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Mathematical concepts of evolution algebras 

in non-Mendelian genetics 

Jianjun Paul Tian and Petr Vojt@chovskf 

Abstract 

Evolution algebras are not necessarily associative algebras satisfying e,e, = 0 whenever 

e,, e j  are two distinct basis elements. They mimic the self-reprod~ct~ion of alleles in 

non-Xiendelian genetics. We present elementary mathelnatical properties of evolution 

algebras that are of importance from the biological point of view. 

Several models of Mendelian [2, 4, 12, 6, 8, 111 and non-Mendelian ge- 
netics [ I ,  51 exist. Based on the self-reproduction rule of non-hiendelian 
genetics [ I ,  71, the first author introduced a new type of algebra [lo], called 
evolution algebra. In this paper we discuss some basic properties of evolution 
algebras. 

1. Evolution algebras and subalgebras 

Let I( be a field. A vector space E over h' equipped with multiplicat,ion is 
an a,lgebra. (not necessarily a~sociat~ive) if u(v + w) = uv + uw, (u. + v ) ~  = 
UILT + z i t ( ; ,  (au)v = ~ ( P L V )  = ~ ( a v )  for every u, v, w f E and a E I<. 

Let {ei; i E I) be a basis of an algebra E. Then eie j  = CkE1 a,ij,,-ek 

for some n.ij,,- E JC, where only finitely many .stru.cture constants n i j k  are 
nonzero for a, fixed i ,  j E I. The multiplication in E is fully determined by 
tlie st,ructure constants aij,,-, thanks to the distributive laws. 
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Let E be an algebra. Then F C E is a. su.ba.lgebra of E if F is a subspace 
of E closed under m~lt~iplication. 

It is not difficult to show tha,t the intersection of subalgebras is a sub- 
algebra. Thus, given a. subset S of E, there is the smallest subalgebra of 
E containing S .  TVe call it the su.ba1gebra generated by S, and denote it by 
(S). -4s usual: 

Lemma 1.1. Let S be a subset of an  algebra E .  T h e n  (S) consists of a.ll 
elements of the fo rm al(sl,l. . . sl,,,) +. . - + a k ( s k . l  . . . Sk,rnr , ) ,  wh,ere k 3 1,  
m.i 2 0, sij E S, oi E K ,  and where the product si.1 - - si,,? i s  parenthesized 
in some wasy. 

-An ideal I o i  an algebra E is a subalgebra of E satisfying I .  E I .  
E - I 2 I. Clearly, 0 and E are ideals of E, called improper ideals. All other 
ideals are proper. An algebra is simple if it has no proper ideals. 

,4n evolution algebra is a finite-dimensional algebra E over K with basis 
{el, . . . , e,) such that azjk = 0 whenever i # j .  Upon renaming the 
structure constants we can m i t e  e,ei = Cy=l aZjej .  TT'e refer to {el: . . . , e,.) 
as the natural basis of an algebra E. -An wolution algebra is non.degenerate 
if eiei # 0 for every i. Throughout the paper we will assu.m,e tll,at evolution 
algebras are nondegenerate. 

The multiplication in an evolut,ion algebra is supposed to mimic self- 
reproduction of non-hfendelian genetics. 14:e think and speak of t.he gen- 
erat,ors ei as alleles. The rule eiej = 0 for i # j is then na.tura1, and the 
rule eiei = aijej can be interpret,ed as follo\vs: aij is the probability that 
ei becomes e j  in the next generation. and thus C nijej is the superposi- 
tion of the possible states. Xeverthcless, nre will develop much of the theory 
over arbitrary fields and with no (probabilistic) restrictions on the structure 
constants aij . 

