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Abstract

Inspired by coalescent theory in biology, we introduce a stochastic model called “multi-person simple random walks” or “coalescent
random walks” on a graph G. There are any finite number of persons distributed randomly at the vertices of G. In each step of this
discrete time Markov chain, we randomly pick up a person and move it to a random adjacent vertex. To study this model, we
introduce the tensor powers of graphs and the tensor products of Markov processes. Then the coalescent random walk on graph G
becomes the simple random walk on a tensor power of G. We give estimates of expected number of steps for these persons to meet
all together at a specific vertex. For regular graphs, our estimates are exact.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Inspired by coalescent theory in population genetics, we consider, in the present paper, a class of models, called
coalescent random walks on graphs which is actually an generalization of coalescent theory. Let us recall the basic idea
about coalescent theory firstly. Taking a sample with n individuals from a population, we label them as 1, 2, . . . , n, and
ask a question how long ago the recent common ancestor of the sample lived. Coalescent theory answers this question
by running a continuous time Markov chain over the collection of partitions A1, A2, . . . , At of 1, 2, . . . , n, where
each Ai consists of one subset of individuals that have coalesced and hence are identical by descent. To explain this
theory, we look at an example that the sample consists of five individuals 1, 2, . . . , 5. For the purpose of illustration, we
randomly choose partitions at each time when a coalescent event happens. As we work backwards in time, partitions
were chosen as the following:

time 0 {1} {2} {3} {4} {5}
T4 {1, 2} {3} {4} {5}
T3 {1, 2} {3} {4, 5}
T2 {1, 2, 3} {4, 5}
T1 {1, 2, 3, 4, 5}.

Initially, the partition consists of five singletons since there has been no coalescence. After 1 and 2 coalesce at time
T4, they appear in the same set. Then 4 and 5 coalesce at time T3, etc. Finally, at time T1 we end up with all the labels
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in one set. After figured out the probabilities of coalescent events, Kingman [5,6] got a continuous time Markov chain
asymptotically. That is coalescent theory. If we construct a graph by taking the set of vertices as the set of all partitions
of labeled individuals of a sample and the set of edges as the set of coalescent relations, we could see that coalescent
theory is a class of continuous time Markov chains over a special class of graphs. The graphs are special, because
they have a kind of partial directions from n distinct vertices to the other one vertex which represent the genealogical
relations. From a different viewpoint, coalescent theory models how n particles come together under certain conditions.
Therefore, we generally consider the following model that we call k-coalescent random walks or multi-person simple
random walks.

Given a graph G with n vertices and m edges, and suppose that k persons distribute on n vertices of G. We here allow
that several persons can stand together on one vertex and k can be bigger than n or smaller than n. At each time step,
one person could randomly move to one of his neighbor vertices with the equal probability of moving any one of his
neighbor vertices except the vertex he currently stands on. Then, there arises an interesting question that when these k
persons will first time meet together on a specific vertex.

To solve this problem, in the rest of the article, we generalize the concept of the tensor powers of a graph, which
are introduced in paper [9]. We recall the tensor products of Markov processes. By using the continuous time Markov
chains over the kth tensor powers of the given graph, we turn the k-coalescent random walks on the ground graph G
into the simple random walks on its kth tensor powers. This way, we get an estimation of the expectation of the time
steps that k persons starting with any distribution on the graph come together at a specific vertex.

For simplicity, we only consider connected simple graphs. These are connected graphs without multiple edges and
loops. We adopt the following notations and terminologies for a graph G. The sets of vertices and edges of G are V (G)

and E(G), respectively. The order n of G is the number of vertices of G, and the size m of G is the number of edges of
G. Thus, n = |V (G)| and m = |E(G)|. For a vertex x ∈ V (G), �(x) is the set of vertices which are connected to x by
an edge in E(G). The degree of a vertex x is d(x) = |�(x)|. We have∑

x∈V (G)

d(x) = 2m.

The adjacent matrix of G is denote by A(G) and the diagonal matrix D(G) has the sequence of degrees at each vertex
as its diagonal entries. Finally, we denote

dm = min{d(x); x ∈ V (G)} and dM = max{d(x); x ∈ V (G)}.
We would like to refer the reader to [7,1,9,3] for basic notions and results in the study of simple random walks on

graphs.

