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Abstract: Early detection of cancer is crucial for successful treatments.  
In this paper, we propose a multiclass Logistic Partial Least Squares (LPLS) 
algorithm for classification of normal vs. cancer using Mass Spectrometry 
(MS). LPLS combines the multiclass logistic regression with Partial Least 
Squares (PLS) algorithm. Wavelet decomposition is also proposed for  
pre-processing of original data. Wavelet decomposition and the proposed LPLS 
are applied to real life cancer data. Experimental comparisons show that  
LPLS with wavelet decomposition outperforms other methods in the analysis  
of MS data. 
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1 Introduction 

Proteins carry out and modulate the vast majority of chemical reactions which together 
constitute ‘life’. Proteomics is an integral part of the process of understanding biological 
systems and uncovering disease mechanisms. Because of their high level of variability 
and complexity, it is an extremely challenging endeavour to conduct massive analysis  
of thousands of proteins. In the last decade, MS has increasingly become the method of 
choice for analysis of complex protein samples. MS measures two properties of ion 
mixtures in the gas phase under the vacuum environment: the mass-to-charge ratio (m/z) 
of ionised proteins in the mixture and the number of ions present at different m/z values. 
The output is a chart with a series of spike peaks. The heights of peaks and the m/z values 
of the peaks are a fingerprint of the sample. MS has not only been used intensively to 
identify proteins via peptide mass fingerprints, but also had promising applications in 
cancer classification (Petricoin et al., 2002a; Adam et al., 2002; Lilien, et al., 2003;  
Qu et al., 2002, 2003; Wu et al., 2003; Diamandis, 2003; Master, 2005). An important 
goal of cancer classification is to predict cancer on the basis of peptide/protein intensities. 

While MS is increasingly used for protein profiles, significant challenges have arisen 
with regard to analysing the data. Specifically, MS data analysis may be divided  
into three steps: data pre-processing, feature selection, and classification. The critical  
pre-processing step includes baseline correction, peak identification and alignment, data 
normalisation and visualisation. The feature selection step extracts the relevant features 
and reduces the dimension of features greatly. The final step is the classification of 
disease status using the selected features. Recent publications on cancer classification 
with MS data have mainly focused on how to choose features for classification and which 
classification method is more accurate than others. In particular, test statistics, including 
T statistic, and Principal Component Analysis (PCA) have been used to select features 
(Chen et al., 2005; Levner, 2005). Classification methods such as Linear Discrimination 
(LD) analysis, k-nearest neighbour classification, decision trees (Adam et al., 2002), and 
support vector machines have been used to distinguish between cancer and normal 
samples (Qu et al., 2003; Lilien et al., 2003). 

In this paper, we first discuss data pre-processing based on wavelet decomposition. 
We then propose a novel analysis procedure LPLS for feature selection and classification 
of MS data. LPLS combines the multiclass logistic regression with PLS regression  
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in a natural way. Experiments can be used to show that features derived from PLS  
usually provide more accurate predictions than those from PCA (Liu and Chen, 2004). 
The proposed algorithm LPLS can not only predict the class label but also provide the 
probability of each sample falling into a specific class. Wavelet decomposition and LPLS 
are assessed using two real life MS data sets. 

This paper is organised as follows. We first discuss wavelet decomposition of original 
data and present the LPLS algorithm. We then describe computational results.  
And finally, we provide conclusions and remarks. 

2 Wavelet decomposition for data pre-processing 

A MS data set with n samples is a p × (n + 1)p matrix (mz, X) = [mz, x1, …, xn] where p is 
the number of m/z ratios, mz is a column vector for the measured m/z ratios, and xj are the 
corresponding intensities of the jth sample. Our goal is to predict the class of a sample 
based on its intensity profile x. As usual, such prediction often requires the task of data 
pre-processing. In the following, we propose one method based on the wavelet 
decomposition. 

