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Abstract

In this paper we introduce the logistic kernel partial least
squares (LKPLS) algorithm for classification of health vs.
cancer using mass spectrometry (MS). Wavelet decomposi-
tion is proposed for feature selection and data preprocess-
ing. LKPLS combines the logistic regression with the kernel
partial least squares algorithm. The method is applied to
real life cancer samples. Experimental comparisons show
that LKPLS outperforms other methods in the analysis of
MS data.

1 Introduction

Proteins carry out and modulate the vast majority of
chemical reactions which together constitute ‘life’. Pro-
teomics is an integral part of the process of understand-
ing biological systems and uncovering disease mechanisms.
Because of their high level of variability and complexity, it
is an extremely challenging endeavor to conduct massive
analysis of thousands of proteins. In the last decade, mass
spectrometry has increasingly become the method of choice
for analysis of complex protein samples. Mass spectrome-
try measures two properties of ion mixtures in the gas phase
under the vacuum environment: the mass-to-charge ratio
(m/z) of ionized proteins in the mixture and the number
of ions present at different m/z values. The output is a
mass spectrum or chart with a series of spike peaks, each
representing the ions of a specific m/z value in the sample.
The heights of peaks and the m/z values of the peaks are a

fingerprint of the sample. Mass spectrometry has not only
been used intensively to identify proteins via peptide mass
fingerprints, but also found promising applications in cancer
classification [1, 3, 5, 8]. An important goal of cancer clas-
sification is to predict cancer on the basis of peptide/protein
intensities.

While MS is increasingly used for protein profiles, sig-
nificant challenges have arisen with regard to analyzing the
data sets. The critical pre-precessing steps include base-
line correction, peak identification and alignment, data nor-
malization and visualization, and feature selection. The fi-
nal and most important step is the classification of disease
status with the selected features. Recent publications on
cancer classification with MS data have mainly focused on
how to identify features for classification and which classi-
fication method is more accurate than others. Particularly,
T statistics and principal component analysis (PCA) have
been used to select features. Classification methods such as
linear discrimination analysis, k-nearest neighbor classifi-
cation, decision trees [1], and support vector machines have
been used to distinguish between cancer and normal sam-
ples [3, 8]. However, features provided by PCA do not nec-
essarily yield good classification results. Experiments can
be used to show that features derived from the partial least
squares method (PLS) usually give more accurate predic-
tions. Besides, some feature selection methods have been
applied to the peaks instead of the original MS data, which
can affect the performance of classification because of the
peak finding algorithms employed.

In this paper we propose a novel analysis procedure LK-
PLS for classification of MS data. LKPLS combines the
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kernel partial least squares (KPLS) with logistic regression
in a natural way. KPLS is a generalization and nonlin-
ear version of PLS. LKPLS involves three steps: feature
space transformation, dimension reduction, and classifica-
tion. The proposed algorithm can not only predict the class
label but also provide the probability of each sample falling
into a specific class. Feature selection based on wavelet de-
composition of original data has also been proposed in this
paper. We assess the performance of the proposed algorithm
and feature select method using two real life MS data sets.

This paper in organized as follows. In Section 2, we dis-
cuss the DWT feature selection method. LKPLS algorithm
is given in Section 3. Computational results are described in
Section 4. Conclusions and remarks are provided in Section
5.

2 Feature Selection Methods

A MS data set with n samples is a p x (n + 1) matrix
(mz,X) = [mz,x1,...,X,] where p is the number of m/z
ratios, mz is a column vector for the measured m/z ratios,
and x; are the corresponding intensities of the jth sample.
Lety’ = [y1,--.,Yyn] denote the cancer status of the sam-
ples. Our goal is to predict the label y; based on the inten-
sity profile x;. As usual, such prediction often requires the
task of feature selection. In the following, we propose one
feature selection method based on the wavelet decomposi-
tion.