2. Coalescent random walks and simple random walks on graphs

2.1. The tensor powers of graphs

For a graph G with order n and size m, a nth tensor power of G was introduced in paper [9]. It is not necessary to
constrain the order of tensor power to be the order of the graph. Although the motivation of our generalization of tensor
powers of a graph is coalescent random walks of any number of persons on the graph, the general tensor powers have
their own interesting applications.

Let Ik and In be finite sets of cardinalities k and n, respectively. For example, we may have Ik = {1, 2, . . . , k}, and
In = {1, 2, . . . , n}. We denote the set of all maps from Ik to In by Mk,n. When k = n, we have the symmetric group Sn

sitting inside of Mn,n. A map x ∈ Mk,n is called a generalized permutation of deficiency j if

|x(Ik)| = k − j .

We denote def(x) = j .
Mk,n is a semigroup under composition when k�n. The symmetrical group Sn is a subgroup of Mk,n only when

k = n. The deficiency determines a grading on Mk,n which is compatible with the semigroup product on Mk,n:

def(x) + def(y)�2def(x ◦ y).
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Fig. 1. The ground graph G.

Denote M
(j)
k,n = {all maps with deficiency j}, then we have a decomposition of Mk,n according to the deficiency

Mk,n = M
(k−n)
k,n � M

(k−n+1)
k,n � M

(k−n+2)
k,n � · · · � M

(k−1)
k,n ,

where M
(k−n)
k,n is the set of all surjective maps. Mk,n has a similar decomposition when k�n. That is,

Mk,n = M
(0)
k,n � M

(1)
k,n � M

(2)
k,n � · · · � M

(k−1)
k,n ,

where M
(0)
k,n is the set of all injective maps.

We identify the set of vertices V (G) of graph G with In, and we call G the ground graph. Let the adjacent matrix
A(G) = (aij )n×n with entries given by

aij =
{

1 if ij ∈ E(G),

0 otherwise.

For any positive integer k, we define a new graph Mk,n(G) which we call the kth tensor power of G as follows.
V (Mk,n(G)) = Mk,n, that is, the set of vertices of Mk,n(G) is the set of all maps from Ik to In; For x, y ∈ Mk,n, there
is an edge xy in Mk,n(G) only when

|{i : x(i) �= y(i)}| = 1,

and if x(i) �= y(i), then Axy = ax(i)y(i) = 1, where Axy’s are the entries of the adjacent matrix of Mk,n(G).
It is easy to see that the order of Mk,n(G) is nk . However, the degrees of vertices and size of Mk,n(G) are not easy

to compute directly. They will become corollaries after we connect the coalescent random walks on G and the simple
random walks on Mk,n(G). We here give an example to see how to construct a tensor power of a ground graph. The
ground graph is a triangle G, a regular graph with degree 2. We denote its vertices by numbers 1, 2 and 3 (Fig. 1).

We look at the third tensor power which has order 27 and size 81. Notice that the number sequence on a vertex
represents the map from I3 to I3. For instant, 232 represents the map that send 1 to 2, 2 to 3 and 3 to 2 (Fig. 2).

Bipartite property is important for considering random walks on graphs. We therefore generalize a lemma in pa-
per [9]. Its proof seems similar. For convenience to read, we also present the proof here. For more references, see
books [2,4].

Theorem 2.1. G is bipartite if and only if Mk,n(G) is bipartite.

Proof. We use the classical result of König that a graph is bipartite if and only if all its cycles are even.
If G is not bipartite, then there is a cycle C = v1v2 · · · vmv1 of odd length in G. We look at the cycle in Mk,n(G)

given by

(v1, v1, . . . , v1)(v1, . . . , v1, v2)(v1, . . . , v1, v3) · · · (v1, . . . , v1, vm)(v1, . . . , v1, v1).

