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Abstract. Although in the broadly defined genetic algebra, multiplication
suggests a forward direction of from parents to progeny, when looking from
the reverse direction, it also suggests to us a new algebraic structure — coalge-

braic structure, which we call genetic coalgebras. It is not the dual coalgebraic
structure and can be used in the construction of phylogenetic trees. Math-

ematically, to construct phylogenetic trees means we need to solve equations
x
[n] = a, or x

(n) = b. It is generally impossible to solve these equations in
algebras. However, we can solve them in coalgebras in the sense of tracing

back for their ancestors. A thorough exploration of coalgebraic structure in
genetics is apparently necessary. Here, we develop a theoretical framework of

the coalgebraic structure of genetics. ¿From biological viewpoint, we defined
various fundamental concepts and examined their elementary properties that
contain genetic significance. Mathematically, by genetic coalgebra, we mean

any coalgebra that occurs in genetics. They are generally noncoassociative and
without counit; and in the case of non-sex-linked inheritance, they are cocom-

mutative. Each coalgebra with genetic realization has a baric property. We
have also discussed the methods to construct new genetic coalgebras, includ-
ing cocommutative duplication, the tensor product, linear combinations and

the skew linear map, which allow us to describe complex genetic traits. We
also put forward certain theorems that state the relationship between gametic
coalgebra and gametic algebra. By Brower’s theorem in topology, we prove

the existence of equilibrium state for the in-evolution operator.

1. Genetic motivation. While modern genetic inheritance initiated with the the-
ory of Charles Darwin, it was the Augustinian Monk Gregor Mendel, who first dis-
covered the mathematical character of heredity. In his first paper [1], Mendel ex-
ploited some symbolism, which is quite algebraically suggestive, to express his law.
In fact, it was later termed “Mendelian algebras” by several authors. In the 1920s
and 1930s, general genetic algebras were introduced. Apparently Serebrowsky [2]
was the first to give an algebraic interpretation of the sign “×”, which indicated
sexual reproduction, and to give a mathematical formulation of the Mendelian
laws. Glivenkov [3]continued to work at this direction and introduced the so-called
Medelian algebras for diploid populations with one locus or with two unlinked loci.
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Independently, Kostitzin [4] also introduced a “symbolic multiplication” to express
the Medelian laws. The systematic study of algebras occurring in genetics was due
to I. M. H. Etherington. In his series of seminal papers [5], he succeeded in giving
a precise mathematical formulation of Mendel’s laws in terms of non-associative
algebras. He pointed out that the nilpotent property is essential to these genetic
algebras and formulized it in his definition of train algebra and baric algebra. He
also introduced the concept of commutative duplication by which the gametic alge-
bra of a randomly mating population is associated with a zygotic algebra. Besides
Etherington, fundamental contributions have been made by Gonshor [6], Schafer [7]
Holgate [8, 9], Hench [10], Reiser [11], Abraham [12], Lyubich, and Worz-Busekros
[13]. During the early days in this area, it appeared that general genetic algebras
or broadly defined genetic algebra, (by these terms we mean all algebras or any
algebra having been used in genetics,) can be developed into a field of independent
mathematical interest, because these algebras are in general not associative and do
not belong to any of the well-known classes of non-associative algebras such as Lie
algebra, alternative algebra, or Jordan algebra. They possess some distinguished
properties that lead to many interesting mathematical results. For example, baric
algebra, which has nontrivial representation over the underlying field, and train
algebra, whose coefficients of rank equation are only functions of the image under
this representation, are new objectives for mathematicians. From the viewpoint
of mathematics, Gonshor’s and Schafer’s papers are particularly important. They
introduced the (narrowly defined) concept of “genetic algebra” mathematically and
proved two fundamental theorems on the existence and uniqueness of idempotents
and on the convergence behavior of sequences of plenary powers in special train
algebras. Until 1980, the most comprehensive reference in this area was Worz-
Busekros. More recent results and direction, such as evolution in genetic algebras,
can be found in the book of Lyubich’s work [13]. A good survey article is Reed’s
[14].

