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Abstract

Without using representations of quasitriangular ribbon Hopf algebras, Hennings, Kauff-
man and Radford, Ohtsuki and the author gave different methods to construct invariants of
links and 3-manifolds respectively. To understand these different methods and the resultant
invariants, we made a comprehensive comparison study in this paper. We show the rela-
tions among the universal invariants of framed links defined by these different authors. We
also figured out the relations among the resultant invariants of 3-manifolds defined by these
different authors. Ignoring the difference by scalar constants and the inversion of Hopf al-
gebras, we found that the invariants of 3-manifolds obtained by these authors are the same or
equivalent to each other. Therefore, in a sense, there is only one way to construct invariants
of 3-manifolds without using representation theory of Hopf algebras.

1. Introduction

Firstly Reshetikhin and Turaev [7], by using representations of quasitriangular ribbon
Hopf algebras, found invariants of regular isotopy for coloured framed links. For a partic-
ular finite-dimensional quasitriangular ribbon Hopf algebra (the reduced quantum groups
Uq(sl2)

′, where q is a root of unit), they found that a linear combination of these invariants
is a constant under the Kirby moves and thus got invariants of the associated 3-manifolds
obtained from the framed links by surgery. Hennings [2], however, did not use representa-
tions of quasitriangular ribbon Hopf algebras, and constructed general invariants of regular
isotopy for coloured framed links. For unimodular finite-dimensional quasitriangular rib-
bon Hopf algebras, from their right integrals he derived a linear map which can be taken
such that the resultant invariants unchangeable under the Kirby moves. In fact these linear
maps enabled him to obtained a type of invariant of the associated 3-manifolds. Afterwards,
Kauffman and Radford [3] also put forward a constructing procedure for unoriented links to
obtain a type of invariant of the links and the associated 3-manifolds. Ohtsuki [4], without
using representations of Hopf algebras, built universal invariants of framed links on the
level of tensor; and then he defined a type of invariant of the corresponding 3-manifolds
from those universal invariants of framed links. Following Kauffman and Radford [3], the
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author [9] has also given universal invariants of framed links and 3-manifolds. In this
paper, we shall give the explicit relations among all these invariants of framed links and
3-manifolds for general unimodular finite dimensional quasitriangular ribbon Hopf algebras
without representative theory involved.

The paper is organized as follows: in Section 2, we review some related properties of
Hopf algebras and construct several propositions of special Hopf algebras. In Section 3, we
derive a type of universal invariant of framed links from Hennings [2] and give the relation
between this type of invariant and universal invariants of framed links introduced by Ohtsuki.
In Section 4, we make the comparisons between universal invariants of framed links derived
by Kauffman–Radford, Ohtsuki and from Hennings respectively. In Section 5, we discuss
the algebraic representation of Kirby moves and give the relations among these several types
of universal invariants of framed links and 3-manifolds invariants.

2. Preliminaries

Given any Hopf algebra H , if the antipode of H is invertible, we can have two other Hopf
algebras, which accompany H. Notations about general Hopf algebras in this paper are as
in Sweedler’s book [8].

PROPOSITION 2·1. If (H, m, �, µ, ε, s) and (H, m, �′, µ, ε, s ′) are both Hopf algebras,
then s◦s ′ = s ′◦s = id and so s ′ = s−1, where H is an associative algebra over a field k with
multiplication m and unit µ, � is a co-multiplication, ε is a co-unit and s is an antipode,
�′ = τ ◦ �.

Proof. We know that Hom(H C , H A) is a convolution algebra with multiplication � and
unit µε. Taking any element h ∈ H , we have

(ss ′ � s)(h) = m(ss ′ ⊗ s)�(h) =
∑
(h)

ss ′(h(1))s(h(2)) = s

(∑
(h)

(h(2)s
′(h(1))

)
.

We also have

(id � s ′)(h) = m(id ⊗ s ′)�′(h) =
∑
(h)

(h(2)s
′(h(1))) = µε(h) = ε(h)1.

Therefore, we get

(ss ′ � s)(h) = s(µε(h)) = ε(h)s(1) = ε(h)1 = µε(h).

Similarly, we have
(s � ss ′)(h) = µε(h).

Hence, ss ′ is the inverse of s under �. We also know that the inverse of s is id under �, so

ss ′ = id.

On the other hand,

(s ′s � s ′)(h) = m(s ′s ⊗ s ′)�′(h) =
∑
(h)

s ′s(h(2))s
′(h(1))

= s ′
(∑

(h)

h(1)s(h(2))) = s ′(µε(h)

)
= ε(h)1 = µε(h).
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Similarly,

(s ′ � s ′s)(h) = µε(h).

