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Abstract The mutation process is introduced into the colored coalescent theory. The mu-
tation process can be viewed as an independent Poisson process running on the colored ge-
nealogical random tree generated by the colored coalescent process, with the edge lengths
of the random tree serving as the time scale for the mutation process. Moving backward
along the colored genealogical tree, the color of vertices may change in two ways, when
two vertices coalesce, or when a mutation happens. The rule that governs the coalescent
change of color involves a parameter x; the rule that governs the mutation involves a para-
meter μ. Explicit computations of the expectation of the coalescent time (the first hitting
time), and the coalescent probabilities (the first hitting probabilities) are carried out. For
example, our calculation shows that when x = 1/2, for a sample of n colored individuals,
the expected time for the colored coalescent process with the mutation process super-
imposed to first reach a black MRCA or a white MRCA, respectively, is 3 − 2/n with
probability 1/2 for any value of the parameter μ. On the other hand, the expected time
for the colored coalescent process with mutation to first reach a MRCA, either black or
white, is 2 − 2/n for any values of the parameters μ and x, which is the same as that for
the standard Kingman coalescent process.

Keywords Coalescent theory · Colored coalescent process · Mutation process · Lumped
process · Colored random tree

1. Introduction

Coalescent theory is a retrospective model of population genetics that traces all alleles of
a gene in a sample from a population to a single ancestral allele shared by all members
of the population. First formulated in the seminal work of Kingman in 1982 (Kingman,
1982a, 1982b), coalescent theory offers various sample-based and highly efficient statis-
tical methods for analyzing molecular data such as DNA sequence samples. For recent
reviews as well as extensive references of coalescent theory, see Fu and Li (1999) and
Rosenberg and Nordborg (2002). A nice introduction to coalescent theory can be found
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in Nordborg (2001), Hein et al. (2005) and Rice (2004). In order to understand the geo-
graphical models of the origin of the human being, we introduced a colored coalescent
theory in Tian and Lin (2005). The colored coalescent process generates random colored
trees. Here a coloring of a tree is to color the vertices of the tree by two colors, black
(B) and white (W ), such that if two vertices are joint by an edge, they may have different
colors only when the vertex closer to the root is a branching point of the tree. Thus, in
recovering a random colored tree using colored coalescent process, we may end up at a
colored tree with the root colored black or colored white.

In present paper, we consider a color-changing mutation process in the colored co-
alescent theory. The quantities which we are interested in including the following: the
probabilities for the mutation superimposed colored coalescent process to first reach a
black or white root, respectively; the mean coalescent time, which is the time elapsed
before the coalescent process first reaches a black root or a white root, respectively; etc.

We now describe the colored coalescent process and the mutation process in some
details so that one may appreciate its motivation and understand the statement of our
main results.

The Wright–Fisher model in population genetics assumes discrete, non-overlapping
generations G0,G1,G2, . . . in which each generation contains a fixed number N of indi-
viduals. In a haploid population, each member in Gi+1 is the child of exactly one member
in Gi , but the number of children born to the j th member of Gi is a random variable νj

satisfying the symmetric multinomial distribution

Pr{νj = nj ; j = 1,2, . . . ,N} = N !
n1!n2! · · ·nN !NN

.

In colored coalescent theory, it is assumed that each individual in a generation has two
possible colors B and W . In the next generation, if a member is the only child of its par-
ent, then this child will inherit the color of its parent. But when a parent has more than
one child in the next generation, the color of children of that common parent satisfies a
binomial distribution. More specifically, for a parent with k children in the next genera-
tion, k > 1, let b be the number of children with B color and w be the number of children
with W color (so that b + w = k), we have

Pr{b = k1,w = k2 ; the parent has color B} =
(

k

k1

)
pk1(1 − p)k2 ,

Pr{b = k1,w = k2 ; the parent has color W } =
(

k

k1

)
(1 − q)k1qk2

(1)

where 0 ≤ p,q ≤ 1. Following the same argument as in Kingman (1982a, 1982b), there
is a limiting coalescent process for a sample of n colored individuals when N → ∞,
which is called the colored coalescent process Z(t). In this limiting coalescent process,
one is only allowed to have two individuals in the sample to coalesce. When two colored
individuals coalesce, the probability of the color of their common parent can be calculated
according to (1). The details can be found in Tian and Lin (2005). The mutation process
can be viewed as an independent Poisson process running on the random tree generated
by this colored coalescent process, with the edge lengths of the random tree serving as
the time scale for the mutation process. In particular, we consider that the mutation is
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symmetrical, that is, the probability that an individual mutates its color from B to W

and the probability that an individual mutates its color from W to B is the same. It is
assumed that the probability that an individual mutates its color from one to another in a
unit time Δt is μΔt . The mutation processes of different individuals are considered to be
independent of each other. Therefore, the probability that k of the n individuals within a
sample mutate their colors can be calculated by

(
n

k

)
(μΔt)k(1 − μΔt)n−k. (2)

The stochastic character of a state of the mutation superimposed colored coalescent
process, denoted by M(t), with the parameter x and μ turns out to depend only on the
number of individuals in this state colored by one color, say B . If we start the colored
coalescent process with a sample of n colored individuals, the initial state can be denoted
by a pair of non-negative integers (n1, n2), where n1 is the number of individuals colored
by B and n2 is the number of individuals colored by W . Notice that the states (0,1) and
(1,0) are no longer absorbing states. In order to be able to talk about quantities like co-
alescent time, we will assume that, once the process arrives at (0,1) or (1,0), M(t) will
stop. Actually, coalescent time here is a type of first passage time. The following is our
main result (see also Theorem 2.1).

