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Abstract: We study continuous time Markov processes on graphs. The notion
of frequency is introduced, which serves well as a scaling factor between any
Markov time of a continuous time Markov process and that of its jump chain.
As an application, we study “multiperson simple random walks” on a graph G
with n vertices. There are n persons distributed randomly at the vertices of G.
In each step of this discrete time Markov process, a randomly selected person
is moved to one of the adjacent vertices selected randomly. We give estimate
on the expected number of steps for these n persons to meet all together at a
specific vertex, given that they are at different vertices at the begininng. For
regular graphs, our estimate is exact.
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1. INTRODUCTION

In this article we will consider, for simplicity, connected simple graphs
only. These are connected graphs without multiple edges and loops.
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We will adopt the following notations and terminologies for a graph G.
The sets of vertices and edges of G are V�G� and E�G�, respectively. The
order n, of G is the number of vertices of G, and the size m, of G is the
number of edges of G. Thus, n = �V�G�� and m = �E�G��. For a vertex
x ∈ V�G�, ��x� is the set of vertices which are connected to x by an edge
in E�G�. The degree of a vertex x is d�x� = ���x��. We have

∑
x∈V�G�

d�x� = 2m�

The adjacent matrix of G, A�G� = �aij�n×n, is defined by

aij =
{
1 if ij ∈ E�G��

0 otherwise,

and the diagonal matrix D�G� has the sequence of degrees of vertices as
its corresponding diagonal entries. Finally, we denote

dm = min�d�x�� x ∈ V�G�� and dM = max�d�x�� x ∈ V�G���

For these and other notations and facts on graph theory we refer to
[1–3, 6].

What concerns us primarily in this article is the following continuous
time Markov process on a graph G: The probability that a person
standing at a vertex x of G to jump to a neighboring vertex in ��x� within
a time period 	t is d�x�	t + o�	t�, and once jumped, the person at x has
equal probability to land at a vertex y ∈ ��x�. If we write

Q = Q�G� = −D�G�+ A�G��

the transition probability matrix of this Markov process is

P�t� = etQ�

We call this Markov process an continuous time simple random walk
(CTSRW). In the literature, it is the discrete time simple random walks
(SRW) on a graph G that people consider most. One usually call an
SRW the jump chain of CTSRW. The transition probability matrix of
the jump chain SRW is D�G�−1A�G�.

We introduce in this article a fundamental quantity for an CTSRW
on a graph G called frequency. Let N�t� be the expected number of jumps
of the Markov process CTSRW up to time t. Then the frequency f of
an CTSRW is defined by

f = lim
t→�

N�t�

t
�
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Using the Lévy formula, see Syski [4, 8], we are able to calculate the
frequency for CTSRW and get

f = 2m
n

�

The frequency turns out to be a natural scaling factor between various
important quantities of CTSRW and SRW. For example, we have the
following results established infra.

Theorem 1.1. Let G be nonbipartite. For a vertex x of G, let Tx be the
first return time of CTSRW on G and NTx

be the number of jumps during
the time period 
0� Tx�. (Notice that NTx

is the first return time for the jump
chain SRW.) Then, the expectations E�Tx� and E�NTx

�, satisfy the following
relation: E�NTx

� = fE�Tx�.

More generally, we have the following theorem.

Theorem 1.2. Let T be any stopping time of CTSRW on a graph G with
finite expectation, let NT be the number of jumps during the time period

0� T�. Then

dm ≤ f ≤ dM�

and

dmE�T� ≤ E�NT� ≤ dME�T��

In particular, if G is regular so that dm = dM , we have E�NT� = fE�T�.

As an application, we consider multiperson simple random walks
(MPSRW) on a graph G. It is inspired by coalescent theory in molecular
population genetics [5]. To start with, we assume that each of the n
vertices of G is occupied by a person. At each step of this Markov
chain, there is one person, equally possible for each of these n persons,
who moves to a neighboring vertex, also equally possible for each of
the neighboring vertices. We would like to know the expected number
of steps this Markov chain should take for these n persons to meet all
together at a specified vertex.