Wavelet Decomposition for Feature Selection

MS data have several special characteristics: the dimen-
sion of the data is large, the data points are not necessar-
ily independent, and the measurements are usually more
or less noisy. These problems motivate the use of com-
pression techniques to describe the sequential data with a
few features that capture the basic shape of the sequence.
A wavelet transform is a way to decompose a signal in a
chosen number of its constituent part. Fourier analysis also
has this property but wavelet analysis has some advantages
when analyzing signals of non-stationary nature. Wavelet
provides more irregular shapes and the wavelet decompo-
sition is a local one, so that if the information relevant to
our prediction problem is constrained in a particular part
or parts of the curve, as typically it is, this information
will be carried in a very small number of wavelet coeffi-
cients. These properties make wavelets ideal for analyz-
ing signals with discontinuities and sharp changes while al-
lowing temporal locating the features of signal. Wavelets
are families of functions that can accurately describe other
functions in a parsimonious way. The signal is projected
into the time frequency plane. The basis functions are

W, x(t) = 22W(27t — k), where U is the mother wavelet

function. Any square integrable real function f(¢) can be
represented in terms of bases as

F) = cin¥y(b),
ik

where ¢; , = (¥; i (t), f(t)) are the coefficients of the dis-
crete wavelet transform (DWT). There is a fast algorithm
to get the coefficients with O(n) time. A simple and com-
monly used wavelet is the Haar wavelet with the mother
function

1,if0 <t <0.5
—-1,if05 <t <1
0, otherwise

\IlHaa'r‘ (t) -

In this paper, we use Haar wavelet ([2]) because of its sim-
plicity. One can use any other orthonormal wavelet basis
functions and achieve similar results as we present here. In
wavelet decomposition the signal is separated successively
into slow and fast components using a pair of finite impulse
response filters. In the first stage the high pass and the low
pass filters separate the signal into components above f /4
and components below f/4. The second stage receives the
low frequency components as input and separates them into
components above f,/8 and components below f,/8, and
so on. The number of stages depends the slowest compo-
nent that is desired.

Each MS input x; can be treated as an original signal
for MS data. We can apply DWT to the input. Then the
obtained coefficients can be used as the features [6].

Let the vector z; represent the wavelet coefficients of x;;.
Let [ denote the smooth part and i denote a detailed part of
one decomposition step. Then in

o step 1: x; =11 + hyj
e step 2: X; = l2j + hgj + hlj
o Stepi:x; =1l;; +hij+...+ hyj

In this way each x;; has a corresponding wavelet coefficient
zij, 1 =1,...,p, 1€, X; — Z;j.

Note the size of feature matrix selected with DWT
method is still around p X n, but many entries are zeros
or near zeros. Traditionally, some heuristic rules can be ap-
plied to reduce the feature dimension. For instance, we can
either keep the first few coefficients or the largest coeffi-
cients of DWT as the features. However, both methods are
just based on the signal itself and do not consider the asso-
ciated class information. Our proposed LKPLS algorithm
combines the feature selection and classification together
and choose features not only based on the data but also the
class labels.

Features can also be selected from the original MS data
with the two way T test statistic. By assuming each m/z
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value is independent, T test selects the features by the fol- e Power exponential kernel (a generalization of RBF
lowing formula: kernel)

+_ - _72\8
o b — pj | K(z;,2;) = exp [— (—|z1 2ZJ| ) }
! 02 (0,07 r
\ oL+ S

where pj* and p; are the mean values of the jth feature over

Sigmoid kernel

/
positive and negative samples, respectively, aj and o are K(zi,2;) = tanh(Bz;z;)
the corresponding standard deviations, n* and n~ are the
number of positive and negative training samples, respec-
tively. We can then choose the features with significant p K (z;,2;) = (z,z; + p2)™*

values.

Polynomial kernel

Linear kernel

3 LKPLS Algorithm

K(z;,2;) = z}z;

Given a training dataset {z;}7_; with class labels We can show that the above LKPLS classification algo-
{yi}i=, and a test feature dataset {z;};; with labels rithm is a nonlinear version of the logistic regression. In
{yt 121, the algorithm LKPLS is stated as follows: fact, it follows from our KPLS classification algorithm that

1. Compute the kernel matrix, for the training data, K = the pr(()ibablhty of the label y given the projection v is ex-

[Kijlnxn, where K;; = K(z;,z;). Compute the ker- pressed as
nel matrix, for the test data, Kye = [Kti]n, xn, Where k
K = K(2,2:). P(ylw,v) = g(b+ 3 wivs), )
i=1
2. Call KPLS algorithm to find £ component direc- ) )
tions [7]: where the coefficients w are adjustable parameters and g is

the logistic function
(@) fori=1,...,k

(b) initialize u’
(©) ti = dd'ul = Ku', t' — t/||ti]] Given a data point ®(z) in the transformed feature space,
(d) ¢ = yiti its projection v; (¢ = 1, ..., k) can be written as

