Mathematical concepts of evolution algebras in non-Mendelian genetics

Jianjun Paul Tian and Petr Vojtěchovský

Abstract

Evolution algebras are not necessarily associative algebras satisfying $e_{i} e_{j}=0$ whenever e_{i}, e_{j} are two distinct basis elements. They mimic the self-reproduction of alleles in non-Mendelian genetics. We present elementary mathematical properties of evolution algebras that are of importance from the biological point of view.

Several models of Mendelian [2, 4, 12, 6, 8, 11] and non-Mendelian genetics $[1,5]$ exist. Based on the self-reproduction rule of non-Mendelian genetics [1,7], the first author introduced a new type of algebra [10], called evolution algebra. In this paper we discuss some basic properties of evolution algebras.

1. Evolution algebras and subalgebras

Let K be a field. A vector space E over K equipped with multiplication is an algebra (not necessarily associative) if $u(v+w)=u v+u w,(u+v) w=$ $u w+v w,(\alpha u) v=\alpha(u v)=u(\alpha v)$ for every $u, v, w \in E$ and $\alpha \in K$.

Let $\left\{e_{i} ; i \in I\right\}$ be a basis of an algebra E. Then $e_{i} e_{j}=\sum_{k \in I} a_{i j k} e_{k}$ for some $a_{i j k} \in K$, where only finitely many structure constants $a_{i j k}$ are nonzero for a fixed $i, j \in I$. The multiplication in E is fully determined by the structure constants $a_{i j k}$, thanks to the distributive laws.

[^0]Let E be an algebra. Then $F \subseteq E$ is a subalgebra of E if F is a subspace of E closed under multiplication.

It is not difficult to show that the intersection of subalgebras is a subalgebra. Thus, given a subset S of E, there is the smallest subalgebra of E containing S. We call it the subalgebra generated by S, and denote it by $\langle S\rangle$. As usual:
Lemma 1.1. Let S be a subset of an algebra E. Then $\langle S\rangle$ consists of all elements of the form $\alpha_{1}\left(s_{1,1} \cdots s_{1, m_{1}}\right)+\cdots+\alpha_{k}\left(s_{k, 1} \cdots s_{k, m_{k}}\right)$, where $k \geqslant 1$, $m_{i} \geqslant 0, s_{i, j} \in S, \alpha_{i} \in K$, and where the product $s_{i .1} \cdots s_{i, m_{i}}$ is parenthesized in some way.

An ideal I of an algebra E is a subalgebra of E satisfying $I \cdot E \subseteq I$, $E \cdot I \subseteq I$. Clearly, 0 and E are ideals of E, called improper ideals. All other ideals are proper. An algebra is simple if it has no proper ideals.

An coolution algebra is a finite-dimensional algebra E over K with basis $\left\{e_{1}, \ldots, e_{v}\right\}$ such that $a_{i j k}=0$ whenever $i \neq j$. Upon renaming the structure constants we can write $e_{i} e_{i}=\sum_{j=1}^{v} a_{i j} e_{j}$. We refer to $\left\{e_{1}, \ldots, e_{v}\right\}$ as the natural basis of an algebra E. An evolution algebra is nondegenerate if $e_{i} e_{i} \neq 0$ for every i. Throughout the paper we will assume that evolution algebras are nondegenerate.

The multiplication in an evolution algebra is supposed to mimic selfreproduction of non-Mendelian genetics. We think and speak of the generators e_{i} as alleles. The rule $e_{i} e_{j}=0$ for $i \neq j$ is then natural, and the rule $e_{i} e_{i}=\sum a_{i j} e_{j}$ can be interpreted as follows: $a_{i j}$ is the probability that e_{i} becomes e_{j} in the next generation, and thus $\sum a_{i j} e_{j}$ is the superposition of the possible states. Neverthcless, we will develop much of the theory over arbitrary fields and with no (probabilistic) restrictions on the structure constants $a_{i j}$.