We will see that this Markov chain is the jump chain of a continuous
time Markov process on the set Mn of maps from �1� 2� � � � � n� to
itself. On the other hand, this continuous time Markov process on
Mn can be identified with the nth tensor power of CTSRW on G.
Thus, computation of expectations of various stopping times for this
continuous time Markov process on Mn can be carried out. We are then
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able to use Theorem 1.2 mentioned above to obtain estimates for the
expected number of steps for MPSRW on G to coalesce.

We refer the reader to [1, 3, 6, 7] for basic terminologies and results
in the study of simple random walks on graphs.

2. CONTINUOUS TIME MARKOV PROCESS
ON WEIGHTED GRAPHS

Let G be a connected weighted graph with order n and size m. We define
a continuous time Markov process Xt on G by giving its infinitesimal
generator Q as the negative weighted Laplacian of G. Specifically, every
edge xy ∈ E�G� is associated with a positive number (weight) wxy. Since
the edges in G are not directed, wxy = wyx. Define

wx �=
∑

y∈��x�
wxy

the total weight at the vertex x. We write Q = �qxy�n×n, where

qxy =



wxy if xy ∈ E�G�,

−wx if x = y,

0 otherwise.

Thus, the probability transition matrix of Xt is given by

P�t� = etQ = �pxy�t��n×n�

and transition probability from vertex x to vertex y is given by

Pr�X�h+ t� = y �X�h� = x� = pxy�t��

We call −Q = Lw the weighted Laplacian of the weighted graph G.
In the special case of wxy = 1 for all xy ∈ E�G�, we have CTSRW

on the graph G. The infinitesimal generator Q = −L�G� = −D�G�+
A�G� = �qxy�n×n is given by

qxy =



1 if xy ∈ E�G�,

−d�x� if x = y,

0 otherwise.
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2.1. Ergodicity

Since the infinitesimal generator Q is symmetric, the uniform probability
vector u = � 1

n
� 1
n
� � � � � 1

n
� is an invariant measure of the Markov process

Xt. That is, we have uQ = 0 and

uP�t� = u

(
I + tQ+ t2

2!Q
2 + · · ·

)
= u�

We claim that u is also the ergodic vector or the stationary distribution.
To see this, notice first that the graph G is connected so that the process
Xt is irreducible. Thus,

lim
t→�pxy�t� =� vy

exists and does not depend on x. Actually, we have vy = uy = 1
n
by the

following calculation: First, for any fixed t > 0,

uP�2t� = uP�t�P�t� = uP�t� = u�

� � �

uP�kt� = uP��k− 1�t� = · · · = uP�t� = u�

Next

uy =
∑
x

uxpxy�kt�� for y ∈ V�G��

Finally, let k → � to get

uy =
∑
x

uxvy = vy�

2.2. The Mean First Return Time

Corresponding to a vertex x ∈ V�G�, denote by Txx the first return time
to x, given that the Markov process Xt starts at x. That is,

Txx = inf�t � t > x� Xt = x �X0 = x�

where x is the exit time from the vertex x. We denote by h�x� x� the
mean first return time E�Txx�.

Lemma 2.1. The mean first return time is given by

h�x� x� = n

wx

�
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Proof. Write

Fxx�t� = Pr�Txx ≤ t��

Then we have the equation, see Chung [4],

pxx = e−wxt +
∫ t

0
pxx�t − s�dFxx�s��

Taking the Laplace transform, we get

�xx��� =
∫ �

0
e−�tpxx�t�dt

=
∫ �

0
e−��+wx�tdt +

∫ �

0
e−�t

∫ t

0
pxx�t − s�dFxx�s�dt

= 1
�+ wx

+
∫ �

0

∫ �

s
e−�tpxx�t − s�dt dFxx�s�

= 1
�+ wx

+
∫ �

0

∫ �

0
e−��v+s�pxx�v�dv dFxx�s�

= 1
�+ wx

+
∫ �

0
e−�s

∫ �

0
e−�vpxx�v�dv dFxx�s�

= 1
�+ wx

+
∫ �

0
e−�s�xx���dFxx�s�

= 1
�+ wx

+ �xx���lx����

where lx��� =
∫ �
0 e−�sdFxx�s�. Then, we have

��xx��� =
1

�+ wx

(
1− lx���

�

)−1

�

Since

lim
�→0

1− lx���

�
= lim

�→0

∫ �

0
se−�sdFxx�s� =

∫ �

0
sdFxx�s� = h�x� x�

and

lim
�→0

��xx��� = ux�

we get

ux = lim
�→0

1
�+ wx

(
1− lx���

�

)−1

= 1
h�x� x�wx

�

By ergodicity, ux = 1
n
and we have h�x� x� = n

wx
. �
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2.3. The Mean Hitting Time of y from x

