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ABSTRACT. Evolution algebra theory is used to study non-Mendelian inheri-
tance, particularly organelle heredity and population genetics of Phytophthora
infectans. We not only can explain a puzzling feature of establishment of ho-
moplasmy from heteroplasmic cell population and the coexistence of mitochon-
drial triplasmy, but also can predict all mechanisms to form the homoplasmy
of cell populations, which are hypothetical mechanisms in current mitochon-
drial disease research. The algebras also provide a way to easily find different
genetically dynamic patterns from the complexity of the progenies of Phytoph-
thora infectans which cause the late blight of potatoes and tomatoes. Certain
suggestions to pathologists are made as well.

1. Introduction. In this article, we apply evolution algebra theory to the study
of non-Mendelian genetics. As Mendelian genetics, non-Mendelian inheritance is a
huge family in genetics. We focus on two particular genetic phenomena to show
how evolution algebras work for them. One is organelle population genetics, and the
other is Phytophthora infestans population genetics. A puzzling feature of organelle
inheritance is how a homoplasmic cell population is established from a heteroplasmic
cell population over cell divisions. Because concepts of algebraic transiency and al-
gebraic persistency catch the essences of biological transitory and biological stability
respectively, evolution algebras can be used to explain this feature. Since an algebra
can have any number of mutants as its generators, algebraical modeling triplasmy in
tissues of patients with sporadic mitochondrial disorders seems straightforward. We
also study another type of uniparental inheritance of Phytophthora infectans which
cause the late blight of potatoes and tomatoes. After we construct several relevant
evolution algebras for the progeny populations of Phytophthora infectans, we can
see different genetically dynamical patterns from the complexity of the progenies
of Phytophthora infectans. We then predict the existence of intermediate transient
races and the periodicity of the reproduction of biological stable races. Practically,
we can suggest to stop the spread of late blight disease in a right phase. Theoret-
ically, we can use our algebras to provide information of Phytophthora infectans
reproduction to Plant pathologists.

The article is organized as follows. In section 2, we will recall the basic biology of
non-Mendelian genetics and the inheritance of organelle genes. We also give a gen-
eral algebraic formulation of non-Mendelian genetics. In section 3, we use evolution
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algebras to study the heteroplasmy and homoplasmy of organelle populations, and
show that concepts of algebraic transiency and algebraic persistency catch essences
of biological transitory and stability respectively. Coexistence of triplasmy in tis-
sues of patients with sporadic mitochondrial disorders is also studied as well. In
section 4, we apply evolution algebra theory to the study of asexual progenies of
Phytophthora infestans.

2. Non-Mendelian genetics and evolution algebras.

2.1. Non-Mendelian vs Mendelian inheritance. Following Birky’s articles
[1][2], non-Mendelian genetics has five components contrasting to Mendelian ge-
netics:

(1): During asexual reproduction, alleles of nuclear genes do not segregate: het-
erozygous cells produce heterozygous daughters. This is because all chromo-
somes in nuclear genomes are replicated once and only once in interphase and
mitosis ensures that both daughter cells get one copy of each chromosome.
In contrast, alleles of organelle genes in heteroplasmic cells segregate during
mitotic as well as meiotic divisions to produce homoplasmic cells. This is be-
cause in the vegetative division of the organelles, some copies of the organelle
genome can replicate more than others by chance or in response to selective
pressures or intrinsic advantages in replication, and alleles can segregate by
chance.

(2): Alleles of a nuclear gene always segregate during meiosis, with half of the
gametes receiving one allele and half the other. Alleles of organelle genes
may or may not segregate during meiosis; the mechanisms are the same as for
vegetative segregation.

(3): Inheritance of nuclear genes is biparental. Organelle genes are often inher-
ited from only one parent, uniparental inheritance.

(4): Alleles of different nuclear genes segregate independently. Organelle genes
are nearly always on a single chromosome and recombination is often severely
limited by uniparental inheritance or failure of organelles to fuse and exchange
genomes.

(5): Fertilization is random with respect to the genotype. This is the only part
of Mendel’s model that applies to organelle as well as nuclear genes.