General genetic algebras are the product of interaction between biology and
mathematics. Mendel’s genetics offers a new object to mathematics: general
genetic algebras. The study of these algebras reveals the algebraic structure of
genetics, which always simplifys and shortens the way to understand genetic and
evolutionary phenomena. Indeed, it is the interplay between the purely mathe-
matical structure and the corresponding genetic properties that makes this area so
fascinating. However, we found that a very important aspect of Mendelian ge-
netics is lost concerning the existing various genetic algebras, because Mendelian
genetic processes in itself implies two directions: forward from parents to progeny,
and backward from progeny to their ancestors. Multiplication (referred to sexual
reproduction), while it suggests an evolutionary dynamics over generations, was
only considered, in general genetic algebras, in a direction from parents to their
progeny. By looking at the genetic processes in the backward direction, we put
forward a new algebraic structure—general genetic coalgebras. From mathematical
viewpoint, they are interesting objectives, with new concepts and new elements put
forward, such as a character of coalgebra, baric coalgebras, co-powers, co-nilpotent,
and so on. It will also become a new foundation and perspective to study genetic
inheritance.

This new mathematical framework could help evolutionary biologists to trace
back through generations over time and space in search of certain common ances-
tors or ancestral distributions. For example, in general genetic algebras, we study
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the sequences of plenary powers or principle powers, x[n] or x(n), to look for the
genetic information after n generations from the initial generation x. However,
when we know the present generation y, and want to trace back for the genetic in-
formation of n generations before, we need to solve equations x[n] = y or x(n) = y.
Generally, it is imposible to solve these equations in algebras. This is the main
reason one gives restriction of low-degree polynomials (rank) when people study
general nonassociative algebras. In our proposed coalgebraic structure, we can
solve these equations in the sense of dynamic viewpoint. That is, we once view
comultiplication as the backward dynamic process whenever we think of multipli-
cation as forward dynamic process, then we just need to take plenary co-powers
or principle co-powers, ∆[n] (y) = x or ∆(n) (y) = x. This way, we provide a
method for evolutionary biologists to trace back through generations over time and
space in search of certain common ancestors, and to construct the phylogenetic
trees. Since any genetic algebra is not sufficient to study evolutionary processes,
a thorough exploration of coalgebraic structure in genetics is necessary.

The article is organized as follows: In section 2, we recall the basic concepts in
boadly defined genetic algebras, particularly algebras with genetic realization and
their dual coalgebras. In this section we will note that these dual coalgebras can
not give us the genetic information when we study backward evolution, construct
phylogenetic trees. In section 3, we introduce the coalgebras with genetic realiza-
tion, which is the basic genetic coalgebras. As examples of this, we will study the
gametic coalgebras, the zygotic coalgebras and the co-commutative duplications.
In section 4, we will discuss elementary properties of the general genetic coalge-
bras, in particular, the baric coalgebras and their genetic aspect. In section 5, we
will discuss methods to construct new genetic coalgebras from simple ones which
corresponds to complex genetic traits. In section 6, we will introduce various co-
powers and co-nilpotent coalgebras that are essentially important in constructing
phylogenetic trees. In section 7, we introduce the in-evolution operators and dis-
cuss their properties that can be used to specify the tracing path. Finally, we post
some interesting open questions in section 8.

2. The basic genetic algebras and their dual coalgebras. In this section, we
recall some basic definitions in general genetic algebras and give their dual coal-
gebraic structure, which may offer a different perspective about genetic algebras.
These dual coalgebras themselves do not provide any new information about the
underlying genetic processes, but they serve as a starting point for us to develop a
new coalgebraic structure that will provide new genetic information.