In general, define

Txy = inf�t � t > x� Xt = y �X0 = x��

that is, Txy is the time of first entrance into, or hitting, the vertex y, given
that the process starts at x. We denote this mean first hitting time of y
from x by h�x� y� = E�Txy�. We have the following equation:

h�x� x� = 1
wx

+ ∑
y∈��x�

wxy

wx

h�y� x� = 1
wx

+ 1
wx

∑
y∈��x�

wxyh�y� x��

Lemma 2.2. The mean hitting time is provided by:

h�x� y� = n
∫ �

0
�pyy�t�− pxy�t��dt�

The formula in this lemma is similar to the formula in the discrete
time case. We omit the proof since it is also analogous to the discrete
time case.

2.4. The Stationary Distribution of SRW

For an unweighted graph G, the jump chain of CTSRW on G is
the SRW on G. We know that Q = −D + A and that the transition
probability matrix of SRW is D−1A. If we set �̃ = uD, where u is
the stationary distribution of CTSRW, then uQ = −uD + uA = 0. So,
substitute u = �̃D−1 we have

�̃ = �̃D−1A�

Thus, �̃ is an invariant measure of SRW. We need to normalize it. Let

� = 1∑n
i=1 �̃i

�̃�

Then � is an invariant distribution for SRW. Specifically

�x =
d�x�∑

x∈V�G� d�x�
= d�x�

2m
�

If the graph G is nonbipartite, this invariant distribution is also the
stationary distribution.

It is well known that the mean number of steps SRW should take
to return to the vertex x for the first time is 1/�x = 2m/d�x�. Recall that
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the mean first return time of CTSRW is n/d�x�. Therefore, it is natural
to think of the quantity

f = 2m/d�x�

n/d�x�
= 2m

n

as the frequency (number of jumps per unit time) of CTSRW. We will
make this notion precise in the following subsection.

2.5. The Frequency

To define the frequency for the continuous time Markov process Xt on
a weighted graph, we first define a quantity N�t� for t > 0:

N�t� = E (the number of jumps of Xt up to time t)�

Theorem 2.1. We have

f �= lim
t→�

N�t�

t
= 2w

n

where w is the total weight of G given by

w = 1
2

∑
xy∈E�G�

wxy�

Proof. Let us recall the Lévy formula first, see Chung [4]. Given
a Markov process Xt, we consider a purely discontinuous functional
A= �At � 0 < t < �� on the path space defined by

At �=
∑

0<s≤t

g�Xs−� Xs�� t > 0�

where g is a function on V�G�× V�G�. Also, we define a function bQ on
V�G� by

bQ�x� �=
∑
y �=x

wxyg�x� y�� x ∈ V�G��

and the integral functional B = �Bt � 0 ≤ t < �� on the path space is
defined by

Bt =
∫ t

0
bQ�Xs�ds =

∫ t

0

∑
y �=Xs

wXs�y
g�Xs� y�ds�
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Then, the relationship between the functionals A and B is given by the
Lévy formula:

Ex

∑
0<s≤t

g�Xs−� Xs���t� = Ex

∫ t

0
��t�bQ�Xs�ds� t > 0�

for any continuous positive function ��t�.
Now, taking ��t� = 1, the Lévy formula tells us

ExAt = ExBt =
∫ t

0
P�s� · bQ�x�ds�

Furthermore, let

g�x� y� =
{
1� if x �= y�

0� if x = y�

Then At is the number of transitions of states of Xt up to time t, that is,
EAt = N�t�.