Theorem 1.1. Let P(n1,n2)(0,1) and P(n1,n2)(1,0) be the probabilities that the coalescent
process M(t) first reaches (0,1) and (1,0), respectively, given that it starts at (n1, n2),
n1 + n2 = n. Then we have

P(n1,n2)(0,1) =
{

1
2 + 1

2 (1 − 2x)n−1Hn,2(μ), if n1 is even,
1
2 − 1

2 (1 − 2x)n−1Hn,2(μ), if n1 is odd;
(3)

P(n1,n2)(1,0) =
{

1
2 − 1

2 (1 − 2x)n−1Hn,2(μ), if n1 is even,
1
2 + 1

2 (1 − 2x)n−1Hn,2(μ), if n1 is odd,
(4)

where Hn,k(μ) = (n−1)(n−2)···k
(4μ+n−1)(4μ+n−2)···(4μ+k)

.
Furthermore, let T(n1,n2)(0,1) (or T(n1,n2)(1,0)) be the time for the coalescent process M(t)

to first reach (0,1) (or (1,0)), given that it starts at (n1, n2), n1 + n2 = n. Then the
expectations of T(n1,n2)(0,1) and T(n1,n2)(1,0) are given as follows:

E(T(n1,n2)(0,1)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2
n

+ 1
2(xx+2μ)

×(8μ + 1 − (1 − 2x)n−1Hn,2(μ)), if n1 is even,

1 − 2
n

+ 1
2(xx+2μ)

×(8μ + 1 + (1 − 2x)n−1Hn,2(μ)), if n1 is odd;

(5)

E(T(n1,n2)(1,0)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2
n

+ 1
2(xx+2μ)

×(8μ + 1 + (1 − 2x)n−1Hn,2(μ)), if n1 is even,

1 − 2
n

+ 1
2(xx+2μ)

×(8μ + 1 − (1 − 2x)n−1Hn,2(μ)), if n1 is odd.

(6)



1876 Tian and Lin

It is illuminating to consider the formulas of this theorem in the case when x = 1/2. In
this case, the probabilities to first reach (0,1) and (1,0), respectively, are both 1/2. The
mean time to first reach (0,1) is 3 − 2/n, and the mean time to first reach (1,0) is also
3 − 2/n. In general, these quantities depends on parameters x and μ. Furthermore, for
any value of x, the mean time to reach either (0,1) or (1,0) is 2 − 2/n. This quantity is
independent of the mutation rate μ. It is consistent with the assumption that the mutation
process is independent of the coalescent process.

In Section 2, we discuss in detail the colored coalescent process with mutation, and
also mention some interesting questions related to colored coalescent processes with or
without mutation. The technique of lumping turns out to be very important in simplifying
computations involved. The lumping technique can be found in Tian and Kannan (2006).

2. Mutation processes

2.1. The model and some of its basic parameters

We start with the colored coalescent process Z(t). So an individual in each generation can
have two colors, black (B) and white (W ). At the initial stage of the process, each of the n

individuals in the current generation is given a color, B or W . The process then runs as the
standard Kingman coalescent process. When two individuals coalesce, the color of their
common ancestor is determined by (1). In other words, when an individual colored by B

and another individual colored by B coalesce, the probability that their common ancestor
is colored by B is x and colored by W is x := 1 − x. Other situations are interpreted
similarly. Furthermore, non-coalescent individuals will keep their colors unchanged after
a coalescent event. We now consider the situation when the coalescent process Z(t) is
superimposed with a mutation process. In the language of population genetics, we assume
that in the population from which the sample individuals were drawn, the probability
that an individual mutates from one colored (B or W ) to another in a unit time Δt is
μΔt . Furthermore, the mutation processes of different individuals are independent of each
other. Then, in a unit time Δt , the probability that k of the n individuals mutate their color
is
(
n

k

)
(μΔt)k(1 − μΔt)n−k. Ignoring the terms of higher order in Δt , we assume that, in

a unit time Δt , there is only one individual which may mutate its color with probability
μΔt .

A typical way to study the colored coalescent process is to consider a death process
on the lattice points on the plane. Then mutation processes are transitions of states within
each diagonal.

Fix an integer n > 0. Consider a proper subset L of the plane integer lattice:

L = {
(k, l) ∈ Z × Z; k ≥ 0, l ≥ 0,0 < k + l ≤ n

}
.