Given two elements

$$
x=\sum_{i=1}^{v} \alpha_{i} e_{i}, \quad y=\sum_{i=1} \beta_{i} e_{i},
$$

of an evolution algebra, we have

$$
\begin{aligned}
x y & =\sum_{i=1}^{v} \alpha_{i} e_{i} \cdot \sum_{j=1}^{v} \beta_{j} e_{j}=\sum_{i=1}^{v} \alpha_{i} \beta_{i} e_{i}^{2} \\
& =\sum_{i=1}^{v}\left(\alpha_{i} \beta_{i} \sum_{j=1}^{v} a_{i j} e_{j}\right)=\sum_{j=1}^{v}\left(\sum_{i=1}^{v} \alpha_{i} \beta_{i} a_{i j}\right) e_{j},
\end{aligned}
$$

a formula we will use without reference.
The natural basis of an evolution algebra plays a privileged role among all other bases, since the generators e_{i} represent alleles. Importantly, the natural basis is privileged for purely mathematical reasons, too. The following example illustrates this point:

Example 1.2. Let E be an evolution algebra with basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ and multiplication defined by $e_{1} e_{1}=e_{1}+e_{2}, e_{2} e_{2}=-e_{1}-e_{2}, e_{3} e_{3}=-e_{2}+e_{3}$. Let $u_{1}=e_{1}+e_{2}, u_{2}=e_{1}+e_{3}$. Then $\left(\alpha u_{1}+\beta u_{2}\right)\left(\gamma u_{1}+\delta u_{2}\right)=a \gamma u_{1}^{2}+$ $(\alpha \delta+\beta \gamma) u_{1} u_{2}+\beta \delta u_{2}^{2}=(\alpha \delta+\beta \gamma) u_{1}+\beta \delta u_{2}$. Hence $F=K u_{1}+K u_{2}$ is a subalgebra of E. However, F is not an evolution algebra:

Let $\left\{v_{1}, v_{2}\right\}$ be a basis of F. Then $v_{1}=\alpha u_{1}+\beta u_{2}, v_{2}=\gamma u_{1}+\delta u_{2}$ for some $\alpha, \beta, \gamma, \delta \in K$ such that $D=\alpha \delta-\beta \gamma \neq 0$. By the above calculation, $v_{1} v_{2}=(\alpha \delta+\beta \gamma) u_{1}+\beta \delta u_{2}$. Assume that $v_{1} v_{2}=0$. Then $\beta \delta=0$ and $\alpha \delta+\beta \gamma=0$. If $\beta=0$, we have $\alpha \delta=0$. But then $D=0$, a contradiction. If $\delta=0$, we reach the same contradiction. Hence $v_{1} v_{2} \neq 0$, and F is not an evolution algebra.

We have just seen that evolution algebras are not closed under subalgebras. We therefore say that a subalgebra F of an evolution algebra E with basis $\left\{e_{1}, \ldots, e_{v}\right\}$ is an evolution subalgebra if, as a vector space, it is spanned by $\left\{e_{i} ; i \in I\right\}$ for some $I \subseteq\{1, \ldots, v\}$. The subset I determines F uniquely, and we write $F=E(I)=\left\{\sum_{i=1}^{v} \alpha_{i} e_{i} ; \alpha_{i}=0\right.$ when $\left.i \notin I\right\}$.

Similarly, we define an evolution ideal as an ideal I of E that happens to be an evolution subalgebra. This concept is superfluous, however:

Lemma 1.3. Every evolution subalgebra is an evolution ideal.
Proof. Let $F=E(I)$ be an evolution subalgebra . Let $x=\sum_{i \in I} \alpha_{i} e_{i}$ be an element of F and e_{j} an allele. We need to show that $x e_{j} \in F$. When $j \notin I$ then $x e_{j}=0 \in F$. Assume that $j \in I$. Since F is an evolution subalgebra, $e_{i} \in F$ for every $i \in I$. Then $x e_{j}=\alpha_{j} e_{j}^{2} \in F$, since F is a subalgebra.

Not every ideal of an evolution algebra is an evolution ideal:
Example 1.4. Let E be generated by e_{1}, e_{2}, where $e_{1} e_{1}=e_{1}+e_{2}=e_{2} e_{2}$. Then $K\left(\varepsilon_{1}+c_{2}\right)$ is an ideal of E, but not an evolution subalgebra.

An evolution algebra is evolutionary simple if if has no proper evolution ideals (evolution subalgebras).

Clearly, every simple evolution algebra is evolutionary simple. The converse it not true, as is apparent from Example 1.4.

The following theorem gives some basic properties of evolution algebras, all easy to prove (or see [10]). Recall that an algebra is flexible if it satisfies $x(y x)=(x y) x$.

Theorem 1.5. Evolution algebras are commutative (and hence flexible), but not necessarily power-associative (hence not necessarily associative). Direct products and direct sums of evolution algebras are evolution algebras. Evolution subalgebra of an evolution algebra is an evolution algebra.

An algebra is real if $K=\mathbb{R}$. An evolution algebra is nonnegative if it is real and all structure constants $a_{i j}$ are nonnegative. A Markov evolution algebra is a nonnegative evolution algebra such that $\sum_{j} a_{i j}=1$ for every $1 \leqslant i \leqslant v$.