We start at the vertex x. Then

ExAt =
∫ t

0
P�s� · bQ�x�ds =

∫ t

0

∑
y∈V�G�

pxy�s�wy ds�

If we start at an initial distribution � on graph G, then

E�At =
∫ t

0
�P�s� · bQds =

∫ t

0

∑
x�y

�xpxy�s�wy ds�

Thus, we have

lim
t→�

E�At

t
= lim

t→�

∫ t

0

∑
x�y �xpxy�s�wy ds

t

= lim
t→�

∑
x�y

�xpxy�t�wy

= ∑
x�y

�xuywy =
∑
y

uywy

and this is independent of the initial condition �. So,

f = ∑
y∈V�G�

1
n
wy =

2w
n

�
�

Using the notion of frequency, we can compare various Markov
times for the continuous time Markov process and its jump chain. Let
us recall the notion of Markov time (or stopping time) first. Associated
with a stochastic process, there are random variables independent of
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the future. This kind of random variables are called Markov time or
stopping time. Specifically, let � be a nonnegative random variable
associated with a given process �Xt � 0 ≤ t ≤ ��. Here, � associates with
each sample function Xt a nonnegative number which we denote by
��Xt�. Such a random variable � is said to be a Markov time relative to
the process Xt if it has the following property:

If Xt and Yt are two sample functions of the process such that
X� = Y� for 0 ≤ � ≤ s and ��Xt� < s, then ��Xt� = ��Yt�.

We shall now establish our main result.

Theorem 2.2 (Time-Step Inequality). Let T be any stopping time
associated with the continuous Markov process Xt on a weighted graph
G and with E�T� < �. Define wm = min�wx� x ∈ V�G�� and wM =
max�wx� x ∈ V�G��, and let NT be the number of jumps of Xt during the
period 
0� T�. Then, we have

wm ≤ f ≤ wM� and wmE�T� ≤ E�NT� ≤ wME�T��

Proof. For an initial distribution �, we have from the Lévy formula that

N�t� = E�At =
∫ t

0

∑
x�y∈V�G�

�xpxy�s�wy ds�

Since

∑
x�y∈V�G�

�xpxy�s�wy ≤
∑

x�y∈V�G�

�xpxy�s�wM = wM

and

∑
x�y∈V�G�

�xpxy�s�wy ≥
∑

x�y∈V�G�

�xpxy�s�wm = wm�

we get

wmt ≤ N�t� ≤ wMt�

This is

wm ≤ N�t�

t
≤ wM�

By taking limit, we have

wm ≤ f ≤ wM�
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Let F�t� �= Pr�T < t� denote the distribution of the stopping time T .
Then we have ∫ �

0
wmt dF ≤

∫ �

0

N�t�

t
t dF ≤

∫ �

0
wMt dF�

Since

E�NT� = E�E�AT �T = t�� =
∫ �

0
N�t�dF�

we get

wmE�T� ≤ E�NT� ≤ wME�T�� �

The following are two interesting corollaries. The proofs of them are
obvious, so we just state the results.

Corollary 2.1 (Time-Step Inequality). For CTSRW on a graph G and any
Markov time T with finite expectation, we have

dm ≤ f ≤ dM and dmE�T� ≤ E�NT� ≤ dME�T��

where dm and dM are defined similar to wm and wM , respectively.

Corollary 2.2. If G is a regular graph with constant degree d at each
vertex, then f = d and E�NT� = fE�T�, for any stopping time T associated
with CTSRW on G.

We shall call the inequalities in Theorem 2.2 and Corollary 2.1
“time-step inequalities.” Of course, we have another version given by:

E�NT�

dM

≤ E�T� ≤ E�NT�

dm

�

In a sense, those inequalities characterize the timing difference between
CTSRW and SRW on a graph. It is also interesting to see that the
frequency of an unweighted graph is the average of the eigenvalues
of its Laplacian. Let �1 < �2 ≤ �3 ≤ · · · ≤ �n be the spectrum of the
Laplacian L�G� of a graph G, L�G� = D�G�− A�G�. Then,

∑n
i=1 �i =∑

x∈V�G� d�x� = 2m. Thus,

f =
∑n

i=1 �i
n

�

Theorem 2.3. Let G be a nonbipartite graph, and Tx be the first return time
of CTSRW on G. Then E�NTx