2.1. The Basic Genetic Algebras. By a population space, we mean that a vector

space, Ω, spanned by a set {ei, | i ∈ Λ}, which are free over the real number field R,
where the generator set {ei, | i ∈ Λ} is a certain genotype set or a hereditary type
set that is related to a trait that we are interested in, and Λ is an index set which
is usually finite, although it may be infinite. Now, we can define a linear map m
from the tensor product space Ω ⊗ Ω to Ω as follows:

m : Ω ⊗ Ω −→ Ω

m (ei ⊗ ej) =

n
∑

k=1

γk
ij ek, i, j = 1, 2, · · · , n
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and linearly extend m (ei ⊗ ej) onto Ω ⊗ Ω. These structural coefficients satisfy
0 ≤ γk

ij ≤ 1 and
∑n

k=1 γk
ij = 1. Then, the vector space Ω becomes an algebra.

We call the pair (Ω,m), in a general sense, a basic genetic algebra. Generally,
a basic genetic algebra is not associative. Its biological significance is that when
three genotypic parents cross to beget genotypic grandsons, there are two different
combinations of crossing. As a result, the genotype of grandsons arising from two
different combinations of crossing are generally different. Some authors call an
algebra defined by this way an algebra with genetic realization. Lyubich call it
stochastic algebra when it is commutative. Two examples follow: the gametic
algebras and zygotic algebras.

2.1.1. The gametic algebras. We consider an infinitely large randomly mating pop-
ulation of diploid individuals which differ genetically at several autosomal loci and
can be represented by genetically finitely distinct gametes as our population space
Θ. We denote these geneticall distinct gametes by ei, i = 1, 2, · · ·, n, then Θ is
spanned by these gametes:

Θ = {

n
∑

i=1

αiei | αi ∈ R, i = 1, 2, · · ·, n }.

If we take the standard n-dimensional complex in the linear space Rn and denote
it by S0, there is a bijection between the state set of the population space and S0.
For convenience, we denote a subspace of Θ by Θ0, which is linearly isomorphic to
S0. Then, each vector, x =

∑n
i=1 αiei, in Θ0 represents a state of the population,

and the coefficient αi of ei is the frequency of the gamete ei. For the multiplication
m (ei ⊗ ej) =

∑n
k=1 γk

ijek, i, j = 1, 2, · · ·, n, the structural coefficient γk
ij can be

interpreted as the probability that the zygote ei ⊗ ej produces the gamete ek. It
is clear that, when we consider non-sex-linked inheritance, the gametic algebra is
commutative and not associative. Specifically, the structural coefficients satisfy an
additional condition

γk
ij = γk

ji, i, j, k = 1, 2, · · ·, n.

2.1.2. The zygotic algebras. In a way similar to constructing a gametic algebra, we
can construct a zygotic algebra. Let eij be a kind of zygote that is begotten from
two kinds of genetically different gametes. Then, we can represent the zygote as

eij = ei ⊗ ej , i ≤ j, i, j = 1, 2, · · ·, n,

where ei and ej are gametes. We also denote the zygote space by Z

Z =







n
∑

i,j=1,i≤j

αijeij | αij ∈ R, i ≤ j, i, j = 1, 2, · · ·, n







.

Random mating of zygotes eij and epq in the population yields zygote eks with
probability γij,pq,ks. And the multiplication is given by

m (eij ⊗ epq) =
∑

k≤s

γij,pq,kseks, i ≤ j, p ≤ q, i, j, p, q = 1, 2, · · ·, n.

These coefficients satisfy:

0 ≤ γij,pq,ks ≤ 1,

n
∑

k,s=1,k≤s

γij,pq,ks = 1, and γij,pq,ks = γpq,ij,ks,
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where i ≤ j, p ≤ q, i, j, p, q = 1, 2, · · ·, n.
Thus, we get the basic zygotic algebras.

2.2. The dual coalgebras of basic genetic algebras. Now, we define the co-
population space to be the linear dual space of the population space,

Ω∗ = {f | f : Ω −→ R, is a linear map} .

