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Abstract. We propose a PDE model and conduct numerical simulation to
study the temporal and spatial dynamics of the Avian Influenza, and investi-
gate its epidemic and possibly pandemic effects in both the bird and human

populations. We present several numerical examples to carefully study the
population dynamics with small initial perturbations. Our results show that
in the absence of external controls, any small amount of initial infection would
lead to an outbreak of the influenza with considerably high death rates in both
birds and human beings.

1. Introduction. Over the past decades, Avian Influenza (or bird flu) has become
a serious infectious disease that causes tremendous media attention [11, 12]. Out-
breaks of Avian Influenza of subtype H5N1 have been frequently reported in Asia,
Russia, the Middle East, Europe and Africa since 1997. Although its infection in
human beings is limited so far, the pandemic effects on bird population and do-
mestic bird industry are significant. Despite many research efforts that have been
devoted to the study of Avian Influenza [3, 7, 8], a number of issues still remain
unclear in the processes of infection and spread. Furthermore there are many ques-
tions to be answered both genetically and ecologically. One particularly interesting
question, which is also of great concern to human beings, is whether a sufficiently
small amount of infected birds can lead to a pandemic in both bird and human
populations. To seek an answer, we have to take into consideration of both the Low
Pathogenic Avian Influenza (LPAI) and High Pathogenic Avian Influenza (HPAI).
While only does HPAI pose serious threats to human health, LPAI is common in
wild birds and poultry, and can transform to HPAI under certain conditions [7].

Recently, Tian and his coworkers [2, 9] developed mathematical models, which
consist of systems of several ordinary differential equations (ODEs), to study the
interactions between LPAI and HPAI, and their combined effects on bird and human
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populations. However, only the time evolution of the infection was discussed in these
models, and spatial dynamics was not considered. To overcome this limitation, we
propose in this paper a system of partial differential equations (PDEs) which models
the spatial variance by adding a diffusion term (i.e., second-order spatial derivative)
to each equation. This approach is similar to the work [6] in modeling the spatial
spread of West Nile virus infection. Based on this PDE model, we conduct numerical
simulation to carefully investigate both the temporal and spatial dynamics of the
Avian Influenza, and discuss its epidemic and possibly pandemic behaviors among
bird and human populations. In particular, we represent the effects of small initial
infections by adding small perturbations to the initial configuration, and study the
subsequent long-term dynamics of the system.

The remainder of this paper is organized as follows. In Section 2, the PDE model
is presented. In Section 3, the numerical method to be applied to the PDE system is
described. In Section 4, results from the numerical simulations with various initial
profiles are discussed. Finally, a conclusion is drawn and a brief discussion for future
study is made.

2. PDE model. We present the PDE model for the influenza in both the avian
and human populations. The model is based on the following diagram [10].

Here we use the subscripts L and H to distinguish the LPAI and HPAI, respec-
tively. The subscript m refers to the human population. Essentially, the upper part
of the diagram illustrates the evolution of the influenza in birds, and the lower part
illustrates that among people. The notations are further explained below:

• S, the set of susceptible birds or people
• R, the set of recovered birds or people
• E, the set of latent birds



AVIAN INFLUENZA COMPUTATION 1501

• I, the set of infected birds or people
• X, the set of dead birds or people

Our PDE system consists of nonlinear parabolic equations to describe the infec-
tion dynamics. The time derivatives measure the rate of change for each population
set, and the diffusion terms model the spread of the infection. The nonlinear terms
in these equations occur due to the interaction between different population sets.
The first nine equations are concerned with the bird part, and the last four equa-
tions are for the human part. Note that we have introduced the letter N to denote
the total population which is assumed to be a constant.
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There are various parameters which appear in the above equations, representing
the LPAI and HPAI infection rates, the death and recovery rates, and the infectious
and latent periods, etc. [9]. The values of these parameters are provided in Table
1. Most of these parameters can be found in the literature [3, 4, 5]; others have
been determined so as to match the statistical data. For convenience of discussion,
we have chosen to normalize the total population to N=1, so that each population
set is represented by a corresponding fraction.
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a1 = 0.45 b1 = 1
2

a2 = 2.1 c1 = 1
6

b2 = 1
10 c2 = 1

9

a3 = 0.4 c3 = 1
2

P = 0.1 τ = 1.3

µ = 0.01 β = 0.025

c4 = 1
7 q = 0.51

D = 1.0 ρ = 1.2

Table 1. Parameter values for the PDE system

3. Numerical method. In this project, we assume the spatial domain is one-
dimensional: 0 ≤ x ≤  L. This can be treated as an approximation to a two-
dimensional area in the xy-plane where the spatial variance in the vertical (y)
direction is ignored. Although this is a much simplified case, the methodology
and results from this project will provide a solid background for future study on
two-dimensional and three-dimensional modeling, which are expected to generate
more practical results.

