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We discuss some ways to generalize their construction. One of these gives representations
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1. Introduction

The braid group Bn is the group with presentation

〈σ1, . . . , σn−1 |σiσj = σjσi if |i − j| > 1, σiσjσi = σjσiσj if |i − j| = 1〉.
It has a rich and interesting representation theory [2] [3].

D. D. Long, in joint work with J. Moody, gave a construction that inputs a
representation of a certain semidirect product Fn � Bn and outputs a new repre-
sentation of Bn. At first this construction may not sound useful, since its input
seems to be harder to come by than its output. However there are at least two
factors in its favor. First, the output seems to be in some sense more sophisticated
than the input. For example, one can start with a one dimensional representation
and obtain the Burau representation. Second, the semidirect product Fn � Bn is
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a subgroup of Bn+1. Thus one can recursively apply the algorithm to construct a
sequence of increasingly complicated representations of Bn for all n.

Let Fn be the free group 〈g1, . . . , gn〉. There is a well known action of Bn on Fn,
which gives rise to a semidirect product Fn � Bn. This requires an arbitrary choice
of convention. In this paper, the relations are as follows.

• gi+1σi = σigi,
• giσi = σigigi+1g

−1
i ,

• gjσi = σigj if j �∈ {i, i + 1}.

The following is Theorem 2.1 in [9], which Long credits to be a joint work with
Moody.

Theorem 1.1. Given a representation ρ : Fn � Bn → GL(V ) we may construct a
representation ρ+ : Bn → GL(V ⊕n).

The method of construction can be summarized as follows. The representation
ρ determines a system of local coefficients on the n-times punctured disk Dn. The
first cohomology of Dn with these local coefficients then turns out to be isomorphic
to V ⊕n. The braid group Bn is the mapping class group of Dn, so it has a natural
induced action on this vector space. For details, see [9].

Long also describes how to explicitly compute the matrices for ρ+ in terms of
the matrices for ρ. In this paper we will only use this more concrete (but less well
motivated) definition.

In Section 2, we give a proof of Theorem 1.1. In Section 3, we generalize the
Long-Moody construction to subgroups of Bn. We then discuss important special
cases of this construction. In Section 4, we apply the construction to the pure braid
group Pn, obtaining the Gassner representation as a special case. In Section 5,
we describe how these methods can be used to obtain Lawrence’s representations.
These are of interest because they contain all representations of the Hecke algebra.
Finally, in Section 6, we give the “reduced” version of the Long-Moody construction.

For convenience, we will work with finite dimensional representations over the
field C. The construction works equally well for infinite dimensional representations,
and for representations over any field or commutative ring.

Note that, while the main results of this paper are stated as Theorems and
Corollaries and so on, they are really constructions. Taken literally, a statement of
the form “Given one representation, we may construct another representation” is
trivial. Of course, the interesting thing is the method of construction.

2. The Universal Long-Moody Representation

The aim of this section is to give a proof of Theorem 1.1. Our proof is not exactly
new, but it does make explicit an idea that is implicit in [9]. This is the idea of a
representation we call the “universal Long-Moody representation”.
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Proof of Theorem 1.1. Recall that we are given a representation ρ : Fn � Bn →
GL(V ), and must construct a representation ρ+ : Bn → GL(V ⊕n). First we define
the “universal Long-Moody representation” of Bn. This is a homomorphism from
Bn to the group of invertible n by nmatrices with entries in the group ring of
Fn � Bn.

Let Fn �Bn be the semidirect product as defined earlier. Let Z[Fn �Bn] denote
the group ring of this group. For i = 1, . . . , n − 1, let Ri be the following two by
two matrix with entries in Z[Fn � Bn].

Ri =
[

0 gi

1 1 − gi

]
.

This is invertible.

R−1
i =

[
(1 − g−1

i ) 1
g−1

i 0

]
.

Let φ be the following homomorphism from Bn to the group of invertible n by
n matrices with entries in Z[Fn � Bn].

φ(σi) = σi


 Ii−1

Ri

In−i−1


 .

Here, Ii−1 and In−i−1 are the appropriately sized identity matrices, and σi acts on
the matrix by scalar multiplication on the left.

It remains to check that φ satisfies the braid relations. The most difficult is the
braid relation

φ(σi)φ(σi+1)φ(σi) = φ(σi+1)φ(σi)φ(σi+1)

One can verify this by direct calculation, using the relations in Fn � Bn.
Having defined φ, it is now easy to construct ρ+. Choose a finite basis for V .