It shows that s ′s is the inverse of s ′ under �. But we know the inverse of s ′ is id under �.

Therefore, s ′s = id.

Remark 1. In this proof, we, in fact, take advantage of two convolution algebras, one
corresponding to the co-multiplication �; the other corresponding to the co-multiplication
�′. From this proof, we can realize the following analogous proposition.

PROPOSITION 2·2. If (H, m, �, µ, ε, s) and (H, m ′, �, µ, ε, s ′) are both Hopf algeb-
ras, then ss ′ = s ′s = id, where m ′ = mτ , and τ is the permutation.

In other words, if Hopf algebra (H, m, �, µ, ε, s) has an invertible antipode, we imme-
diately have two other Hopf algebras (H, m, �′, µ, ε, s−1) and (H, m ′, �, µ, ε, s−1).

PROPOSITION 2·3. Let (H, m, �, µ, ε, s, R) be a quasitriangular Hopf algebra with in-
vertible antipode and an invertible element R ∈ H ⊗ H, called Yong–Baxter element. Then,
(H, m, �′, µ, ε, s−1, R−1) and (H, m ′, �, µ, ε, s−1, R−1) are both quasitriangular Hopf al-
gebras.

Proof. Let R = ∑
i ai ⊗ bi , then

R−1 = (s ⊗ id)R =
∑

i

s(ai) ⊗ bi

and

(� ⊗ id)R = R13 R23, (id ⊗ �)R = R13 R12,

�′(h) = R · �(h) · R−1, ∀h ∈ H.

It is easy to see that the following formulae are correct

R−1
13 =

∑
i

s(ai) ⊗ 1 ⊗ bi ,

R−1
23 =

∑
i

1 ⊗ s(ai) ⊗ bi ,

R−1
12 =

∑
i

s(ai) ⊗ bi ⊗ 1.

Now, let’s verify that (H, m, �′, µ, ε, s−1, R−1) is a quasitriangular Hopf algebra. Firstly,
we verify (id ⊗ �′)R−1 = R−1

13 R−1
23 . From (� ⊗ id)R = R13 R23, we have∑

i,(ai )

ai(1) ⊗ ai(2) ⊗ bi =
∑

j,k

a j ⊗ ak ⊗ b j bk (2·1)

and

(�′ ⊗ id)R−1 = (�′ ⊗ id)

(∑
i

s(ai) ⊗ bi

)

=
∑

i

�′s(ai) ⊗ bi =
∑

i

(τ�)s(ai ) ⊗ bi

=
∑

i

τ(�s)(ai) ⊗ bi
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=
∑

i

τ(τ (s ⊗ s)�(ai)) ⊗ bi =
∑

i

(s ⊗ s)�(ai) ⊗ bi

=
∑
i,(ai )

s(ai(1)) ⊗ s(ai(2)) ⊗ bi .

That is,

(�′ ⊗ id)R−1 =
∑
i,(ai )

s(ai(1)) ⊗ s(ai(2)) ⊗ bi . (2·2)

After multiplication of R−1
13 and R−1

23 , we have

R−1
13 R−1

23 =
∑

j,k

s(a j ) ⊗ s(ak) ⊗ b j bk . (2·3)

When we apply s ⊗ s ⊗ id on both sides of equation (2·1), we obtain∑
i,(ai )

s(ai(1)) ⊗ s(ai(2)) ⊗ bi =
∑

j,k

s(a j ) ⊗ s(ak) ⊗ b j bk . (2·4)

Therefore, comparing equations (2·2), (2·3) and (2·4), we get

(�′ ⊗ id)R−1 = R−1
13 R−1

23 .

Secondly, we verify (id ⊗ �′)R−1 = R−1
13 R−1

12 . From (id ⊗ �)R = R13 R12, we have∑
i,(bi )

ai ⊗ bi(1) ⊗ bi(2) =
∑

j,k

a j ak ⊗ bk ⊗ b j (2·5)

and

(id ⊗ �′)R−1 = (id ⊗ �′)
(∑

i

s(ai) ⊗ bi

)

=
∑
i,(ai )

s(ai) ⊗ bi(2) ⊗ bi(1). (2·6)

After multiplication of R−1
13 and R−1

12 ,

R−1
13 R−1

12 =
∑

k

s(ak) ⊗ 1 ⊗ bk ·
∑

j

s(a j ) ⊗ b j ⊗ 1

=
∑

j,k

s(ak)s(a j ) ⊗ b j ⊗ bk

=
∑

j,k

s(a j ak) ⊗ b j ⊗ bk . (2·7)

When we apply (id ⊗ τ) ◦ (s ⊗ id ⊗ id) on both sides of equation (2·5), we obtain∑
i,(bi )

s(ai) ⊗ bi(1) ⊗ bi(2) =
∑

j,k

s(a j ak) ⊗ bk ⊗ b j

and, then ∑
i,(bi )

s(ai) ⊗ bi(2) ⊗ bi(1) =
∑

j,k

s(a j ak) ⊗ b j ⊗ bk . (2·8)
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Therefore, comparing equations (2·6), (2·7) and (2·8), we get

(id ⊗ �′)R−1 = R−1
13 R−1

12 .

