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Abstract. A simplified mathematical model of solid tumor regrowth is ana-
lyzed. When the model system is disturbed by radiation and chemotherapy,
which are given by discontinuous functions, the system loses its smoothness.
For the purpose of comparison and verification of therapy efficacy, a weak
solution is constructed. Some suggestions about effective combination of treat-
ments are also given.

1. Introduction. Glioblastoma is the most malignant solid brain tumor; it is usu-
ally fatal. The current standard of care for newly diagnosed glioblastoma is surgical
resection followed by radiotherapy and chemotherapy. In a recent paper [1], Tian
et al introduced a mathematical model to study the efficacy of resection, with the
combination of radiation and chemotherapy on glioblastoma. Their model is a free
boundary problem. To get a sound understanding with detailed analysis, we sim-
plify their partial differential equations (PDEs) system to an ordinary differential
equation (ODE) system. In the ODE system, we are still able to address the tumor
growth in terms of radius of the tumor although we ignore the spatial distribution
of cell densities. By comparing numerical studies of the PDE system and the ODE
systems, there does not seem to be much difference for understanding the growth
pattern.

In the present paper, we study the ODE version of a tumor regrowth model.
Particularly, when the therapy is given by discontinuous functions, we can get ex-
plicit continuous solutions, weak solutions, without using distribution theory. In
section 2, we will briefly describe the model and simplify it. In section 3, we first
give a kind of quasi-stead state analysis for the system without treatments. An
explicit solution is also given for comparison. We then construct a weak solution
to the system with therapies. By concrete computation, we verify the efficacy of
treatments. In section 4, we discuss several points about treatment protocols from
the analysis in section 3.

2. Model description and simplification. It is assumed that the tumor is spher-
ical, and the tumor radius R(t) evolves with time. When taking surgical resection,
the radius is R(0) = R0. In the partial resection, a smaller ball of radius R∗ is re-
moved, while residual tumor cells remain in the region between the two concentric
balls. After surgery, the ball of radius R∗ fills with cerebro-spinal fluid, and the
residual tumor begins to regrow outward.
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The mathematical model describes the tumor regrowing after surgical resection.
The tumor contains tumor cells (x) and necrotic cells (y). The quantity x represents
the number density of tumor cells; the quantity y represents the number density
of necrotic cells. It is assumed that the number density of cells in the tumor is a
constant [2], that is, x + y = number of cells in one mm3, which is 106 [3]. New
tumor cells are produced through proliferation, and they transit to necrotic cells by
lysis. Tumor cells that are near to the expanding surface of the solid tumor receive
more nutrients and proliferate faster than tumor cells that are near the core of the
tumor. For simplicity it is assumed that the proliferation rate, λ, is constant. Also
the rate of cells becoming necrotic, δ, is constant. The necrotic cells are removed
at a constant rate µ.

The proliferation and removal of cells cause a movement of cells within the tumor,
and the velocity field is represented by u(r, t), where r is the distance from a point
to the origin. By mass conservation law,

∂x(r, t)

∂t
+

1

r2

∂

∂r
(r2u(r, t)x(r, t)) = λx(r, t) − δx(r, t), (1)

∂y(r, t)

∂t
+

1

r2

∂

∂r
(r2u(r, t)y(r, t)) = δx(r, t) − µy(r, t). (2)

By adding equations (1) and (2) together, we get an equation for the radial
velocity:

θ

r2

∂

∂r
(r2u) = (λ + µ)x(r, t) − µθ. (3)

The tumor radius evolves according to

dR

dt
= u(R(t), t). (4)

After resection, radiotherapy combined with chemotherapy is administered. The
basic strategy is described by the following two discontinuous functions.

The radiation activity function is

ρ(t) =

{

1 if 6 ≤ t ≤ 12,

0 otherwise.

The chemotherapy drug dosing function is

τ(t) =



















1 if 6 ≤ t ≤ 12,

2 if 12 ≤ t ≤ 20,
8
3 if 20 ≤ t ≤ 40,

0 otherwise.

