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Abstract: We introduce the concepts of lumpability and commutativity of a
continuous time discrete state space Markov process, and provide a necessary
and sufficient condition for a lumpable Markov process to be commutative.
Under suitable conditions we recover some of the basic quantities of the original
Markov process from the jump chain of the lumped Markov process.
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1. INTRODUCTION

The theory of Markov processes in the discrete state space has been
among the important tools in the study of natural phenomena. This
is particularly so in the research of modern biology, as can be seen
in the utility of Markov processes in coalescent theory [3]. There also
are numerous biological models which exhibit the power of Markov
chains (see, for example, [1] and [7]). However, when we consider more
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realistic and/or complicated biological phenomena, it becomes necessary
to develop some new techniques for the underlying Markov process itself
to study these phenomena. The lumping of Markov processes is one such
very useful technique. The stochastic processes literature is abundant
with several papers, and a book by Kemeny and Snell [2], which exploit
the lumpability of the discrete-time Markov processes or chains. As to
the continuous-time Markov processes, there is almost no work involving
its lumpability. When one of the authors (Tian) developed the colored
coalescent theory (see Lin-Tian [4, 7]), the authors there found the
lumping technique to be very crucial for their work. Therefore, we focus,
in the present paper, on developing some of the basics of the lumpability
of continuous-time Markov chains.

One standard approach in the study of a continuous-time Markov
process with discrete state space is to analyze its jump chains. When a
Markov process is lumped into a Markov process with a comparatively
smaller state space, we end up with two different jump chains, one
corresponding to the original process and the other to the lumped
process. It is simpler to use the smaller jump chain to capture some of the
fundamental qualities of the original Markov process. Toward this goal,
certain conditions need to be imposed on the Markov processes. One
such condition turns out to be the commutativity of Markov processes,
by which we mean the commutativity of the diagram composed of
four Markov processes (the underlying Markov process and its jump
chain, and the lumped Markov process and its jump chain). In the
present paper, we provide certain condition(s) for the commutativity of
a lumpable Markov process. We also find hypotheses to recover some of
the basic quantities of the underlying Markov process.

2. LUMPABILITY OF MARKOV PROCESSES

The text of Kemeny and Snell [2] defines the lumped chain of a
given discrete-time finite state space Markov chain and discusses some
preliminary results. We extend this notion of lumpability to continuous-
time finite state space Markov chains and characterize lumpability in
terms of the infinitesimal generator. For the sake of completeness and
ready reference, we begin by recalling from [2] the definition and basic
results that are useful for the present work.

Definition 2.1. Let �Xn� be a Markov chain with state space S =
�e1� e2� � � � � er� and initial vector �. Given a partition S = �E1�
E2� � � � � Ev� of the state space S, a new chain Xn can be defined as
follows: At the jth step, the state of the new chain is the set Ek when Ek

contains the state of the jth step of the original chain. Assign now
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the transition probabilities for Xn at each step as follows: The initial
distribution is

�
{
X0 = Ei

} = ���X0 ∈ Ei��

Given the initial state, the transition probability for step one is

�
{
X1 = Ej �X0 = Ei

} = ���X1 ∈ Ej �X0 ∈ Ei��

In general, for the nth step,

�
{
Xn = Et �Xn−1 = Es� � � � � X1 = Ej� X0 = Ei

}
= ���Xn ∈ Et �Xn−1 ∈ Es� � � � � X1 ∈ Ej� X0 ∈ Ei��

We call this new chain Xn, a lumped chain (of the Markov chain Xn).

It is obvious that a lumped chain of a given Markov chain need not
be a Markov chain in general. We therefore have the following definition.

Definition 2.2. A Markov chain X = �Xn� with state space S is said to
be lumpable with respect to a partition S of S if, for every starting vector
�, the lumped chain X = {

Xn

}
defined previously is a Markov chain

with state space S and that the associated transition probabilities do not
depend on the choice of �. The new Markov chain X is called the lumped
Markov chain of X.

Kemeny and Snell gave a necessary and sufficient condition for
a Markov chain to be lumpable, and we quote that condition in the
following theorm.

Theorem 2.3 (Kemeny–Snell [2]). Let us denote the transition probability
of the Markov chain X from state ei to state ej , i� j = 1� � � � � r, by pij . A
necessary and sufficient condition for the Markov chain X to be lumpable
with respect to the partition S is that for every pair of sets E� and E�,∑

ek∈E�
pik has the same value for every ei in E�. These common values form

the transition probabilities p�� for the lumped chain.