A point (k, l) ∈ L represents a colored generation of k + l individuals, with the number of
B-colored individuals equal to k, and the number of W -colored individuals equal to l. The
colored coalescent process is a death process on L. The superimposed mutation process
is a Poisson process on the following subsets, Δk , of L:

Δk = {
(0, k), (1, k − 1), (2, k − 2), . . . , (k,0)

}
,
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for k = 1,2, . . . , n.
Let us denote by M(t) the colored coalescent process superimposed with the mutation

process having rate μ on the same state space L. Notice that the states (0,1) and (1,0)

are no longer absorbing states for the process M(t). In fact, M(t) has no more absorbing
states. In order to be able to talk about quantities like coalescent time, we will assume that
once the process M(t) arrives at (0,1) or (1,0) it will stop. The infinitesimal generator
Qμ = (q

μ

ζη) of the process M(t) is given by

q
μ

ζη =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
(
k

2

)
, if η = (k − 2, l + 1), given ζ = (k, l),

x
(
k

2

)+ xkl, if η = (k − 1, l), given ζ = (k, l),

x
(

l

2

)+ xkl, if η = (k, l − 1), given ζ = (k, l),

x
(

l

2

)
, if η = (k + 1, l − 2), given ζ = (k, l),

kμ, if η = (k − 1, l + 1), given ζ = (k, l), k + l > 1,

lμ, if η = (k + 1, l − 1), given ζ = (k, l), k + l > 1 ,

−(k+l

2

)− (k + l)μ, if η = (k, l), given ζ = (k, l),

0, otherwise.

For the process M(t), we are concerned with questions like: What is the coalescent
probability to (1,0) or (0,1), given that the process M(t) starts at a state in Δn? What
is the coalescent time, its mean and its distribution? We may also ask now what is the
sojourn time on each diagonal Δk on average? Our approach to these questions will be
similar to that in our study of the colored coalescent process Z(t) (Tian and Lin, 2005).
So we will be somewhat brief in our discussion.

Let us start with the associated jump chain of the coalescent process M(t).

The “infinitesimal generator” for each Δk is a (k+1)×(k+1) matrix given as follows:

Ak+1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−rk − kμ kμ

μ −rk − kμ (k − 1)μ

2μ −rk − kμ (k − 2)μ

. . .

(k − 1)μ −rk − kμ μ

kμ −rk − kμ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

for k = 2,3, . . . , n, and A2 = I2. Then, the infinitesimal generator Qμ of M(t) can be
written as

Qμ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

An+1 Bn+1,n

An Bn,n−1

. . .
. . .

. . .
. . .

A3 B3,2

A2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Bk+1,k is a k × (k − 1) matrix representing the transition (coalescent event) from
the diagonal Δk−1 = {(l1, l2) ∈ L ; l1 + l2 = k − 1} to the diagonal Δk−2 = {(l1, l2) ∈
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L ; l1 + l2 = k − 2} of L, which is the same as that in the infinitesimal generator Q of the
colored coalescent process Z(t). Then the transition matrix for the associated jump chain
of M(t) is given by

Jμ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
rn+nμ

An+1 + In+1
1

rn+nμ
Bn+1,n

1
rn−1+(n−1)μ

An + In

. . .

. . . 1
r2+2μ

B3,2

I2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Denote

J
μ

0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
rn+nμ

An+1 + In+1
1

rn+nμ
Bn+1,n

1
rn−1+(n−1)μ

An + In

. . .

. . . 1
r3+3μ

B4,3

1
r2+2μ

A3 + I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

then the fundamental matrix of the jump chain is given by Nμ = (I − J
μ

0 )−1. By a direct
matrix computation, we get the matrices in the first row of the block matrix Nμ as follows:

(−1)n−k+1(rk + kμ)A−1
n+1Bn+1,nA

−1
n Bn,n−1 · · ·A−1

k+2Bk+2,k+1A
−1
k+1, (7)

for k = n,n − 1, . . . ,2. We will use these data to calculate the coalescent time and coa-
lescent probability for the process M(t).

For convenience, we start in Δn with an initial distribution π = (π0,π1, . . . , πn),∑n

i=0 πi = 1. If we start at a state (n1, n2), just set πi = δi,n1+1.

Lemma 2.1. Let the coalescent process M(t) start in Δn with an initial distribution π =
(π0,π1, . . . , πn). Denote by Pπ,(0,1) and Pπ,(1,0) the probabilities that M(t) coalesces to
(0,1) and (1,0), respectively. Then

(Pπ,(0,1), Pπ,(1,0)) = (−1)nπA−1
n+1Bn+1,nA

−1
n Bn,n−1 · · ·A−1

4 B4,3A
−1
3 B3,2.

Proof: The absorption probability (first hitting probability) of the Markov process M(t)

is the same as that of its jump chain. The latter can be calculated as

πNμ

⎡
⎢⎢⎢⎣

0
...

0
B3,2

⎤
⎥⎥⎥⎦= (−1)nπA−1

n+1Bn+1,nA
−1
n Bn,n−1 · · ·A−1

4 B4,3A
−1
3 B3,2.

�

Let απ,k = (aπ(0,k), aπ(1,k−1), . . . , aπ(k,0)) be the sojourn coefficient vector of Δk , that
is, each aπ(k1,k2) is the expected number of times that the jump chain Jμ will visit the state
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(k1, k2), k1 + k2 = k, given that it starts with an initial distribution π on Δn. Then we can
compute these sojourn coefficient vectors by using the following lemma.