(e) ul =ycl, ul — ul/[[ul]|

g(u) = (1 + exp(—u)) ™"

v; = O(z)d’ g u'K(z;,2)
(f) repeat steps (b) -(e) until convergence ; ! !

igis _ 4igis
() deflate K, y by K (I -t't")K(I —t't") and Therefore, from equation (1), we have

y <y —titly
. . N
(h) obtain component matrix U = [ul,... uk
[ ] Plylw,v) = g(b+ Y ¢K(z.2)), @)
3. Find the projections V = KU and V. = KU for j=1
the training and test data, respectively. where )
4. Build a logistic regression model using V and {y; } ; o — Zwu‘ 1
and test the model performance using V;. and J — My J=

Nt
iz When K(z;,z;) = z,z;, equation (2) becomes a logistic
The following are among the popular kernel functions: regression. Therefore, LKPLS classification algorithm is a
generalization of logistic regression.

o First norm exponential kernel Similar to support vector machines, LKPLS algorithm

K (zi,2;) = exp(—0|zi — 2]|) was originally designed for two class classification. How-
ever, we can deal with the multi-class classification problem
e Radial basis function kernel (RBF) through the popular ‘one against all others’ scheme. What
we do is that we perform classification for all the two-class
K(2:,2;) = exp ( _ |z — z; |2) problems and then send each sequence to the class with the
R o2 highest probability.
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4 Results
Ovarian Cancer

First we evaluate the performance of the proposed
algorithm on the ovarian cancer data.  This cancer
dataset was downloaded directly from the web site:
http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp.
The sample set includes 91 controls and 162 ovarian cancer
cases. To evaluate the performance of the algorithm, we
merged the control and cancer data together and split the
the data with a ten-fold validation scheme. The data were
divided randomly into ten roughly equal subsets, and then
we applied the algorithm 10 times, each time with 9 subsets
used for training and the remaining subset for performance
evaluation. In this example, linear kernels were used.
The averaged error over the 10 times was reported as an
overall performance. The output is given in Table 1. This
table clearly shows that LKPLS performs better with DWT
feature selection methods. The number of features in
Table 1 is the number of components used in the LKPLS
algorithm.

Table 1. Performance of LKPLS on ovarian can-
cer data with different feature selection methods

T-test DWT
No. of Features 17 10
Test Error (%) 1.75+ 1.4 0+0
Sensitivity(%) 99.03+1.48 100+0
Specificity (%) 96.64 +£2.19 100+0

Prostate Cancer

The prostate cancer data were downloaded from the
same web site as the ovarian data. The Surface Enhanced
Laser Desorption/Ionization time of flight (SELDI) method
and a mass spectra analysis for this data set have been per-
formed in [5]. SELDI process is a relatively new medical
technique that measures the content of different proteins in
blood samples from patients. This dataset consists of four
subsets:

1. 63 samples with no evidence of disease and the
prostate specific antigen (PSA) level less than
1(ng/ml).

2. 190 samples with benign prostate and PSA level
greater than 4.

3. 26 samples with prostate cancer and PSA levels be-
tween 4 and 10.

4. 43 samples with prostate cancer and PSA levels greater
than 4.

There are 322 samples in total and we treated them as com-
ing from 3 classes: normal, benign, and cancer. Again,
the ten-fold validation was used for the experiments. The
‘One against all others’ scheme was applied to separate each
class against the other two. The performance of LKPLS al-
gorithm and the comparison of LKPLS with Fisher linear
discrimination (LD), k nearest neighbor (KNN), and neural
networks are given in Table 2 and Table 3, respectively.