While most of heredity of nuclear genes obeys Mendel’s laws, the inheritance of
organelle is not Mendelian. Vegetative segregation is the most general characteristic
of the inheritance of organelle genes, occurring in both mitochondria and chloro-
plasts in all individuals or clones of all eukaryotes. In other words, uniparental
inheritance is a major means of genetic transmission.

2.2. Algebraic formulation of non-Mendelian inheritance. Let us consider
a population of organelles in a cell or a cell clone, and suppose that there are n
different genotypes in this organelle population. Denote these genotypes by G1, Ga,
..., Gy. By non-Mendelian inheritance component (3), the crossing of genotypes
is impossible since it is uniparental inheritance. Mathematically, we take

Gi-G; =0,
for ¢ # j. By non-Mendelian inheritance component (2), alleles of organelle genes

may or may not segregate during meiosis following vegetative segregation, so that
the frequency of each gene in the next generation can vary. From non-Mendelian
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inheritance component (4), intramolecular and intermolecular recombination within
a lineage provides evidence that one organelle genotype can produce other different
genotypes. Therefore, by the component (5), we mathematically define,

n
G; = E ai; Gy,
i=1

where «;; is positive number that can be interpreted as the rate of genotype Gj;
produced by genotype G;. We then have an algebra over real number field defined
by generators G, Ga, ..., G, which are subject to these relations [3].

In [3], a general theory has been established for this type of algebra. We will use
this theory to study concrete examples in the rest of the paper. As to algebras for
Mendelian genetics, the reader may refer [4] [5][6][7].

3. Algebras of organelle population genetics.

3.1. Heteroplasmy and homoplasmy. Organelle population geneticists are usu-
ally concerned about that there are two different phenotypes or genotypes: homo-
plasmic and heteroplasmic. Let us denote a heteroplasmic cell by Gg, and two
different types of homoplasmy by G; and G3. Suppose G; and G5 are mutant
and wild-type respectively. From organelle inheritance, we know that heteroplas-
mic parent can produce both heteroplasmic progeny and homoplasmic progeny, and
homoplasmic parent can only produce homoplasmic progeny with the same type if
mutation is not considered. We then have the following reproduction relations.

G§ = mGo + aGy + BGa, (1)
G? =Gy, (2)
G35 = Go; (3)
and for i # j, 4,5 =0,1,2,
Gi . Gj = 0; (4)

where m, o, 8 are all positive real numbers. These numbers can be taken as the
segregation rates of corresponding types. For a specific example, these coefficients
can be determined by modified Wright-Fisher model.

Thus, we have an evolution algebra, denoted by Aj, generated by Gy, G; and
G2 and subject to the defining relations (1)-(4).

From evolution algebra theory [3], algebraic generator Gy is transient, G; and
G5 are persistent. Because G; and G5 do not communicate, Ay, has two simple
subalgebras generated by G; and G4 respectively. Biologically, Gg is transitory as
N. W. Gillham pointed out [8]. G; and G are of stable homoplasmic cell states. By
transitory, biologists mean that the cells of transitory are not stable, they are just
transient phases, and they will disappear eventually after certain cell generations.
This property is imitated by algebraic transiency. By biological stability, we mean
it is not changeable over a period of time, and it is kept the same from generation
to generation. This property is imitated by algebraic persistency.

The puzzling feature of organelle heredity is that heteroplasmic cells eventually
disappear and the homoplasmic progenies are observed. The underlying biological
mechanisms are still unknown. Actually, it is a intensive research field currently
since it is related to aging and many other diseases caused by mitochondrial muta-
tions [9],[10]. However, we can mathematically understand this phenomenon from
evolution algebra theory. Because Gy is transient, G; and G5 are persistent, Ay
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can eventually have two simple subalgebras. These two subalgebras are of zero-th
in the hierarchy of this algebra, and thus they are stable. The subalgebra generated
by G is homoplasmic and mutant; the subalgebra generated by G2 is homoplasmic
and wild-type. Moreover, from a formula in [3], the mean time T}, to reach these
homoplasmic progeny is given by

1
T, = .
h 1—m

If we consider a mutant to be lost, say G2 will be lost, we have the follow-
ing several ways to model this phenomenon. The algebraic generator set still is
{Go,G1,Ga}.