Now, from

∀h ∈ H, �′(h) = R · �(h) · R−1,

we have

�(h) = R−1 · �′(h) · R.

Thus (H, m, �′, µ, ε, s−1, R−1) is a quasitriangular Hopf algebra. By analogous verifica-
tions, we know (H, m ′, �, µ, ε, s−1, R−1) is also a quasitriangular Hopf algebra.

PROPOSITION 2·4. Suppose (H, m, �, µ, ε, s, R) is a quasitriangular Hopf algebra
with an invertible antipode, and Z(H) is its center. If there is an element v ∈ Z(H), which
satisfies

v2 = us(u), s(v) = v,

ε(v) = 1, �(v) = (
R−1

21 R−1
12

)−1
(v ⊗ v),

where

u = uH =
∑

i

s(bi)ai , R =
∑

i

ai ⊗ bi .

In other words, if (H, m, �, µ, ε, s, R, v) is a ribbon Hopf algebra, then (H, m, �′,
µ, ε, s−1, R−1, v−1) and (H, m ′, �, µ, ε, s−1, R−1, v−1) are both ribbon Hopf algebras.

Proof. We firstly should determine the analogous element u′ for (H, m, �′,
µ, ε, s−1, R−1) as uH for (H, m, �, µ, ε, s, R). Since

R−1 =
∑

i

s(ai) ⊗ bi ,

we could formally take

u′ =
∑

i

s−1(bi)s(ai).

By Drinfeld [1]

u−1 =
∑

i

bi s
2(ai), (2·9)

we have

(u′)−1 =
∑

i

bi s
−2(s(ai)) =

∑
i

bi s
−1(ai).

Since

(s ⊗ s)R = R = (s−1 ⊗ s−1)R,

we have

u′ =
∑

i

s−1(bi )s(ai) =
∑

i

s−1(s(bi))s(s(ai))

=
∑

i

bi s
2(ai) = u−1.
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Secondly, we can determine v′ as the following:

(v′)2 = u′s−1(u′) = u−1s−1(u−1).

Considering the equalities about u and u−1 (2·9), we have

s−1(u−1) =
∑

i

s(ai)s
−1(bi)

and

s(u−1) =
∑

i

s3(ai)s(bi)

=
∑

i

s3(s−2(ai))s(s
−2(bi))

=
∑

i

s(ai)s
−1(bi).

Thus, we get

s−1(u−1) = s(u−1).

Moreover, from v2 = us(u) = s(u)u, we have

v−2 = u−1s(u)−1 = u−1s(u−1).

Hence

v−2 = u−1s−1(u−1) = (v′)2.

We therefore could take v′ = v−1. Then, it is natural that

ε(v)−1 = 1−1,

so
ε(v−1) = 1,

and, by
s(v)−1 = v−1,

we have
v−1 = s−1(v)−1.

Finally, from

�(v) = (R21 R12)
−1(v ⊗ v),

we take the inverse, and get

�(v)−1 = �(v−1) = (v−1 ⊗ v−1)(R21 R12)

and

�′(v)−1 = τ�(v−1) = τ((v−1 ⊗ v−1)(R21 R12))

= (v−1 ⊗ v−1)(R12 R21) = (v−1 ⊗ v−1)
(
R−1

21 R−1
12

)−1

= (
R−1

21 R−1
12

)−1
(v−1 ⊗ v−1).

Hence, v−1 can be viewed as a ribbon element, and so then (H, m, �
′
, µ, ε, s−1,

R−1, v−1) is a ribbon Hopf algebra. By an analogous verification, we can see (H, m ′, �,

µ, ε, s−1, R−1, v−1) is also a ribbon Hopf algebra.
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Remark 2. If there is a ribbon element in a quasitriangular Hopf algebra, ribbon element
may not be unique.