Its length is also odd. Thus Mk,n(G) is not bipartite.
If G is bipartite, then the set of vertices V = V (G) can be written as V1 ∪ V2, with V1 ∩ V2 = ∅ and there is no edge

between vertices both in V1 or both in V2. We try to bipart the set of vertices of Mk,n(G). We know V (Mk,n(G))=V ×k .
We write V = V1 + V2. Then

V ×k = (V1 ∪ V2)
×k = V k

1 ∪ V k−1
1 V2 ∪ V k−2

1 V 2
2 ∪ · · · ∪ V1V

k−1
2 ∪ V k

2 ,
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Fig. 2. The third tensor power M3,3(G) of G.

where V k−r
1 V r

2 means we take (k − r) vertices from V1 and r vertices from V2, regardless of order, to form a vertex of
Mk,n(G). Let

V1 = V k
1 ∪ V k−2

1 V 2
2 ∪ V k−4

1 V 4
2 ∪ · · · ,

V2 = V k−1
1 V2 ∪ V k−3

1 V 3
2 ∪ V 5

1 V k−5
2 ∪ · · · .

Then V1 ∪ V2 = V (Mk,n(G)) and V1 ∩ V2 = ∅. By the definition of Mk,n(G), we cannot find an edge between any two
vertices which are both in V1 or both in V2. �

Remark 2.1. We could define the tensor products of any finite number of different graphs by a motivation from the
tensor products of Markov processes in the next subsection. However, we leave it as a further topic.

2.2. The tensor products of Markov chains

The tensor products could be defined for any stochastic process in general. For our present purpose, we just define
the tensor products for Markov chains including continuous time and discrete time cases.

Let X
(1)
t , X

(2)
t , . . . , X

(k)
t be Markov processes (Continuous time Markov chains with homogeneous transition prob-

abilities here) on the state spaces S(1), S(2), . . . , S(k), respectively. We define a new process Yt on the state space S(1)×
S(2) × · · · × S(k) with the transition probability given by

Pr{Yt+h = (s2) | Yh = (s1)}

=
k∏

i=1

Pr{Y (i)
t+h = s

(i)
2 | Y

(i)
h = s

(k)
1 }

=
k∏

i=1

p
(i)

s
(i)
1 s

(i)
2

(t),
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where (sj ) = (s
(1)
j , s

(2)
j , . . . , s

(k)
j ), j = 1, 2, and p

(i)

s
(i)
1 s

(i)
2

(t) is the transition probability function of the Markov process

X
(i)
t , i = 1, 2, . . . , k.

We call Yt the tensor product of Markov processes X
(i)
t , i = 1, 2, . . . , k.

The next two statements are basic statements for the tensor products of Markov processes. We therefore give their
proofs.

Lemma 2.1. Yt is a continuous time Markov chain.

Proof. 1. By the definition of the tensor product Yt its transition probability function

P(s1)(s2)(t) =
k∏

i=1

p
(i)

s
(i)
1 s

(i)
2

(t)�0,

since each term of the product is nonnegative.
2.

∑
(s2)

P(s1)(s2)(t) =
∑
(s2)

k∏
i=1

p
(i)

s
(i)
1 s

(i)
2

(t) =
k∏

i=1

∑
s
(i)
2 ∈S(i)

p
(i)

s
(i)
1 s

(i)
2

(t) = 1,

since each summation is one.
3. The Chapman–Kolmogorov equations,

P(s1)(s2)(h + t) =
k∏

i=1

p
(i)

s
(i)
1 s

(i)
2

(h + t)

=
k∏

i=1

∑
s
(i)
3 ∈S(i)

p
(i)

s
(i)
1 s

(i)
3

(h)p
(i)

s
(i)
3 s

(i)
2

(t)

=
∑
(s3)

P(s1)(s3)(h)P(s3)(s2)(t),

are satisfied.
4. We have the regularity,

lim
t→0+ P(s1)(s2)(t) = lim

t→0+

k∏
i=1

p
(i)

s
(i)
1 s

(i)
2

(t) =
{

1 if (s1) = (s2),

0 otherwise,

when (s1) = (s2), each term of the product goes to one; when (s1) �= (s2), there is at least a term so that s
(r)
1 �= s

(r)
2 ,

then p
(r)

s
(r)
1 s

(r)
2

goes to zero.