First, we think that G5 disappears in a dramatic way, that is
G2=0.

Other defining relations are (1), (2) and (4). Thus, the evolution algebra we get
here is different from Aj. It has one non-trivial simple subalgebra corresponding to
homoplasmic progeny generated by Gj.

Second, we consider that G gradually mutates back to Gy, that is

G35 = nG1 + pGa,

where 7 is not zero and could be 1. And other defining relations are (1), (2) and (4).
Although we eventually have one simple subalgebra by this relations, the evolution
path is different.

Third, we consider that G5 always keeps heteroplasmic property, that is

G% =nGo + pGs.

The other defining relations are still (1), (2) and (4). Eventually, we have homo-
plasmic progenies which all are GG;. That is the only simple subalgebra generated
by G1~

In conclusion, we have four different evolution algebras derived from the study
of homoplasmy. They are not the same in the skeleton classification of algebras.
Therefore, their dynamics, which is actually genetic evolution processes, are differ-
ent. However, we need to look for what are the biological evidences for defining
these different algebras. In Ling et al [10], several hypothetical mechanisms were
put forward for establishment of homoplasmy, and their hypothetical mechanisms
exactly correspond to four different algebraic structures we get.

3.2. Coexistence of triplasmy. In mitochondrial genetics, if we consider different
genotypes of mutants instead of just two different phenotypes of homoplasmy and
heteroplasmy, we will have higher dimensional algebras that contain more genetic
information. Recently, in Tang et al [11], it studies the dynamical relationship
among wild-type and rearranged mtDNAs.

Large-scale rearrangements of human mitochondrial DNA (including partial du-
plications and deletion) are found to be associated with a number of human disor-
ders, including Kearns-Sayre syndrome, progressive external ophthalmoplegia, Pear-
son’s syndrome, and some sporadic myopathies. Each patient usually harbors a het-
eroplasmic population of wild-type mitochondrial genomes (wt-mtDNA) together
with a population of a specific partially deleted genome (A-mtDNA) in clinically
affected tissues. These patients also harbor a third mtDNA species, a partial du-
plication (dup-mtDNA), as well. To study the dynamical relationship among these
genotypes, authors of paper [11] cultured cell lines from two patients. After a
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long-term (6 months, 210-240 cell divisions) culture of homoplasmic dup-mtDNAs
from one patient, they found the culture contained about 80% dup-mtDNA, 10%
wt-mtDNA, and 10% A-mtDNA. After a long-term culture of the heteroplasmic
which contains wt-mtDNA and A-mtDNA from the same patient, they did not find
any new cell species, although there were the fluctuations of percentages of these
two cell populations. From this same patient, after cultured two year of A-mtDNA
cell line, they did not find any new cell species. Now, let’s formulate this genetic
dynamics as an algebra.

Denote triplasmic cell population by G that contain dup-mtDNA, wt-mtDNA
and A-mtDNA, heteroplasmy that contains dup-mtDNA and wt-mtDNA by G,
heteroplasmy that contains dup-mtDNA and A-mtDNA by Gb, heteroplasmy that
contains wt-mtDNA and A-mtDNA by G5, homoplasmy dup-mtDNA by G4, homo-
plasmy wt-mtDNA by G5, homoplasmy A-mtDNA by Gg. According to the genetic
dynamical relations described above, we set algebraic defining relations as follows:

G§ = BooGo + Bo1G1 + Bo2Ga + BosGs, G = B1aGa + B15Gs,

G% = B24G4 + P26, G§ = B35Gs + P36G, G§ = B54G4 + B56Go,
G3 = BaaGy + BasGs + B16Gs, Gg = Beaga + BosGs,

Gi-G;=0, i#j, i,j=01,....6.

And the generator set is {Go,G1,...,Gg}. This algebra has three levels in its
hierarchy. On the 0-th level, it has one simple subalgebra generated by G4, G5 and
Gg. These three generators are algebraic persistent. Biologically, they consist of
genotypes that can be observed, and genetically stable. On the 1-st level, it has
three subalgebras, and each of them has dimension 1. On the 2-nd level, there is
one subalgebra generated by Gy. Generators on the 1-st and 2-nd levels are all
algebraic transient. They are unobservable biologically.