PROPOSITION 2·5 (modified version in [6]). Let (H, m, �, µ, ε, s, R, v) be a unimodu-
lar finite-dimensional ribbon Hopf algebra, then there exists a non-zero right integral λ such
that

(tr ⊗ id)(�(v−1) · G−1 ⊗ 1) = λ(v−1)1, (2·10)

(tr ⊗ id)(�(v) · G−1 ⊗ 1) = λ(v)1, (2·11)

(tr ⊗ id⊗n)(�n(v−1) · G−1 ⊗ 1⊗n) = λ(v−1)1⊗n, (2·12)

(tr ⊗ id⊗n)(�n(v) · G−1 ⊗ 1⊗n) = λ(v)1⊗n, (2·13)

where tr = λ · G, G = uv−1

Proof. We know that the following formulae are correct from [6]:

(u−1 ←− tr)u = λ(v−1)v

and

(s(u) ←− tr)s(u−1) = λ(v)v−1.

Then, we derive that,

(u−1 ←− tr)u = ((tr ⊗ id)(�(u−1)))u

= ((tr ⊗ id)(�(v−1G−1)))Gv

= ((tr ⊗ id)(�(v−1)�(G−1)))Gv

= (tr ⊗ id)(�(v−1) · (G−1 ⊗ G−1))Gv

= ((tr ⊗ id)(�(v−1)G−1 ⊗ 1))v

= λ(v−1)v.

Hence, from the last equality in the above, we get

(tr ⊗ id)(�(v−1) · G−1 ⊗ 1) = λ(v−1)1H .

Alternatively, this equation can be expressed as the following way:

(tr ⊗ id)

( ∑
(v−1)

v−1
(1) G−1 ⊗ v−1

(2)

)
= λ(v−1)1,

or, ∑
(v−1)

tr
(
v−1

(1) G−1
)
v−1

(2) = λ(v−1)1. (2·14)

Take the action of � on both sides of the equation (2·14),∑
(v−1)

tr
(
v−1

(1) G−1
) ∑

(v−1
(2) )

v−1
(2)(1) ⊗ v−1

(2)(2) = λ(v−1)1 ⊗ 1.

Or, after taking into account the coassociativity, we have

(tr ⊗ id ⊗ id)
∑
(v−1)

v−1
(1) ⊗ v−1

(2) ⊗ v−1
(3) · G−1 = λ(v−1)1 ⊗ 1,
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Fig. 1. Elementary diagrams.

again, write it simply,

(tr ⊗ id ⊗ id)(�(2)(v−1)G−1 ⊗ 1 ⊗ 1) = λ(v−1)1 ⊗ 1.

Inductively, for any positive integer number n we have

(tr ⊗ id⊗n)(�(n)(v−1) · G−1 ⊗ 1⊗n) = λ(v−1)1⊗n.

We also deduce that

(s(u) ←− tr)s(u−1)

= ((tr ⊗ id)(�(s(u)))) · s(v−1G−1)

= ((tr ⊗ id)(�(s(Gv))))(Gv−1)

= ((tr ⊗ id)(�(vG−1)))(Gv−1)

= ((tr ⊗ id)(�(v) · G−1 ⊗ 1))v−1

= λ(v)v−1.

Hence, from the last equality in the above, we get

(tr ⊗ id)(�(v) · G−1 ⊗ 1) = λ(v)1.

Similarly, by induction, we have

(tr ⊗ id⊗n)(�n(v) · G−1 ⊗ 1⊗n) = λ(v)1⊗n.

The proof is completed.

Remark 3. In the constructions of universal invariants of links introduced by
Hennings, Kauffman and Radford, respectively, there are certain formulae, which are similar
to the above formulae. However, we prefer to use the above formulae since they are quite
geometrically suggestive. Actually, we shall explain the relations between these formulae
and Kirby moves in Section 5.

3. A comparison between universal invariants of framed links introduced by Ohtsuki and
that derived from Hennings

In this section, we review two types of definitions of universal invariants of framed links.
The difference between them will be pointed out.

According to [4] and [2], we give a diagrammatic formulation of these invariants and a
computable method by using braid groups.

Any link diagram can be transformed topologically so that it is made up of combinations
of the elementary diagrams in Figure 1.

Let L be a framed link and D be its diagram, which possesses m components
C1, C2, . . . , Cm . Given a finite-dimensional ribbon Hopf algebra (H, m, �, µ, ε, s, R, v)

with R = ∑
i∈� ai ⊗ bi and R−1 = ∑

i∈� a′
i ⊗ b′

i .
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bi
ai

u–1v

uv–1

1

1

11

b′ia′i

Fig. 2. The label rules of Hennings.

uv–1

vu–1

a′i

ai bi

b′i

1

11

1

Fig. 3. The label rules of Ohtsuki.

