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Abstract

In this paper, we present a computational mathematical model to investigate the efficacy of tumor virotherapy using
oncolytic viruses. A numerical algorithm, which is stable and second-order accurate, is developed to compute the growth
of the tumor. Results from the numerical simulation have matched the experimental measurements, and validated the sig-
nificance of the oncolytic viral therapy. Moreover, our numerical results suggest that this therapy can be further improved
by increasing the burst size of viruses and using cyclophosphamide (CPA) treatments.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Oncolytic viruses have been providing a promising way for tumor treatment. Such viruses infect tumor cells
and replicate inside them, without harming healthy normal cells, and eventually cause lysis. The newly formed
viruses during lysis then spread throughout the tumor and infect other tumor cells. Although much progress
has been made in both the theoretical study and clinical trials of oncolytic viruses [6,8,12,22,23], this therapy,
unfortunately, has not yet met its expectations. One main reason for the degeneration of its efficacy is due to
the innate immune response. It has been manifested that the immune system can destroy both the viruses and
infected tumor cells [4].

Fulci et al. [10] recently reported experimental results of the oncolytic viral therapy on brain tumors in rats.
It was found that although the viruses can significantly extend the rats’ lives (up to 50%), the innate immune
system inhibits the oncolysis and enables the tumors to grow, eventually killing the rats. Based on the exper-
imental results, Friedman et al. [9] proposed a mathematical model to study the efficacy of tumor virotherapy,
taking into account the immune response. The formulation consists of a non-linear PDE system in a spherical
domain with a moving boundary, together with suitable boundary and initial conditions. This model appears
to be a good representation of the complicated biomedical process, and allows a comprehensive study of
the interaction between the tumor cells, oncolytic viruses and immune system. Since the problems is strongly
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non-linear, it is impossible to find analytic solutions. Hence, numerical simulation offers an excellent way to
analyze the model and improve our understanding of the fundamental mechanism involved.

In this paper, we numerically study the tumor virotherapy model originally developed in [9]. After a brief
introduction of the mathematical formulation, the numerical algorithm is presented, with sufficient details
given separately in Appendix. Then, results from the numerical simulation are described and two possible
approaches to improve the oncolytic virotherapy are discussed. Finally, a summary is made for the main
results of this study and some possible generalizations are mentioned.

2. Mathematical formulation

The equations presented in the current paper are slightly different from those in [9] in that we use a partially
non-dimensionalized form. We consider a spherical tumor. Let X, Y, Z and N be the volume fractions of unin-
fected tumor cells, infected tumor cells, immune cells and dead tumor cells, respectively. Since the total cell
density is normally a constant, we have

X+Y+Z+N=1. (1)

Eq. (1) enables us to drop one variable, N. In addition, we denote V' the density of free virus particles, U the
cell velocity and R the moving boundary of the tumor.

We assume spherical symmetry in this study, and let p be the radial distance from the tumor center. The
motion of all the cells is governed by a convection field in the radial direction. The virus particles, in contrast,
undergo a diffusion process since a virus particle (with a typical diameter of 1.3 x 10~* mm) is much smaller
than a cell (with a typical diameter of 1.0 x 1072 mm). As a result, we obtain
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where 0 < p < R(#), t > 0 and where ¢ is the temporal variable. In this model, p and ¢ are dimensional quan-
tities and thelr units are millimeter and hour, respectively. The parameter values of A, §,k,0,s,w, D, ko,y and u
are given in Table 1. Among these parameters, A,J,w, D, u have been reliably determined, based on experimen-
tal data [10] and commonly accepted values [3,7,13,15,17]. The parameters k, s, ko, y were first estimated rather
crudely from the experiments [10], then were determined, through trial and error, in matching the numerical
results with the experimental ones for the volume fractions of the cells and the growth rate of the tumor.
Finally, the parameter f§ is proportional to the burst size of viruses, 5. Indeed f§ = 0.07b, where b = 50 for
the virus hrR3 used by Fulci et al. [10]. The value of » measures the number of new viruses per one infected
cell, and is highly virus-dependent. We will explore the effects of different burst sizes in our numerical study.
The moving boundary R(¢) satisfies the kinematic condition
dR(¢
PO~ viray.. Q

Table 1
The values of the parameters in Egs. (2)—(6)