A matrix formulation of this theorem will be more useful for
our analysis. Toward this, we begin by introducing some notations.
Associated with a partition S = �E1� E2� � � � � Ev� of the finite state space
S = �e1� e2� � � � � er�, of the underlying Markov chain Xn, we introduce
two useful matrices. Let U be the v× r matrix whose �th row, � =
1� 2� � � � � v, is the probability vector having equal components for states
in E� and 0 elsewhere. Let V be the r × v matrix with the �th column,
� = 1� 2� � � � � v, is a vector with 1′s in the components corresponding to
states in E�, and 0 elsewhere.
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Remark 2.4. It’s easy to check that UV = Iv.

Now, Theorem 2.3 takes the following matrix form.

Theorem 2.5. If P is the transition probability matrix of the Markov chain
Xn, then Xn is lumpable with respect to the partition S, if and only if

VUPV = PV�

As stated in the introduction, our interest is in the continuous-time
Markov chain/process with finite state space. We extend this notion
of lumpability to the continuous-time case. Let us consider a Markov
process X�t	 on S with transition probability P�t	 = �pij�t		.

Definition 2.6. A continuous-time Markov chain X�t	 with a finite state
space S is said to be lumpable with respect to the partition S if, for
ei� ej ∈ E�,

∑
ek∈E�

pik�t	 =
∑
ek∈E�

pjk�t	� for all t ≥ 0�

When X�t	 is lumpable, define its transition probabilities by

p���t	 =
∑
ek∈E�

pik�t	�

for ei ∈ E�. Denote this transition probability matrix by the v× v-matrix
P�t	 = �p���t		.

Lemma 2.7. P�t	 defines a Markov process on S.

Proof. We need only check the Chapman-Kolmogorov semigroup
property P�t	P�s	 = P�t + s	. Toward this, note that

∑



p�
�t	p
��s	 =
∑



( ∑
ek∈E


pik�t	
)
·
( ∑

ej∈E�

pkj�s	
)

= ∑
ej∈E�

pij�t + s	

= p���t + s	�

giving us the needed semigroup property P�t	 P�s	 = P�t + s	. �

We call the Markov process X�t	 on S with the transition probability
matrix P�t	 a lumping of X�t	. In terms of matrices, we have the following
lemma, which is a generalization of Theorem 2.3.



Lumpability and Commutativity of Markov Process 689

Lemma 2.8. X�t	 is lumpable if and only if

VUP�t	V = P�t	V�

Furthermore, when X�t	 is lumpable, the matrix

P�t	 = UP�t	V

is the transition probability matrix of the lumped process X�t	.

The proof is a computation as in that of Theorem 6.3.5 in [2].
Therefore, we omit it.

Our motivation is to use the jump chains to study the underlying
Markov processes. So, it is natural to consider characterizing lumpability
by using the infinitesimal generator of the process. Let Q = �qik	 be the
infinitesimal generator of X�t	, i.e., P�t	 = etQ. The following definition
introduces the notion of lumpable infinitesimal generator.

Definition 2.9. We say that the (infinitesimal) generator Q is lumpable if∑
ek∈E�

qik =
∑
ek∈E�

qjk

for ei� ej ∈ E�.

The following result provides a simple characterization of the
lumpability of the generator.

Theorem 2.10. 1. The infinitesimal generator Q of X�t	 is lumpable if and
only if VUQV = QV .

2. When Q is lumpable, the infinitesimal generator of its lumped chain
is given by Q = UQV .

We now present a theorem which characterizes lumpability of a
Markov process in terms of the associated infinitesimal generator. This
result is taken from [5] and we reproduce the proof for the sake of
completeness.

Theorem 2.11. A necessary and sufficient condition for the Markov process
X�t	 to be lumpable is that its infinitesimal generator Q is lumpable.
When Q is lumpable, we have P�t	 = etQ.

Proof. When � �= � and ei� ej ∈ E�, we have

lim
t→0+

p���t	

t
= lim

t→0+
∑
ek∈E�

pik�t	

t

= ∑
ek∈E�

lim
t→0+

pjk�t	

t
�
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Since X�t	 and X�t	 are finite state Markov processes, the limits exist and
hence

∑
ek∈E�

qik =
∑
ek∈E�

qjk�

Now when � = � and ei ∈ E�, we have

lim
t→0+

p���t	− 1

t
= lim

t→0+

∑
ek∈E�

pik�t	− 1

t

= lim
t→0+

(
pii�t	− 1

t
+ ∑

ek∈E��i �=k

pik�t	

t

)

= ∑
ek∈E�

qik�

The value of the limit does not depend on the choice of ei in E�.
Thus, we have shown that, if the Markov process X�t	 is lumpable, then
its infinitesimal generator Q is lumpable.