Given two elements 
'L' 

of an evolution algebra, we have 
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a formula, mre mill use without reference. 
The natural basis of an e~olut~ion algebra plays a. privileged role among 

all ot.her bases, since the generators ei represent alleles. Importantly, t.he 
nakural basis is privileged for purely mathema,tical reasons, too. The fol- 
lowing example illustrates this point: 

Example 1.2. Let E be an evolution algebra with basis {el, e2, es) and 
multiplication defined by elel  = el + e2, e2e2 = -el - e2, e3e3 = -e2 + e3. 
Let u1 = el +en: u2 = el  + es. Then (au l  + P u ~ ) ( Y u ~  + 6 ~ 2 )  = ayu: + 
(a6  + P ~ ) u 1 u 2  + ~ 6 u ;  = ( a6  + ? ) u l  + p6u2. Hence F = K u l  + K u 2  is a 
subalgebra of E. However, F is not an evolution algebra: 

Let { Z J ~ ,  2j2) be a basis of F. Then 211 = a111 + $u2, v:! = 7 ~ 1  + 6u2 for 
some o, p, 7, 6 E K such that D = a b  - ,5'y # 0. By the above calculation, 
V ~ V Z  = (a6  + P-j)ul + ,B6u2 Assume that vl?9 = 0. Then P6 = 0 and 
a 6  + py = 0. If /3 = 0, we have a 6  = 0. But then D = 0, a contradiction. 
If 6 = 0, we reach the same contradiction. Hence tqvz # 0: and F is not an 
evolution algebra. 

\Ye have just seen that evolution algebras are not closed under subal- 
gebras. \Ye therefore say that a subalgebra F of an evolution algebra E 
with basis {el, . . . , e,) is an evolution, su.balgebra if, as a vector space, it is 
spanned by {e,; i E I) for some I C (1, . . . , v). The subset I deter~nines 
F uniquely. and we write F = E ( I )  = {Cy=l aiei; ai = 0 when i 6 I ) .  

Similarly, m7e define an evolution ?:deal as an ideal I of E that happens 
to be an evolution subalgebra. This concept is superfluous, however: 

Lemma 1.3. Every evolution subalgebra is an evol.r~tion ideal. 

Proof. Let F = E(I) be an evolution subalgebra . Let o: = aiei be an 
element of F and e j  an allele. Itre need to show that xej E F. TVhen j $ I 
then yej = 0 E F. -4ssu1ne that j E I .  Since F is an evolution subalgebra, 
ei E F for every i E I. Then ze j  = aj$ E F, since F is a subalgebra. 

So t  every ideal of an evolution algebra is an evolut,ion ideal: 

Example 1.4. Let E be genmated by el ,  e2, where elel = el + ea = e2e2. 
Th,en I<(el + e2) is an ideal of E: but n,ot an esrolsltion, subtalgebra. 

A11 evolution algel~rn is evolvtionarjj simple if if has no proper evolution 
ideals (evolution subalgebras). 

Clearly, every simple evolution algebra is evolutionary simple. The con- 
verse it not tnie. as is apparent from Example 1.4. 
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The follo\ving theorem gives some basic properties of evolution algebras, 
all easy to prove (or see [lo]). Recall that an algebra is flexible if it sa.t,isfies 

~ ( Y x )  = ( x Y ) ~ .  

Theorem 1.5. Evolution, algebras are com.mutative (and hence flexible), bud 
not n.ecessarily power-associative (h,ence not  necessarily associa.tive). Direct 
products a,nd direct sum,s of evolution algebras are evolution a,lgebras. Euo- 
lution si~,balgebra of an  evolution algebra i s  a n  evolution algebra. 

An algebra is real if = R. .4n evolution algebra is nonnegative if it 
is real and all structure constants aij are nonnegative. -4 Aifarkov evolution 
algebra is a nonnegative evolution algebra such that Cj aij = 1 for every 
1 < i < ZJ. 

When E is a real algebra, let E+ = 1): aiei; ai 2 0). 

Lemma 1.6. Let E be a nonn.egative evoli~tion algebra. Th.en E f  i s  closed 
under addition, ~nultiplication, and m~l t ip l ica~t ion  by positive sca.la,rs. 