MS data have several special characteristics: the dimension of the data is large, the 
data points are not necessarily independent, and the measurements are usually more or 
less noisy. These problems motivate the use of compression techniques to describe the 
sequential data with a few features that capture the basic shape of the sequence.  
A wavelet transform is a way to decompose a signal in a chosen number of its constituent 
parts. Fourier analysis also has this property but wavelet analysis has some advantages 
when analysing signals of non-stationary nature. Wavelet provides more irregular shapes 
and the wavelet decomposition is a local one, so that if the information relevant to our 
prediction problem is constrained in a particular part or parts of the curve, as typically  
it is, this information will be carried in a very small number of wavelet coefficients.  
These properties make wavelets ideal for analysing signals with discontinuities and sharp 
changes while allowing temporal locating the features of the signal. Wavelets are families 
of functions that can accurately describe other functions in a parsimonious way.  
The signal is projected into the time frequency plane. The basis functions are 
Ψj,k(t) = 2j/2Ψ(2jt – k), where Ψ is the mother wavelet function. Any square integrable real 
function f(t) can be represented in terms of bases as 

, ,
,

( ) ( )j k j k
j k

f t c t= Ψ∑  

where cj,k = 〈 Ψj,k(t), f(t)〉
 
are the coefficients of the Discrete Wavelet Transform (DWT). 

There is a fast algorithm to get the coefficients with O(n) time. A simple and commonly 
used wavelet is the Haar wavelet (Burrus et al., 1998) with the mother function 

Haar

1, if 0 0.5
( ) 1, if 0.5 1.

0, otherwise

t
t t
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In this paper, we use the Haar wavelet because of its simplicity. One can use any other 
orthonormal wavelet basis functions and achieve similar results as we present here. 
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In wavelet decomposition the signal is separated successively into slow and fast 
components using a pair of finite impulse response filters. In the first stage the high pass 
and the low pass filters separate the signal into components above fs/4 and components 
below fs/4. The second stage receives the low frequency components as input and 
separates them into components above fs/8 and components below fs/8, and so on.  
The number of stages depends the slowest component that is desired. Each MS input xj 
can be treated as an original signal for MS data. We can normalise each MS sequence 
within [0, 1] by the formula 

min( )
max( ) min( )

x xx
x x
−=

−  

and then apply DWT. The obtained coefficients can be used as the features  
(Qu et al., 2003). 

3 LPLS algorithm for feature selection and classification 

Note that the size of feature matrix selected with DWT method is still around p × n, but 
many entries are zeros or near zeros. Traditionally, some heuristic rules can be applied to 
reduce the feature dimension. For instance, we can either keep the first few coefficients or 
the largest coefficients of DWT as the features. However, both methods are just based on 
the signal itself and do not consider the associated class information. Our proposed LPLS 
algorithm combines the feature selection and classification together and choose features 
not only based on the data but also the class labels. LPLS is a combination of the 
multiclass logistic regression and PLS algorithm. 

3.1 Classification based on multiclass logistic regression 

Logistic regression is one of the popular techniques for classification. Multiclass 
(multinomial) logistic regression is a generalisation of logistic regression. For a m-class 
problem, we represent the class labels of sample z using a ‘1-of-m’ encoding vector 
y = [y(1), y(2), …, y(m)], such that y(j) = 1 if z belongs to class j and y( j) = 0 otherwise.  
Given the training data D = {(z1, y1), …, (zn, yn)}, then under the multiclass logistic 
regression, we have the following conditional probability:  

( )
( )

( )
1

exp( )( 1 , )
exp( )

j T
j

m j T
j

zP y z B
z

β
β

=

= =
∑

 

where matrix B = [β(1), β(2), …, β(m)] represents the parameters and T represents the 
transpose operation. Here each column β(1) = [βi1, …, βik]′ is a parameter vector 
corresponding to one class. Classification is usually done in terms of the magnitudes of 
these conditional probabilities. For the binary case m = 2, this is known as a traditional 
logistic regression model. Learning the parameters B is done through minimising the log 
likelihood:  

( ) ( )

1 1 1

( ) log exp( ) ) .
n m m

j T j T
i ij i

i j j

L B D z y zβ β
= = =

  
= −  
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∑ ∑ ∑  (1) 
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Since the probabilities must sum to one 

1

( , ) 1,
m

j

j

p y z B
=

=∑  

one of the parameter vectors β( j) needs not to be estimated. Therefore, we may set β( j) = 0 
without loss of generality. Define 

( ) ( )
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∂ ∂
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Given the derivatives, either the gradient decent or Newton’s method can be  
utilised to find the maximum log likelihood estimator of B. Detailed algorithms of 
different implementations for multiclass (multinomial) logistic regression are given in 
Tipping (2001), Efron et al. (2004) and Krishnapuram et al. (2005). 