Table 2. Performance of LKPLS on prostate can-
cer data with different feature selection methods

T-test DWT
No. of Features 53 28
Test Error (%) 11.8+2.8 1.7+1.4
Sensitivity(%) 87.1+294 98.5+1.3
Specificity healthy (%) 96.8 + 2.69 100 £ 0
specificity benign (%) 83.1 £1.72 94.7 £ 3.58

Table 3. Performance comparison of different
classification methods

Feature Selection & Classification Error (%)
PCA & LD 95.3
PCA & Logistic Regression 96.8
PCA & KNN 91.9
PCA & Neural Network (15 nodes) 83.5
KPLS (2nd order poly.) & LD 96.3
KPLS (2nd order poly.) & KNN 93.6
KPLS (2nd order poly.) & Neural Network 85.9
LKPLS (2nd order poly.) 98.3

Table 2 and Table 3 show that the best overall classifi-
cation performance (98.3%) is achieved by LKPLS. Logis-
tic regression seems to perform better than LD, KNN, and
neural network for this example. It is expected that logis-
tic regression normally performs better than linear discrim-
ination when data have outliers, as there is no normality
assumption with logistic regression. DWT can be used as
a data preprocessing and feature extraction step to achieve
high prediction accuracies. Results also indicate that neu-
ral networks do not seem to be very efficient for this type
of application, at least for this special example. One reason
might be that the number of parameters needed to build an
accurate model is too large in comparison to the number of
available examples.
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5 Conclusion

Our limited experiments with two cancer data sets show
that the proposed algorithm LKPLS is promising. Mass
spectrometry measure together with feature selection, di-
mension reduction, and classification algorithms could be
an effective way to make a highly reliable prognostica-
tion of patients possibly suffering from cancer. The pre-
processing of MS output is a very crucial step in the over-
all analysis of MS data. Our proposed DWT data pre-
processing step seems to work well for the two datasets.
Feature selection and dimension reduction constitute an-
other important step in the analysis. Features selected with
the kernel partial least squares algorithm performed better
than those selected with either PCA or T-test. This is rea-
sonable since PCA selects features to explain as much in-
formation (variance) in the input as possible, while LKPLS
strikes a compromise between explaining variance in input
and finding correlation with the corresponding labels. The
proposed algorithm is easy to be implemented and has a
high prediction accuracy. Finally, we note that LKPLS can
also be applied to multi-class microarray data classification-
con [4].

Acknowledgements

D. Chen was supported by the National Science Founda-
tion grant CCR-0311252.

Note: The opinions expressed herein are those of the
authors and do not necessarily represent those of the Uni-
formed Services University of the Health Sciences and the
Department of Defense.

References

[1] Adam, B-L., Qu, Y., Davis, J.W., Ward, M.D.,
Clements, M.A., et al. Serum protein figerprinting cu-
pled with a pattern-matching algorithm distinguishes
prostate cancer from benign prostate hyperplasia and
healthy men. Cancer Res. 62:3609-3614, 2002.

[2] Burrus, C. S., Gopinath, R. A., and Guo, H. Introduc-
tion to Wavelets and Wavelet Transforms: A Primer.
Prentice-Hall, Inc., 1998.

[3] Lilien, H., Farid, H., and Donald, B. R. Proba-
bilistic Disease Classification of Expression-Dependent
Proteomic Data from Mass Spectrometry of Human
Serum. Journal of Computational Biology, 10(6):925-
946, 2003.

[4] Liu, Z., and D. Chen. Gene Expression Data Classifi-
cation with Revised Kernel Partial Least Squares Al-

gorithm. Proceedings of the 17th International FLAIRS
conference, 104-108, 2004.

[5] Petricoin, E. FE. III, Ornstein, D. K., Paweletz, C. P,
Ardekani, A., Hackett, P. S., Hitt, B. A., et al. Serum
proteomic patterns for detection of prostate cancer. J
Natl Cancer Inst, 94:15768, 2002.

[6] Qu, Y., Adam, B. L., Thornquist, M., Potter, J. D.,
Thompson, M. L., Yasui, Y., et al. Data Reduction
Using a Discrete Wavelet Transform in Discriminant
Analysis of Very High Dimensionality Data. Biomet-
rics, 59:143-151, 2003.

[7] Rosipal, R. and Trejo, L. J. Kernel partial least squares
regression in RKHS, Theory and empirical comparison.
Technical report, University of Paisley, UK, 2001.

[8] Wu, B., Abbott, T., Fishman, D., McMurray, W., Mor,
G., Stone, K., et al. Comparison of statistical meth-
ods for classification of ovarian cancer using mass
spectrometry data. Bioinformatics, 19(13): 1636-1643,
2003.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
1063-6919/05 $20.00 © 2005 IEEE