When E is a real algebra, let $E^{+}=\left\{\sum \alpha_{i} e_{i} ; \alpha_{i} \geqslant 0\right\}$.
Lemma 1.6. Let E be a nonnegative evolution algebra. Then E^{+}is closed under addition, multiplication, and multiplication by positive scalars.

Proof. Let $x=\sum \alpha_{i} e_{i}, y=\sum \beta_{i} e_{i} \in E^{+}$. Then $x+y=\sum\left(\alpha_{i}+\beta_{i}\right) e_{i}$ clearly belongs to E^{+}. Moreover, $x y=\sum_{j}\left(\sum_{i} \alpha_{i} \beta_{i} a_{i j}\right) e_{j} \in E^{+}$, since α_{i}, $\beta_{i}, a_{i j} \geqslant 0$ for every i, j. It is clear that E^{+}is closed under multiplication by nonnegative scalars.

2. The evolution operator

Let E be an evolution algebra with basis $\left\{e_{1}, \ldots, e_{v}\right\}$. Since we are mainly interested in self-reproduction, we focus on the evolution operator $\Lambda: E \rightarrow$ E, which is the (unique) linear extension of the map $e_{i} \mapsto e_{i}^{2}$.

Lemma 2.1. Let E be an evolution algebra and $x=\sum \alpha_{i} e_{i}$. Then $\Lambda(x)=$ x^{2}, i.e., $\sum \alpha_{i}^{2} e_{i}^{2}=\left(\sum \alpha_{i} e_{i}\right)^{2}$.

Proof. This is an immediate consequence of the fact that $e_{i} e_{j}=0$ whenever $i \neq j$.

When E is a real evolution algebra, we can equip it with the usual L_{1} norm, i.e., $\left\|\sum \alpha_{i} e_{i}\right\|=\sum\left|\alpha_{i}\right|$. Since E is then isomorphic to \mathbb{R}^{v} as a vector space, it becomes a complete vector space with respect to the metric $d(x, y)=\|x-y\|$. In other words, E is a Banach space.

Since $v<\infty$, all linear operators defined on E are continuous. In particular, every left, translation by z, defined by $L_{z}(x)=z x$, is a continuous
operator on E. However, due to the lack of associativity, the composition of two left translations does not have to be a left translation.

A (not-necessarily associative) Banach algebra is an algebra that is also a Banach space with norm $\|\cdot\|$ satisfying $\|x y\| \leqslant\|x\| \cdot\|y\|$. Not every evolution algebra is a Banach algebra. However:

Lemma 2.2. Let E be a real evolution algebra such that $\sum_{j}\left|a_{i j}\right| \leqslant 1$ for every i (eg. a Markov evolution algebra). Then E is a Banach algebra.

Proof. Let $x=\sum_{i} \alpha_{i} e_{i}, y=\sum_{i} \beta_{i} e_{i}$. Then $\|x\| \cdot\|y\|=\sum_{i}\left|\alpha_{i}\right| \cdot \sum_{j}\left|\beta_{j}\right|$. On the other hand,

$$
\begin{aligned}
\|x y\| & =\left\|\sum_{j}\left(\sum_{i} \alpha_{i} \beta_{i} a_{i j}\right) e_{j}\right\|=\sum_{j}\left|\sum_{i} \alpha_{i} \beta_{i} a_{i j}\right| \leqslant \sum_{j} \sum_{i}\left(\left|\alpha_{i} \beta_{i}\right| \cdot\left|a_{i j}\right|\right) \\
& =\sum_{i}\left(\sum_{j}\left|a_{i j}\right|\right)\left|\alpha_{i} \beta_{i}\right| \leqslant \sum_{i}\left|\alpha_{i} \beta_{i}\right|
\end{aligned}
$$

and the needed inequality follows.
Note that even in the case of a Markov evolution algebra we never have $\|x y\|=\|x\| \cdot\|y\|$ for every x, y, as long as $v>1$. For instance, $\left\|e_{i} e_{j}\right\|=0<1=\left\|e_{i}\right\| \cdot\left\|e_{j}\right\|$ when $i \neq j$.

Given x in an algebra E, we define the plenary powers of x by $x^{[0]}=x$, $x^{[n+1]}=x^{[n]} x^{[n]}$. Equivalently, we can set $x^{[n]}$ equal to $\Lambda^{n}(x)$ for any $n \geqslant 0$.

Recall that composition of maps is an associative binary operation. Thus:

Lemma 2.3. Let E be an algebra, $x \in E, \alpha \in K$, and $n, m \geqslant 0$. Then:
(i) $\left(x^{[n]}\right)^{[m]}=x^{[n+m]}$,
(ii) $(\alpha x)^{[n]}=\alpha^{\left(2^{n}\right)} x^{[n]}$.