Proof. Let x = C aiei,  y = C A e i  E E+.  Then x + y = C(ai + @i)ei 
clearly belongs to EC.  hloreover, xy = Cj (Xi aiOia,) e j  E E'. since ail 

pi, aij 2 0 for every i, j. It is clear that E+ is closed under multiplication 
by nonnegative scalars. 

2. The evolution operator 

Let E be an evolution algebra with basis {el, . . . , e,,). Since we are nlainly 
interested in self-reproduction, we focus on the evolution operator A : E t 
El which is the (unique) linear extension of t,he map ei e:. 

Lemma 2.1. Let E be an  evokstion a.lgebra a,n.d x = aiei. Th.en A ( x )  = 
x'. i.e., C O?F? = (C ~ . ~ e ~ ) ~ .  

Proof. This is an i~nmediat~e consequence of the fact that eiej = 0 whenever 
if j .  

TVllcn I3 is il r ~ i ~ l  c\rolution itlgehra, mre call equip it lvith the ~isi lal  Ll 
norm. i.c., 1 1  C alcz  1 1  = C Inl 1 .  Since E is then isomorphic to Rv as a 
vect,or space. it hccomes a cornplcte vector space with respect to the metric 
d ( x ,  y) = [[.,I- - yII. I11 ot,licr words, I< is a Ranach space. 

Since v < m, all linear operators defined on E are continuous. In 
particular, elTer>- left fran,slation by z. defined by L,(x) = ax. is a continuous 
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operator on E. However, due to t,he lack of associa.tivity, the composition 
of t>wo left translations does not have to  be a left tra,nslation. 

-4 (not-necessarily associative) Banach  a,lgebra is an algebra tha.t is also 
a Banach space with norm 1 1  1 1  satisfying llxyll < 11x11 . Ilyll. Not every 
evolution algebra is a Banach algebra. However: 

Lemma 2.2. Let E be a real e v o l ~ ~ t i o n  algebra such that  C j  laij 1 < 1 for 
every i (eg. a Markov ez~olution algebra). T h e n  E i s  a Ba.n.ach algebra. 

Proof. Let x = C i a i e i ,  ?/ = Ei&ei .  Then IIxII . I I Y I I  = Ci IaiI . C j  IDj / -  
On the other hand, 

and the needed inequality follows. 

Note that even in the case of a Markov evolution algebra we never 
have IIxyll = 11x11. llyll for every x ,  y ,  as long as v > 1. For instance, 
lleiejII = 0 < 1 = lleiII . llejII when i # j. 

Given x in an algebra El we define the plenary powers of z by xi0] = x ,  
xin+'] = x ~ " ~ x [ ~ ~ .  Equivalently, we can set X I " ]  equal to An(x) for any n >, 0. 

Recall that composition of maps is an associative binary operation. 
Thus: 

Lemma 2.3. Let  E be a n  algebra, x E E ,  a E II, and n,, m. >, 0. Then:  

Proof. It re~rlairls to prove (ii), \vhich is easy by an induction on n. 

3. Occurrence relation 

The quest,ion we are most interest,ed in is the follouring: l/lihhen does th,e allele 
ei give rise t o  th,c a,llele e j ?  The phrase give rise can be interpreted in t~vo 
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ways: (i) the self-reproduction of ei yields eJ with nonzero probability after 
a given number of generations, or (ii) the self-reproduction of e, j-ields eJ 
with nonzero probability after some number of generations. 

The first int,erpretation is studied below, while the second interpretation 
is investigated later, starting with Section 5 .  

Let E be an algebra with basis {e l .  . . . , e,.). Tl'e say that e, occurs in 
x E E if the coefficient a, E I( is nonzero in x = CY=l aJeJ.  Jf-hen e, 
occurs in z n-e write e, 4 x. 