Although Hennings has not specifically given so-called “universal invariants” of framed
links, we can still obtain this type of invariants without using his elements C0 ⊂ H � in his
first step [2]. We label elementary diagrams according to the rules introduced by Hennings
in Figure 2.

We can get a state for D, which is a map σ : {crosses of D} → �. For each component,
for example, j th, of D, choose a base point p j and starting from p j multiply all the labelled
elements of j th component together in the order that are found according to the orientation
of C j . Then, we can obtain j th component of a weight WHe(σ ) ∈ H⊗m . Because it is
relevant to the choice of the base points, we must work modulo commutativity. After that,
we can get an analogous definition,

�He(L) = π⊗m

(∑
σ

WHe(σ )

)
∈ (H/I )⊗m

where I is the linear subspace of H spanned by xy − yx for any pair x, y ∈ H , and π :
H → H/I is the nature projection.

THEOREM 3·1. �He(L) is an isotopic invariant of a framed link L derived from
Hennings [2].

The proof of this theorem is an analogy of [4, theorem 1·1]. We will therefore not give it
here.

For comparison, we repeat the definition of Ohtsuki’s in Figure 3.
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vandv–1

Fig. 4. Two oriented kinks.

and1 1

Fig. 5. Two oriented strings.

Because two oriented kinks in Figure 4 are derived from elementary properties of other la-
bels, we may substitute them with two oriented strings as showed in Figure 5 as Ohtsuki did.

Denote Ohtsuki’s weight and isotopy invariants by WO(σ ) and �O(L) respectively, so

�O(L) = π⊗m

( ∑
σ

WO(σ )

)
∈ (H/I )⊗m .

Now, we state the relation between isotopy invariants derived from Hennings’ construc-
tion and that defined by Ohtsuki.

THEOREM 3·2.

�O(L) = S⊗m�He(L)

where S : H/I → H/I is a linear map induced by antipode: S : H → H.

Proof. According to the properties of ribbon Hopf algebras and the above label defini-
tions, it suffices to verify the theorem for the elementary diagrams. However, we would like
to give another proof by using modified Alexander theorem [4].

Suppose that b is a framed braid, b ∈ F Bn for some n and the closure b̂ of b be isotopic
to L with m components.

Let Sn be the nth symmetric group. There is a natural map ι : Bn → Sn by per-
muting the strings of the braid from the down end to the up end of the braid.

ι(b) can be divided into mutually disjointed cycles, and each cycle corresponding to a
component of L . Given j th component C j of L corresponds to the cycle (k1k2 · · · kl), sup-
pose that

∑
a1i ⊗a2i ⊗· · ·⊗ani is the “weight” of braid b according to Ohtsuki’s definition,

where ai j = di j1 di j2 · · · · di jti j
, then the j th component of weight WO(σ ) is

z(O) j =
∑

uv−1ak j i · · · uv−1ak1i .

Figure 6 shows how to obtain each component of Ohtsuki’s weight. And now by taking the
inverse direction of braid b, obtaining b; by the definition of Ohtsuki’s, we have

s(di jti j
) · · · s(di j2)s(di j1) = s(di j1 di j2 · · · di jti j

) = s(ai j ),

and also together, we have

s(z(O) j ) =
∑

s(ak1i )vu−1s(ak2i ) · · · s(akt i)vu−1

=
∑

s(uv−1akt i · · · uv−1ak2i uv−1ak1i) =: z(o) j . (3·1)
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1

uv–1

dijtij

b

dij1

aij

Fig. 6. Illustration for multiplication along cycles according to Ohtsuki’s definition.

For b, ι(b) must be the inverse of ι(b), so c j corresponds to cycle (klkl−1 · · · k2k1). Hence,
by the definition of Hennings, we have

ai j = di j1 di j2 · · · di jti j
= ai j .

And, so together we have

z(He) j =
∑

uv−1akt i · · · uv−1ak2i uv−1ak1i . (3·2)

Comparing (3·1) and (3·2), we have

s
(
z(He) j

) = z(O) j .

In this way, we see for each component the theorem is right. Therefore,

�O(L) = S⊗m�He(L)

is correct for framed link L with m components.

PROPOSITION 3·1. Let L be a framed link with m components and L ′ be L with the
opposite orientation on the lth component, then

�He(L ′) = (
id⊗(l−1) ⊗ S ⊗ id⊗(n−l)

)
(�He(L)),

where we still denote by S : H/I → H/I , the linear map induced by antipode: S : H → H.