Proof. It remains to prove (ii), which is easy by an induction on n.

3. Occurrence relation

The question we are most interested in is the following: When does the allele e_{i} give rise to the allele e_{j} ? The phrase give rise can be interpreted in two
ways: (i) the self-reproduction of e_{i} yields e_{j} with nonzero probability after a given number of generations, or (ii) the self-reproduction of e_{i} yields e_{j} with nonzero probability after some number of generations.

The first interpretation is studied below, while the second interpretation is investigated later, starting with Section 5.

Let E be an algebra with basis $\left\{e_{1}, \ldots, e_{v}\right\}$. We say that e_{i} occurs in $x \in E$ if the coefficient $\alpha_{i} \in K$ is nonzero in $x=\sum_{j=1}^{v} \alpha_{j} e_{j}$. When e_{i} occurs in x we write $e_{i} \prec x$.

Lemma 3.1. Let E be a nonnegative evolution algebra. Then for every x, $y \in E^{+}$and $n \geqslant 0$ there is $z \in E^{+}$such that $(x+y)^{[n]}=x^{[n]}+z$.

Proof. We proceed by induction on n. We have $(x+y)^{[0]}=x+y=x^{[0]}+y$, and it suffices to set $z=y$. Also, $(x+y)^{[1]}=(x+y)(x+y)=x^{[1]}+2 x y+y^{2}$. By Lemma 1.6, $2 x y+y^{2}=z$ belongs to E^{+}.

Assume the claim is true for some $n \geqslant 1$. In particular, given $x . y \in E^{+}$, let $w \in E^{+}$be such that $(x+y)^{[n]}=x^{[n]}+w$. Then $(x+y)^{[n+1]}=$ $\left((x+y)^{[n]}\right)^{[1]}=\left(x^{[n]}+w\right)^{[1]}$. Since $w \in E^{+}$and $x^{[n]} \in E^{+}$by Lemma 1.6, we have $\left(x^{[n]}+w\right)^{[1]}=\left(x^{[n]}\right)^{[1]}+z=x^{[n+1]}+z$ for some $z \in E^{+}$.

Proposition 3.2. Let E be a nonnegative evolution algebra. When $e_{i} \prec e_{j}^{[n]}$ and $e_{j} \prec e_{k}^{[m]}$ then $e_{i} \prec e_{k}^{[n+m]}$.

Proof. We have $e_{k}^{[m]}=\alpha_{j} e_{j}+y$ for some $\alpha_{j} \neq 0$ and $y \in E$ such that $e_{j} \nprec y$. Moreover, by Lemma 1.6, we have $\alpha_{j}>0$ and $y \in E^{+}$. By Lemma 3.1, $e_{k}^{[n+m]}=\left(e_{k}^{[m]}\right)^{[n]}=\left(\alpha_{j} \epsilon_{j}+y\right)^{[n]}=\left(\alpha_{j} e_{j}\right)^{[n]}+z=\alpha_{j}^{\left(2^{n}\right)} e_{j}^{[n]}+z$ for some $z \in E^{+}$. Now, $e_{j}^{[n]}=\beta_{i} e_{i}+v$ for some $\beta_{i}>0$ and $v \in E$ satisfying $e_{i} \nprec v$. We therefore conclude that $e_{i} \prec e_{k}^{[n+m]}$

The proposition does not generalize to all evolution algebras, as the following example shows:

Example 3.3. Let E be an evolution algebra with basis $\left\{e_{i} ; 1 \leqslant i \leqslant 7\right\}$ such that $e_{1} e_{1}=e_{1}, e_{2} e_{2}=e_{4}, e_{3} e_{3}=e_{5}+c_{6}, e_{4} e_{4}=e_{1}, e_{5} e_{5}=e_{2}$, $\epsilon_{6} e_{6}=e_{7}, e_{7} c_{7}=-e_{4}$. Then $e_{2}^{[1]}=e_{2} e_{2}=e_{4}, e_{2}^{[2]}=e_{4} e_{4}=\epsilon_{1}$. Thus $e_{1} \prec e_{2}^{[2]}$. Also, $e_{3}^{[1]}=e_{3} e_{3}=e_{5}+e_{6}, e_{3}^{[2]}=\left(e_{5}+e_{6}\right)^{2}=e_{5}^{2}+e_{6}^{2}=e_{2}+e_{7}$. Thus $e_{2} \prec e_{3}^{[2]}$. However, $e_{3}^{[3]}=\left(e_{2}+e_{7}\right)^{2}=e_{2}^{2}+e_{7}^{2}=e_{4}-e_{4}=0$, and so $e_{3}^{[n]}=0$ for cvery $n \geqslant 3$. This means that $e_{1} \nprec e_{3}^{[n]}$ for any $n \geqslant 0$.