Therefore, the definition of tensor products of Markov processes is well-defined. �

Theorem 2.2. Let q(s1)(s2) be the infinitesimal generator of the continuous time Markov chain Yt . Then

q(s1)(s2) =

⎧⎪⎨
⎪⎩

q
(i)

s
(i)
1 s

(i)
2

if ∃ only one index i such that s
(i)
1 �= s

(i)
2 ,∑k

i=1q
(i)

s
(i)
1 s

(i)
2

if (s1) = (s2), namely , s
(i)
1 = s

(i)
2 for all i,

0 otherwise.

where q
(i)

s
(i)
1 s

(i)
2

is the infinitesimal generator of Markov process X
(i)
t , i = 1, 2, . . . , k.
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Proof. 1. If there exists only one index r such that s
(r)
1 �= s

(r)
2 , then we have

lim
t→0+

∏k
i=1p

(i)

s
(i)
1 s

(i)
2

(t)

t
= lim

t→0+

∏k
i=1,i �=rp

(i)

s
(i)
1 s

(i)
2

(t) × p
(r)

s
(r)
1 s

(r)
2

(t)

t

=
k∏

i=1,i �=r

p
(i)

s
(i)
1 s

(i)
2

(0) lim
t→0+

p
(r)

s
(r)
1 s

(r)
2

(t)

t

= 1 × q
(r)

s
(r)
1 s

(r)
2

= q
(r)

s
(r)
1 s

(r)
2

.

2. If (s1) = (s2), namely, s
(i)
1 = s

(i)
2 for all i, then

lim
t→0+

∏k
i=1p

(i)

s
(i)
1 s

(i)
1

(t) − 1

t
= lim

t→0+

[p(1)
s1s1(t) − 1]∏k

i=2p
(i)

s
(i)
1 s

(i)
1

(t) +∏k
i=2p

(i)

s
(i)
1 s

(i)
1

(t) − 1

t

= q
(1)

s
(1)
1 s

(1)
1

+ lim
t→0+

[p(2)

s
(2)
1 s

(2)
1

(t) − 1]∏k
i=3p

(i)

s
(i)
1 s

(i)
1

(t) +∏k
i=3p

(i)

s
(i)
1 s

(i)
1

(t) − 1

t

= q
(1)

s
(1)
1 s

(1)
1

+ q
(2)

s
(2)
1 s

(2)
1

+ · · · + lim
t→0+

p
(k)

s
(k)
1 s

(k)
1

(t) − 1

t

=
k∑

i=1

q
(i)

s
(i)
1 s

(i)
1

.

3. Except the cases of the above, there are at least two indices, say j and r, such that s
(j)
1 �= s

(j)
2 and s

(r)
1 �= s

(r)
2 ,

lim
t→0+

∏k
i=1p

(i)

s
(i)
1 s

(i)
2

(t)

t
=

∏
i �=r,i �=j

p
(i)

s
(i)
1 s

(i)
2

(0) × p
(r)

s
(r)
1 s

(r)
2

(0) lim
t→0+

p
(j)

s
(j)
1 s

(j)
2

(t)

t
.

= 0.

Thus, we get the infinitesimal generator for the Markov process Yt . �

Now, if we order the elements of the state space S(1) × S(2) × · · · × S(n) lexicographically, and let P (i)(t) be the
probability transition matrix of X

(i)
t , i = 1, 2, . . . , k, it is easy to see that the probability transition matrix P(t) of Yt

is given by the tensor product

P (1)(t) ⊗ P (2)(t) ⊗ · · · ⊗ P (k)(t).

This is why we call Yt is a tensor product of Markov process X
(i)
t , i = 1, 2, . . . , k. By Theorem 2.2, we also can see

that the infinitesimal generator matrix of Yt is given by

Q(1) ⊗ I ⊗ · · · ⊗ I + I ⊗ Q(2) ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ Q(k),

where Q(i) is the infinitesimal generator matrix of X
(i)
t , i = 1, 2, . . . , k. Thus, for convenience, we denote Yt = X

(1)
t ⊗

X
(2)
t ⊗ · · · ⊗ X

(k)
t . We also have the following interesting statement by using these notations.