To prove the converse, assume now that Q is lumpable. We want
to show that VUP�t	V = P�t	V . To see this, we use the power series
expansion of P�t	 = etQ:

P�t	 = etQ = I + tQ+ t2

2!Q
2 + t3

3!Q
3 + · · · �

First, we have VUV = VIv = IrV . Then, right-multiplying both sides
of the equality VUQV = QV by UQV , we get VUQVUQV = QVUQV .
Then, using the equality VUQV = QV , we get VUQ2V = Q2V . Thus, we
have inductively,

VUQnV = QnV� for all n = 0� 1� 2� � � � �

Hence, VUP�t	V = P�t	V and P�t	 is therefore lumpable. Finally, since

�UQV	n = UQVUQV�UQV	n−2 = UQ2V�UQV	n−2 = UQnV� n ≥ 2�

we get P�t	 = etQ. �

The following theorem shows that when a Markov process is
lumpable and has a stationary distribution, then the lumped process also
has a stationary distribution, and provides the relation between these
stationary distributions.

Theorem 2.12. Let X�t	 be an irreducible continuous time Markov chain
with stationary distribution �. If it is lumpable with respect to a partition
of the state space, then the lumped chain also has a stationary distribution
�̄ whose components can be obtained from � by adding corresponding
components in the same cell of the partition.
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Proof. Suppose P�t	 is the transition matrix of the underlying Markov
process X�t	. The partition of the state space is represented by the
matrices U and V introduced earlier in this section. Then the lumped
process X�t	 has the transition probability matrix given by

P�t	 = UP�t	V�

Since X�t	 is irreducible, we have

P�t	 → W =


�
���
�


 � as t → ��

where � is the row probability vector, which is the stationary distribution
of X�t	. Thus,

P�t	 → UWV� as t → ��

which gives us the conclusion. �

Remark 2.13. 1. This result can be reworded in terms of the capacity
of a subset of S (or states in S). Let � = ��1� � � � � �r	

′ be the stationary
distribution of the Markov process X�t	 and A be any subset of the state
space S. The capacity CA of A ⊂ S is defined by

CA �= ∑
ei∈A

�i�

Thus, Cek
= �k� 1 ≤ k ≤ r.

2. Now we can state this theorem in more precise terminology.
If the underlying lumpable Markov process X�t	 has a stationary
distribution � = ��1� � � � � �r	

′, then the lumped process X�t	 also has a
stationary distribution given by �̄ = �CE1

� � � � � CEv
	′.

The following result and example that conclude this section shows
that the reversibility of the basic Markov process generally does not
imply the reversibility of the lumped process. We begin by recalling the
definition of the reversibility.

Definition 2.14. A Markov process X�t	 on a (discrete) state space � is
said to be reversible if there is a positive measure ��x	� x ∈ � , such that
the following detailed balance equations are satisfied

��x	Qxy = ��y	Qyx� for all x� y ∈ � �

or equivalently,

��x	Pxy�t	 = ��y	Pyx�t	� for all t > 0� and x� y ∈ � �
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Remark 2.15. We shall consider the reversibility with respect to the
invariant/stationary measure ��x	. Since our state space is finite, we
assume the process to be ergodic. The reversibility is equivalent to P�t	 =
P∗�t	, where the adjoint P∗�t	 is defined by P∗

xy�t	 = ��y	Pyx�t	

��x	
.

Theorem 2.16. Let X�t	 be a continuous-time Markov process on the state
space � �= �e1� � � � � er� with a symmetric infinitesimal generator and the
invariant measure ��x	� x ∈ � . Let X�t	 be the lumped Markov process with
respect to a lumped state space � �= �E1� � � � � Ev� and the corresponding
stationary measure �̄ as obtained in Theorem 2.12. Then, X is reversible
with respect to �̄.