The radiation kills tumor cells at a rate A, so that the death rate by radiotherapy
is Aρ(t). The drug kills tumor cells at a rate B, thus the killing rate by chemotherapy
treatment is Bτ(t). After including those therapies, the equations 1 and 2 are
replaced by

∂x(r, t)

∂t
+

1

r2

∂

∂r
(r2u(r, t)x(r, t)) = λx(r, t)−δx(r, t)−Aρ(t)x(r, t)−Bτ(t)x(r, t), (5)
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and

∂y(r, t)

∂t
+

1

r2

∂

∂r
(r2u(r, t)y(r, t)) = δx(r, t)+Aρ(t)x(r, t)+Bτ(t)x(r, t)−µy(r, t). (6)

For a complete description of this model, please refer [1]. Now, let’s simplify it,
starting with the case without the therapies.

1

r2

∂

∂r
(r2u(r, t)x(r, t)) =

1

r2

∂

∂r
(r2u(r, t))x(r, t) + u(r, t)

∂x

∂r
,

then,
∂x

∂t
+ u

∂x

∂r
= λx − δx − (

λ + µ

θ
x − µ)x.

¿From velocity equation, we have

∂

∂r
(r2u) = (

λ + µ

θ
x − µ)r2,

and

r2u =

∫ r

R∗

(
λ + µ

θ
x(r, t) − µ)r2dr.

For the boundary,

R2u(R, t) =

∫ R

R∗

(
λ + µ

θ
x − µ)r2dr.

Set
x(r, t) = x(t), y(r, t) = y(t)

then
dx

dt
= (λ + µ − δ)x −

λ + µ

θ
x2,

and

u(R, t) =
1

R2

∫ R

R∗

(
λ + µ

θ
x(t) − µ)r2dr =

R3 − R3
∗

3R2
(
λ + µ

θ
x − µ).

The tumor radius is

dR

dt
= u(R, t) =

R3 − R3
∗

3R2
(
λ + µ

θ
x − µ).

Therefore, we have

dx

dt
= (λ + µ − δ)x −

λ + µ

θ
x2, (7)

dy

dt
= δx −

λ + µ

θ
xy, (8)

dR

dt
=

R3 − R3
∗

3R2
(
λ + µ

θ
x − µ), (9)

and initial conditions, x(0) ≥ 0, y(0) ≥ 0, and R(0) = R0.
Similarly, we have an ODE system with therapies.

dx

dt
= (λ + µ − δ − Aρ(t) − Bτ(t))x −

λ + µ

θ
x2, (10)

dy

dt
= (δ + Aρ(t) + Bτ(t))x −

λ + µ

θ
xy, (11)

dR

dt
=

R3 − R3
∗

3R2
(
λ + µ

θ
x − µ). (12)
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3. Model analysis.

3.1. Nondimensionalization. Since x(t) + y(t) = θ, a constant, we only need to
consider one of them, say x(t). Set x = x

θ
, y = y

θ
, and t = δt, we have

dx

dt
= (

λ + µ

δ
− 1 −

A

δ
ρ(t) −

B

δ
τ(t))x −

λ + µ

δ
x2,

dR

dt
=

R3 − R3
∗

3R2
(
λ + µ

δ
x −

µ

δ
).

Let α = λ+µ
δ

, β = µ
δ
, a = A

δ
and b = B

δ
, and drop the bar over variables, we get

dx

dt
= (α − 1 − aρ(t) − bτ(t))x − αx2, (13)

dR

dt
=

R3 − R3
∗

3R2
(αx − β). (14)

Similarly, we get a nondimensionalized version of the system without treatments,

dx

dt
= (α − 1)x − αx2, (15)

dR

dt
=

R3 − R3
∗

3R2
(αx − β). (16)

3.2. Equilibria, bifurcation, and solutions of the system without therapy.

The non-dimensionalized system without therapy is given by (15) and (16). Since
x(t) and y(t) are number densities of different tumor cell populations, and the
total number density of tumor cells is constant, the tumor volume increasing or
decreasing is because the total number of tumor cells is changing with time. When
x(t) and y(t) reach their equilibrium states, the sign of dR

dt
will not change with

x(t) anymore. If dR
dt

> 0, the radius R(t) will monotonically increase; if dR
dt

< 0,

the radius R(t) will monotonically decrease; if dR
dt

= 0 the radius R(t) also reaches
a stationary state. Therefore, the equilibrium states of cell populations will give us
information about tumor growth pattern. This type of steady states we refer to as
quasi-stead state. A similar method is used in [4]. It is easy to compute equilibria,
bifurcation value for parameter α. We write those results as a theorem. Also see
the bifurcation diagram Figure 1.