Lemma 2.2. The sojourn coefficient vector απ,k is given by

απ,k = (−1)n−k+1(rk + kμ)πA−1
n+1Bn+1,nA

−1
n Bn,n−1 · · ·A−1

k+2Bk+2,k+1A
−1
k+1,

where k = 2,3, . . . , n.

Proof: The ζη-entry of the fundamental matrix Nμ is the expected number of times
the jump chain is in the state η, given that it starts at the state ζ , so we get the sojourn
coefficient vector απ,k by picking up the matrix in the first row of the block matrix Nμ

corresponding to states in Δk and multiplying it with the initial distribution π . This is
what we have in the lemma. �

2.2. Parity lumping of the coalescent process M(t)

Similar to the approach in the study of colored coalescent process Z(t), we will also
consider the parity lumping of the mutation superimposed coalescent process M(t). The
calculation for the lumped process M(t) would be simpler and we may use the results to
study the original process M(t).

In order to lump the process M(t), we partition the state space L into diagonals Δm,
m = 1,2, . . . , n, and then divide each Δm into two disjoint subsets, Om and Em. A state
(k, l) ∈ Om when k + l = m and k is odd and (k, l) ∈ Em when k + l = m and k is even.
Let

L = {Om,Em; m = 1,2, . . . , n}.

We define a new Markov process on L by lumping all states in each Om or Em as one state,
or simply taking Om as one state, also Em as one state. The following lemma guarantees
M(t) is lumpable. Let the matrices U and V be matrices for the partition of the state space
as in Tian and Kannan (2006). We first have the following lemma, which can be proved
by a straightforward computation of products of block matrices.

Lemma 2.3. The coalescent process M(t) is lumpable, that is, the infinitesimal generator
of M(t) satisfies V UQμV = QμV.

Next, we consider the jump chain of the lumped coalescent process M(t).

Lemma 2.4. The jumping chain of M(t) has the following transition matrix:

Jμ =

⎡
⎢⎢⎢⎢⎢⎣

Wn+1 Yn+1

Wn Yn

. . .
. . .

W3 Y3

I2

⎤
⎥⎥⎥⎥⎥⎦

,
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where

Wk+1 =
[

0 kμ

rk+kμ

kμ

rk+kμ
0

]
and Yk+1 =

[
xrk

rk+kμ

xrk
rk+kμ

xrk
rk+kμ

xrk
rk+kμ

]

for k = 2, . . . , n.

Droping the last two rows and columns of J
μ

, we get a matrix J
μ

0 . The fundamental
matrix of the jump chain of M(t) is N

μ = (I −J
μ

0 )−1. Set Xk+1 = I2 −Wk+1. The (1, n−
k + 1)th block entry of N

μ
is given by

X−1
n+1Yn+1X

−1
n Yn · · ·X−1

k+2Yk+2X
−1
k+1.

Let us compute the above product of 2 × 2 matrices. First, we have

X−1
k+1Yk+1 = (rk + kμ)2

rk(rk + kμ)

(
1 kμ

rk+kμ
kμ

rk+kμ
1

)(
x x

x x

)
rk

rk + kμ

= 1

rk + 2kμ

(
rk + kμ kμ

kμ rk + kμ

)(
x x

x x

)

= 1

rk + 2kμ

(
xrk + kμ rk + kμ

rk + kμ xrk + kμ

)

= 1

rk + 2kμ
(rkC + kμD) ,

where C = (
x x

x x

)
and D = ( 1 1

1 1

)
. It is easy to see that CD = D = DC, and if C−1 exists,

C−1D = DC−1 = D.
The product of X−1

k+1Yk+1, for k = 2, . . . , n can be calculated as follows:

X−1
n+1Yn+1 · · ·X−1

k+2Yk+2X
−1
k+1

= 1

rn + 2nμ
· 1

rn−1 + 2(n − 1)μ
· · · 1

rk+1 + 2(k + 1)μ

× (rnC + nμD) · · · (rk+1C + (k + 1)μD
)
X−1

k+1

=
(

n∏
i=k+1

iμ

ri + 2iμ
·
(

ri

iμ
C + D

))
X−1

k+1

= μn−k n!
k! Cn−k

(
n∏

i=k+1

1

ri + 2iμ
·
(

ri

iμ
I + D

))
X−1

k+1.
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Denote

Gn,k(z) =
(

z + rn

nμ

)(
z + rn−1

(n − 1)μ

)
· · ·

(
z + rk+1

(k + 1)μ

)

=
(

z + n − 1

2μ

)(
z + n − 2

2μ

)
· · ·

(
z + k

2μ

)
.

We set

Hn,k = Gn,k−1(0)

Gn,k−1(2)
.

In fact, Hn,k = Hn,k(μ) is a function of μ. We have a special function

Hn,k = Hn,k(μ) = (n − 1)(n − 2) · · · k
(4μ + n − 1)(4μ + n − 2) · · · (4μ + k)

.

The product can be expressed in terms of this special function, which is the following
lemma.