� = fE�Tx�.
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Proof. By the theory of discrete time simple random walks on a
graph G, we know E�NTx

� = 2m
d�x�

, see [6].
For CTSRW on G, we know E�Tx� = n

d�x�
, and also f = 2m

n
. Thus,

E�NTx
� = 2m

d�x�
= n

d�x�
· 2m
n

= fE�Tx�� �

Now, we consider a special problem as that in SRW. Let G be a
connected nonbipartite graph. We start our CTSRW at a vertex x and fix
a neighboring vertex y of x. What is the expected time that our CTSRW
should take in order to return to x through the edge yx?

For an SRW on G, we know that the expected number of steps
one should take in order to return to x through the edge yx, is 2m, see
Bollobás [1]. To deal with the problem for CTSRW on G, we formulate
the following Markov time:

T�x�yx� �= inf�t + y � t > 0� X�s + t� = y� X�s + t + y� = x �X�s� = x��

This is the fixed edge first return time, then E�NT�x�yx�
� = 2m. By our time-

step inequality, we have the following corollary.

Corollary 2.3. The mean fixed edge first return time has bounds as

2m
dM

≤ E�T�x�yx�� ≤
2m
dm

�

The following is another case where the frequency gives us a perfect
scaling factor between corresponding quantities of CTSRW and SRW.

Lemma 2.3. Let G be a connected graph of order n and size m. The mean
hitting time h�x� y� of the CTSRW on G satisfies

∑
x∈V�G�

∑
y∈��x�

h�y� x� = n�n− 1��

Proof. We know that

h�x� x� = 1
d�x�

+ 1
d�x�

∑
y∈��x�

h�y� x� = n

d�x�
�

So, we have
∑

y∈��x� h�y� x� = n− 1 which is independent of x. Thus, for
n vertices, we will have

∑
x∈V�G�

∑
y∈��x�

h�y� x� = n�n− 1��
�
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If we denote the hitting time of y from x in SRW by H�x� y�, then
we have the equality

∑
x∈V�G�

∑
y∈��x�

H�y� x� = 2m�n− 1��

see Bollobás [1]. So, we have the following theorem.

Theorem 2.4. With notations as the above, we have

∑
x∈V�G�

∑
y∈��x�

H�y� x� = f
∑

x∈V�G�

∑
y∈��x�

h�y� x��

Also, for CTSRW on a graph G, we define the mean commute time
between vertices x and y to be c�x� y� = h�x� y�+ h�y� x�. Let C�x� y�
be the corresponding quantity for SRW on G. Then we have another
version of the above equation in Theorem 2.4 as

∑
xy∈E�G�

C�x� y� = f
∑

xy∈E�G�

c�x� y��

3. MULTIPERSON SIMPLE RANDOM WALKS ON GRAPHS

We are led to the MPSRW on a graph G by the study of a continuous
time Markov process induced by CTSRW on G. The combinatorics of
MPSRW is much richer than we have touched upon here.

Let In be a finite set of cardinality n. For example, we may have
In = �1� 2� � � � � n�. We denote the set of all maps from In to itself by Mn.
We have the symmetric group Sn sitting inside of Mn. A map x ∈ Mn is
called a generalized permutation of deficiency k if

�x�In�� = n− k�

We denote this by def�x� = k.
Note that Mn is a semigroup under composition. The symmetrical

group Sn is a subgroup of Mn. The deficiency determines a grading on
Mn which is compatible with the semigroup product on Mn �

def�x�+ def�y� ≥ def�x � y��
Define M�k�

n �= �all maps with deficiency k�. Then we have a
decomposition of Mn according to the deficiency:

Mn = M�0�
n 	M�1�

n 	M�2�
n 	 · · · 	M�n−1�

n �

where M�0�
n = Sn, and 	 is disjoint union.
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Let G be a graph with the set of vertices V�G� identified with In. We
will call G the ground graph. We define a new graph M�G� as follows:
The set of vertices of M�G� is Mn; For x� y ∈ Mn, there is an edge xy in
M�G� only when

��i � x�i� �= y�i��� = 1�

and if x�i� �= y�i�, then ax�i�y�i� = 1. We will see that there is a close
relationship between the graph M�G� and the nth tensor power of
CTSRW on the ground graph G.