(This is not strictly necessary - we leave it to the reader to fill in the details when
V is infinite dimensional.) The image of ρ now consists of square matrices. For any
β ∈ Bn, let ρ+(β) be the block matrix obtained by applying ρ to each entry of
φ(β). This is an element of GL(V ⊕n), as required.

The simplest nontrivial example of this construction is stated in the following
proposition.

Proposition 2.1. If ρ : Fn � Bn → C∗ is a one dimensional representation then
ρ+ : Bn → GL(n,C) is the unreduced Burau representation, up to specializing and
rescaling.

Proof. Suppose ρ : Fn � Bn → C∗ is a one dimensional representation. The gen-
erators σi of Bn are all conjugate to each other, so must all be mapped to the same
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value s ∈ C∗. Similarly, the generators gi are all conjugate to each other in Fn �Bn,
so must all be mapped to the same value t ∈ C∗. Then

ρ+(σi) = s




Ii−1

0 t

1 1 − t

In−i−1


 .

This is the familiar matrix of the unreduced Burau representation, rescaled by a
factor of s.

3. The Long-Moody Construction for Subgroups of Bn

Suppose G is a subgroup of Bn. Then Fn � G is a subgroup of Fn � Bn. The aim
of this section is to prove the following theorem.

Theorem 3.1. Given a subgroup G of Bn and a representation ρ : Fn � G →
GL(V ), we may construct a representation ρ+ : G → GL(V ⊕n).

The construction is the same as that of Long and Moody. Given an element
β ∈ G, we let ρ+(β) be the result of applying ρ to each of the entries in the matrix
φ(β). We need only check that these entries lie in the domain of ρ. Thus it remains
only to prove the following lemma.

Lemma 3.2. If β ∈ Bn then every entry of the matrix φ(β) is of the form aβ for
some a ∈ Z[Fn].

Proof. Write β as a word in the generators σi. Recall that φ(σi) is the scalar σi

times a matrix with entries in Z[Fn]. Thus φ(β) is a product of terms, each of which
is either a scalar σ±1

i or a matrix with entries in Z[Fn]. The product of the terms
σ±1

i in this product, taken in order, is equal to β.
Observe that if A is any matrix with entries in Z[Fn] and σi is a generator of

Bn then σiA is equal to A′σi for some matrix A′ with entries in Z[Fn]. To see
this, apply the relations of Fn � Bn to each term in each entry of A. By using
this observation repeatedly, we can move the terms σ±1

i to the right of the product
expression for φ(β). We obtain an expression of the form Aβ, where A is a matrix
with entries in Z[Fn].

4. The Gassner Representation

Let Pn denote the pure braid group. The aim of this section is to prove the following
theorem.

Theorem 4.1. Given a representation ρ : Pn+1 → GL(V ) we may construct an n

parameter family of representations ρ+
t1,...,tn

: Pn → GL(V ⊕n).

Long achieved a similar result by different methods in [7] and [8]. The con-
struction there uses an action of the braid group by diffeomorphisms on a certain
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representation variety. To obtain a linear representation, he takes the derivative of
this action at any point that is fixed by the action of Bn, or Pn. Long was most
interested in the Gassner representation, but the approach is quite general, and
could give a result similar to Theorem 4.1.

Our construction is more along the lines of [9], especially the following theorems,
which are [9, Theorem 2.4] and [9, Corollary 2.6] respectively.

Theorem 4.2. Given a representation ρ of Bn+1, we may construct a new repre-
sentation ρ+ of Bn.

Theorem 4.3. Given a representation ρ of Fn � Bn, we may construct a one
parameter family of representations ρ+

t of Bn.

The first follows immediately from the fact that Fn �Bn is a subgroup of Bn+1.
The second uses ρ to define a one parameter family of representations ρt of Fn�Bn,
and then applies the Long-Moody construction to these. The representations ρt are
just “rescalings” of ρ, but the resulting family of representations ρ+

t is often more
interesting than ρ+.

To prove Theorem 4.1, we apply the same ideas in the context of the pure braid
group.

Proof of Theorem 4.1. Let Fn be the subgroup of Pn+1 consisting of all braids
in which the first n strands are straight. This is the free group with generators

gi = (σn . . . σi+1)σ2
i (σn . . . σi+1)−1.

Let Pn be a subgroup of Pn+1 in the usual way. It is well known that Pn and Fn

together generate Pn+1. Indeed, Pn+1 is isomorphic to the subgroup Fn � Pn, of
our semidirect product Fn � Bn.