Lemma 2.5. The (1, n−k +1)th block entry of the fundamental matrix of the jump chain
of M(t) is given by

X−1
n+1Yn+1X

−1
n Yn · X−1

k+2Yk+2X
−1
k+1

= rk + kμ

2rk

[
1 + (1 − 2x)n−kHn,k 1 − (1 − 2x)n−kHn,k

1 − (1 − 2x)n−kHn,k 1 + (1 − 2x)n−kHn,k

]
.

Proof: This formula is proved by a matrix product computation. We start with the com-
putation of Gn,k(D):

Gn,k(D) =
(

D + rn

nμ
I

)(
D + rn−1

(n − 1)μ
I

)
· · ·

(
D + rk+1

(k + 1)μ
I

)

= Dn +
(

rn

nμ
+ rn−1

(n − 1)μ
· · · rk+1

(k + 1)μ

)
Dn−1 + · · ·

+
(

rn

nμ
· · · rk+2

(k + 2)μ
+ · · · + rn−1

(n − 1)μ
· · · rk+1

(k + 1)μ

)
D

+
(

rn

nμ
· · · rk+1

(k + 1)μ

)
I

=
[

2n−1 +
(

rn

nμ
+ rn−1

(n − 1)μ
+ · · · + rk+1

(k + 1)μ

)
2n−2 + · · ·

+
(

rn

nμ
· · · rk+2

(k + 2)μ
+ · · · + rn−1

(n − 1)μ
· · · rk+1

(k + 1)μ

)]
D

+
(

rn

nμ
· · · rk+1

(k + 1)μ

)
I
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= 1

2

[
2n +

(
rn

nμ
+ · · · + rk+1

(k + 1)μ

)
2n−1 + · · ·

+
(

rn

nμ
· · · rk+2

(k + 2)μ
+ · · · + rn−1

(n − 1)μ
· · · rk+1

(k + 1)μ

)
2

]
D

+
(

rn

nμ
· · · rk+1

(k + 1)μ

)
I

= 1

2

(
Gn,k(2) − Gn,k(0)

)
D + Gn,k(0)I

=
[

Gn,k(2)+Gn,k(0)

2
Gn,k(2)−Gn,k(0)

2
Gn,k(2)−Gn,k(0)

2
Gn,k(2)+Gn,k(0)

2

]
.

So, we have

Cn−kGn,k(D) =
[

1
2 + 1

2 (1 − 2x)n−k 1
2 − 1

2 (1 − 2x)n−k

1
2 − 1

2 (1 − 2x)n−k 1
2 + 1

2 (1 − 2x)n−k

]

×
[

Gn,k(2)+Gn,k(0)

2
Gn,k(2)−Gn,k(0)

2
Gn,k(2)−Gn,k(0)

2
Gn,k(2)+Gn,k(0)

2

]

= 1

2

[
Gn,k(2) + (1 − 2x)n−kGn,k(0) Gn,k(2) − (1 − 2x)n−kGn,k(0)

Gn,k(2) − (1 − 2x)n−kGn,k(0) Gn,k(2) + (1 − 2x)n−kGn,k(0)

]

and

Cn−kGn,k(D)X−1
k+1

= 1

2

rk + kμ

rk(rk + 2kμ)

×
[

(rk + 2kμ)Gn,k(2) + rk(1 − 2x)n−kG(0) (rk + 2kμ)Gn,k(2) − rk(1 − 2x)n−kG(0)

(rk + 2kμ)Gn,k(2) − rk(1 − 2x)n−kG(0) (rk + 2kμ)Gn,k(2) + rk(1 − 2x)n−kG(0)

]
.

Now, we get

X−1
n+1Yn+1X

−1
n Yn · · ·X−1

k+2Yk+2X
−1
k+1

=
(

n∏
i=k+1

1

ri + 2iμ

)
μn−k n!

k!
1

2

rk + kμ

rk(rk + 2kμ)

×
[

(rk + 2kμ)Gn,k(2) + rk(1 − 2x)n−kG(0) (rk + 2kμ)Gn,k(2) − rk(1 − 2x)n−kG(0)

(rk + 2kμ)Gn,k(2) − rk(1 − 2x)n−kG(0) (rk + 2kμ)Gn,k(2) + rk(1 − 2x)n−kG(0)

]

=
(

n∏
i=k

1

ri + 2iμ

)
μn−k+1 n!

k!
1

2

rk + kμ

rk

×
[

Gn,k−1(2) + (1 − 2x)n−kGn,k−1(0) Gn,k−1(2) − (1 − 2x)n−kGn,k−1(0)

Gn,k−1(2) − (1 − 2x)n−kGn,k−1(0) Gn,k−1(2) + (1 − 2x)n−kGn,k−1(0)

]
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= rk + kμ

2rk

⎡
⎣1 + (1 − 2x)n−k Gn,k−1(0)

Gn,k−1(2)
1 − (1 − 2x)n−k Gn,k−1(0)

Gn,k−1(2)

1 − (1 − 2x)n−k Gn,k−1(0)

Gn,k−1(2)
1 + (1 − 2x)n−k Gn,k−1(0)