3.1. The Tensor Product of Markov Processes

Let X
�1�
t � X

�2�
t � � � � � X

�n�
t be Markov processes on the state spaces

S�1�� S�2�� � � � � S�n� respectively. We define a new process Yt on the state
space S�1� × S�2� × · · · × S�n� with the transition probability given by

Pr�Yt+h = �s2� � Yh = �s1��

=
n∏

k=1

Pr
{
Y

�k�
t+h = s

�k�
2

∣∣ Y �k�
h = s

�k�
1

}

=
n∏

k=1

p
�k�

s
�k�
1 s

�k�
2

�t��

where �si� = �s
�1�
i � s

�2�
i � � � � � s

�n�
i �, i = 1� 2, and p

�k�

s
�k�
1 s

�k�
2

�t� is the transition

probability of the Markov process X
�k�
t , k = 1� 2� � � � � n. We call Yt the

tensor product of Markov processes X
�k�
t , k = 1� 2� � � � � n. The next two

lemmas can be proved by some direct computations. So we omit the
proofs.

Lemma 3.1. Yt is a Markov process.

Lemma 3.2. Let q�s1��s2� be the infinitesmal generator of Yt. Then

q�s1��s2� =




q
�k�

s
�k�
1 s

�k�
2

if ∃ only one index k such that s�k�1 �= s
�k�
2 �

n∑
k=1

q
�k�

s
�k�
1 s

�k�
2

if �s1� = �s2�, namely, s
�k�
1 = s

�k�
2 for all k�

0 otherwise.

where q
�k�

s
�k�
1 s

�k�
2

is the infinitesmal generator of Markov process X
�k�
t ,

k = 1� 2� � � � � n.
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When we order the elements of the state space S�1� × S�2� × · · · × S�n�

lexicographically, it is easy to see that the probability transition matrix
of Yt is given by the tensor product

P�1��t�⊗ P�2��t�⊗ · · · ⊗ P�n��t��

This is why we call Yt as the tensor product of Markov process X�k��t�,
k = 1� 2� � � � � n. By the Lemma 3.2 above, we also can see that the
infinitesimal generator matrix of Yt is given by

Q�1� ⊗ I ⊗ · · · ⊗ I + I ⊗Q�2� ⊗ I ⊗ · · · ⊗ I + · · · · · · + I ⊗ · · · ⊗ I ⊗Q�n��

where Q�k� is the infinitesimal generator matrix of X
�k�
t � k = 1� 2� � � � n.

Thus, for convenience, we denote Yt = X
�1�
t ⊗ X

�2�
t ⊗ · · · ⊗ X

�n�
t .

3.2. CTSRW on M�G�

On the graph M�G�, we have the Markov process CTSRW denoted by
Yt. Let Xt be the Markov process CTSRW on G.

Lemma 3.3. The Markov process Yt on the graph M�G� is the nth tensor
power of the Markov process Xt on the ground graph G. The jump chain of
Yt is the MPSRW of G.

Proof. Recall that Q = −L�G� = −D�G�+ A�G� = �qij�n×n,

qij =



1 if ij ∈ E�G�,

−d�i� if i = j,

0 otherwise,

where d�i� is the degree of the vertex i. Let Xt ⊗ Xt ⊗ · · · ⊗ Xt = Zt be
the nth tensor power of the process Xt. Take two states for Zt, �s1� and
�s2�. Then �si� actually is a sequence of vertices of G. We write �s1� =
�i1� i2� � � � � in� and �s2� = �j1� j2� � � � � jn�. By Lemma 3.2, we have

p′
�s1��s2�

�0� =




q
�k�

s
�k�
1 s

�k�
2

if ∃ only one index k such that s�k�1 �= s
�k�
2 ,

n∑
k=1

q
�k�

s
�k�
1 s

�k�
2

if �s1� = �s2�, namely, s�k�1 = s
�k�
2 for all k�

0 otherwise

=




1 if ∃ only one index k such that

ik �= jk� ikjk ∈ E�G��

−
n∑

k=1

d�ik� if ik = jk for all k�

0 otherwise.
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Now, we can identify �s1� and �s2� with the images of certain maps
x and y, respectively. Then by the definition of M�G�, xy ∈ E�M�G���
if and only if p′