Fix t1, . . . , tn ∈ C∗. Let ρt1,...,tn : Pn+1 → GL(V ) be the representation such
that

ρt1,...,tn(gi) = tiρ(gi)

for any of the generators gi of Fn, and

ρt1,...,tn(β) = ρ(β)

for any β ∈ Pn.
To see that ρt1,...,tn is well defined, note that if β ∈ Pn and i ∈ {1, . . . , n} then

βgiβ
−1 = wgiw

−1

for some w ∈ Fn. These relations determine the semidirect product structure of
Pn+1, and they are preserved by ρt1,...,tn .

Now simply apply Theorem 3.1 to ρt1,...,tn to obtain the desired representation
of Pn.
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As an example, we compare the results of Theorems 4.3 and 4.1 when ρ is the
trivial representation. If ρ is the trivial representation of Fn �Bn then Theorem 4.3
gives the unreduced Burau representation ρ+

t of Bn (by Proposition 2.1). If ρ is the
trivial representation of Pn+1 then ρ+

t1,...,tn
is the unreduced Gassner representation

of Pn.
For more sophisticated examples, we could think of Theorem 4.1 as giving a

“Gassner” version of representations of Bn other than the Burau representation.

5. Lawrence’s Construction

The Hecke algebra is a certain quotient of the group algebra CBn. For our purposes,
a representation of the Hecke algebra is any representation ρ of Bn such that the
matrices ρ(σi) all satisfy a quadratic relation. Such representations are the subject
of a large body of ongoing research [10] [1].

The following proposition suggests a connection between the representation φ

from Section 2 and representations of the Hecke algebra.

Proposition 5.1. (φ(σi) + σigiI)(φ(σi) − σiI) = 0.

This can be checked by direct calculation. However it does not qualify as a
representation of the Hecke algebra, since the “scalars” of this quadratic relation
lie in a non-commutative ring.

By rescaling, it suffices to consider representations of Bn that satisfy

(ρ(σi) + qI)(ρ(σi) − I) = 0

for some q ∈ C∗. For generic values of q, such representations of Bn can be enu-
merated by the partitions of n. In [5], Lawrence gives a topological construction of
the representations of the Hecke algebra that correspond to partitions of n of the
form (n − m, m). This was generalized to all partitions in [6].

In [9, Corollary 2.10], Long describes how his construction can be used to parallel
that of [5]. The methods in this section are intended to parallel those of [6] (which
had not appeared at the time of [9]). We will not prove any concrete connection. To
do that would require a thorough treatment of the homological details behind the
Long-Moody construction. Instead, this section could be viewed as a self contained
description of a way to construct representations of the Hecke algebra.

Let Bn,m denote the set of braids in Bn+m such that the first n nodes at the
bottom are connected to the first n nodes at the top, and (hence) the last m nodes
at the bottom are connected to the last m nodes at the top. This is generated by

σ1, . . . , σn−1, σ
2
n, σn+1, . . . , σn+m−1.

Lemma 5.2. Given a representation ρ : Bn,m+1 → GL(V ), we may construct a
representation ρ+ : Bn,m → GL(V ⊕(n+m)).

Proof. Let Bn,m be a subgroup of Bn,m+1 in the obvious way. Let Fn+m be the
set of braids in Bn,m+1 such that the first n + m strands are straight. This is the
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free group with generators

gi = (σn+m . . . σi+1)σ2
i (σn+m . . . σi+1)−1.

Then Bn,m and Fn+m together generate a subgroup Fn+m � Bn,m of Bn,m+1. The
result now follows from Theorem 3.1.

Theorem 5.3. Given a representation ρ : Bm → GL(V ), we may construct a
one parameter family of representations ρ+

q : Bn → GL(V ⊕k), where q ∈ C∗ and
k = (n + m − 1)(n + m − 2) . . . (n + 1)(n).

Proof. Suppose we are given ρ : Bm → GL(V ) and q ∈ C∗. Let ρ′ : Bn,m →
GL(V ) be the representation such that

• ρ′(σi) = 1 for i = 1, . . . , n − 1,
• ρ′(σ2

n) = q,
• ρ′(σn+i) = ρ(σi) for i = 1, . . . , m − 1.

Now apply Lemma 5.2 to ρ′ recursively m times to obtain the desired representation
of Bn.

For example, suppose ρ is the one dimensional representation of B2 given by
ρ(σ1) = t, where t ∈ C∗. Then ρ+

q is the Lawrence-Krammer representation [5] [4].
By analogy to [6], we expect the representation ρ+

q to be especially interesting
in when

(ρ(σi) − q−1I)(ρ(σi) − I) = 0.