Theorem 3.1. The equilibria are x = 0 and x = α−1
α

. The bifurcation values is

α = λ+µ
δ

= 1. When α < 1, x = 0 is stable and x = α−1
α

is unstable. When

α > 1, x = 0 is unstable and x = α−1
α

is stable. The bifurcation diagram consists
of up-moved hyperbolic curve and α axis which intersect at (α, 0) on α − x plane.
The bifurcation point is transcritical bifurcation point.

The origin of the α−x plane is not a bifurcation point since x = 0 is always stable
whenever |α| < 1. So, we can regard the ∞ as an intersection of the hyperbolic
curve and α axis.

When 0 < α < 1, the equilibrium x = α−1
α

has no biological meaning. But, the

x = 0 is a stable equilibrium point, and the radius is R3 = R3
∗

+ (R3
0 − R3

∗
)e−βt

when x = 0. We see the tumor will shrink to R3
∗

as we expect.
When α > 1, the radii are given by R3 = R3

∗
+ (R3

0 − R3
∗
)e−βt and R3 =

R3
∗

+ (R3
0 − R3

∗
)e(α−1−β)t corresponding to x = 0 and x = α−1

α
respectively. The

condition α − 1 − β < 0 means that λ < δ. When α − 1 − β < 0, the tumor radius
will shrink to R3

∗
. This is biologically reasonable, since tumor cell proliferation rate
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Figure 1. The bifurcation diagram in α − x plane, consisting of
the up-moved hyperbolic curve and α axis.

is smaller than tumor cell transition rate. If α− 1−β > 0, that is λ > δ, the tumor
will grow exponentially. If α − 1 − β = 0, λ = δ the tumor will reach a stationary
radius R3

0, and this is stable.
Since the system is partially decoupled, it can be solved explicitly. The solu-

tions are in the following. They are smooth, we use subscript s to denote that in
comparing with weak solutions in next section.

Theorem 3.2. Given initial conditions x(0) and R(0), the solution to the system
of (15) and (16) is given by

xs(t) =
α − 1

α

ke(α−1)t

1 + ke(α−1)t
, R3

s(t) = R3
∗

+
c

1 + k
e−βt +

ck

1 + k
e(α−1−β)t,

where k = αx(0)
α−1−αx(0) , c = R3(0) − R3

∗
.

For any initial conditions 0 ≤ x(0) ≤ 1 and R(0) ≥ R∗, the solution satisfies
0 ≤ xs(t) ≤ 1 and Rs(t) ≥ R∗.

We know the parameter α is positive, so that α−1
α

< 1. From the bifurcation

diagram, when 0 ≤ α−1
α

≤ x(0) ≤ 1, xs(t) will decrease to α−1
α

. When α−1
α

< 0 and

0 ≤ x(0) ≤ 1, xs(t) will decrease to 0. When 0 ≤ x(0) ≤ α−1
α

, xs(t) will increase to
α−1

α
< 1.

From R3
s(t) = R3

∗
+ (R3(0) − R3

∗
)e

∫

t

0
(αx−β)dt, it is easy to see Rs(t) ≥ R∗ if

R(0) ≥ R∗.
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We also can get the same exact information about the tumor regrowth pattern
by analysis these solutions.

3.3. The weak solution to the system with therapies. Most drug treatments
are administered within a finite period of time. Their effects may change the whole
dynamics of the disease system, or may just delay the development of the disease.
Although the asymptotical behavior of the systems with therapies is important for
gaining insight, the behavior with finite time is more important for medical practice.
In [5], they study long-term behavior of drug disturbed systems. For our model here,
we can specifically find weak solutions for the purpose of analysis.

In the system of (13)and (14), the right hand side of (13) is not continuous. We
will construct a weak solution which is continuous, and use it to study the efficacy
of radiation and chemotherapy. We rewrite equation (13) as

dx

dt
=



















(α − 1 − a − b)x − αx2 if 6δ < t ≤ 12δ,

(α − 1 − 2b)x − αx2 if 12δ < t ≤ 20δ,

(α − 1 − 8
3b)x − αx2 if 20δ < t ≤ 40δ,

(α − 1)x − αx2 otherwise.

Given x(0) = x0, we first solve (13) in the interval [0, 6δ]. The solution is

x1(t) =
(α − 1)x0

αx0 + (α − 1 − αx0)e−(α−1)t
, 0 ≤ t ≤ 6δ.