Gn,k−1(2)

⎤
⎦

= rk + kμ

2rk

[
1 + (1 − 2x)n−kHn,k 1 − (1 − 2x)n−kHn,k

1 − (1 − 2x)n−kHn,k 1 + (1 − 2x)n−kHn,k

]
. �

Let the lumped coalescent process M(t) start in {En,On} with a distribution π =
(πE,πO). The sojourn coefficients at {Ek,Ok} are denoted by (αk,βk). We have

(αk,βk) = (πE,πO)

[
1 + (1 − 2x)n−kHn,k(μ) 1 − (1 − 2x)n−kHn,k(μ)

1 − (1 − 2x)n−kHn,k(μ) 1 + (1 − 2x)n−kHn,k(μ)

]
rk + kμ

2rk

.

Therefore,

αk = rk + kμ

2rk

+ (πE − πO)
rk + kμ

2rk

(1 − 2x)n−kHn,k(μ),

βk = rk + kμ

2rk

+ (πO − πE)
rk + kμ

2rk

(1 − 2x)n−kHn,k(μ).

(8)

Let Pπ,E , Pπ,O be the coalescent probabilities to E1 and O1, respectively, given that
the process starts with the distribution π = (πE,πO).

Lemma 2.6. The coalescent probabilities are given by

(Pπ,E,Pπ,O) = (πE,πO)X−1
n+1Yn+1X

−1
n Yn · · ·X−1

3 Y3

(
x

1+2μ
x

1+2μ
x

1+2μ
x

1+2μ

)
.

In particular, let PE,E be the probability of first reaching E1, given that the process starts
at En, and let other quantities PE,O , PO,E , PO,O be defined similarly. Then we have

PE,E = 1

2
+ 1

2
(1 − 2x)n−1Hn,2(μ), PE,O = 1

2
− 1

2
(1 − 2x)n−1Hn,2(μ),

PO,E = 1

2
− 1

2
(1 − 2x)n−1Hn,2(μ), PO,O = 1

2
+ 1

2
(1 − 2x)n−1Hn,2(μ).

(9)

We now calculate the expectation of the coalescent time for the lumped coalescent
process M(t). Let τk be a random variable distributed exponentially with the mean
(rk + kμ)−1. Recall that the sojourn coefficients αk (respectively, βk) is the expected num-
ber of times that the jump chain of M(t) visits the state Ek (respectively, Ok), given that it
starts with an initial distribution π = (πE,πO) on the initial states {En,On}. To calculate
the expectation of the coalescent time Tπ,E of first reaching the state E1 for the process
M(t), given that it starts with the initial distribution π , we also need to define a random

variable T̃π,E so that E(Tπ,E) = E(T̃π,E). With the same idea as in the study of coalescent
process Z(t) (Tian and Lin, 2005), we define a random variable

T̃π,E =
n∑

k=3

αkτk +
n∑

k=3

βkτk + α̂2
1 + 2μ

x + 2μ
τ2 + β̂2

1 + 2μ

x + 2μ
τ2,
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where α̂2 and β̂2 are sojourn coefficients for the conditional process which is obtained by
deleting the state O1. Since this does not change M(t) too much, we still can use previous
formula to compute those coefficients. Actually, we have

(̂
α2, β̂2

)= (πE,πO)X−1
n+1Yn+1 · · ·X−1

4 Y4

[
1 − 2μ

x+2μ

− 2μ

x+2μ
1

]−1

.

This gives us

α̂2 = [4μ + x + (πE − πO)x(1 − 2x)n−2Hn,2](x + 2μ)

2(xx + 2μ)
,

β̂2 = [4μ + x + (πO − πE)x(1 − 2x)n−2Hn,2](x + 2μ)

2(xx + 2μ)

and

T̃π,E =
n∑

k=3

rk + kμ

rk

τk + 1 + 2μ

2(xx + 2μ)

[
8μ + 1 + (πO − πE)(1 − 2x)n−1Hn,2

]
τ2.

Similarly, we have the random variable T̃π,O which has the same expectation as the
coalescent time Tπ,O . It is given as follows:

T̃π,O =
n∑

k=3

rk + kμ

rk

τk + 1 + 2μ

2(xx + 2μ)

[
8μ + 1 + (πE − πO)(1 − 2x)n−1Hn,2

]
τ2.

Using the Feller relation (see Syski, 1992), we get the following lemma.

Lemma 2.7. The expectations of the coalescent times to E1 and O1, respectively, are

E(Tπ,E) = 1 − 2

n
+ 1

2(xx + 2μ)

[
8μ + 1 + (πO − πE)(1 − 2x)n−1Hn,2(μ)

]

and

E(Tπ,O) = 1 − 2

n
+ 1

2(xx + 2μ)

[
8μ + 1 + (πE − πO)(1 − 2x)n−1Hn,2(μ)

]
.