The dual basis {ηi | i ∈ Λ} is called a co-genotype or co-hereditary type set, which
satisfies ηi (ej) = δij , where δij is Kronecker delta. There is a dual coalgebraic
structure over Ω∗. Its comultiplication is given by the composition

∆ : Ω∗ m∗

−→ (Ω ⊗ Ω)
∗

ρ−1

−−→
Ω∗ ⊗ Ω∗,

where map ρ is the bijection from the tensor space Ω∗⊗Ω∗ to (Ω ⊗ Ω)
∗
, since Ω is fi-

nite dimensional. Explicitly, the composition says 〈∆(f) , a ⊗ b〉 = 〈f,m (a ⊗ b)〉 =
〈f, ab〉 , for each f ∈ Ω∗ and a ⊗ b ∈ Ω ⊗ Ω.

If we write the comultiplication as ∆ (ηk) =
∑

i,j αijk ηi ⊗ ηj , then

〈∆(ηk) , ei ⊗ ej〉 = 〈ηk, ei · ej〉 =

〈

e∗k,

n
∑

l=1

γl
ijel

〉

=

n
∑

l=1

γl
ij 〈e

∗
k, el〉 = γl

ij

so we have

∆ (ηk) =

n
∑

i,j=1

γk
ijηi ⊗ ηj .

Thus, we get the dual coalgebra (Ω∗,∆). When the coefficients satisfy 0 ≤
γk

ij ≤ 1, and
∑n

k=1 γk
ij = 1, it is the dual basic genetic coalgebra, and, in general it

is not coassociative.

Remark 1. We give an interpretation of the definition as follows. If we take the
gametic space Θ as the population space Ω here, we will get the co-gametic space
Θ∗, and we call ηk to be a co-gamete, and ηi ⊗ ηj to be a co-zygote. The
coefficient γk

ij is still the probability that a co-zygote ηi ⊗ ηj produces a co-gamete
ηk. Thus, we will get the dual coalgebra of the gametic algebra (Θ∗,∆). Similarly,
we can get the dual coalgebra of the zygotic algebra. Although the summation in the
comultiplication operation is taken in a different way, this coalgebra is “equivalent”
to the original algebra to describe various gametes’ or zygotes’ genetic situations.
This also means that we will not obtain new information about genetic processes
from dual coalgebras, which just gives us a different viewpoint. Pursuing different
coalgebras or coalgebraic structures in order to study genetic evolutionary problems
is needed, which is the focus of this paper.

3. The basic genetic coalgebras. In this section, we will define the basic genetic
coalgebras. We will use the term “general genetic coalgebra(s)” or “broadly defined
genetic algebras” for any coalgebra or all coalgebras used in genetics, and to avoid
any confusion, we will not use the term “genetic coalgebra.” As examples, we will
give the gametic coalgebras, and the zygotic coalgebras. We will also put forward
an approach—cocommutative duplication, which can be used to construct a new
genetic structure from the old ones to reveal some more genetic information. For



248 J. TIAN, B. LI

example, we can construct zygotic coalgebraic structures from gametic coalgebraic
structures. We will also give the relation between gametic algebras and gametic
coalgebras under certain specific conditions.

3.1. The gametic coalgebras. Let Θ be the gametic space, e1,e2, · · ·, en be the
genetically distinct gametes in this space, every element, ai ⊗ aj , in tensor product
space Θ⊗Θ, can be viewed as a zygote. Now, we trace from a gamete back to its
“parental generation” to see various possibilities that those parents can “beget” this
gamete. Then, if a gamete ek comes from a zygote of type ei ⊗ ej with probability
βk

ij , we define a comultiplication as follows:

∆ : Θ −→ Θ ⊗ Θ

∆(ek) =
n
∑

i,j=1

βk
ij ei ⊗ ej , k = 1, 2, · · ·, n

and linearly extend it onto Θ. The coefficients satisfy

0 ≤ βk
ij ≤ 1 and

n
∑

i,j=1

βk
ij = 1, i, j, k = 1, 2, · · ·, n.

Then we call pair (Θ,∆) gametic coalgebra.