Proof. By Theorem 3·2 and a proposition of �O in [4], we have the following equalities:

�O(L ′) = S⊗m�He(L ′),

�O(L) = S⊗m�He(L)

and

�O(L ′) = (
id⊗(l−1) ⊗ S ⊗ id⊗(m−l)

)
�O(L).

Put these three equalities together, we have

S⊗m�He(L ′) = (
id⊗(l−1) ⊗ S ⊗ id⊗(m−l)

)
S⊗m�He(L)

= S⊗m
(
id⊗(l−1) ⊗ S ⊗ id⊗(m−l)

)
�He(L).

Thus,
�He(L ′) = (

id⊗(l−1) ⊗ S ⊗ id⊗(m−l)
)
�He(L).

The proof is complete.
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dk3i1

k1

dk3ik3

ak1i k3 ak1i

k1 k2 kl–1

Fig. 7. Illustration for finding weights.

4. A comparison between universal invariants of framed link derived from Hennings and
that from Kauffman

In [3], Kauffman and Radford do not directly give universal invariants of framed link.
In [9] the author has given a definition θ(T ). Because this type of universal invariant is
constructed from unoriented link, they must be different from those invariants in Section 3.
We can show the relations between them when we compute them for an oriented framed
link.

Definition 4·1. ρ0 : (H, m, �, µ, ε, s, R, v) → (H, m ′, �, µ, ε, s−1, R−1, v−1) is defined
by

ρ0(ε) = ε, ρ0(s) = s−1, ρ0(�) = �, ρ0(u) = u

ρ0(m) = m ′, ρ0(R) = R−1, ρ0(v) = v−1.

In other words, ρ0, We call this map the inversion, is a map that changes
(H, m, �, µ, ε, s, R, v) into (H, m ′, �, µ, ε, s−1, R−1, v−1).

THEOREM 4·1. Let (H, m, �, µ, ε, s, R, v) be a unimodular finite dimensional ribbon
Hopf algebra and L be an oriented framed link with n components, then

θ(L) = ρ(�He(L))

where θ is as defined in [9], ρ is the map induced by ρ0.

Proof. As the proof of Theorem 3·2, let b be a framed braid, b ∈ F Bp for some number
p, and the closure b̂ of b be isotopic to L . Given j th component C j of L corresponding
to the cycle (k1k2 · · · kl), suppose that

∑
a1i ⊗ a2i ⊗ · · · ⊗ ani is the “weight” of braid b

according to Hennings’ definition, where ai j = di j1 di j2 · · · · di jti j
, then

z(He) j =
∑

ak1i uv−1ak2i · · · akl i uv−1.

Now, forget the orientation of close braid b̂, label this unoriented b̂ according to [9]
by using algebra (H, m ′, �, µ, ε, s−1, R−1, v−1) and multiply algebraic elements upon
each string, denoted by ai j = di jti j

· · · di j2 di j1 move akl i to up end of braid b, k2, then

the localized algebraic element of k2 is ak2i S−2(akl i). Move ak2i S−2(akl i) to up end of
braid b, k3, then the localized algebraic element of k3 is ak3i S−2(ak2i)S−4(akl i ). Keep
doing this as Figure 7 shows. Finally, when reaching where kl is, we have the localized
algebraic element akl i S

−2(akl−1i) · · · S−2(l−1)(ak1i ). Thus,

z(θ) j = akl i S
−2(akl−1i ) · · · S−2(l−1)(ak1i )(vu−1)l

= akl ivu−1akl−1ivu−1 · · · uv−1ak1ivu−1.
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S(ai) bi

θ
ΣS(ai)S2(bi)G
=S(ΣS(bi)ai)G = S(u)G
=S(u)uv–1 = v2v–1 = v

Fig. 8. Algebraic expression for a kink.

∆(v)
θ

Fig. 9. Algebraic expression for a double kink.

In this way, for one component we have

z(θ) j = ρπ(z(He) j ).

Therefore, putting all components together,

θ(L) = ρ(�He(L))

the proof is complete.

Remark 4. Since θ(L) is irrelevant to orientation of L , naturally, we can obtain

θ(L) = ρ(�O(L)).

5. The algebraic representation of Kirby Moves and relations among 3-manifold invariants
derived from these universal link invariants

When we construct an invariant of 3-manifold obtained by surgery along a family of links
which transform mutually under Kirby moves, this invariant of 3-manifold must be constant
to each of these links. In other words, it is invariant under Kirby moves. However, when we
give the algebraic representation of Kirby moves, this question is changed completely into
algebraic question.

By comparison from [9], we have an algebraic expression for a kink in Figure 8. By
θ(�(T )) = �(θ(T )) or by complicated computation, we have an algebraic expression for
double kink as in Figure 9.