Lemma 3.1. Let E be a n,onnegative evolution algebra. Th.en for every x ,  
y E E+ and n 2 0 there i s  i E E+ such that (x + y)in] = xin] + i .  
Proqf. TITe proceed by induction on n. We have ( x+  y)IOl = x+ y = r[O] + y. 
and it suffices to  set i = y.  -41~0, ( x  + y)['l = ( z  + y )  ( x  + Y) = x['] + 2xy + y2. 
Bj- Lemma 1.G. 2xy + y2 = z belongs to E f .  

rZssume the claim is true for some n 3 1. In particular: given x. E E+, 
let w E E+ be such that (2 + y)["] = xin] + W. Then ( x  + y)["+'] = 
( ( x  + y ) [ n ; ) [ l l  = (xin] + w)['l. Since w E E+ and xin] E E+ by Lemma 1.6. 
we have (xin] + vi)['] = ( ~ [ ~ l ) [ l ]  + i = x["+'l + z for some ; E E+. 

Proposition 3.2. Let E be a nonnegative evolution algebra. W h e n  ei 4 eil' 
b711 b+mI a.~zd ej 4 ek then ei 4 ex: . 

Proof. Vb have e$] = ajcj + y  for some q # 0 and y E E such that ej  + p. 
Moreover. by Lemma l . G ,  we have Qj > 0 and y E ES.  B y  Lenlrna 3.1, 
[n+tn] 

ek = ( I )  = ( + I = (ajej)!ni + 2 = 3 + 2 for Some 

; E E+. Now, eF1 = &e, + v for some a, > 0 and v E E satisfying r ,  + 21. 

[n +m] TT'e tllercfore conclude that e, 4 ck CI 

The proposition does not generalize to all el-olution algebras. as the 
followring example shoivs: 

Example 3.3. Let E hc an e\rolution algebra with basis { P , ;  1 < i < 7 )  
such that c71el = P I ,  ~ 2 e 2  = ~ 4 ,  e3e.3 = e . ~  + Cf3, e 4 e ~  = e l ,  eses = f.2, 

t?~e(j = f ; ,  C 7 f i '  = 21 - - r , ~ .  Then P!] = f . 2 ~ 2  = ~ 4 ,  ei = ere1 = e l .  Thus 
PI el 4 I.., . ;\lso. = P ~ P : <  = r j  + Cn.  e!] = (e5 + e6)2 = ez + eg = C;? + c i .  

Thus e2 + el2]. Ho~vever. ryl = (e;? + e7)* = e2 + e: = e4 - e4 = 0, and so 

epl = 0 for ever)- n 2 3. This means that F I  + c$] for any n 2 0. 
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4. Occurrence sets 

Let ei, ej be t ~ ~ o  alleles of an evolution algebra. Then the occurrence set of 

ei with respect t o  e j  is the set O i ,  = {n > 0; ei 4 ey} .  
Recall that a semigroup is a set, with one binary operation that satisfies 

t,he associative law. When E is a nonnega,t,ive e\;olution algebra, every 
occurrence set Oi,i is a. subsemigroup of ( ( 1 ,  2, . . . ), +) by Proposition 3.2. 

The goal of this section is to show t,llat any finite subset of (1, 2, . . . ) 
can be realized a.s an occurrence set of some evolution algebra, and that 
every subsemigroup of ( ( 1 ,  2, . . . )? +) ca,n be realized a.s an occurrence set 
of some nonnegative evolution algebra. Hence the occurrence sets a.re as 
rich as one could hope for. 

Example 4.1. Let  n. > 1. Consider th,e evolution algebra. E with  gen,erators 
{el, . . ., en+l) defined by elel  = e2, e2e2 = eg: . . . I en-1%-I = en, 

enen = el + e,,+l, e,+len+l = -e?. T h e n  elm1 = e,+l for every 1  < m < n. 
ml epl = el + en+l,  and el  = 0 for every rn > n. T h u s  01,1 = { n ) .  

Lemma 4.2. Let  S be a finite subset of ( 1 ,  2, . . .). Then, there i s  an, 
evolution algebra E su.ch that  01:~ = S .  