We then solve it in the interval [6δ, 12δ]. Denote the solution by x2(t), then initial
condition is x2(6δ) = x1(6δ). The solution is given by

x2(t) =
α − 1 − a − b

α

k2e
(α−1−a−b)(t−6δ)

1 + k2e(α−1−a−b)(t−6δ)
, 6δ ≤ t ≤ 12δ,

where k1 = αx0

α−1−αx0
and k2 = (α−1)k1e6(α−1)δ

α−1−a−b−k1(a+b)e6(α−1)δ . Similarly, we get

x3(t) =
α − 1 − 2b

α

k3e
(α−1−2b)(t−12δ)

1 + k3e(α−1−2b)(t−12δ)
, 12δ ≤ t ≤ 20δ,

where k3 = (α−1−a−b)k2e6(α−1−a−b)δ

α−1−2b+k2(a−b)e6(α−1−a−b)δ ;

x4(t) =
α − 1 − 8

3b

α

k4e
(α−1− 8

3 b)(t−20δ)

1 + k4e
(α−1− 8

3 b)(t−20δ)
, 20δ ≤ t ≤ 40δ,

here k4 = (α−1−2b)k3e8(α−1−2b)δ

α−1− 8
3 b− 2

3 bk3e8(α−1−2b)δ ; and

x5(t) =
α − 1

α

k5e
(α−1)(t−40δ)

1 + k5e(α−1)(t−40δ)
, t ≥ 40δ,

where k5 =
(α−1− 8

3 b)k4e
20(α−1− 8

3
b)δ

α−1+ 8
3 bk4e

20(α−1− 8
3

b)δ
. The solution made up of those five pieces can

also been extended to −∞. However, it is not necessary for our biological study.
We denote this solution by xw(t).

Correspondingly, we derived a solution of (14) as follows.

R3
1(t) = R3

∗
+

c1

1 + k1
e−βt +

c1k1

1 + k1
e(α−1−β)t, 0 ≤ t ≤ 6δ,
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where c1 = R3(0) − R3
∗
. For 6δ ≤ t ≤ 12δ,

R3
2(t) = R3

∗
+

c2

1 + k2
e−β(t−6δ) +

c2k2

1 + k2
e(α−1−a−b−β)(t−6δ),

where c2 = c1

1+k1
e−6βδ + c1k1

1+k1
e6(α−1−β)δ. For 12δ ≤ t ≤ 20δ,

R3
3(t) = R3

∗
+

c3

1 + k3
e−β(t−12δ) +

c3k3

1 + k3
e(α−1−2b−β)(t−12δ),

where c3 = c2

1+k2
e−6βδ + c2k2

1+k2
e6(α−1−a−b−β)δ. For 20δ ≤ t ≤ 40δ,

R3
4(t) = R3

∗
+

c4

1 + k4
e−β(t−20δ) +

c4k4

1 + k4
e(α−1− 8

3 b−β)(t−20δ),

where c4 = c3

1+k3
e−8βδ + c3k3

1+k3
e8(α−1−2b−β)δ. When t ≥ 40δ,

R3
5(t) = R3

∗
+

c5

1 + k5
e−β(t−40δ) +

c5k5

1 + k5
e(α−1−β)(t−40δ),

where c5 = c4

1+k4
e−20βδ + c4k4

1+k4
e20(α−1− 8

3 b−β)δ. We denote this solution by Rw(t).
We then state it as a theorem.

Theorem 3.3. For any initial conditions 0 ≤ x(0) ≤ 1 and R(0) ≥ R∗, the system
of (13)and (14) has a unique weak solution given by xw(t), Rw(t) for t ≥ 0. xw(t)
and Rw(t) are continuous, and 0 ≤ xw(t) ≤ 1 and Rw(t) ≥ R∗.

For the biologically meaningful values of the parameters, it is required that a ≥ 0,
b ≥ 0, α > 0. And we require α − 1 − a − b ≥ 0. From the bifurcation diagram
Figure 1, 0 ≤ x1(t) ≤ 1. So, 0 ≤ x2(6δ) ≤ 1. If 0 ≤ α−1−a−b

α
≤ x2(6δ), then

0 ≤ α−1−a−b
α

≤ x2(t) ≤ 1 since α−1−a−b
α

is a stable equilibrium point for the

equation dx
dt

= (α − 1 − a − b)x − αx2. If α−1−a−b
α

≤ 0, 0 ≤ x2(t) ≤ 1 since 0 is a
stable equilibrium point. Similarly, 0 ≤ x3(t) ≤ 1, 0 ≤ x4(t) ≤ 1, and 0 ≤ x5(t) ≤ 1.
Thus, 0 ≤ xw(t) ≤ 1. It is easy to see Rw(t) ≥ R∗.