If we multiply G−1 = vu−1 with some component of the tensor, we consider it as a result
in closure of the component of the tangle correspondingly to the diagram. As examples of
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θ ∆(v) · G–1 ⊗ 1

Fig. 10. Closure of Figure 9.

vG–1

Fig. 11. Closure of Figure 8.

Fig. 12. One Kirby move with one string.

this point, we can see the following transformation of diagram in Figure 10 and Figure 11
which correspond to Figure 8 and Figure 9 respectively.

However, we have diagrams of Kirby moves as in Figure 12 and Figure 13.
If we use Proposition 2·5, for the Kirby move in Figure 12, we have algebraic represent-

ation (2·11) as follows,

(tr ⊗ id)(�(v) · G−1 ⊗ 1) = λ(v)1.

We also could see, for Figure 13, that the corresponding algebraic representation is given by
(5·1),

tr(vG−1) = λ(GvG−1) = λ(v). (5·1)

Generally, for the unknotted component with framing +1, diagrams of Kirby moves is shown
in Figure 14. For the Kirby move in Figure 14, corresponding to the formula of Proposition
2·5 as follows

(tr ⊗ id⊗n)(�n(v) · G−1 ⊗ 1⊗n) = λ(v)1⊗n.
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Fig. 13. One Kirby move without string.

n

n

Fig. 14. General Kirby move with n strings.

θ
ΣGS–2(bi)ai

= G(Σbis
2(ai))

= uv–1u–1

= v–1

Fig. 15. Algebraic expression for a negative kink.

Similarly to figures in Figures 8, 10 and 11, we can derive the algebraic expression in
Figures 15, 16 and 17.

Thus, for the following algebraic formulae (as mentioned in Proposition 2·5):

tr(v−1G−1 ⊗ 1) = λ(v−1)

(tr ⊗ id)(�(v−1) · G−1 ⊗ 1) = λ(v−1)1

correspondingly, the diagrams of Kirby moves are in Figures 18 and 19.
For general Kirby moves with the unknotted component with framing −1 in Figure 20,
we can represent it by the formula in Proposition 2·5,

(tr ⊗ id⊗n)(�n(v−1) · G−1 ⊗ 1⊗n) = λ(v−1)1⊗n.

Therefore we get an algebraic representation of Kirby moves by unimodular finite-
dimensional ribbon Hopf algebra. This is a transformation of that in [9]. Ohtsuki has also
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θ
v–1G–1

Fig. 16. Algebraic expression for a negative eight.

θ
∆(v–1) · G–1 ⊗ 1

Fig. 17. Algebraic expression for a negative double kink.

Fig. 18. The simple Kirby move with negative framing.

Fig. 19. One Kirby move with negative framing.

given an expression [5], which is a transformation of Hennings’s [2]. But when we use
algebra (H, m, �, µ, ε, s, R, v) and its accompany (H, m ′, �, µ, ε, s−1, R−1, v−1), the res-
ults in this section are accompanied with Ohtsuki’s [5] by the inversion map ρ, and the
algebraic representation of Kirby moves in [9] is accompanied with that in [2] by the in-
version map ρ. Essentially, those four kinds of algebraic representation of Kirby moves are
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n

n

Fig. 20. One Kirby move with n strings and negative framing.

equivalent, when we construct invariants of 3-manifolds. We give the following theorems to
state the relations among invariants of 3-manifolds.

THEOREM 5·1. Given a unimodular finite-dimensional ribbon Hopf algebra, there are
only two types of linear maps induced from right integrals, which can be used for the algeb-
raic representation of Kirby moves.

Proof. Since the dimension of right integral space of a Hopf algebra does not exceed one,
and for the given algebra and its company both have one type of linear map induced by its
integral respectively, we can only have two types of linear maps.

LEMMA 5·1. From universal invariants of framed links, 3-manifold invariants defined by
Hennings and Kauffman–Raford respectively can be derived:

I N K (L) = [λ(v)λ(v−1)]− c(L)

2

[
λ(v)

λ(v−1)

]− σ(L)

2

tr⊗c(L)(θ(L))

Iv,υ(L) = [λ(v)λ(v−1)]− c(L)

2

[
λ(v)

λ(v−1)

]− σ(L)

2

υ⊗c(L)(�He(L))

where c(L) denotes the number of components of L and σ(L) denote the signature of the
matrix of linking number of components L.