However Lawrence still has to do some more work to obtain a representation of
the Hecke algebra as a subrepresentation of ρ+

q . Rather than try to imitate this
in our purely algebraic setting, we give an alternative construction that gives a
representation of the Hecke algebra directly.

Theorem 5.4. Given m ≤ n and a representation ρ : Bm → GL(V ), we can
construct a representation ρ+ : Bn → GL(V ⊕ . . .⊕V ), where there are

(
n
m

)
copies

of V in the direct sum. If ρ satisfies the relation (ρ(σi) + qI)(ρ(σi) − I) = 0 then
so does ρ+.

Proof. We start by constructing a “universal” Lawrence representation. Let 〈q〉
denote the infinite cyclic group generated by a formal variable q. Our universal
Lawrence representation will be a homomorphism φ from Bn to the group of invert-
ible

(
n
m

)
by

(
n
m

)
matrices with entries in Z[〈q〉 × Bm]. Enumerate the rows and

columns of this matrix by basis vectors ea1,...,am for 1 ≤ a1 < . . . < am ≤ n.
To make the definition more readable, we first fix some notation. Let a denote

a sequence of the form a1, . . . , aj , where 1 ≤ a1 < . . . < aj < i. Let b denote a
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sequence of the form b1, . . . , bk, where i + 1 < b1 < . . . < bk ≤ n. In each of the
following, assume that j and k are such that the length of the whole sequence is n.

φ(σi)(ea,b) = ea,b

φ(σi)(ea,i,b) = ea,i+1,b

φ(σi)(ea,i+1,b) = qea,i,b + (1 − q)ea,i+1,b

φ(σi)(ea,i,i+1,b) = σj+1ea,i,i+1,b.

We must check that φ satisfies the braid relations, so that it gives a well defined
representation of Bn. This is done by direct computation and checking cases. We
will only describe some special cases that give a flavor of the general proof.

If m = 0 then φ is the trivial representation.
If m = 1 then φ is the unreduced Burau representation.
If m = n then φ maps each braid β to the one by one matrix [β].
Finally, consider the case m = 2 and n = 3. The matrices for φ with respect to

the basis (e2,3, e1,3, e1,2) are as follows.

φ(σ1) =


 1 − q 1 0

q 0 0
0 0 σ1


 ,

φ(σ2) =


σ1 0 0

0 1 − q 1
0 q 0


 .

One can check that these matrices satisfy the braid relation ABA = BAB.
To prove that φ satisfies the braid relations in general, we can break down the

image into blocks, each of which resembles one of the above cases.
Having defined φ, we can define the specific representation ρ+ in the same way

as we did for the Long-Moody construction. First choose a basis for V , and an
ordering for our basis vectors ea1,...,ak

. The images of ρ and φ can then be written
as square matrices. Given β ∈ Bn, let ρ+(β) be the block matrix obtained by
applying ρ to each entry of φ(β) and substituting a value q ∈ C∗.

By some further computation and checking of cases, every nonzero entry of the
matrix

(φ(σi) + qI)(φ(σi) − I)

is of the form

(q + σj)(1 − σj)

for some j. Now suppose ρ satisfies the relation

(ρ(σi) + qI)(ρ(σi) − I) = 0.

If we apply ρ to each entry of (φ(σi)+qI)(φ(σi)−I) then we obtain the zero matrix.
Thus ρ+ satisfies the same quadratic relation as ρ.
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6. The Reduced Long-Moody Construction

The unreduced Burau representation obtained in Proposition 2.1 is reducible. It is
the direct sum of a one dimensional representation with the reduced Burau repre-
sentation. In [9, Theorem 2.11], Long shows that this happens in general. We record
here how to compute the “reduced” version of the Long-Moody construction.

For i = 1, . . . , n − 1, let Si be the following three by three matrix with entries
in Z[Fn � Bn].

Si =


1 gi 0

0 −gi 0
0 1 0


 .

This is invertible.

S−1
i =


 1 1 0

0 −g−1
i 0

0 g−1
i 1


 .

Let φr be the following homomorphism from Bn to the group of invertible n−1
by n − 1 matrices with entries in Z[Fn � Bn].

φr(σi) = σi


 Ii−2

S

In−i−2


 .

If i is 1 or n − 1 then part of S is “cut off” by the edge of the matrix. In other
words,

φr(σ1) = σ1


−g1 0

1 1
In−3


 ,

φr(σn−1) = σn−1


 In−3

1 gn−1

0 −gn−1


 .
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