Parameter A p k s w D 0 ko
value 2.0 35 2.0 56 20 3.6 5.6 1.0 2.5 2.1
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At the tumor center, the spherical symmetry requires

U(0,/) =0 and a—V(O,t) =0. (8)
op
Meanwhile, we require the virus particles do not cross the boundary [8,14,20]. Hence,
ov
—(R(t),t) = 0. 9
5, (R0 ©)

3. Numerical algorithm

The presence of a moving boundary R(#) makes direct design of numerical methods difficult. To overcome
this difficulty, we map the moving boundary into a fixed one by introducing a new coordinate,

oL (10)

R
Consequently, the original Egs. (2)—(6) are transformed to
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where 0 <r <1, 1> 0, and where R = ‘fi—’f. The expressions on the right-hand sides are given by
Fi=)X — pVX — FX,
Fy, = VX —kYZ — 0Y — FY,
Fy =sYZ —wZ? — FZ,
Fy=0Y —koVZ — vV,
Fs=F,

where
F=)X—pu(l =X —Y —2)+sYZ —wZ"
The boundary conditions (7)—(9) become

dr(r)
T_U(Lt)a (16)
U(0,1) = 0, (17)
ov ov

5. (0.0=0 and —(1,1)=0. (18)

In order to start the numerical simulation, we also need to specify the initial values of these variables. They
are given in such a way as to match the experimental conditions [10]. In particular, a Gaussian distribution
is used to represent the initial profile of the viruses, which were injected into the center of the tumor in the

experiment.
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R(0) =2 mm, (19)
2 1 2
V(r,0) = aef%, where a/ Ped dr= 0.45, (20)
0
X(r,0)=0.84, Y(r,0)=0.10, Z(r,0) = 0.06. (21)

Based on the mapped equations, we construct our numerical methods as follows. The Adams—Bashforth meth-
od [1]is applied to advance the tumor radius R in time. At each time step, the Leapfrog scheme [19] is em-
ployed to solve the hyperbolic Eqgs. (11)—(13) for X, Y and Z. Then, we calculate U by applying the
Trapezoidal Rule [2] in the numerical integration for (15). Finally, we use the fully implicit backward differ-
ence formula [16] to update V. The details of the numerical algorithm are presented in the Appendix. We have
found that the numerical algorithm achieves second-order accuracy in both time (¢) and space (r).

4. Numerical results

The numerical methods (described in the Appendix) have been applied to simulate the tumor model. Fig. 1
shows the impact of oncolytic viruses on the evolution of the tumor radius, R. The dashed line represents the
case without virus and is based on the experimental data [10]. In particular, R=2mm at t =0, R =4 mm at
t="72hand R =6 mm at r = 144 h. The rats were dead when R = 6 mm as the tumors were big enough to kill
them. The solid line shows the numerical result in the case with the virus hrR3 whose burst size is b = 50. We
observe that for the first few hours, the radius increases as fast as in the case without virus. The reason is that
initially the viruses are concentrated in the center of the tumor and do not have much impact on the tumor
growth. However, as the viruses spread out in the tumor, the growth rate of the tumor is significantly slowed
down, as is clearly shown in the figure. As a result, R reaches 6 mm at # =~ 220 h. The numerical result indeed
matches the experimental measurement. It is reported in [10] that the rats can live up to 9 days (216 h) with the
virus hrR3. The significance of the therapy is clear: the lives of rats can be extended up to 50% by using a
certain type of virus.

A main purpose of this study is to explore possible improvements of the oncolytic therapy. To this end, we
consider the following two approaches:

(1) increasing the burst size b, which can promote the infection;
(2) adding CPA drugs, which can suppress the immune system.

with virus
= = = = without virus

50 100 150 200
Hours

Fig. 1. Evolution of tumor radius R in the cases without virus and with the virus hrR3 (b = 50).
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Fig. 2. Evolution of tumor radius R with different burst sizes.