Remark 2. In general, this gametic coalgebra is not coassociative. That is, the
coassociativity (id ⊗ ∆) ∆ = (∆ ⊗ id) ∆ is not satisfied. When we trace from
a gamete back to “its grandparental generation” along distinct individuals in “its
parental generation,” we will get different distributions of probabilities of the geno-
type of two generations ago that gave rise to the gamete.

Remark 3. In the study of the inheritance of non-sex-linked traits, this coalgebra is
cocommutative; that is, τ∆ = ∆, where τ is the permutation of Θ⊗ Θ, τ (a ⊗ b) =
b ⊗ a. Or, structural coefficients satisfy βk

ij = βk
ji , i, j, k = 1, 2, · · ·, n. In some

special cases, it is not cocommutative.

Remark 4. In general, there is no counit; that is, there is no coalgebraic map ε
from Θ to R , such that (id ⊗ ε) ∆ = id = (ε ⊗ id) ∆. However, we will give
another concept, character, to describe a similar property later.

As an example, let’s consider a randomly mating population of diploid individu-
als that differ in a locus alleles e1,e2, · ··, en; then, the population space is spanned
by {e1, e2, · · ·, en} . We can still use them to indicate the genetically distinct ga-
metes. Since comultiplication is determined by structural coefficients, we give these
coefficients as follows:

βk
ij =

1

2n
(δik + δjk) , i, j, k = 1, 2, · · ·, n.

Let’s look at a special case: when e1 = A, e2 = a, we have

∆ (A) =
1

2
A ⊗ A +

1

4
A ⊗ a +

1

4
a ⊗ A,

and

∆ (a) =
1

4
A ⊗ a +

1

4
a ⊗ A +

1

2
a ⊗ a.
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3.2. The zygotic coalgebras. For simplicity, we denote the zygote ei ⊗ej by eij ,
Then, our population space will be the zygotic space spanned by

{eij , i ≤ j, i, j = 1, 2, · · ·, n}

where we consider each eij to be genetically distinct zygotes in a population. We
also think eij and eji are the same type of zygote here. The zygotic space Z is
the same as that in Section 2. For each zygote eij , we trace back to its parental
generation to see the probability distribution of zygotes in its parental generation
involved. Or, we consider the zygote eij comes from two zygotes epq and est in

its parental generation with probability βij
pq,st. Then, we have:

0 ≤ βij
pq,st ≤ 1, βij

pq,st = βij
st,pq

i ≤ j, p ≤ q, i, j, p, q, s, t = 1, 2, · · ·, n,

and
∑

p≤q,s≤t

βij
pq,st = 1, i, j = 1, 2, · · ·, n.

We define the comultiplication for basis elements:

∆ (eij) =
∑

p≤q,s≤t

βij
pq,stepq ⊗ est

and linearly extend it onto Z. Thus there is a cocommutative coalgebraic structure
in Z, which is not coassociative and without counit. We call the pair (Z,∆) the
zygotic coalgebra.

3.3. The cocommutative duplication. First, let us look at an example to see
how to construct a zygotic coalgebra from a gametic coalgebra. Here, we still
consider non-sex linked traits. Both the gametic coalgebra and the zygotic coal-
gebra are cocommutative. We assume that zygotes are formed by random mating
of gametes; and gametes are e1, e2, · · ·, en, and zygotes are eij = ei ⊗ ej i ≤ j
i, j = 1, 2, · · ·, n. It is clear that the probability of zygote eij coming from zygotes
epq and est is the product of the probabilities that the gamete ei comes from zy-
gote epq and the probabilities that the gamete ej comes from zygote est. Since
eij = eji, we should add these probabilities appropriately. Then the comultiplica-

tion coefficients, βij
pq,st, of zygotic coalgebra Z are obtained by the comultiplication

coefficient βi
pq of gametic coalgebra Θ as follows:

βij
pq,st =

{

βi
pqβ

j
st + βi

stβ
j
pq i ≤ j

βi
pqβ

i
st i = j

Thus, we have derived the zygotic coalgebra from the gametic coalgebra. We call
this process cocommutative duplication of the gametic coalgebra. We give the
definition as follows:

Definition 3.1. Let (C,∆) be a cocommutative coalgebra, Σ be a subspace of the
tensor product C ⊗ C, which is given by

Σ =

{

∑

i∈I

(xi ⊗ yi − yi ⊗ xi) | xi, yi ∈ C, i ∈ I, |I| < ∞

}

.