If we have more information about the reproduction rates §;;, we could quanti-
tatively compute certain relevant quantities. For example, let’s set

1 1 1
50025012502250321, 5142515257 ﬁ24=ﬂ26=§7
1 5 1 2 1
535—536—5, 544—67 545—546—Ea /354—57 656—57
2 1
Bea = 3 Bes = 3

We then can compute the long-term frequencies of each genotype in the culture.
Set © = 22:0 G, define O™ x v = ©""1(Ov) for any element in this algebra.
Suppose we start with a transient genotype G, as time goes to infinity, we have

n—oo
Therefore, to this patient, we get an algebraic structure of his mitochondrial
genetic dynamics. Besides the experimental results, we can predict that there are
several transient phases. These transient phases are algebraic transient elements.
They are important for medical treatments. If we could have drug to stop the
transition during the transient phases of mitochondrial mutations, we could help
these disorder patients.
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4. Algebraic structures of asexual progenies of Phytophthora infestans.
In this section, we apply evolution algebra theory to the study of algebraic structure
of asexual progenies of Phytophthora infestans based on experimental results in
paper [12]. The basic biology of Phytophthora infestans and related experiments
are first briefly introduced. Then we will construct evolution algebras for each race
of Phytophthora infestans. Most of our biological materials are taken from paper
[12]and [13].

4.1. The basic biology of Phytophthora infestans. The organism P. infestans
(Mont.) de Bary, the cause of potato and tomato late blight, is the most important
foliar and tuber pathogen of potato worldwide. Virulence variability in P. infestans
populations is recognized as a major reason for the failure of race specific genes for
resistance in cultivated potato management strategy. The race for P. infestans refers
to possession of certain virulence factors. Isolates sharing the same virulence factors
are considered to be a race that can be distinguished from other races possessing
other groups of virulence factors. Characterization of isolates to different races is
based on their interaction with major genes for resistance in potato. So far 11 major
genes for resistance have been identified in Solanum spp [12].

In paper [12], five parental isolates of P. infestans, PI-105, PI-191, PI-52, PI-126
and PI-1, collected from Minnesota and North Dakota in 1994 to 1996, were chosen
to represent different race structures. Single zoospore progenies were generated from
each of the parental strains. The parental isolate PI-1 produced very small zoospores
and the percent recovery of colonies was very low. Other parental isolates produced
large sized zoospores and showed higher levels of developed colonies. In total, 102
single zoospore isolates were recovered, 20 isolates from isolate PI-105, 29 isolates
from PI-191, 28 isolates from PI-52, 14 isolates from PI-126, and 11 isolates from
PI-1. These single zoospore demonstrated different levels of variability for virulence.
Although some single zoospore isolates showed the same virulence as their parental
isolate, others showed lower or higher virulence than the isolate from which they
were derived. Single zoospore isolates derived from PI-1 (11 isolates) were identical
in virulence to their parental isolate. Single zoospore isolates derived from isolate
PI-191 (29 isolates) showed low levels of variability for virulence compared with
their parental isolate; 73% of these isolates (21 isolates) retained the same virulence
pattern as their parent. Four isolates gained additional virulence to R8 and R9.
One isolate had additional virulence to R9 which was stable. The other two showed
lower virulence compared with the parental isolate. Six races were identified from
the single zoospore isolates of the parental isolate PI-191.

Single zoospore isolates derived from isolate PI-126 showed higher levels of vari-
ability for virulence. Three isolates in this series gained virulence to both R8 and
R9, three isolates gained additional virulence to R8, six isolates gained additional
virulence to R9, and only two isolates retained the same virulence level of the
parental isolate. Four races were identified within this series of isolates.

Isolates derived from the parental isolate PI-52 were highly variable for virulence.
The overall trend in this series of isolates was toward lower virulence relative to the
parental isolate. The total number of races identified from this parental isolate is
12.

