestions from experiments about parameter value, as we did here for the burst
size, we can perform such a study. It may be interesting to study how sensitive of
the interval of burst size value for Hopf bifurcations is dependent on the rest of the
parameters. We leave this for the future consideration.
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(b) When b=550 at 2.5 < t < 120 with P 6≡ 0

Figure 6. The system presents oscillations with and without cy-
clophosphamide and the tumor radius when t = 15 is
R = 0.0024389484 if P ≡ 0 and R = 0.0001036137 if P 6≡ 0

Acknowledgments. J.P. Tian would like to acknowledge the support by start-up
fund of new faculty at the College of William and Mary.

REFERENCES

[1] E. Antonio Chiocca, Oncolytic viruses, Nature reviews, Cancer, 2 (2002), 938–950.

[2] K. Ikeda, T. Ichikawa, H. Wakimoto, J. S. Silver, D. Finkestein, G. R. Harsh, D. N. Louis,
R. T. Bartus, F. H. Hochberg and E. A. Chiocca, Oncolytic virus therapy of multiple tumors

in the brain requires suppression of innate and elicited antiviral responses, Nature Med., 5

(1999), 881–888.
[3] G. Fulci, et al, Cyclophosphamide enhances glioma virotherapy by inhibiting innate immune

responses, PNAS Proceedings of the National Academy of Sciences of the United States of
America, 103 (2006), 12873–12878.

[4] H. Kambara, H. Okano, E. A. Chiocca and Y. Saeki, An oncolytic HSV-1 mutant express-

ing ICP34.5 under control of a nestin promoter increases survival of animals even when
symptomatic from a brain tumor , Cancer Research, 65 (2005), 2832–2839.

[5] H. Kambara, Y. Saeki and E. A Chiocca, Cyclophosphamide allows for in vivo dose reduction

of a potent oncolytic virus, Cancer Research, 65 (2005), 11255–11258.
[6] Shangbin Cui and Avner Friedman, A hyperbolic free boundary problem modeling tumor

growth, Interfaces and Free Boundaries, 5 (2003), 159–181

[7] Avner Friedman, Jianjun Paul Tian, Giulia Fulci, Antonio Chioca and Jin Wang, Glioma
virotherapy: Effects of innate immune suppression and increased viral replication capacity,

Cancer Research, 4 (2006), 2314–2319.
[8] Jianjun Paul Tian, Finite-time perturbations of dynamical systems and applications to tumor

therapy, appear to Discrete and Continuous Dynamical Systems – B.

[9] Peter J. Olver, “Classical Invariant Theory,” London Mathematical Society Student Texts,
1999.

[10] Lawrence Perko, “Differential Equations and Dynamical Systems,” Third Edition, Springer,

2007.
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