Proof. Since the infinitesimal generator is symmetric, the invariant
measure ��x	 = 1

r
. Furthermore, the transition probability matrix is also

symmetric. The stationary measure of the lumped process, �̄�, is
�E��
r
. We

therefore could carry out a straight forward calculation to prove the
theorem:

p̄∗
���t	 =

�̄�p̄���t	

�̄�

= �E��
�E��

( ∑
ei∈E�

pki�t	
)

= 1
�E��

∑
ek∈E�

∑
ei∈E�

pki�t	

= 1
�E��

∑
ei∈E�

∑
ek∈E�

pki�t	

= 1
�E��

∑
ei∈E�

∑
ek∈E�

pik�t	� since P�t	 is symmetric�

= 1
�E��

��E��	
( ∑

ek∈E�

pik�t	
)

= p̄���t	� �

Example 2.17. Generally speaking, when a lumpable Markov process is
reversible, the lumped process is not necessarily reversible. We look at
a simple example now. Let’s take a Markov process, X�t	, which has
three states e1� e2, and e3, and it is lumpable with respect to state space
partition E1 = e1 and E2 = e2� e3. If �i, i = 1� 2� 3 denotes the stationary
measure of X�t	, then the stationary measure of lumped process is �1,
�2 + �3. If the lumped process is reversible, it should satisfy the following
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conditions:

p12�t	+ p13�t	 =
��2 + �3	p21�t	

�1

�

and

p21�t	 =
�1�p12�t	+ p13�t		

�2

�

This implies clearly that the reversibility of X�t	 is not enough for the
reversibility of the lumped process.

3. COMMUTATIVITY OF MARKOV PROCESSES

When a Markov process X�t	 is lumpable, we associate with it (i) its jump
chain (that is, the embedded chain) J , (ii) its lumped Markov process
X�t	, and (iii) the jump chain J of the lumped process X�t	. Our interest
is to compute quantities concerning the original processes from those of
the associated jump chains. It thus becomes important to study Figure 1.

Definition 3.1. If the jump chain J of the lumped process X�t	 is the
same as the lumped chain of the jump chain J of X�t	, that is, if Figure 1
is commutative, we say the Markov process X�t	 is commutative with
respect to lumping (or a given partition of the state space).

We now state and prove the main result of the present paper, which
characterizes the commutativity of a lumpable Markov process.

Theorem 3.2. Let X�t	 be a Markov process on the state space S =
�e1� e2� � � � � er� and with infinitesimal generator Q = �qij	. Suppose X�t	 is
lumpable with respect to the partition S = �E1� E2� � � � � Ev� of S. Then X�t	
is commutative if and only if

q�� =
∑
eu∈E�

qiu = qii� for ei ∈ E�� (1)

in other words, qij = 0, if ei� ej ∈ E� and i �= j.

Figure 1. Commutativity diagram.
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Proof. We first prove the sufficiency of the condition. Since X�t	 is
lumpable, the transition rate from E� to E� is q�� ≡ qiE�

= ∑
eu∈E�

qiu for
all ei ∈ E�. Hence, the matrix �q��	 is the infinitesimal generator for the
lumped process X�t	. The transition probability matrix for the jump
chain of X�t	 is given by �p��	, where

p�� =
∑

ej∈E�
qij∑

ek∈E�
qik

� for any ei ∈ E��

=
∑

ej∈E�
qij

qii
� if � �= ��

p�� = 0� if � = ��

since qij = 0, for ei� ej ∈ E� and i �= j.
On the other hand, the transition matrix �pij	 of the jump chain of

X�t	 is

pij =
qij

qii
� if i �= j�

pij = 0� if i = j�

We now lump the transition probability matrix �pij	 with respect to
the same partition and denote the transition probability matrix of the
resulting Markov chain by �p̄��	. Then

p̄�� =
∑
ej∈E�

pij =
∑
ej∈E�

qij

qii
� for any ei ∈ E��

=
∑

ej∈E�
qij

qii
� if � �= ��

p̄�� = 0� if � = ��

This proves the sufficiency of the condition.
It remains to prove that the condition is necessary. Since X�t	 is

lumpable, it follows from Theorem 2.10 that there are matrices U and
V , such that P�t	 = UP�t	V and Q = UQV . The transition probability
matrix for the jump chain J of X�t	 is D−1Q+ I , where D is the diagonal
matrix, which has the same diagonal as that of Q except for the sign of
each entry, that is, D = −diag�Q	. Denote the diagonal of Q by D. Then
by the commutativty of the process, we have