The single zoospore progeny isolates derived from isolate PI-105 were highly
variable for virulence. In this series of isolates there was a tendency for reduced
virulence of the single zoospore isolates compared with their parent. 13 races were
identified from this set of isolates.
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4.2. Algebras of progenies of Phytophthora infestans. In order to mathe-
matically understand the complexity of structure of progenies of P. infestans, we
assume that there are 11 loci in genome of P. infestans corresponding to the resis-
tant genes, denote by {c1, ¢2,...,c11}, and if ¢; functions (is expressed), the progeny
resists gene R;. Any non-repeated combination of these c; can forms a race mathe-
matically. So, we have 2048 races. For simplicity, we just record a virulence part of a
race by E;, the complement part is avirulence. For example, E; ={ca, 3, ¢5, ¢s, c10}
represents race type cacscscscio/c1c4cecrcoc11. Take these 2048 races as generators
set, we then have a free algebra over real number field R. Since reproduction of
zoospore progeny is asexual reproduction, the generating relations among races are
evolution algebra types. That is,

B} =) piEj,
and if ¢ #£ j
E;-E;=0,
where p;; are non-negative numbers. If we interpret p;; as frequency, we have
> pij = 1. As an example, let’s look at the race PI-126P and its progenies. PI-
126P has race type E1={c1,ce,c3, 4, C5,C6, C7, C10,C11}- It has four different type
of progenies:

E2 = {Cl7027637C4vc5706707308a6107011}7
E3 = {c1,¢2,c¢3,¢4,05,C6,C7,Co, C10, C11 },
E4 = {617627037C476570676776876976107611}7

and E itself. Actually, these four types of progenies are those that are biologically
stable, and can be observed as outcomes of asexual evolution. These four types of
progenies are persistent. There could have many transient elements that produce
biologically unstable progenies. These progenies serve as intermediate transient
generations, and produces stable progenies. However, the simple evolution algebra
without intermediate transient generations that we can construct for race PI-126P
have the following defining relations:

E} =p1By+ q1Bs, B3 = pyBy + g2y,
E3 =psEy +qsEs, Ef =r1Ey +71oEy;
and if ¢ #£ j,
E;-E;=0.

If we know the frequency of the jth race in the population as in paper [12],
we can easily set above coefficients. For example, suppose all coefficients have the
same value, 0.5, then the algebra generated by PI-126P is a simple evolution algebra.
Biologically, this simple evolution algebra means that each race can reproduce other
races within one population. We can also compute that the period of each generator,
for each race, is 2. This means to reproduce any race itself at least needs two
generations. Eventually, the frequency of races Fy, Ey, F3 and E4 in the whole
population are %7 %7 % and % respectively. This can be done by computing

lim ©" x Fjy,
n—oo
where © = Z?zl E;.

Now, let’s assume there exists an intermediate transient generation, so there

exists a transient race, Ej5, in the developing process of progeny population of
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PI-126P. We just assume FEs is {c1,co,c3, ¢4, 05,6, C7,C10, }-  Usually, it is very
difficult to observe the transient generation biologically. Our evolution algebra is
now generated by F, Fs, F3, F4 and F5. The defining relations are given
Ef =p1Ey+q1Es, E3 =poEr + @Ey + r2Fs,
E3 =psEy +qsEy, Ej =rEy +rEy, EZ=0,
and if ¢ # 7,
E;-E; =0.

We can verify that this evolution algebra has a simple subalgebra, which is the
algebra in the above example. We can also claim that intermediate transient races
will extinct, and they are not biologically stable, when the parental race is within its
progeny population. Mathematically, these intermediate transient races are nilpo-
tent elements.

The progeny population of PI-52P displays a distinct algebraic feature. There
are 12 races in the progeny population of PI-52P, and the parental race is not
in the population. We name these races as follows. According to paper [12]:
Eo={cs, ¢4, 7, cs, €10, €11} Which is parental race, and the progenies are:

Ey ={es,cr,c10,c11}, Ea={cio,c11}, Es={c1,¢3,¢7,¢10,¢11},
Ey = {c3,ci0,c11}, Es={c1,c2,¢3,c10,c11},  Eg = {c2,c4,c10,c11},
E7; ={c1,ci0,c11},  Es ={cr,enn}, Eg = {cr,cr0,c11},