4. Occurrence sets

Let e_{i}, e_{j} be two alleles of an evolution algebra. Then the occurrence set of e_{i} with respect to e_{j} is the set $O_{i, j}=\left\{n>0 ; e_{i} \prec e_{j}^{[n]}\right\}$.

Recall that a semigroup is a set with one binary operation that satisfies the associative law. When E is a nonnegative evolution algebra, every occurrence set $O_{i, i}$ is a subsemigroup of $(\{1,2, \ldots\} .+)$ by Proposition 3.2.

The goal of this section is to show that any finite subset of $\{1,2, \ldots\}$ can be realized as an occurrence set of some evolution algebra, and that every subsemigroup of $(\{1,2, \ldots\},+)$ can be realized as an occurrence set of some nonnegative evolution algebra. Hence the occurrence sets are as rich as one could hope for.

Example 4.1. Let $n>1$. Consider the evolution algebra E with generators $\left\{e_{1}, \ldots, e_{n+1}\right\}$ defined by $e_{1} e_{1}=e_{2}, e_{2} e_{2}=e_{3}, \ldots, e_{n-1} e_{n-1}=e_{n}$, $e_{n} e_{n}=e_{1}+e_{n+1}, e_{n+1} e_{n+1}=-e_{2}$. Then $e_{1}^{[m]}=e_{m+1}$ for every $1 \leqslant m<n$, $e_{1}^{[n]}=e_{1}+e_{n+1}$, and $e_{1}^{[m]}=0$ for every $m>n$. Thus $O_{1,1}=\{n\}$.

Lemma 4.2. Let S be a finite subset of $\{1,2, \ldots\}$. Then there is an evolution algebra E such that $O_{1,1}=S$.

Proof. Let $S=\left\{n_{1}, \ldots, n_{m}\right\}$. In the following calculations we label basis elements of E also by $e_{i, j}$; these can be relabeled as e_{i} at the end.

Let $e_{1} e_{1}=e_{2,1}+\cdots+e_{2, m}$. Given $1 \leqslant i \leqslant m$, let $e_{2, i} e_{2, i}=e_{3, i}$, $e_{3, i} e_{3, i}=e_{4, i}, \ldots, e_{n_{i}, i} e_{n_{i}, i}=e_{1}+e_{n_{i}+1, i}, e_{n_{i}+1, i} e_{n_{i}+1, i}=-e_{1} e_{1}$. Thus, roughly speaking, we imitate Example 4.1 for every $1 \leqslant i \leqslant m$. It is now not hard to see that $O_{1,1}=S$.

A semigroup is finitely generated if it is generated by a finite subset. Here is a well-known fact:

Lemma 4.3. Every subsemigroup of $(\{1,2, \ldots\},+)$ is finitely generated.
Proof. Let S be a subsemigroup of $(\{1,2, \ldots\},+)$. Let n be the smallest element of S. For every $1 \leqslant i<n$ let m_{i} be the smallest element of S such that m_{i} is congruent to i modulo n, if such an element exists, else set $m_{i}=n$. We claim that $A=\left\{n, m_{1}, \ldots, m_{n-1}\right\}$ generates S. Suppose that this is not the case and let s be the smallest element of S not generated by A. Since s cannot be a multiple of n, there is $1 \leqslant i<n$ such that s is congruent to i modulo n. Then $m_{i} \neq n$ and $m_{i}<s$. But then $s=m_{i}+k n$ for some $k>0$, so $s \in A$, a contradiction.

Lemma 4.4. Let S be a subsemigroup of $(\{1,2, \ldots\},+)$. Then there is a nonnegative evolution algebra E such that $O_{1,1}=S$.

Proof. Assume that S is 1 -generated, i.e., that $S=\{n, 2 n, \ldots\}$ for some $n \geqslant 1$. Then define E by: $e_{1} e_{1}=e_{2}, e_{2} e_{2}=e_{3}, \ldots, e_{n-1} e_{n-1}=e_{n}$, $e_{n} e_{n}=e_{1}$. It is easy to see that $O_{1,1}=S$.

When S is generated by m elements, say n_{1}, \ldots, n_{m}, we can use a similar trick as in the proof of Lemma 4.2.