U�D−1Q+ I	V = D
−1
�UQV	+ I�

Since UV = I , this reduces to the following equation

UD−1QV = D
−1
UQV�
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We need to deal now with this equation. For convenience, we assume
the partition of the state space has the order-preserved form

E1 = �e1� e2� � � � � ek1��

E2 = �ek1+1� ek1+2� � � � � ek2��

· · · · · · · · · · · · · · ·
Ev = �ekv−1+1� ekv−1+2� � � � � ekv��

where r = kv. If the partition of the state space is different, we just
need permutations of the state space so as to get the order-preserved
partition. For the order-preserved partition, U and V have simple forms
and UQV is

UQV =




∑k1
j=1 q1j

∑k2
j=k1+1 q1j · · · ∑kv

j=kv−1+1 q1�j∑k1
j=1 qk1+1�j

∑k2
j=k1+1 qk1+1�j · · · ∑kv

j=kv−1+1 qk1+1�j

· · · · · · · · · · · ·
∑k1

j=1 qkv−1+1�j
∑k2

j=k1+1 qkv−1+1�j · · · ∑kv
j=kv−1+1 qkv−1+1�j



�

It is easy to see

D−1QV =




q−1
1

∑k1
j=1 q1j q−1

1

∑k2
j=k1+1 q1j · · · q−1

1

∑kv
j=kv−1+1 q1�j

q−1
2

∑k1
j=1 q2j q−1

2

∑k2
j=k1+1 q2j · · · q−1

2

∑kv
j=kv−1+1 q2j

· · · · · · · · · · · ·
q−1
r

∑k1
j=1 qrj q−1

r

∑k2
j=k1+1 qrj · · · q−1

r

∑kv
j=kv−1+1 qrj




From this, we have


k−1
1

∑k1
i=1 q

−1
i

∑k1
j=1 qij = −1

�k2 − k1	
−1 ∑k2

i=k1+1 q
−1
i

∑k2
j=k1+1 qij = −1

· · · · · · · · · · · ·
�kv − kv−1	

−1 ∑kv
i=kv−1+1 q

−1
i

∑kv
j=kv−1+1 qij = −1



�

Observing

k−1
1

k1∑
i=1

k1∑
j=1�j �=i

q−1
i qij = 0�

we note that
k1∑
i=1

k1∑
j=1�j �=i

q−1
i qij = 0�

Since qi �= 0 and q−1
i qij ≥ 0, for i �= j, we get qij = 0, ei, ej ∈ E1.
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Similarly, we can get qij = 0, i �= j ei, ej ∈ E�. This establishes
the necessity of the condition and hence completes the proof of the
theorem. �

We shall now proceed to find corresponding relations between
the underlying Markov process and the lumped Markov process
(and their respective jump chains). Continuing the topic of stationary
distributions, the following lemma gives the relation between the
stationary distribution of the Markov process X�t	 and the stationary
distribution of its jump chain.

Lemma 3.3. Let X�·	 be an irreducible Markov process with infinitesimal
generator Q and stationary distribution 
. If the stationary distribution of its
jump chain J is denoted by �, then


 =
( r∑

k=1

�k

qk

)−1

�D−1�

where D is the negative of the diagonal of Q.

Proof. Writing Q = −D + A, the transition matrix for the jump chain is
given by D−1A. Then

I +D−1A+ �D−1A	2 + · · · + �D−1A	n

n+ 1
→



�
���
�


 � as n → ��

and

��D−1A	 = ��

Now set �D−1 = �, then �D = �, and �D = �A, so �Q = 0. Also,

�P�t	 = �eQt

= �

(
I +Qt + 1

2!Q
2t2 + 1

3!Q
3t3 + · · ·

)

= � + �Qt + 1
2!�Q

2t2 + 1
3!�Q

3t3 + · · ·
= ��

So � is an invariant measure. Since X�t	 is irreducible, � can be
normalized, too, as a stationary probability vector 
.

� = ��1�2 · · · �n	



q−1
1

� � �

q−1
n


 =

(
�1

q1
· · · �n

qn

)
�
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and hence


 =
( n∑

k=1

�k

qk

)−1(
�1

q1
· · · �n

qn

)

=
( n∑

k=1

�k

qk

)−1

�D−1� �

When a Markov process is commutative with respect to a lumping,
we can, as the following theorem shows, use the stationary distribution
of the jump chain of the lumped process to recover some information
about the stationary distribution of the underlying Markov process.