Corollary 2.1.

P(t) = P (1)(t) ⊗ P (2)(t) ⊗ · · · ⊗ P (k)(t)

= exp((Q(1) ⊗ I ⊗ · · · ⊗ I + I ⊗ Q(2) ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ Q(k))t).
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Proof. For simplicity, we take factor number k to be 2 and denote Q(1) as Q, and Q(2) as Q. We directly compute the
results to verify our conceptual derivative.

P(t) = P (1)(t) ⊗ P (2)(t)

= exp(Qt) ⊗ exp(Qt)

=
(

I + Qt + 1

2!Q
2t2 + · · ·

)
⊗
(

I + Qt + 1

2!Q
2
t2 + · · ·

)

= I ⊗ I + (Q ⊗ I + I ⊗ Q)t +
(

1

2
Q2 ⊗ I + 1

2
I ⊗ Q

2 + Q ⊗ Q

)
t2

+
(

1

3!Q
3 ⊗ I + 1

3!I ⊗ Q
3 + 1

2!Q ⊗ Q
2 + 1

2!Q
2 ⊗ Q

)
t3 + · · ·

= I + (Q ⊗ I + I ⊗ Q)t + 1

2! (Q ⊗ I + I ⊗ Q)2t2 + 1

3! (Q ⊗ I + I ⊗ Q)3t3 + · · ·
= exp((Q ⊗ I + I ⊗ Q)t).

Notice that if X
(1)
t and X

(2)
t have different numbers of states, the identity matrices in the above expressions have

different sizes. �

2.3. Continuous time simple random walks on Mk,n(G)

In the paper [9], we introduced continuous time simple random walks (CTSRW) on graphs. For a given graph G, the
CTSRW on G is defined by giving its infinitesimal generator as the negative Laplacian of G. We know that the jump
chains of the CTSRWs on a graph are the simple random walks (SRW) on this graph. We could therefore estimate
some interesting quantities about SRW by studying CTSRW. Surprisingly, by using the tensor powers of a graph, the
k-coalescent random walk on the graph G turns out to be the jump chain of the CTSRW on the kth tensor power of G.
Let us now denote Markov process CTSRW on Mk,n(G) by Yt , and Markov process CTSRW on G by Xt . We have the
following basic statement.

Theorem 2.3. The Markov process Yt on the graph Mk,n(G) is the kth tensor power of the Markov process Xt on the
ground graph G. The jump chain of Yt is k-coalescent random walk of G.

Proof. Let us recall Q = −L(G) = −D(G) + A(G) = (qij )n×n,

qij =
{1 if ij ∈ E(G),

−d(i) if i = j,

0 otherwise,

where d(i) is the degree of the vertex i. Let Xt ⊗ Xt ⊗ · · · ⊗ Xt = Zt be the kth tensor power of the process Xt . Take
two states for Zt , (s1) and (s2). Then (si) actually is a sequence of vertices of G. We write (s1) = (i1, i2, . . . , ik) and
(s2) = (j1, j2, . . . , jk). By Theorem 2.2 above, we have

p′
(s1)(s2)

(0) =

⎧⎪⎨
⎪⎩

q
(r)

s
(r)
1 s

(r)
2

if ∃ only one index r such that s
(r)
1 �= s

(r)
2 ,∑k

r=1 q
(r)

s
(r)
1 s

(r)
2

if (s1) = (s2), namely, s
(r)
1 = s

(r)
2 for all r,

0 otherwise,

=
{1 if ∃ only one index r such that ir �= jr , irjr ∈ E(G),

−∑k
r=1d(ir ) if ir = jr for all r,

0 otherwise.

Now, we could identify (s1) and (s2) with the images of certain maps x and y, respectively. Then by the definition
of Mk,n(G), xy ∈ E(Mk,n(G)), if and only if p′

(s1)(s2)
(0) = 1. As to the degree of x, we know that the neighbors of

x = (s1) can only be (r1, i2, . . . , ik), where r1 must be a neighbor of i1 in the ground graph G; (i1, r2, . . . , ik), where
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r2 must be a neighbor of i2 in the ground graph G; and so on, up to the last one (i1, i2, . . . , ik−1, rk), where rk must be
a neighbor of ik in the ground graph G. Thus

d(x) = d(s1) =
k∑

j=1

d(ij ).