Let us investigate the effects of burst sizes first. The virus hrR3 has a relatively small burst size, 5 = 50. By
selecting some other types of viruses, it is possible to make » much bigger. The bigger b, the faster the viruses
replicate, and the stronger the infection is. Fig. 2 shows the evolution of R with different choices of burst sizes.
Here, we consider a much longer period which is 80 days, or 1920 h, to check the long-term effects of the ther-
apy. For b = 50, R increases to 6 mm in about 9 days. This is the case we already discussed. For any value
between 50 and 130, R increases as well, but with slower rate than that for » = 50. For 5 =130, R first
increases slightly, then decreases to 2 mm, and keep this value forever. For > 130, say, 5 =200 or 400, R
shrinks to an extremely small size over time. The results indicate that b = 130 is a critical value for the burst
size. When b <130, the tumor grows; when b > 130, the tumor decays.

However, a closer examination of the results reveals that the uninfected tumor cells do not decrease to 0
even though the tumor size can be kept very small. For convenience of illustration, we take the spatial average
of X(p,t) over the whole sphere to obtain a function, X,,, which is only dependent on time:

vgr

R(t)
KXaug1) = Rim | xtosa. (22)

We then plot X,,, vs. ¢ in Fig. 3 with different choices of burst sizes. It is clearly shown that as ¢ is getting
bigger, X,g approaches 1.00,0.35,0.20 and 0.10, for b = 50,130,200 and 400, respectively. (Note that when
b is large, say 400, there is a strong competition between tumor cells, viruses and immune cells, especially
in the initial stage. This results in an oscillatory behavior of X,,,. Over time, however, the oscillation relaxes
to its mean value, about 0.10 for » = 400). Hence, the uninfected tumor cells persist even with large values of
burst sizes, and there is a good chance that these tumor cells can migrate into other areas in the brain and
develop a secondary tumor. It is, therefore, necessary to use some CPA treatment to reduce such a risk.

The CPA drugs, formally called cyclophosphamide [21], can effectively suppress the innate immune
response and thereby enhance oncolysis. Mathematically, this effect is represented by adding a negative term
to Eq. (4) for Z, the immune cells,

aa—f + % % (p*ZU) = sYZ —wZ* — P(1)Z,

where P(¢) represents the CPA treatment and is a predetermined function of 7. Here we consider three proto-
cols of CPAs: traditional CPA, weekly CPA and constant CPA, as illustrated in Fig. 4.
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Fig. 3. Evolution of X,,, with different burst sizes.

453

We apply these three types of CPA treatments in the tumor model and compare their performance. Fig. 5
shows the results for X, vs. f with b = 130. There is almost no improvement with the traditional CPA treat-
ment. However, the other two types of CPA treatments do make a difference. The constant CPA reduces X,
from 0.35 to approximately 0.25. This is also true for the weekly CPA, provided that we take the average in

10
i

P(t)
4

1. Traditional CPA

P(t)
4

500 1000 1500
2. Weekly CPA

500 1000 1500 Hours

3. Constant CPA

P(t)

500 1000 1500

Fig. 4. Three types of CPA, with maximum value 8.5 in each case.

Hours

Hours
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Fig. 5. Evolution of X, with different CPAs for the burst size b = 130.
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Fig. 6. Evolution of X,,, with different CPAs for the burst size b = 200.

time of the oscillations. Fig. 6 shows the results with » = 200 and we observe similar pattern. In particular, the
weekly CPA and constant CPA treatments reduce X, from 0.20 to approximately 0.12, in average, over the
time. Although it is not possible to eliminate all the tumor cells, the risk of secondary tumors is reduced by
using such CPA treatments.

5. Discussion

We have developed a numerical algorithm, which ensures uniform second-order accuracy in both space and
time, to simulate a mathematical model of tumor virotherapy, i.e., Egs. (2)—(6) subject to boundary conditions
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(7)—~(9). The numerical results agree with the experimental measurements. In particular, it is shown that the
oncolytic viruses can significantly slow down the growth of tumors.

We have explored two approaches to improve the efficacy of the virotherapy: by increasing the burst size b
and by adding CPA treatment. We have found that the tumors decay when » > 130. However, even though the
tumor size can be kept very small by using viruses of large burst sizes, there are still certain amount of unin-
fected tumor cells which give rise to the risk of secondary tumors. Using weekly CPA or constant CPA treat-
ments can reduce these tumor cells and further improve the therapy.