3.2 Dimension reduction based on PLS 

Logistic regression can not be applied to proteomic data directly, since the number of 
dimensions in proteomic data is far greater than its sample size. For the purpose  
of dimension reduction, PLS can be employed. 

PLS is based on a linear transition from a large number of original descriptors to  
a new variable space formed by a small number of orthogonal factors (latent variables). 
This technique is especially useful in cases where the number of descriptors (independent 
variables) is comparable to or greater than the number of compounds (data points) and/or 
there exist other factors leading to correlations between variables. In these cases,  
the solution of classical least squares does not exist or is unstable and unreliable.  
On the other hand, the PLS approach usually leads to stable, correct and highly predictive 
models even for correlated descriptors (Martens and Naes, 1991). The latent variables  
are mutually independent (orthogonal) linear combinations of original descriptors.  
Unlike PCA, latent variables are chosen in such a way as to provide maximum 
correlation with the dependent variable. Thus, the PLS model contains the smallest 
necessary number of factors. With increasing number of factors, the PLS model 
converges to an ordinary multiple linear regression model (if one exists). In addition, the 
PLS approach allows one to detect relationship between activity and descriptors even if 
key descriptors have little contribution to the first few principal components. Figure 1 is 
used to illustrate the concept. In the figure, x1 and x2 are two independent variables.  
The first latent component given by PCA and PLS is the line in the right and left panel, 
respectively. The figure shows that even for this simple problem, PCA selects the poor 
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latent variable which can not be used to separate the two classes, because it only utilises 
the input feature matrix, while the PLS component make use of both input and output 
information and can be used to separate the two classes efficiently. 

Figure 1 The first latent component given by PLS (left) and PCA (right) 

 

3.3 LPLS algorithm 

Given a training dataset 1{ }n
i iz =  with class labels 1{ }n

i iy =  and a test dataset 1{ } tn
t tz = with 

labels 1{ } tn
t ty = , the LPLS algorithm is described as follows:  

1 Set matrix Z = [zi] for the training data with the label matrix Y, and the matrix zt = [zt] 
for the test data. 

2 Call PLS algorithm to find k component directions (Rosipal and Trejo, 2001) 

a for i = 1, …, k 

b initialise ui 

c wi = Z′ui 

d ti = Zwi 

e ci = Y′ti 

f ui = Yci, ui ← ui/||ui|| 

g repeat steps (b)–(f) until convergence 

h deflate Z, Y by andi i i iZ t t Z Y Y t t Y′ ′← ← −  

i obtain component matrix 1[ , , ]kW w w= . 

3 Find the projections V = ZW and Vte = ZtW for the training and test data, respectively. 

4 Build a logistic regression model using V and 1{ }n
i iy =  and test the model performance 

using Vte and 1{ } .tn
t ty =  

The dimension of projection (the number of components) k used in the model can be 
selected using Akaike’s Information Criteria (AIC): 
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AIC 2 ( / ) 2( 1),L B D k= − + +  (2) 

where L is the log likelihood. The log likelihood L can be calculated using equation (1). 
We choose the best k that minimises AIC. 

It is straightforward to extend LPLS using kernel functions. However, our 
experiments showed that the classification accuracy with the nonlinear version of LPLS 
did not improve significantly for MS data. The proposed algorithm LPLS is designed for 
multiclass classification and is efficient in dealing with proteomic data. 

4 Experimental results 

4.1 Ovarian cancer 

First we evaluate the performance of the proposed algorithm on the ovarian cancer data. 
This cancer dataset was downloaded directly from the website: http://home.ccr.cancer. 
gov/ncifdaproteomics/ppatterns.asp. The sample set includes 91 controls and 162 ovarian 
cancer cases. To evaluate the performance of the proposed methods, we merged the 
control and cancer data together and split the data with a ten-fold validation scheme.  
The data were divided randomly into ten roughly equal subsets, and then we applied the 
algorithm ten times, each time with nine subsets used for training and the remaining 
subset for performance evaluation. The averaged error over the ten times was reported as 
an overall performance. One output is given in Table 1, where T-test statistic, viewed  
as a pre-processing procedure applied to the original data, and DWT were compared.  
The number of features in Table 1 is the number of components used in the LPLS 
algorithm. This table clearly shows that LPLS performs better with DWT pre-processing 
method. Petricoin et al. (2002a) achieved a performance comparable to that of DWT  
on a slightly different ovarian data. 