¿From the construction of the solution, we know xw(t) and Rw(t) are continuous.
The uniqueness still refer to classical meaning. It then is obvious.

With those assumptions about parameter values and the same initial condition,
by computation and comparison, we have another theorem.

Theorem 3.4. xs(12δ) > xw(12δ), xs(20δ) > xw(20δ), xs(40δ) > xw(40δ);
Rs(12δ) > Rw(12δ), Rs(20δ) > Rw(20δ), Rs(40δ) > Rw(40δ).

This verifies that radiation (represented by parameter a) and chemotherapy (rep-
resented by parameter b) have suppression effect on tumor growth.

We also want to compare efficacy of radiation and that of chemotherapy. Let
xa(t) and Ra(t) be the tumor cell density and the tumor radius when only radiation
therapy is administered, and xb(t) and Rb(t) be the tumor cell density and the
tumor radius when only chemotherapy is administered. Then, we have a comparison
theorem.

Theorem 3.5. α−1−a
α−1−b

≤ xa(t)
xb(t)

≤ 1 and
R3

a
(t)−R3

∗

R3
b
(t)−R3

∗

≤ α−1−b
αx0

e−(a−b)t.

The proof is a computation by using a weak solution. Let start the therapy at
t = 0 when tumor has already grown a certain period of time after resection. Then,
xa(t)
xb(t)

= α−1−a
α

kae(α−1−a)t

1+kae(α−1−a)t
α

α−1−b
1+kbe(α−1−b)t

kbe(α−1−b)t , where ka and kb are coefficients

determined by initial conditions. We can take a limit for this ratio although it is
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valid within a finite period of time. Since α − 1 − a ≥ 0, α − 1 − b ≥ 0, and a ≤ b,

this ratio is decreasing, and we have xa(t)
xb(t)

≥ α−1−a
α−1−b

. Since two therapies start at

the same initial condition, the ratio is one at the initial time.
Since α− 1− a ≥ 0, α− 1− b ≥ 0, and a ≥ b, so α− 1− b ≥ a− b. We therefore

have the following estimate.

R3
a(t) − R3

∗

R3
b(t) − R3

∗

= (
c

1 + ka

e−βt +
cka

1 + ka

e(α−1−a−β)t) ÷ (
c

1 + kb

e−βt +
ckb

1 + kb

e(α−1−b−β)t)

≤ (
c

1 + ka

e−(α−1−b)t +
cka

1 + ka

e−(a−b)t) ÷
ckb

1 + kb

≤
1 + kb

kb

e−(a−b)t =
α − 1 − b

αx0
e−(a−b)t.

¿From this theorem, We may conclude that the efficacy of radiotherapy and
efficacy of chemotherapy on tumor cells can be measured by the ratio of the number
densities of tumor cells, which is bigger than α−1−a

α−1−b
. The efficacy of radiotherapy

and efficacy of chemotherapy on tumor growth in terms of the tumor radius can
be measured by the ratio of the R3 − R3

∗
, which is smaller than α−1−b

αx0
e−(a−b)t.

Therefore, radiation has much profound effect on tumor growth.

4. Discussion. ¿From the computation of the solution xw(t) and Rw(t), if the
initial value α−1

α
< x0 < 1, the lowest value of x that can be reached by these two

therapies is in between α−1−a−b
α

and
α−1− 8

3 b

α
, we also suppose radiation parameter

a is bigger than 5
3b. The tumor will eventually grow again until it reaches a fatal

size.
If we take a risk to increase radiation amount, namely increase the parameter

a value, such α − 1 − a − b is almost zero or even negative, we have a chance to
kill all tumor cells within some finite period of time. For example, we can have
xw(mδ) = 0 for some m. Then, there will not be a source for the increasing of the
radius Rw(t). Rather, the regrowth will stop after a delayed period of time.

Since the chemotherapy only has very small effect on tumor growth comparing
with radiotherapy, only has 1 to 10 percent efficacy of radiation treatment [6], it
can not change the dynamics of the system. However, if we first use chemotherapy
with different protocols to gradually bring down the tumor cell density x(t) from
the initial value x0, and then use radiation, radiation will sharply decrease the x

value. The lowest value of x(t) can certainly be reached.
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