Since the equations in the PDE system are of parabolic type, a simple choice of
numerical method is the FTCS scheme [1] (Forward difference in Time and Centered
difference in Space). For illustration, consider a general parabolic-type equation in
the form:

∂u

∂t
+ C(t, x, u)

∂u

∂x
= µ

∂2u

∂2x
(14)

where µ is a constant and c is a function of t, x and u. The FTCS algorithm applied
to this generic equation yields:

un+1
j − un

j

4t
+ C(tn, xj , u

n
j )

un
j+1 − un

j−1

24x
= µ

un
j+1 − 2un

j + un
j−1

(4x)2
(15)

where the subscript j denotes the spatial grid and the superscript n refers to the time
step. This is an explicit, one-step scheme with a truncation error of O[4t, (4x)2].
With this method, no iterative scheme is needed and no start-up procedure is nec-
essary, thus it is straightforward to implement. We have found this method stable
with reasonably small 4t when applied to our PDE system.

4. Computational results.

4.1. Validity tests. As mentioned before, the authors in [2, 9] developed ODE
models to study the time evolution of avian influenza. Those models differ from the
PDE model we consider in that the spatial dynamics is not present. Nevertheless,
their results provide a way to justify the validity of our numerical calculation in
terms of the time evolution behaviors. To compare the results, we set uniform
initial conditions so as to minimize the spatial variance, and we plot the solution
curves at a fixed spatial point (say, the midpoint of the domain) with respect to
time. We expect that when ε is sufficiently small, the diffusion effect is close to being
negligible and our results will match those from the ODE model. With increased
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values of ε, however, our results are expected to exhibit different behaviors from
those ODE results, showing the presence of the diffusion effects. We only consider
the bird population in these tests for ease of comparison.

4.1.1. We first set ε = 0.001, representing a very small diffusive effect, and set the
initial conditions all equal zero except the following: S = 0.92, EL = IL = EH =
IH = 0.02. Such initial conditions match those in the ODE study [9, 10]. The
solution curves are shown in Fig. 1. We observe reasonably good agreement with
the results obtained by using the ODE model [9, 10].
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Figure 1. PDE results with very small diffusion coefficient: (a)
dynamics of HPAI without mutation, (b) comparison of HPAI and
LPAI infection.

4.1.2. Now we set ε = 0.1, representing a moderate diffusive effect, with the same
initial conditions as in Sec 4.1.1. Now, due to the stronger diffusion term, the
solution curves are quickly smoothed out and approach to zero values, showing the
differences with the ODE results (see Fig. 2).

4.1.3. For yet another validity test, we set ε = 0.001, IH = IL = EH = EL =
0.02cos(x − L

2 ), S = 1 − 0.08cos(x − L
2 ), and 0 for other variables. Here L is

the length of the computational domain. The value of L is not essential and, for
simplicity, we set L = 2. Although spatial variances are included in the initial
profiles, there is almost no change in the results (see Fig. 3) compared with those
in Fig. 1, due to the very small value of ε.

4.2. Bird population dynamics with small initial perturbations. In avian
influenza study, one interesting question is whether a small amount of infected
birds will spread the infection to the entire domain (locally or globally) and cause
a pandemic. Mathematically, this question is equivalent to what is the consequence
of a small initial perturbation to the spatial and temporal dynamics. To explore the
answer, we perform the following tests with the initial infection profiles modeled as
a Sine wave in the center of the domain. We fix the domain size to L = 2, and the
diffusion coefficient with a moderate value ε = 0.1. We then study the dynamics of
the bird population with such initial conditions. We will add the human population
in Section 4.3.
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Figure 2. PDE results with bigger diffusion coefficient: (a) dy-
namics of HPAI without mutation, (b) comparison of HPAI and
LPAI infection.
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Figure 3. PDE results with very small diffusion coefficient and
initial spatial variances: (a) dynamics of HPAI without mutation,
(b) comparison of HPAI and LPAI infection.