Table 1 Performance of LPLS on ovarian cancer data with different data pre-processing 
methods 

T-test DWT 

No. of features 30 10 
Test error (%) 1.75 ± 1.4 0 ± 0 
Sensitivity (%) 99.03 ± 1.48 100 ± 0 
Specificity (%) 96.64 ± 2.19 100 ± 0 

After DWT data pre-processing, performances of different feature selection and 
classification methods are given in Table 2, where Fisher LD, k Nearest Neighbour 
(KNN), and neural networks were employed. This table indicates that LPLS, and PCA 
and PLS, both viewed as feature selection methods, can lead to the 100% accuracy.  
It is seen that neural networks have the worst performance. 
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Table 2 Performance of LPLS on ovarian cancer data of different feature selection  
and classification methods 

Feature and classification methods Test accuracy (%) 

PCA and LD 100 
PCA and logistic regression 100 
PCA and KNN 99.7 
PCA and neural network (15 nodes) 99.5 
PLS and LD 100 
PLS and KNN 100 
PLS and neural network 99.7 
LPLS 100 

4.2 Prostate cancer 

The prostate cancer data were downloaded from the same website as the ovarian data.  
The Surface Enhanced Laser Desorption/Ionisation (SELDI) time of flight method and  
a mass spectra analysis for this data set have been performed in Petricoin et al. (2002b). 
SELDI process is a relatively new medical technique that measures the content of 
different proteins in blood samples from patients. This dataset consists of four subsets: 

• 63 samples with no evidence of disease and the Prostate Specific Antigen (PSA) 
level less than 1(ng/ml) 

• 190 samples with benign prostate and PSA level greater than 4 

• 26 samples with prostate cancer and PSA levels between 4 and 10 

• 43 samples with prostate cancer and PSA levels greater than 4. 

There are 322 samples in total and we treated them as coming from three classes:  
normal, benign, and cancer. Again, the ten-fold validation was used for the experiments. 
The ‘one against all others’ scheme was applied to separate each class against the other 
two. The experimental results are given in Tables 3 and 4. These results show that DWT 
performs better than T test statistic in data pre-processing and that after DWT is used for 
data pre-processing, LPLS gives a higher prediction accuracy than any other feature 
selection and classification method. 

Table 3 Performances of LPLS on prostate cancer data of different data and pre-processing 
methods 

T-test DWT 

No. of features 53 28 
Test error (%) 11.8 ± 2.8 1.7 ± 1.4 
Sensitivity (%) 87.1 ± 2.94 98.5 ± 1.3 
Specificity healthy (%) 96.8 ± 2.69 100 ± 0 

Specificity benign (%) 83.1 ± 1.72 94.7 ± 3.58 
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Table 4 Performances of LPLS on prostate cancer data of different feature selection  
and classification methods 

Feature and classification methods Test accuracy (%) 

PCA and LD 95.3 
PCA and logistic regression 96.8 
PCA and KNN 91.9 
PCA and neural network (15 nodes) 93.5 
PLS and LD 96.3 
PLS and KNN 93.6 
PLS and neural network 95.9 
LPLS 98.3 

5 Conclusion 

Our limited experiments with two cancer datasets show that the proposed LPLS 
algorithm coupled with DWT data pre-processing procedure is promising in analysing 
MS data. The pre-processing of MS output is a crucial step in the overall analysis  
of MS data. Our proposed DWT for data pre-processing worked well for the two datasets 
investigated in this study. Feature selection (dimension reduction) and classification 
constitute two more steps in analysis. For these, LPLS, a combination of PLS and logistic 
regression, showed superior performance on the two datasets when compared with other 
feature selection and classification methods. 

Though there are recent debates in the literature regarding the reproducibility of  
MS data (Baggerly et al., 2004, 2005; Master, 2005), we believe that the proposed 
methods in this paper have their own values as they can be implemented easily and can 
have high prediction accuracies for data with high quality. 
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