Every subsemigroup of $(\{1,2, \ldots\},+$) is finitely generated by Lemma 4.3.

Problem 4.5. Can any subset of $\{1,2, \ldots\}$ be realized as an occurrence set of some evolution algebra?

Problem 4.6. Let S be a subset of $\{1,2, \ldots\},|S|=n$. What is the smallest integer v such that there is an evolution algebra E of dimension v for which S is an occurrence set?

5. Occurrence based on evolution subalgebras

We are now going to look at the second interpretation of " e_{i} gives rise to e_{j}."

Lemma 5.1. Intersection of evolution subalgebras is an evolution subalgebra.

Proof. Let $F=E(I), G=E(J)$ be two evolution subalgebras of E. Then $F \cap G=E(I \cap J)$ as a vector space. Since $F \cap G$ is a subalgebra, we are done.

Thus for any subset S of E there exists the smallest evolution subalgebra of E containing S, and we denote it by $\langle\langle S\rangle\rangle$. The notation is supposed to suggest that the evolution subalgebra generated by S can be larger than the subalgebra generated by S.

We now define another occurrence relation as follows: For $x, y \in E$, let $x \ll y$ if $x \in\langle\langle y\rangle\rangle$.

Lemma 5.2. For $x, y, z \in E$ we have:
(i) if $x \ll y$ and $y \ll x$ then $\langle\langle x\rangle\rangle=\langle\langle y\rangle\rangle$,
(ii) if $x \ll y$ and $y \ll z$ then $x \ll z$,
(iii) if $x \ll y^{[n]}$ for some $n \geqslant 0$ then $x \ll y$.

Proof. Easy.
In view of Lemma $5.2(i i i)$, it makes no sense to speak of occurrence sets (analogous to $O_{i, j}$) in the context of \ll, since every occurrence set would be either empty or would consists of all nonnegative integers.
Lemma 5.3. Let F, G be evolutionary simple evolution subalgebras of E. Then either $F=G$ or $F \cap G=0$.
Proof. Assume that there is $x \in F \cap G, x \neq 0$. Then $\langle\langle x\rangle\rangle$ is an evolution subalgebra of both F and G. Since both F, G are evolutionary simple, it follows that $F=G=\langle\langle x\rangle\rangle$.

6. Algebraically persistent and transient generators

A generator e_{i} of an evolution algebra E is algebraically persistent if $\left\langle\left\langle e_{i}\right\rangle\right\rangle$ is evolutionary simple, else it is algebraically transient.

Lemma 6.1. If E is an evolutionary simple evolution algebra then it has no algebraically transient generators.

Proof. Assume that e_{i} is an algebraically transient generator, i.e., that $\left\langle\left\langle e_{i}\right\rangle\right\rangle$ is not evolutionary simple. If $E=\left\langle\left\langle e_{i}\right\rangle\right\rangle$, we see right away that E is not evolutionary simple. If $\left\langle\left\langle e_{i}\right\rangle\right\rangle$ is a proper evolution subalgebra of E then it is a proper evolution ideal of E by Lemma 1.3, and E is not evolutionary simple.

The following example shows that the converse of Lemma 6.1 does not hold (but see Corollary 7.3):
Example 6.2. Let E have generators e_{1}, e_{2} such that $e_{1} e_{1}=e_{1}, e_{2} e_{2}=$ c_{2}. Then $\left\langle\left\langle e_{1}\right\rangle\right\rangle=K e_{1},\left\langle\left\langle e_{2}\right\rangle\right\rangle=K e_{2}$, which means that both e_{1}, e_{2} are algebraically persistent. Yet $\left\langle\left\langle e_{i}\right\rangle\right\rangle$ is a proper evolution ideal of E, and hence E is not evolutionary simple.

Lemma 6.3. Let e_{i} be an algebraically persistent generator of E, and assume that $e_{j} \prec e_{i} e_{i}$. Then e_{j} is algebraically persistent.

Proof. Since $c_{j}\left\langle e_{i} e_{i}\right.$, we have $\left\langle\left\langle c_{i}\right\rangle\right\rangle \supseteq\left\langle\left\langle e_{j}\right\rangle\right\rangle$. But $\left\langle\left\langle\epsilon_{i}\right\rangle\right\rangle$ is evolutionary simple, thus $\left\langle\left\langle e_{i}\right\rangle\right\rangle=\left\langle\left\langle e_{j}\right\rangle\right\rangle$. Then $\left\langle\left\langle e_{j}\right\rangle\right\rangle$ is evolutionary simple, and thus e_{j} is algebraically persistent.