�s1��s2�
�0� = 1. As to the degree of x, we know that the

neighbors of x = �s1� can only be �k1� i2� � � � � in�, where k1 must be a
neighbor of i1; �i1� k2� � � � � in�, where k2 must be a neighbor of i2� and so
on, up to the last one �i1� i2� � � � � in−1� kn�, where kn must be a neighbor
of in. Thus,

d�x� = d�s1� =
n∑

j=1

d�ij��

This agrees with p′
�s1��s1�

�0� = −∑n
k=1 d�ik�. So, Yt = Xt ⊗ Xt ⊗ · · ·⊗

Xt = Zt.
The second conclusion is easy to see. �

The Lemma 3.3 suggests that we may call graph M�G� the tensor
power of the graph G. We also note that the transition probability from
x to y in Mn is given by

Pxy�t� =
n∏

i=1

px�i�y�i��t��

From the proof of Lemma 3.3, we know that for x ∈ Mn = V�M�G��,

d�x� =
n∑

k=1

d�x�k���

We can compute the size of M�G�, that is the number of edges of M�G�
as

2�E�M�G��� = ∑
x∈Mn

d�x� = ∑
x∈Mn

n∑
k=1

d�x�k�� =
n∑

k=1

∑
x∈Mn

d�x�k��

=
n∑

k=1

��d�1�+ d�2�+ · · · + d�n��nn−1�

= 2mnn�

Thus, we have the following corollary.

Corollary 3.1. The size of M�G� is mnn, and the order of M�G� is nn.
Therefore, the frequency of M�G� is 2m.

Lemma 3.4. G is bipartite if and only if M�G� is bipartite.

Proof. We use the classical result of König that a graph is bipartite if
and only if all its cycles are even.
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If G is not bipartite, then there is a cycle C = v1v2 � � � vmv1 of odd
length in G. We look at the cycle in M�G� given by

�v1� v1� � � � � v1��v1� � � � � v1� v2��v1� � � � � v1� v3�

· · · �v1� � � � � v1� vm��v1� � � � � v1� v1��
Its length is also odd. Thus, M�G� is not bipartite.

If G is bipartite, then the set of vertices V = V�G� can be written as
V1 ∪ V2, with V1 ∩ V2 = ∅ and there is no edge between vertices both in
V1 or both in V2. We try to bipart the set of vertices of M�G�. We know
V�M�G�� = V×n. We write V = V1 + V2. Then

V×n = �V1 ∪ V2�
×n = Vn

1 ∪ Vn−1
1 V2 ∪ Vn−2

1 V 2
2 ∪ · · · ∪ V1V

n−1
2 ∪ Vn

2 �

where Vn−k
1 Vk

2 means we take �n− k� vertices from V1 and k vertices from
V2, regardless of order, to form a vertex of M�G�. Let

V1 = Vn
1 ∪ Vn−2

1 V 2
2 ∪ Vn−4

1 V 4
2 ∪ � � � �

V2 = Vn−1
1 V2 ∪ Vn−3

1 V 3
2 ∪ V 5

1 V
n−5
2 ∪ � � � �

Then V1 ∪ V2 = V�M�G�� and V1 ∩ V2 = ∅. By the definition of M�G�, we
cannot find an edge between any two vertices which are both in V1 or
both in V2. �

If G is not bipartite with order n and size m, write the degree
sequence of G as d1 ≤ d2 ≤ · · · ≤ dn. We have the following two
corollaries. Because they are easy to derive from Corollary 3.1 and
Theorem 2.3, we will not give their proofs.