Proof. Let S = { n  l ,  . . . , nm}. In the follo\ving calculations we label basis 
elements of E also by ei-j; these can be relabeled as ei a t  the end. 

Let elel = e2,1 + . . - + e2 ,,,. Given 1  < i < m, let ea.je2,i = es,i, 
e3,2e3.i = e4,i: - .  en,.ien,.i = el  f e,~,+l,z: en,+l,ieni+l,i = -elel. Thus, 
roughly speaking, we imitate Example 4.1 for every 1 6 i < 172. It is now 
not hard to see that 01,~ = S. 

-4 semigroup is finitely generated if it is generated by a finite subset. 
Here is a well-known fact: 

Lemma 4.3. Every subsemigroup of ((1, 2, . . . ), +) i s  finitely generated. 

Proof. Let S be a subsemigroup of ( ( 1 ,  2, . . . ), +). Let n be the smallest 
element of S .  For every 1  < i < n let mi he the smallest element of S 
such that 7n.i is congruent to 7: modulo n, if such an element exists, else set 
mi = n. \b'e claim that A = { n ,  m , ~ ,  . . . , m.,-1) generates S. Suppose that 
this is not the case and let s be t.he smallest elenlent of S not generated 
by A. Since .s cannot be a multiple of n: there is 1 6 i < n such that, s is 
congruent t'o i modulo n.. Then m.i # n  and 7n.i < s. But then .s = mi + kn. 
for some k > 0: so .s E A, a contradiction. 
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Lemma 4.4. Let S be a subsemigroup of ((1, 2, . . . ), +). Then there is a 
nonnegative el;olution algebra E such that Olql = S. 

Proof. Assume t.hat S is 1-genera.ted, i.e., that S = {n, 2n, . . . } for some 
n 1. Then define E by: elel = ea, e?ea = es, . . . , en-len-l = en,  
ene, = el.  It is easy t,o see that 01,~ = S.  

IYhe11 S is generated by m elements, say nl, . . . , n.,, we can use a. 
similar trick as in the proof of Lemma 4.2. 

Every subsemigroup of ((1, 2, . . . ), +) is finitely generated by Lemma. 
4.3. 

Problem 4.5. Can a.n,y su.bset of ( 1 ,  2, . . . ) be rea.lized as an  occurren,ce 
set of som,e evollrtion algebra? 

Problem 4.6. Let S be a subset o,f (1, 2, . . .), IS! = n.  What  is the 
smalle.st in,teger v such th,at there i s  an  evolu.tion algebra E of dimtension v 
for which S i s  an  occurrence set? 

5. Occurrence based on evolution subalgebras 

\Ve are now going to look at  the second interpretation of gives rise to 
7 j e j .  

Lemma 5.1. Intersection of evolution su.balgebra,s i s  an  evolu.tion su.balge- 
bra. 

Proof. Let F = E ( I ) ;  G = E ( J )  be two evolution subalgebras of E. Then 
F n G = E(I n J) as a vector space. Since F n G is a subalgebra, we are 
done. Cl 

Thus for any subset S of E there exists the smallest evolut,ion subalgebra, 
of E containing S: we denot,e it by ((S)). The notation is supposed to 
suggest that the ~tvolut~ion subalgebra generated by S can be larger than 
t,he subalgebra generated bjv S .  

Ih" now define another occurrence relation as follows: For x, y E E, let 
x << y if n: E ( ( ? j ) ) .  

Lemma 5.2. For x,  31, z E E we ha.ve: 

(i) if x << y an,d y << x then ((2)) = ((y)), 

(ii) i,f x << y 0n.d ?j << z th.en n: << z ,  
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(iii) if z << y[nl for some n 2 0 th,en x << y .  

Proof. Easy. 

In vieix- of Lemma 5.2(iii), it makes no sense to speak of occurrence sets 
(analogous to O1 J )  in the context of <<: since every occurrence set would 
be either en~pt~y or mrould consists of all nonnegative integers. 