7. Decomposition of evolution algebras

An evolution algebra E is indecomposable if whenever $E=F \oplus G$ for some evolution subalgebras F, G of E, we have $F=0$ or $G=0$. An easy induction proves that every evolution algebra can be written as a direct sum of indecomposable evolution algebras.

Here is an indecomposable evolution algebra that is not erolutionary simple:

Example 7.1. Let E be generated by e_{1}, e_{2}, where $e_{1} e_{1}=e_{1}, e_{2} e_{2}=e_{1}$. Then $\left\langle\left\langle e_{1}\right\rangle\right\rangle=K e_{1},\left\langle\left\langle e_{2}\right\rangle\right\rangle=E$.

An evolution algebra E is evolutionary semisimple if it is a direct sum of some of its evolutionary simple evolution subalgebras. Note that every evolutionary simple evolution subalgebra of E can be written as $\left\langle\left\langle e_{i}\right\rangle\right\rangle$ for some algebraically persistent generator of E.

Proposition 7.2. An evolution algebra E is evolutionary semisimple if and only if all of its alleles e_{i} are algebraically persistent.
Proof. Assume that E is evolutionary semisimple, and write $E=\left\langle\left\langle e_{i_{1}}\right\rangle\right\rangle \Theta$ $\cdots \oplus\left\langle\left\langle e_{i_{n}}\right\rangle\right\rangle$, where each $e_{i_{j}}$ is algebraically persistent. Let e_{j} be an allele of E. Then e_{j} belongs to some $\left\langle\left\langle e_{i_{k}}\right\rangle\right\rangle$. Since $\left\langle\left\langle e_{j}\right\rangle\right\rangle$ is an evolution ideal of $\left\langle\left\langle e_{i_{k}}\right\rangle\right\rangle$ and $e_{i_{k}}$ is algebraically persistent, we conclude that $\left\langle\left\langle e_{j}\right\rangle\right\rangle=\left\langle\left\langle e_{i_{k}}\right\rangle\right\rangle$. Thus e_{j} is algebraically persistent, too.

Conversely, assume that every allele of E is algebraically persistent. For each e_{i} let $I_{i}=\left\{j ; e_{j} \ll e_{i}\right\}$. Given $i \neq j$, we have either $I_{i}=I_{j}$ or $I_{i} \cap I_{j}=\emptyset$, by Lemma $\overline{0} .3$. Thus there exists $\left\{i_{1}, \ldots, i_{n}\right\} \subseteq\{1, \ldots, v\}=I$ such that $I_{i_{1}} \cup \cdots \cup I_{i_{n}}=I$, and the union is disjoint. In other words, $E=\left\langle\left\langle e_{i_{1}}\right\rangle\right\rangle \oplus \cdots \oplus\left\langle\left\langle e_{i_{n}}\right\rangle\right\rangle$.

Here is a partial converse of Lemma 6.1:
Corollary 7.3. An indecomposable evolution algebra with no transient generators is evolutionary simple.

Let E be an evolution algebra. Partition $\{1, \ldots, v\}$ as $I \cup J$, where $c_{i} \in I$ if and only if c_{i} is an algebraically persistent generator of E. Let $P(E)=\left\{\sum \alpha_{i} e_{i} ; \alpha_{i}=0\right.$ for $\left.i \notin I\right\}$, and $T(E)=\left\{\sum \alpha_{i} e_{i} ; \alpha_{i}=0\right.$ for $i \notin J\}$.

Lemma 7.4. $P(E)$ is an evolutionary semisimple evolution subalgebra of E.

Proof. We first show that $P(E)$ is an evolution subalgebra. Let $x \in P(E)$, $y \in P(E), x=\sum_{i \in I} \alpha_{i} e_{i}, y=\sum_{i \in I} \beta_{i} e_{i}$, where I is as above. Then $x y=\sum_{i \in I} \alpha_{i} \beta_{i} e_{i}^{2}$. By Lemma 6.3, e_{i}^{2} is a linear combination of algebraically persistent generators, and hence $x y \in P(E)$.

Then $P(E)$ is evolutionary semisimple by Proposition 7.2.
Observe:
Lemma 7.5. Let $E(I), E(J)$ be evolution subalgebras of E such that $E(I)$ is a subalgebra of $E(J)$. Then $I \subseteq J$. If $E(I)$ is a proper subalgebra of $E(J)$, then I is a proper subset of J.

Thus:
Lemma 7.6. Every evolution algebra E has an evolutionary simple evolution subalgebra. In particular, $P(E) \neq 0$.