E1o = {c3,c4,¢7,c10, 11}, E11 = {c1,¢3,¢4,¢7,c10,C11 },

E1p = {c2,¢3,c¢4, C10, 11}

Thus, our evolution algebra is generated by Ey, E1, ..., E15. Although we need the
detailed biological information for frequencies of each race in progeny population,
FEy must be a transient generator, an intermediate transient race in the progeny
population. All other generators must be persistent generators, biologically stable
races that can be observed in experiments. For illustration, we give the defining
relation set as follows:

21 1 1
0 ;:112 ) 1=35 1+2 2,
for 2 < j <11,
1 1 1
2 _
Ej =3B+ 3B+ 3B,
and for j = 12,
1 1
E?) = ZE1 + - En;
2= 75 11+2 123
and if ¢ # 7,

E;-E;=0.

This algebra is not simple. But it has a simple subalgebra generated by {E1, Es, ...,
E12}. We know that this subalgebra forms a progeny population of parental race
PI-52P. This subalgebra is aperiodic, which means each race in progeny population
can reproduce itself in the next generation. By computing

lim O" * Eo,

n—oo
we get that in the progeny population, frequency of parental race Ej is 0, frequency
of race E1 and FE1y is 5.88%, frequency of race Fs, Fs, ..., E1p is 8.82%. This is
asymptotic behavior of the evolution operator.
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Now we consider some intermediate transient races, biological unstable races.
Suppose we have two such races, E, and E. Theoretically, there are many ways to
build an evolution algebra with these two transient generators based on the above
algebra with biology information; each way will carry different biological evolution
information. Here, we choose the following way to construct our evolution algebra.

The generator set now is {E,, Eg, Ey, E1, ..., E12}. The defining relation set is
taken to be

12 12

1 1 1 1
B} =pBa+aBs, Eo=) B, Ej=) TE. Ei=_E+ E,
12 12 2 2

for 2 < j <11,

1 1 1

E} = 3Ei-1+ 3B + 5B,

and for j = 12

12 — 92 11 9 12,
and if ¢ #£ 7,

E;-E; =0.

Although this new algebra is not simple, it has a simple subalgebra that forms
progeny population. Two unstable races will eventually disappear through produc-
ing other races. Whatever the values of p and ¢ are, we eventually get the same
frequency of each race in the population as that in the simple algebra above, except
that £, and Eg have 0 frequency.

There is a trivial simple algebra generated by race PI-1P. If we denote PI-1P by
E_4, the progeny population is generated by E_; which is subject to E2, = E_;.

In paper [12], there are 5 different parental races in Minnesota and North Dakota
from 1994 to 1996. If we want to study the whole structure of P. infestans popu-
lation there, we need to construct a big algebra which is reproduced by 5 parental
races, PI-105P, PI-191P, PI-52P, PI-126P and PI-1P. This algebra will have 5 sim-
ple subalgebras which corresponds to the progeny subpopulations produced by 5
parental races. We also need to compute the frequency of each progeny subpopula-
tion. This way, we encode the complexity of structure of progenies of P. infestans
into an algebra.

Let’s summarize what the evolution algebras can provide to plant pathologists
theoretically.

(1): Evolution algebra theory can predict the existence of intermediate transient
races. Intermediate transient races correspond to algebraic transient elements.
They are biologically unstable, and will extinct or disappear by producing
other races after a certain period of time. If we can catch the intermediate
transient races and remove or kill them, we will easily stop the spread of late
blight disease.

(2): Evolution algebra theory states that biologically stable races correspond
to algebraic persistent elements. It predicts the periodicity of reproduction
of stable races. This is helpful to understand the speed of spread of plant
diseases.

(3): Evolution algebra can re-recover progeny subpopulation. Furthermore, be-
cause these progeny subpopulations correspond to simple subalgebras, each
race in the same subpopulation shares the same dynamics of reproduction and
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spreading. Evolution algebras are therefore helpful to simplify the complexity
of progeny population structure.

(4): Evolution algebra theory provides a way to compute the frequency of each
race in progeny population given the reproduction rates, which are algebra
structural constants. Practically, these frequencies can be measured, and so
reproduction rates can be computed by formulae in evolution algebras. There-
fore, evolution algebras will be a helpful tool to study many aspects of asexual
reproduction process, like that of Oomycetes, Phytophthora.
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