Lemma 5.3. Let F ,  G be ez!olutionary simple evolution subalgebras of E .  
Then either F = G or F n G = 0. 

Proof. -4ssume that there is x f F n G, x # 0. Then ((z)) is an evolution 
subalgebra of both F and G. Since bot,h F ,  G are evolutionary simple, it 
follo\~rs that F = G = ((x)). 

6. Algebraically persistent and transient generators 

.A generator ei of an evolution algebra E is algebrc2ica,l/y persistent if ((ei)) 
is el.olutionary simple, else it is algebraically transient. 

Lemma 6.1. If E is an evolu.tion,ary simple evolu.tion algebra th,en it  h.as 
n,o algebraically tmnsien.t generators. 

Proof. Assume that ei is an algebraically t,ransient generator, i.e.. that ((e,)) 
is not evolutionary simple. If E = ((e,)), we see right anray that E is not 
evolutionary simple. If ((ei)) is a proper e\rolut,ion subalgebra of E then it 
is a proper evolution ideal of E by Lemma 1.3, and E is not evolutionary 
simple. 

The follo~ving example sho\vs that the converse of Lernlna 6.1 does not 
hold (but see Corollary 7.3): 

Example 6.2. Let E have generators e l ,  e2 such that elc.1 = el ,  e2e2 = 

~ 2 .  T l i ~ n  ((el)) = livel, ((e2)) = Ice2, wl~ich means that both el ,  e2 arc 
algchraically persistent. \ct ((c ,))  is a proper evolution ideal of E,  and 
Iiencc. E is not cvo1litional.y simple. 

Lemma 6.3. Lct ci br: an. c~,lgebmico.lly pcr.sistc.nt .qen.erator of E ,  and 0,s- 
svrne that e j  3 c ; e i .  Th,cn, e j  i.. algchrfl,icnll?l pcrsi.9ten.t. 

Proof. Since. c3 -: r , ~ , ,  n ' ~  have ( ( c , ) )  > ( (e l ) ) .  But ((6,j) is cvolutionar\~ 
simple, thus ((e,)) = ((e,)). Then ((e,)) is r~.olutionary simple, and thus e, 
is algebraically pcrsistcnt. 
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7. Decomposition of evolution algebras 

,4n evolution algebra E is indecomposable if ~vhenever E = F 8 G for some 
evolution s~ibalgebras F ,  G of E,  we have F = 0 or G = 0. An easy 
induction proves that every evolution algebra can be written as a direct 
sum of indecomposable evolution algebras. 

Here is an indecolnposable evolution algebra that is not evolutionary 
simple: 

Example 7.1. Let E be generated by e l ,  e2, where elel = e l ,  e2e2 = el .  
Then ( (e l ) )  = Ke1, ((e2)) = E. 

An evolution algebra E is evolutionary semisimple if it is a direct sum 
of some of its evolutionary simple evolution subalgebras. Notre that every 
evolutionary simple evolution subalgebra of E can be written as ((e,)) for 
some algebraically persistent generator of E. 

Propositioll 7.2. An evolsrtion algebra. E is  evolutionary semisimple if an,d 
only zf all of i ts  alleles ei are algebraically persistent. 

Proof. -4ssume that E is evol~t~ionary semisimple, and write E  = ((ei,)) @ 

. . . 8 ((ein,)), where each eij is algebraically persistent. Let ej he an allele 
of E. Then ej belongs to some ((ei,)). Since ( (e j ) )  is an evolution ideal of 
((ei,)) a,nd ei, is algebraically persistent, we conclude that ( ( e j ) )  = ((ei,)). 
Thus ej is algebraically persistent, too. 

Conversely, assume that every allele of E is a.lgebraically per~ist~ent. For 
ea.ch ei let Ii = { j ;  ej << e i ) .  Given i # j :  we have either Ii = I j  or 
Ii n I? = Q), by Lernmx 5.3. Thus there exists { i l .  . . . , i n }  G (1, . . . : u) = I 
such that Ii,  U . U Iin = I ,  a,nd the union is disjoint. In other words, 

E = ((eil)) @ . m e  Q ((ei,)). 