For the coalescent process M(t) (or equivalently, the lumped coalescent event M(t)),
let us also define ρk to be the parity of a state after the kth coalescent event. That is,
ρk is a random variable which takes the value 0 if the process is in Ek and takes the
value 1 if the process is in Ok in after the kth coalescent event. Then, the distribution
of ρk depends on that of the starting state, i.e. the distribution of ρ0. Suppose the initial
distribution of the parity is π = (πE,πO). When we compute the probability distribution
of ρk , that is, the probabilities that the lumped coalescent process M(t) or its jump chain
first reaches the states En−k and On−k after k coalescent events, we can view these two
states as absorbing states and consider a new Markov process or its jump chain with the
state space {E1,O1,E2,O2, . . . ,En−k,On−k}. Use the same method as in the study of
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the process Z(t), the absorption probabilities, technically called first hitting probabilities,
can be calculated by multiplying the sojourn coefficient vector (αn−k+1, βn−k+1) with the
transition matrix from {En−k+1,On−k+1} to {En−k,On−k} of the jump chain J

μ
. Denote

by Ψπ,k the probability distribution of the parity ρk . Then, we have

Ψπ,k = (αn−k+1, βn−k+1)

[ xrn−k+1
rn−k+1+(n−k+1)μ

xrn−k+1
rn−1+(n−k+1)μ

xrn−k+1
rn−k+1+(n−k+1)μ

xrn−k+1
rn−k+1+(n−k+1)μ

]

= 1

2

(
1 + (πE − πO)(1 − 2x)kHn,n−k(μ),1 + (πO − πE)(1 − 2x)kHn,n−k(μ)

)
.

In particular,

Pr(ρk = 0 |ρ0 = 0) = 1

2
+ 1

2
(1 − 2x)kHn,n−k(μ),

Pr(ρk = 1 |ρ0 = 0) = 1

2
− 1

2
(1 − 2x)kHn,n−k(μ),

Pr(ρk = 0 |ρ0 = 1) = 1

2
− 1

2
(1 − 2x)kHn,n−k(μ),

Pr(ρk = 1 |ρ0 = 1) = 1

2
+ 1

2
(1 − 2x)kHn,n−k(μ).

(10)

2.3. Back to the coalescent process with mutation M(t)

For the parity lumping of the coalescent process M(t), we also have the commutative
diagram

M(t)
jump chain−−−−−→ Jμ

lumping

⏐⏐!
⏐⏐!lumping

M(t)
jump chain−−−−−→ J

μ

as in the study of the process Z(t). Thus, we can get information about M(t) from the
knowledge of the lumped coalescent process M(t), particularly, we can recover certain
parameters for M(t) from the jump chain J

μ
.

We have the fundamental matrix Nμ of the jump chain Jμ and the fundamental matrix
N

μ
of the jump chain J

μ
. Let U0 and V0 be matrices derived from U and V by dropping

the last two rows and columns which correspond to the states (0,1) and (1,0). It is easy
to check that Nμ is lumpable by U0 and V0, that is, V0U0N

μV0 = NμV0. Then we have
N

μ = U0N
μV0. The following is the main theorem of this article.

Theorem 2.1. Let P(n1,n2)(0,1) and P(n1,n2)(1,0) be the probabilities that the coalescent
process M(t) first reaches (0,1) and (1,0), respectively, given that it starts at (n1, n2),
n1 + n2 = n. Then we have

P(n1,n2)(0,1) =
{

1
2 + 1

2 (1 − 2x)n−1Hn,2(μ), if n1 is even,
1
2 − 1

2 (1 − 2x)n−1Hn,2(μ), if n1 is odd;
(11)
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P(n1,n2)(1,0) =
{

1
2 − 1

2 (1 − 2x)n−1Hn,2(μ), if n1 is even,
1
2 + 1

2 (1 − 2x)n−1Hn,2(μ), if n1 is odd.
(12)

Furthermore, let T(n1,n2)(0,1) (or T(n1,n2)(1,0)) be the time for the coalescent process M(t)

to first reach (0,1) (or (1,0)), given that it starts at (n1, n2), n1 + n2 = n. Then the
expectations of T(n1,n2)(0,1) and T(n1,n2)(1,0) are given as follows:

E(T(n1,n2)(0,1)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2
n

+ 1
2(xx+2μ)

×(8μ + 1 − (1 − 2x)n−1Hn,2(μ)), if n1 is even,

1 − 2
n

+ 1
2(xx+2μ)

×(8μ + 1 + (1 − 2x)n−1Hn,2(μ)), if n1 is odd;

(13)

E(T(n1,n2)(1,0)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2
n

+ 1
2(xx+2μ)

×(8μ + 1 + (1 − 2x)n−1Hn,2(μ)), if n1 is even,

1 − 2
n

+ 1
2(xx+2μ)

×(8μ + 1 − (1 − 2x)n−1Hn,2(μ)), if n1 is odd.

(14)

Proof: The absorption probabilities of the jump chains Jμ and J
μ

are calculated from
the matrices

Nμ

⎡
⎢⎢⎢⎣

0
...

0
C

⎤
⎥⎥⎥⎦ and N

μ

⎡
⎢⎢⎢⎣

0
...

0
C

⎤
⎥⎥⎥⎦= U0N

μV0

⎡
⎢⎢⎢⎣

0
...