Our model is concerned with a spherical geometry, which is a reasonable approximation for most tumors.
In some situations, however, it might be worthwhile to study the virotherapy on tumors of arbitrary shape. By
using the mass conservation and convection/diffusion processes for the cells/viruses, the governing equations
can be naturally generalized from one spatial dimension to three-dimension (3D), although large-scale com-
putations can be expected for the 3D problem.

In addition to higher spatial dimensions, the current computational model can be extended in a few
other interesting directions. One example is to take into account the side effects of CPA treatments so that
our model can predict the practical efficacy of the virotherapy more accurately. Another example is to
simulate the formation and growth of multiple tumors, and study the combined efficacy of possible
treatments.
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Appendix A
The numerical simulation of Eqs. (11)—(15) is essentially a time-marching problem. Let us denote the
numerical solution at the nth time step by
(R, X", Y". 2", U", V").
Suppose we know the numerical solution at the time steps » — 1 and n, and we want to advance the solution to

the next time step n + 1. The details are described below.
First, application of the Adams—Bashforth method to (16) yields

At
Rn+1 — R" +7(3Un _ Un—l). (23)
To start (23), R® is provided by the initial condition (19) and R' is calculated by the Trapezoidal Rule.

Next, we solve the hyperbolic Eqgs. (11)—(13). For illustration, we consider the numerical discretization of
(11). Let

U—rR
A= .
R
Application of the leapfrog scheme to (11) yields
Xy X" — X"
J J A" Jj+1 j—1 —(F n 24
e AT (24)

where the subscript j refers to the jth grid point in the radial direction and j = 1,2, --- ,J — 1, with JAr = 1. The
Crank—Nicolson method [19] is used for start-up. Noting (16) and (17), it is clear to see

A=0, when r=0 or 1.
Therefore, at the two ends r = 0,1, (11) is reduced to an ODE
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dX J—
de
Central differences, which are consistent with the leapfrog scheme, are used to solve (25).

One common problem associated with the leapfrog method is that when applied to non-linear equations,
the method often becomes unstable due to the fact that odd and even mesh points are completely decoupled
[18]. Fortunately, this mesh drifting instability can be cured by coupling the two meshes through a simple aver-
age in time

n 1 n n—

XjZE(X,‘HJFXj 1)7 (26)
which still keeps the second-order accuracy of the leapfrog method. We have found that stability can be recov-
ered, subject to the usual CFL condition [5], by merely implementing (26) in every 10 or 20 time steps. Y and Z
are updated in a similar way.

Once X", YN Z""! are known, we calculate U""! by applying the Trapezoidal rule to (15),

F,. (25)

Rn+1 n n
BaUfi = BUp =S A+ s @)
Note that Fs5 is independent of U and V, so that Eq. (27) explicitly identifies the recurrence relation between
Uil and U, with Ut determined by the boundary condition (17).
Finally, we solve the parabolic Eq. (14). It is rewritten, for convenience of discussion, by
ov ov o'V

§+A1§+A2W:F4’ (28)

where
4 (®, 22N, D
"UO\R TRy T RY
Note that 4; and A4, are independent of V. Meanwhile, R"""', X**!, y"*! z"*! and U""! are already known so
that F4 becomes a linear function of ¥"*!. Therefore, (28) is indeed a linear parabolic equation at the time step
n+ 1. An implicit method is normally a better choice for such an equation than an explicit one, since the latter

would impose stringent constraint on the time step size to ensure stability. Here, we use the second-order im-
plicit BDF method in time and central differences in space to approximate (28),

3VI?+1 —4p" 4 Vq—l Vi‘ll+1 _ V{1+1 Vrﬁ»l _ 2Vi’ll+1 4 Vr{+l
. . n+1 " j+1 —1 n+1 +1 . -1 n+1
—oa HA)T T ) e = (R (29)
The discretized Eq. (29) yields a linear, tridiagonal algebraic system
bV +d Vi Vi =S, j=1,2,0 0, (30)
where
2At a1 A2 n+1
by=37 )i — (i),
4At , .
dj=3 =5 ()] + 2koMiZ} ! + 2AL,
2At w1, A ntl
a4 =55 (o) o ()
and where

S;=4Vi = Vi £ 207

Such an algebraic system can be solved very rapidly [11]. Once """ is calculated, the advancement of solution
to the time step n + 1 is complete. We then start the next cycle of marching in time.
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