This agrees with p′
(s1)(s1)

(0) = −∑k
r=1 d(ir ). So, Yt= Xt ⊗ Xt ⊗ · · · ⊗ Xt = Zt .

The second conclusion is easy to see. �

Because of this theorem, we call graph Mk,n(G) the kth tensor power of the graph G. We also note that the transition
probability from x to y for Yt is given by

Pxy(t) =
k∏

i=1

px(i)y(i)(t).

From the proof of Theorem 2.3, we know that for x ∈ Mk,n = V (Mk,n(G)), its degree in Mk,n(G) is given by

d(x) =
k∑

r=1

d(x(r)).

We can compute the size of Mk,n(G), i.e. the number of edges of Mk,n(G) as

2|E(Mk,n(G))| =
∑

x∈Mk,n

d(x) =
∑

x∈Mk,n

k∑
r=1

d(x(r)) =
k∑

r=1

∑
x∈Mk,n

d(x(r))

=
k∑

r=1

((d(1) + d(2) + · · · + d(k))nk−1)

= 2mknk−1.

Thus, the size of Mk,n(G) is mknk−1. It is clear that the order of Mk,n(G) is nk . Therefore, the frequency of Mk,n(G)

is 2mk/n. The definition of the frequency is in paper [9]. We write these results as a corollary.

Corollary 2.2. The kth tensor power of graph G with order n and size m has order and size, respectively,

|V (Mk,n(G))| = nk ,

|E(Mk,n(G))| = mknk−1.

If G is not bipartite with order n and size m, then Mk,n(G) is not bipartite. We could have the stationary distribution for
the k-coalescent random walk on G. In terms of the SRW on graph Mk,n(G), for each vertex x in Mk,n, the x-component
of the stationary distribution is given by

�x = d(x)

2mknk−1 =
∑k

i=1 d(x(i))

2mknk−1 = k−1n1−k
k∑

i=1

d(x(i))

2m
= k−1n1−k

k∑
i=1

�G
x(i),

where

�G
x(i) = d(x(i))

2m

is the x(i)-component of the stationary distribution vector for SRW on G.



152 J.P. Tian, Z. Liu / Journal of Computational and Applied Mathematics 202 (2007) 144–154

For a given map in Mk,n, the expected first return time for CTSRW on Mk,n(G) is given by

h(x, x) = nk

d(x)
= nk∑k

i=1d(x(i))
.

In particular, for the identity map Id, d(Id) = d1 + d2 + · · · + dn = 2m. So

h(Id, Id) = nk

2m
.

For the jump chain SRW on Mk,n(G), or k-coalescent random walk on G, we have

H(x, x) = fMk,n(G)h(x, x) = 2mknk−1∑k
i=1d(x(i))

,

where fMk,n(G) = 2mk/n is the frequency of Mk,n(G). In particular,

H(Id, Id) = nk .

Remark 2.2. When we talk about identity map above we require that the number of walkers is the same as the number
of vertices of the graph.

2.4. Coalescent times for k-coalescent random walk on G

For CTSRW on Mk,n(G), we are interested in calculating h(x, ci), the hitting time from x to ci , where x represents
the initial configuration of these k persons and ci is the constant map to a vertex i of G. Once we know h(x, ci), we
can use it to estimate H(x, ci) for SRW on Mk,n(G), or equivalently, the expect number of steps k-coalescent random
walk on G should take to have all persons first meet at the vertex i. That is the mean coalescent times for k-coalescent
random walk on G. To compute this quantities, we need recall certain formula in paper [9] also books [3,8].

The mean hitting time for CTSRW on graph G with order n and size m from vertex i to j is given by the following
integral:

h(i, j) = n

∫ ∞

0
(pjj (t) − pij (t)) dt .