Proof. By the definition of θ(L) in [9] and T R(L) in [3], we can see

T R(L) = tr⊗c(L)(θ(L))

and so,

I N K (L) = [λ(v)λ(v−1)]σ− c(L)

2

[
λ(v)

λ(v−1)

]− σ(L)

2

T R(L)

= [λ(v)λ(v−1)]− c(L)

2

[
λ(v)

λ(v−1)

]− σ(L)

2

tr⊗c(L)(θ(L)).

By Theorem 3·1 and the structure of Iv,υ (L) in [2], we have

[|L|]v,υ(L) = υ⊗c(L)(�He(L)).
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Hence

Iv,υ(L) = [λ(v)λ(v−1)]− c(L)

2

[
λ(v−1)

λ(v)

]− σ(L)

2

[|L|]v,υ

= [λ(v)λ(v−1)]− c(L)

2

[
λ(v−1)

λ(v)

]− σ(L)

2

υ⊗c(L)(�He(L)).

THEOREM 5·2. Let (H, m, �, µ, ε, s, R, v) be a unimodular finite-dimensional ribbon
Hopf algebra, λ ∈ A� be a none-zero right integral and L be a framed link. If Iv,υ(L) and
I N K (L), invariants of the associated 3-manifolds obtained by surgery along L, are respect-
ively defined by Hennings and Kauffman–Radford, then

ρ(Iv,υ(L)) = I N K (L)

where ρ is the map by the inversion ρ.

Proof. By Lemma 5·1, we have

I N K (L) = [λ(v)λ(v−1)]− c(L)

2

[
λ(v)

λ(v−1)

]− σ(L)

2

tr⊗c(L)(θ(L))

and

Iv,υ(L) = [λ(v)λ(v−1)]− c(L)

2

[
λ(v−1)

λ(v)

]− σ(L)

2

υ⊗c(L)(�He(L)).

By proposition 6 in [2], and tr in [3], we have

tr = λ · G,

so then υ = tr.
We already know that θ(L) = ρ(�He(L)). If we take the action of linear map tr⊗n on

the both sides of this equation and the application of ρ0 and denote the result of ρ action by
ρ , we have

I N K (L) = ρ(Iv,υ(L)).

THEOREM 5·3.

I N K (L) = cλw(M)

where w(M) is defined in [9], cλ is a constant.

Proof. By σ = σ+ − σ−, tr = ϕ = λ · G

I N K (L)

w(M)
=

[λ(v)λ(v−1)]σ− c(L)

2

[
λ(v)

λ(v−1)

]− σ(L)

2
T R(L)[

λ(v−1)
]σ+−c(L)

[λ(v)]−σ+ ϕ⊗c(L)(θ(L))

= [λ(v)] σ++σ−−c(L)

2 [λ(v−1)] c(L)−(σ++σ−)

2
tr⊗c(L)(θ(L))

ϕ⊗c(L)(θ(L))

= (λ(v))
σ+−σ−−c(L)

2 (λ(v−1))
c(L)−(σ++σ−)

2 ,

then

I N K (L) = (λ(v))
σ+−σ−−c(L)

2 (λ(v−1))
c(L)−(σ++σ−)

2 w(M).
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For the same 3-manifold obtained from L by surgery, σ+−σ−−c(L) and c(L) − (σ++σ−)

are always constants, so we denote (λ(v))
σ+− sigma−−c(L)

2 (λ(v−1))
c(L)−(σ++σ−)

2 by cλ. Hence, we
have

I N K (L) = cλw(M).

THEOREM 5·4. If χ = µ, then

Iv,υ(L) = cχω(M),

where ω(M) is define in [5], cχ is a constant.

Proof. By Ohtsuki [5]

ω(M) = cσ−−c(L)
+ c−σ−− χ⊗c(L)(�O(L))

and, from 5·1,

Iv,υ(L) = [λ(v)λ(v−1)]− c(L)

2

[
λ(v−1)

λ(v)

]− σ(L)

2

υ⊗c(L)(�He(L)).

When χ = µ, it is easy to know that

χ(λv−1 · v) = µ(G · v) = c−,

µ(s(λv−1 · v)) = µ(G−1 · v) = λ(v),

thus

c− = λ(v).

Similarly, we have

c+ = λ(v−1).

It is also easy to know that

cχ = (λ(v))
σ+−σ−−c(L)

2 (λ(v−1))
c(L)−(σ++σ−)

2

is a constant.

Remark 5. By these theorems, we know that invariants of 3-manifold introduced by Hen-
nings, Kauffman–Radford, Ohtsuki and the author, respectively, are equivalent. In order to
understand this point, it is a good idea to construct these invariants for a reduced quantum
group (Uq(sl2))

′ and discuss special properties and relations among them. We hope to dis-
cuss this issue elsewhere.
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