Corollary 3.2. For any vertex x in M�G�, the x-component of the ergodic
vector for SRW on M�G� is given by

�x =
d�x�

2mnn
=

∑n
i=1 d�x�i��

2mnn
= n−n

n∑
i=1

d�x�i��

2m
= n−n

n∑
i=1

�G
x�i��

where

�G
x�i� =

d�x�i��

2m

is the x�i�-component of the ergodic vector for SRW on G. The expected first
return time for CTSRW on M�G� is given by

h�x� x� = nn

d�x�
= nn∑n

k=1 d�x�k��
�

In particular, for the identity map Id, d�Id� = d1 + d2 + · · · + dn = 2m. So

h�Id� Id� = nn

2m
�
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Corollary 3.3. For the jump chain SRW on M�G�, or MPSRW on G, we
have

H�x� x� = fM�G�h�x� x� =
2mnn∑n

k=1 d�x�k��
�

where fM�G� = 2m is the frequency of M�G�. In particular,

H�Id� Id� = nn�

3.3. Hitting Time for CTSRW on M�G�

For CTSRW on M�G�, we are interested in calculating the mean hitting
time h�Id� ci�, where ci is the constant map to a vertex i of G. Once we
know h�Id� i�, we can use it to estimate H�Id� ci� for SRW on M�G�, or
equivalently, the expect number of steps MPSRW on G should take to
have all persons meet at the vertex i. Namely, we have

nd1h�Id� ci� ≤ H�Id� ci� ≤ ndnh�Id� ci��

Notice that when the graph G is regular, H�Id� ci� is determined
completely by h�Id� ci� � H�Id� ci� = nd · h�Id� ci�.

Let x and y be two distinct vertices in M�G�, we consider the hitting
time h�x� y� of y from x in CTSRW. We have

h�x� y� = nn
∫ �

0
�Pyy�t�− Pxy�t��dt

= nn
∫ �

0

( n∏
i=1

py�i�y�i��t�−
n∏

i=1

px�i�y�i��t�

)
dt�

For x = Id, y = ci, we have

h�Id� ci� = nn
∫ �

0

(
pii�t�

n −
n∏

j=1

pji�t�

)
dt�

To calculate this integral, we diagonalize the Laplacian of G. Write

UTQU = diag
−�1�−�2� � � � �−�n��

where U = �uij�n×n is an orthogonal matrix. Then

pij�t� =
n∑

k=1

uikujke
−�kt�
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Since

pii�t�
n =

( n∑
k=1

u2
ike

−�kt

)n

= ∑
1≤k1�k2�����kn≤n

u2
ik1
u2
ik2

· · · u2
ikn
e−��k1+�k2+···+�kn �t

and

n∏
k=1

pki�t� =
∑

1≤k1�k2�����kn≤n

u1k1
uik1

u2k2
uik2

· · · unkn
uikn

e−��k1+�k2+···+�kn �t�

we get

h�Id� ci� = nn
∑

1≤k1�k2�����kn≤n

u2
ik1
u2
ik2

· · · u2
ikn

− u1k1
uik1

u2k2
uik2

· · · unkn
uikn

�k1 + �k2 + · · · + �kn
�

We conclude this work with an illustrative example.

Example. Let G be the triangle graph. It is regular with n = 3 and d =
2. The matrix Q and U are given below:

Q =


−2 1 1

1 −2 1

1 1 −2


 and U =



− 1√

2
− 1√

6
1√
3

0 2√
6

1√
3

1√
2

− 1√
6

1√
3


 �

We have UTQU = diag
−3�−3� 0�. Since �3 = 0, when calculating
h�Id� ci�, we should drop the term �k1� k2� k3� = �3� 3� 3�. Since the
numerator of this term in h�Id� ci� is also zero, we can drop this term.
We, thus, have

h�Id� c1� = 33 · 31
162

= 31
6
�

So

H�Id� c1� = 3 · 2 · 31
6

= 31�

Thus, for our MPSRW on the triangle graph, it takes 31 steps on average
for 3 persons to meet at any specified vertex, given that they all start at
different vertices.

For the square graph with n = 4 and d = 2, a similar calculation
shows

h�Id� c1� = 44 · 167
1120

= 1336
35
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and

H�Id� c1� = 8 · 1336
35

≈ 305�371�

Thus, for our MPSRW on the square graph, it takes about 305 steps on
average for 4 persons to meet at any specified vertex, given that they all
start at different vertices.
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