Theorem 3.4. Let X�t	 be an irreducible Markov process which is
commutative with respect to some lumping and 
 be an invariant measure

of X�t	. Define the matrix Z by Z �=
( 
���




)
. Let D �= − diag�Q	, where Q is

the infinitesimal generator of X�t	, and �̄ be the stationary distribution of the

jump chain J of the lumped Markov process X�t	. Define W =
(

�̄���
�̄

)
. Then,

UZDV = W�

where recall that U and V are the lumping matrices.

Proof. Theorem 3.3 gives us an invariant measure 
̄ for the lumped
Markov process X�t	. Let � denote the stationary distribution of jump
chain J . Then,

W = UWV� W =


�
���
�


 � set Z =




̄
���

̄


 �

Note that Z = UZV . As before, decompose the infinitesimal generator
Q as Q = −D + A and let Q be the infinitesimal generator of X�t	. Set
Q = −D + A. Then, we have Q = UQV . Since the Markov process X�t	
is commutative, we have

Q = U�−D + A	V = −UDA+ UAV�

i.e., D and A are also lumpable matrices with the given partition

Q = −D + A� D = UDV� A = UAV� and VUDV = DV�
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Now Z = WD
−1
, then ZD = W . Therefore,

UZV · UDV = W� that is� UZDV = W� �

For an irreducible Markov process, the mean first return time is an
interesting quatity. We shall give several statements about the mean first
return time of lumped Markov processes and related quatities. We use
notations that are self-explanatory. For example, h�E�� E�	 is the mean
first return time for a lumped Markov process, while h�ei� ei	 is the mean
first return time for a given Markov process. We use the upper case
letters for that of Markov chains or jump chains. For example, H�E�� E�	
is the mean first return time for a lumped jump chain, while H�ei� ei	 is
the mean first return time for a given Markov chain or jump chain.

Lemma 3.5 (First Return Time). Let X�t	 be an irreducible Markov
process and u = �u1 · · · ur	 be stationary distribution of X�t	, E� is a cell of
lumping partition, then the mean first return time is given by

h�E�� E�	 =
1∑

ek∈E�
uk ·

∑
ej∈E�

qij
� ei ∈ E��

Proof. By Theorem 2.2, we know that the component of stationary
distribution of lumped chain X�t	 corresponding to cell E� to be∑

ek∈E�
uk, and the waiting rate of E� is

∑
ej∈E�

qij , for any ei ∈ E�. Then
we have the formula as in the theorem for the mean first return time. �

Theorem 3.6. If an irreducible and lumpable Markov chain satisfies the
commutativity condition, then for every lumping partition cell E�

h�E�� E�	 ≤ h�ek� ek	� for any ek ∈ E��

and

h�E�� E�	 ≤
1

�E��2
∑
ek∈E�

h�ek� ek	�

Proof. Let u = �u1u2 � � � ur	 be the stationary distribution for X�t	,
Q = �qij	 be the infinitesmal generator for X�t	, and we set qii = −qi,
then the mean first return time is

h�ek� ek	 =
1
qk

1
uk

h�E�� E�	 =
1∑

ek∈E�
uk ·

∑
ej∈E�

qij
= 1

qi

1∑
ek∈E�

uk

� for any ei ∈ E��
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Since every uk > 0, then

h�E�� E�	 ≤ h�ek� ek	� for any ek ∈ E��

Now, consider

∑
ek∈E�

h�ek� ek	 =
∑
ek∈E�

1
qkuk

= 1
qi

∑
ek∈E�

1
uk

�

Using the standard inequality
(
a1 + · · · + an

)(
1
a1
+ · · · + 1

an

) ≥ n2, ai > 0,
we have

∑
ek∈E�

1
uk

· ∑
ek∈E�

uk ≥ �E��2�

1∑
ek∈E�

uk

≤ 1
�E��2

∑
ek∈E�

1
uk

�

1
qi

1∑
ek∈E�

uk

≤ 1
�E��2

1
qi

∑
ek∈E�

1
uk

� for any ei ∈ E��

Therefore,

h�E�� E�	 ≤
1

�E��2
∑
ek∈E�

h�ek� ek	� �

Let us now recall the definition of the frequency for the Markov
process X�t	 on a weighted graph [6]

f �= lim
t→�

N�t	

t

where the quantity N�t	 for t > 0 is

N�t	 = E (the number of jumps of X�t	 up to time t	�

Actually, this definition works for any Markov process.