4.2.1. First, we set, at t = 0 ,

IH = IL =

{

0.04sin(x−0.8
0.4 π) : 0.8 < x < 1.2

0 : otherwise,

s = 0.92 , and 0 for all other variables.
The solution curves for the recovered and dead birds at t = 100 (representing

a steady state) are presented in Fig. 4. In particular, we observe that the small
initial population of IH becauses a death rate close to 90% at t = 100, indicating a
pandemic among birds.

4.2.2. To gain better insight of the effect of the initial value IH on the death
rate, we change the initial wave amplitudes for IH and IL as follows. Other initial
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Figure 4. The values of the recovered (a and b), susceptible (c)
and death (d) rates at t=100.

configurations are the same with those in Sec 4.2.1.

IH =

{

0.01sin(x−0.8
0.4 π) : 0.8 < x < 1.2

0 : otherwise,

IL =

{

0.07sin(x−0.8
0.4 π) : 0.8 < x < 1.2

0 : otherwise,

The results are presented in Fig. 5.
The results show that with even smaller initial IH , the death rate is still about

80% at t = 100, and there is no improvement for the recovery rates. This means
that HPAI outbreak in birds still occurs. The fundamental reason for such behavior
is unclear yet. Within our model, this might be due to the relatively big value of
the transmission parameter a2 which transfers a large portion of the susceptible
population (S) into the EH set. This hypothesis, as well as the reliability of the
current value for a2, can be justified by conducting a sensibility analysis on our
model. This would provide an interesting direction for our future research. One
evidence to support this hypothesis is presented below with a simple linear test.
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Figure 5. The values of recovered (a and b), susceptible (c) and
death (d) rates at t = 100, with lower value of initial HPAI.

4.2.3. We consider the same initial conditions as in Sec 4.2.1, and set the param-
eter values a1 = a2 = a3 = τ = ρ = 0. This would yield the linearized model of
our PDE system. Now, due to the absence of nonlinear interaction between differ-
ent population sets, particularly between S and EH , both the infection and death
rates are extremely low (shown in Fig. 6) and the pandemic does not appear. This
pattern exhibits sharp contrast to the nonlinear dynamics.

4.3. Combined bird and human population dynamics. Now we add the hu-
man part into the model and study the combined dynamics for birds and humans
with small amount of initial infections.

4.3.1. For initial profiles of

IH = IL =

{

0.04sin(x−0.8
0.4 π) : 0.8 < x < 1.2

0 : otherwise,

which corresponds to 4.2.1. We plot the recovered and dead populations again at
t = 100 (see Fig. 7). The results show that the death rate of the birds is close to
90%, similar to the case without human population. On the other hand, the death
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Figure 6. PDE results for the linearized model.

rate of humans is about 9% at t = 100. This would certainly be considered as a
very serious situation if that happened in the real would.

4.3.2. Finally, we conducted simulation with the initial profiles corresponding to
those in 4.2.2. We observed similar dynamics as those in Sec 4.3.1 and the results
are not shown here. This confirms that the infection pattern does not depend on
the specific initial configurations, and any small initial infection would lead to a
severe disease outbreak.

5. Conclusion. In this paper, we have formulated a PDE model and performed
computational study on both the temporal and spatial dynamics of Avian Influenza
in a combined system of birds and humans. Our results show that even with ex-
tremely small amount of initial infection of birds, the HPAI outbreak will occur
in birds, killing as high as 90% of the total bird population. Meanwhile, this will
cause very serious infection which leads to a considerable death rate among human
beings. Based on our model, such epidemic behaviors cannot be eliminated or even
controlled by the system itself.

Given these findings, external control strategies (such as vaccination and culling
infected birds) have to be enforced to save human and bird lives, and to limit the
scope of the infection as much as possible. Our model does not consider the effects
of such external controls, but this would be an interesting topic for our future study.
In addition, the extension of our model to two-dimensional and three-dimensional
cases is expected to produce more realistic results.
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