Here is a partial converse of Lemma 6.1: 

Corollary 7.3. A n  in,decomn~posnhle evolution algebra 11lith ILO tran.sient gen,- 
erators is  ez~olvtionrui.~j sim.ple. 

Lct, E bc an evolution algebra. Partition (1, . . . , t :}  as I U J. where 
c, E I if and only if c ,  is an algebraically persistent generator of E. Lct 
P ( E )  = { x a , e i ;  a,  = O for i @ I ) ,  and T ( E )  = { C a , e , :  ai = 0 for 
i @ J } .  

Lemma 7.4. P(E) i s  an, evolutionary semisim.ple evobzrtion ssiba.1geb1.a of 
E .  
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Proof. Ifre first show that P(E)  is an evolution subalgebra. Let x E P ( E ) ,  
y E P(E) ,  x = CiEI aiei, y = CiE1,&ei, where I  is as above. Then 
xy = CiEI aipie:. By Lemma 6.3: e: is a linear combination of algebraically 
persistent generat,ors, and hence zy E P(E) .  

Then P ( E )  is evolutionary semisimple by Proposition 7.2. Cl 

Observe: 

Lemma 7.5. Let E ( I ) ,  E ( J )  be evolution subalgebras of E  such that E ( I )  
is a subalgebra of E ( J ) .  Then I  C J .  If E ( I )  is a proper subalgebra of 
E ( J ) ,  then I  is a proper subset of J .  

Thus: 

Lemma 7.6. Every evolution algebra E  has a.n evolutionary sim,ple evolu- 
tion subalgebra. In particular, P ( E )  # 0. 

Proof. Tf7e proceed by induction on v. If v  = 1. then E = ((el)) is evolution- 
ary simple. Assume that the lemma is true for v  - 1. If E  = E ( { l . .  . . . v ) )  
is evolutionary simple, we are done. Else, by Lemma 7.5, there is a proper 
subset I  of { I . .  . . , v) such that E ( I )  is a proper evolution subalgebra. By 
induction, E ( I )  contains an evolutionary simple evolution subalgebra. 

Every evolution algebra E  decomposes as a vector space into P ( E )  $ 

T ( E ) ,  and P ( E )  # 0, by the above lemma. Moreover, P ( E )  is an evolution- 
ary seinisiniple e~olut~ion algebra, and can therefore be written as a direct 
sum of evolutionary simple evolution algebras ((ei, )) . 

However, the subspace T ( E )  does not need to be a subalgebra of E ,  
hence it does not need to be an evolution algebra. But me can make it into 
an evolution algebra: 

Let T ( E )  = {C aieil ai = 0 for i $ J ) .  Let J* = J  \ { j ;  e2 C P ( E ) ) .  
3 - 

(This will guarantee that the resulting evolution algebra is nondegenerate.) 
Let T * ( E )  bc defined on the subspace generated by {e,; i E J* )  by e,e, = 
CjtJ* U ~ ~ E ~ ,  where tlie structure ronsta~its a,3 are inherited from E. If 
J* # 0, then T * ( E )  is a nondegeileratc el-olution algebra. If J* = 17) then all 
algcbraic;~ll?- transient generators of E vanish after the first reproduction, 
and thcrcforc ha\-c no impact. biologically speaking. 

If El = T * ( E )  f 0, we can iterate the decomposition and form P(E1) .  
T (E1 )  and T * ( E 1 ) ,  etc. Eventuallj- WP reach a point n n~hen T*(E,) = 0, 
i . ~ . ,  mVcry transicnt gc3nerator of En disappears after the first generation. 



Let u s  emphasize tha,t t h e  decomposition of E thus  obtained results in 
a n  evolution algebra no t  necessarily isomorphic t o  E; some information may 
b e  lost i n  t h e  decomposition P ( E )  @ T ( E ) .  
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