Theorem 3.7. If an irreducible lumpable Markov chain X satisfies the
commutativity condition, then the frequency for X�t	 and X�t	 is the same.

Proof. By the definition, the frequency for X�t	 is given by

fX = lim
t→�

E (the number of jumps of X�t	 up to time t	

t

= ∑
i

uiqi� �by Theorem 2.1 in [6]	�
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where u = �u1 · · · ur	 is the stationary distribution for X�t	, and

fX = ∑
�

(( ∑
ek∈E�

uk

)
·
( ∑

ej∈E�

qij

))
�fix ei ∈ E�	

= ∑
�

(( ∑
ek∈E�

uk

)
qi

)

= ∑
�

(( ∑
ek∈E�

ukq�

)
�write qi as q�� ei ∈ E�	

= fX� �

Corollary 3.8. We have

H�E�� E�	 ≤ H�ek� ek	� for any ek ∈ E�

and

H�E�� E�	 ≤
1

�E��2
∑
ek∈E�

H�ek� ek	�

where H�·� ·	 is the mean first return times (steps) for the jump chain.

Proof. By Theorem 3.7, the frequencies for X�t	 and X�t	 are the same
fX = fX . We also know that

H�ei� ei	 = fXh�ei� ei	�

and

H�E�� E�	 = fXh�E�� E�	�

This concludes the proof. �

Theorem 3.9. Let X�t	 be an absorbing chain. If X�t	 is lumpable (lumping
only states of the same kind), then for every cell E�, the mean absorption
time of ek ∈ E� and that of E� are the same.

Proof. Denote the transition function of X�t	 as P�t	 = �pij�t		 and
lumping partition matrices as usual by U and V , then X�t	 has transition
function UP�t	V . Also, the absorption time Tek

has mean

E�Tek
	 = ∑

ej∈S1

�∫
0

pkj�t	dt�
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where S1 is the subset whose elements are all non-absorbing states.
For the lumped process,

E�TE�
	 = ∑

E�∈S1

�∫
0

p���t	dt�

where S1 is the subset of the state space partition whose elements are all
non-absorbing lumped states. By lumpability

E�TE�
	 = ∑

E�∈S1

�∫
0

p���t	dt =
∑

E�∈S1

∫ �

0

( ∑
ej∈E�

pkj�t	
)
dt� �ek ∈ E�	

= ∑
E�∈S1

∑
ej∈E�

�∫
0

pkj�t	dt =
∑
ej∈S1

�∫
0

pkj�t	dt = E�Tek
	� �

Lemma 3.10. Let X�t	 be a simple continuous time random walk on a
connected graph and X�t	 be lumpable. Then the mean hitting time from cell
E� to cell E� is given by

h�E�� E�	 =
1

�E��
( ∑

ej∈E�

h�ek� ej	−
∑

ej∈E��ej �=ei

h�ei� ej	
)
� ej �= ei

when ek ∈ E�, ei ∈ E�.

Proof. Let A be the incidence matrix of graph G and D be the degree
matrix of G. Then Q = −D + A. Also note that the ergodic distribution
for X�t	 is given by u = � 1

n
· · · 1

n
	, where n is the order (number of vertice)

of G, and P�t	 = eQt = �pij�t		n×n. Then for the lumped cells E� and E�

(� �= �)

h�E�� E�	 =
∫ �
0 �p���t	− u�	dt −

∫ �
0 �p���t	− u�	dt

u�

=
∫ �
0 �p���t	− p���t		dt

u�

=
∫ �
0

(∑
ej∈E�

pij�t	−
∑

ej∈E�
pkj�t	

)
dt∑

ej∈E�
�j

=
∫ �
0

(∑
ej∈E�

pij�t	−
∑

ej∈E�
pjj�t	+

∑
ej∈E�

pjj�t	−
∑

ej∈E�
pkj�t	

)
dt

�E�� 1n
= 1

�E�� 1n

( ∑
ej∈E�

∫ �

0
�pjj�t	− pkj�t		dt −

∑
ej∈E�

∫ �

0
�pjj�t	− pij�t		dt

)

= 1
�E��

( ∑
ej∈E�

h�ek� ej	−
∑

ej∈E��ej �=ei

h�ei� ej	
)
� �
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Actually, this formula holds for any symmetric random walk or
symmetric Markov chain. (Symmetry means infinitesimal generator is
symmetric matrix.)
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