0
C

⎤
⎥⎥⎥⎦= U0N

μ

⎡
⎢⎢⎢⎣

0
...

0
C

⎤
⎥⎥⎥⎦ ,

respectively. So P(n1,n2)(0,1), for n1 + n2 = n and n1 even, is equal to PE,E . By (9), we get
the desired value for P(n1,n2)(0,1) in this case. All other cases can be obtained similarly.

To compute the coalescent time, we first denote by a(n1,n2)(k1,k2) the sojourn coefficient
of the jump chain Jμ, which is the expect number of times the jump chain Jμ visits the
state (k1, k2), given that it starts at the state (n1, n2), n1 + n2 = n. Since the jump chain
Jμ is lumpable and its lumping is the jump chain J

μ
, we have

∑
k1+k2=k, k1 even

a(n1,n2)(k1,k2) = αk,

∑
k1+k2=k, k1 odd

a(n1,n2)(k1,k2) = βk,

(15)

where αk and βk are the sojourn coefficients of J
μ

corresponding to the expected number
of times J

μ
visits Ek and Ok , respectively, given that it starts with the distribution

π = (πE,πO) =
{

(1,0), if n1 is even,

(0,1), if n1 is odd.
(16)
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Thus, we have

T̃(n1,n2)(0,1) =
n∑

k=3

( ∑
k1+k2=k

a(n1,n2)(k1,k2)

)
τk

+ a(n1,n2)(0,2)

1 + 2μ

x + 2μ
τ2 + a(n1,n2)(2,0)

1 + 2μ

x + 2μ
τ2 + a(n1,n2)(1,1)

1 + 2μ

x + 2μ
τ2

=
n∑

k=3

αkτk +
n∑

k=3

βkτk + α̂2
1 + 2μ

x + 2μ
τ2 + β̂2

1 + 2μ

x + 2μ
τ2

= T̃π,E,

where π is the distribution given by (16). So Lemma 2.7 gives us the desired expectation
of T(n1,n2)(0,1). The calculation of E(T(n1,n2)(1,0)) is exactly the same. �

Corollary 2.1. The random variable

T =
n∑

k=2

αkτk +
n∑

k=2

βkτk

has the same expectation as the random variable of the time that the process M(t) first
reaches either E1 or O1, and which is E(T ) = 2 − 2/n.

The fact that E(T ) is independent of the mutation rate μ is consistent with the as-
sumption that the mutation process is independent of the coalescent process. In general,
by (13) and (14), E(T(n1,n2)(0,1)) and E(T(n1,n2)(1,0)) depend on μ. It is interesting to note
that when x = 1/2, we have E(T(n1,n2)(0,1)) = E(T(n1,n2)(1,0)) = 3 − 2/n. In population ge-
netics, one is interested in the total branch length of the random genealogical tree defined
as

Ttot =
n∑

k=2

k ωk,

where E(ωk) = r−1
k . This is because the number of mutations that are expected to occur

on a random genealogical tree is proportional to

E(Ttot) =
n−1∑
k=2

2

k
≈ 2(γ + logn)

(γ ≈ 0.577216 is the Euler constant), which has important consequences for estimating
the mutation rate, as well as for inferences that depend on estimates of the mutation rate.
In the case when x = 1/2, the expected total branch length of the random genealogical
tree with the root E1 (or O1) can be calculated as

E

( n∑
k=3

k ωk + 4ω2

)
≈ 2(1 + γ + logn).
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2.4. Interesting questions

It is worthwhile to point out that although these colored coalescent processes are purely
mathematical, they come from a variant of the most studied population models, the neutral
Wright–Fisher model. On the other hand, we think that these coalescent processes are
of mathematical interest in their own right. For example, the mean time for the colored
coalescent process with or without mutation to reach either a black root or a white root is
the same as the mean time for the Kingman coalescent process to reach a MRCA. We also
see the mean time for the colored coalescent process with or without mutation to reach a
black root, and the mean time to reach a white root. These three quantities apparently are
not related with each other in a simple way. Such a phenomenon can be compared with a
similar situation of two independent Poisson processes: At an airport, one needs to wait
for a taxi for T1 minutes and for a bus for T2 minutes on average. If the average time one
needs to wait for either a taxi or a bus is T , then we have the simple relation that

1

T
= 1

T1
+ 1

T2
. (17)

For the colored coalescent process, Z(t) or M(t), there is no longer such a simple relation
among the mean time to reach a black root, the mean time to reach a white root, and the
mean time to reach either a black root or a white root. In this setting, we have a Markov
process etQ with two absorbing states, or a persistent cycle with two states. Conditional
on only first reaching one of these two states, we get another two Markov processes etQ1

and etQ2 . Thus we have the mean time T for the process etQ to first reach either these two
states, and the mean time T1 (respectively, T2) for the process etQ1 (respectively, etQ2 ) to
reach its absorbing state. Are these three quantities T , T1 and T2 related in a certain way?
How much (17) is altered for the colored coalescent processes? Can this deviation from
(17) in the colored coalescent processes be attributed to the structure of the random trees
they generate? These are some of the questions about the colored coalescent processes
that we are interested in.
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