Proof. We proceed by induction on v. If $v=1$, then $E=\left\langle\left\langle e_{1}\right\rangle\right\rangle$ is evolutionary simple. Assume that the lemma is true for $v-1$. If $E=E(\{1, \ldots, v\})$ is evolutionary simple, we are done. Else, by Lemma 7.5, there is a proper subset I of $\{1, \ldots, v\}$ such that $E(I)$ is a proper evolution subalgebra. By induction, $E(I)$ contains an evolutionary simple evolution subalgebra.

Every evolution algebra E decomposes as a vector space into $P(E) \oplus$ $T(E)$, and $P(E) \neq 0$, by the above lemma. Moreover, $P(E)$ is an evolutionary semisimple evolution algebra, and can therefore be written as a direct sum of evolutionary simple evolution algebras $\left\langle\left\langle e_{i_{j}}\right\rangle\right\rangle$.

However, the subspace $T(E)$ does not need to be a subalgebra of E, hence it does not need to be an evolution algebra. But we can make it into an evolution algebra:

Let $T(E)=\left\{\sum \alpha_{i} e_{i} ; \alpha_{i}=0\right.$ for $\left.i \nexists J\right\}$. Let $J^{*}=J \backslash\left\{j ; e_{j}^{2} \subseteq P(E)\right\}$. (This will guarantee that the resulting evolution algebra is nondegenerate.) Let $T^{*}(E)$ be defined on the subspace generated by $\left\{e_{i} ; i \in J^{*}\right\}$ by $e_{i} e_{i}=$ $\sum_{j \in J^{*}} a_{i j} e_{j}$, where the structure constants $a_{i j}$ are inherited from E. If $J^{*} \neq \emptyset$, then $T^{*}(E)$ is a nondegenerate evolution algebra. If $J^{*}=\emptyset$ then all algebraically transient generators of E vanish after the first reproduction, and therefore have no impact, biologically speaking.

If $E_{1}=T^{*}(E) \neq 0$, we can iterate the decomposition and form $P\left(E_{1}\right)$, $T\left(E_{1}\right)$ and $T^{*}\left(E_{1}\right)$, etc. Eventually we reach a point n when $T^{*}\left(E_{n}\right)=0$, i.e., every transient generator of E_{n} disappears after the first generation.

Let us emphasize that the decomposition of E thus obtained results in an evolution algebra not necessarily isomorphic to E; some information may be lost in the decomposition $P(E) \oplus T(E)$.

References

[1] C. W. Birky, Jr.: The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models, Annu. Rev. Genet. 35 (2001), 125148.
[2] I. M. H. Etherington: Non-associative algebra and the symbolism of genetics, Proc. Roy. Soc. Edinburgh B 61 (1941), 24-42.
[3] R. Costa, A. Grishkov, H. Quzzo and L. Peresi (editors): Nonassociative algebra and its applications, the Fourth International Conference, Marcel Dekker, Inc., 2000.
[4] P. Holgate: Selfing in gentic algebras, J. Math. Biology 6 (1978), 197-206.
[5] F. Ling and T. Shibata: Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells, Mol. Biol. Cell 15 (Jan. 2004), 310-322.
[6] Y. I. Lyubich: Mathematical structure in population genetics, SpringerVerlag, New York, 1992.
[7] G. Mendel: Experiments in plant-hybridization, Classic papers in Genetics, 1-20, J. A. Petr (editor), Prentice-Hall Inc. 1959.
[8] M. L. Reed: Algebraic structure of genetic inheritance, Bull. of Amer. Math. Soc 34 ((2)) (1997), 107-130.
[9] R. Schafer: An introduction to nonassociative algebra, Dover Publications, Inc., New York, 1994.
[10] J. P. Tian: Introduction to evolution algebras, in preparation.
[11] J. Tian and B.-L. Li: Coalgebraic structure of genetic inheritance, Mathematical Bioscience and Engineering, vol. 1, 2 (2004).
[12] A. Worz-Busekros: Algebras in Genetics, Lecture Notes in Biomathematics 36, Springer-Verlag, Berlin, 1980.

Received October 10, 2005
J. P. Tian

Mathematical Biosciences Institute
The Ohio State University
Columbus, OH 43210
U.S.A.
e-mail: tianjjombi.ohio-state.edu
P. Vojtěchovsk

Department of Mathematics
University of Denver
Denver, CO 80208
U.S.A.
e-mail: petromath.du.edu

[^0]: 2000 Mathematics Subject Classification: 17A20, 92C15, 20N05, 37N25
 Keywords: Nonassociative algebra, evolution algebra, non-Mendelian genetics, allele, self-reproduction
 J. P. Tian would like to acknowledge the support from the National Science Foundation upon agreement No. 0112050