For continuous time Markov chains, particularly CTSRW on graphs, the “time-step inequality” states a relation
between a Markov time T and steps NT of the jump chains:

dmE(T )�E(NT )�dME(T ).

Now, if the minimum and maximum degree of graph G are, respectively, dm and dM , then the minimum and maximum
degree of graph Mk,n(G) are, respectively, kdm and kdM . Therefore, we have

kdmh(x, ci)�H(x, ci)�kdMh(x, ci).

Notice that when the graph G is regular, H(x, ci) is determined completely by h(x, ci): H(x, ci) = kd · h(x, ci).
Let x and y be two distinct vertices in Mk,n(G), we consider the hitting time h(x, y) of y from x in CTSRW. We have

h(x, y) = nk

∫ ∞

0
(Pyy(t) − Pxy(t)) dt

= nk

∫ ∞

0

(
k∏

i=1

py(i)y(i)(t) −
k∏

i=1

px(i)y(i)(t)

)
dt .
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For y = ci , we have

h(x, ci) = nk

∫ ∞

0

(
pk

ii(t) −
k∏

i=1

px(i)y(i)(t)

)
dt .

Thus, we get an estimation of the mean coalescent times H(x, ci) by h(x, ci) or the above integral.
It is interesting to look at a special case that in the beginning of the coalescent random walk there are r persons

standing on each vertex. Let x0 be the map represent the initial configuration of there rn persons. Then the integral
becomes

h(x0, ci) = nrn

∫ ∞

0

⎛
⎝prn

ii (t) −
n∏

j=1

pr
ji(t)

⎞
⎠ dt .

When r is one, that means, each vertex has one person in the beginning, we have

h(x0, ci) = nn

∫ ∞

0

⎛
⎝pn

ii(t) −
n∏

j=1

pji(t)

⎞
⎠ dt .

To calculate this integral, we diagonalize the Laplacian of G. Write

UTQU = diag[−�1, −�2, . . . ,−�n],
where U = (uij )n×n is an orthogonal matrix. Then

pij (t) =
n∑

k=1

uikujke−�k t .

Since

pii(t)
n =

(
n∑

k=1

u2
ike−�k t

)n

=
∑

1�k1,k2,...,kn �n

u2
ik1

u2
ik2

· · · u2
ikn

e−(�k1+�k2 +···+�kn ) t

and
n∏

k=1

pki(t) =
∑

1�k1,k2,...,kn �n

u1k1uik1u2k2uik2 · · · unknuikne−(�k1+�k2 +···+�kn ) t ,

we get

h(Id, ci) = nn
∑

1�k1,k2,...,kn �n

u2
ik1

u2
ik2

· · · u2
ikn

− u1k1uik1u2k2uik2 · · · unknuikn

�k1 + �k2 + · · · + �kn

.

Example. Let G be the triangle graph. It is regular with n = 3 and d = 2. The matrix Q and U are given below

Q =
(−2 1 1

1 −2 1
1 1 −2

)
and U =

⎛
⎜⎜⎜⎜⎜⎝

− 1√
2

− 1√
6

1√
3

0
2√
6

1√
3

1√
2

− 1√
6

1√
3

⎞
⎟⎟⎟⎟⎟⎠ .

We have UTQU = diag[−3, −3, 0]. Since �3 = 0, when calculating h(Id, ci), we should drop the term (k1, k2, k3) =
(3, 3, 3). Notice that the numerator of this term in h(Id, ci) is also zero, so it is fine to drop this term. We have

h(Id, c1) = 33 · 31

162
= 31

6
.
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So

H(Id, c1) = 3 · 2 · 31

6
= 31.

Thus, for our coalescent random walk on the triangle graph, it takes 31 steps on average for three persons to meet at
any specified vertex, given that they all start at different vertices.

For the square graph with n = 4 and d = 2, a similar calculation shows

h(Id, c1) = 44 · 167

1120
= 1336

35

and

H(Id, c1) = 8 · 1336

35
≈ 305.371.

Thus, for our coalescent random walk on the square graph, it takes about 305 steps on average for four persons to meet
at any specified vertex, given that they all start at different vertices.
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