The equivalent class of x ⊗ y in the quotient, the symmetric tensor product,
C ⊗ C/Σ = C ∨ C is denoted by x ∨ y. We can define comultiplication over this
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quotient to be

▽ (x ∨ y) =
∑

(x),(y)

x(1) ∨ y(1) ⊗ x(2) ∨ y(2)

where ∆(x) =
∑

(x) x(1) ⊗ x(2) and ∆(y) =
∑

(y) y(1) ⊗ y(2) are Sweedler nota-
tions.

Then, the symmetric tensor product with comultiplication ▽ forms a cocommu-
tative coalgebra. We call (C ∨ C,▽) the cocommutative duplication of (C,∆) .

3.4. Coalgebras with genetic realization. Let (C,∆) be a coalgebra over a
field K. K may be taken as real number field R, if C admits a basis e1, e2 · · ·, en

such that the comultiplication constants βk
ij with respect to this basis satisfy

0 ≤ βk
ij ≤ 1 i, j, k = 1, 2, · · ·, n

and
n
∑

i,j=1

βk
ij = 1, k = 1, 2, · · ·, n

where

∆ (ek) =
n
∑

i,j=1

βk
ijei ⊗ ej , k = 1, 2, · · ·, n.

We say (C,∆) is a coalgebra with genetic realization and its basis is called a
natural basis.

Remark 5. Gametic coalgebras and zygotic coalgebra all have a genetic realization.
If a coalgebra has a genetic realization, then element e1, e2, · · ·, en of the natural
basis can be interpreted as genotypes or hereditary types of a population and the real
non-negative number βk

ij can be considered as the probability that ek comes from
ei and ej by mating, i, j, k = 1, 2, · · ·, n. If a coalgebra has a natural basis, it may
have many (finite or even infinite many) natural bases.

Theorem 3.1. Suppose that the population space is a randomly mating diploid
population without selection, and non-sex linked and all zygotes have the same fer-
tility. If the genetic distinct gametes e1, e2, · · ·, en span the gametic space Θ, then
the gametic algebra (Θ,m) and the gametic coalgebra (Θ,∆) have the relation

βk
ij =

γk
ij

∑n
i,j=1 γk

ij

, i, j, k = 1, 2, · · ·, n

where these coefficients are structural constants, that m (ei ⊗ ej) =
∑n

k=1 γk
ijek,

i, j = 1, 2, · · · , n and ∆(ek) =
∑n

i,j=1 βk
ijei ⊗ ej , k = 1, 2, · · · , n.

Proof. Since it is non-sex linked, the gametic algebra (Θ,m) is commutative and
the gametic coalgebra (Θ,∆) is cocommutative. By the definition of the gametic
algebra, γk

ij is the probability that zygote ei ⊗ ej produces gamete ek, and since

there is no selection, we can think of γk
ij as the number that zygote ei⊗ej produces

gametes ek. Then the total number of gamete ek would be
∑n

i,j=1 γk
ij , but γk

ij

gametes ek come from zygote ei ⊗ ej , by the definition of the gametic coalgebra,

βk
ij =

γk
ij

∑

n
i,j=1

γk
ij

. We complete the proof.
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4. The baric coalgebras. To characterize various genetic situations by coalge-
bras, we need some new specific concepts. In this section, we will put forward the
baric coalgebra which contains certain genetic information.

4.1. The character of a coalgebra.

Definition 4.1. Let (C,∆) be a coalgebra over a field K. A character is defined
to be a nonzero coalgebraic map from C to the underlying field K.

That is, if φ is a character, φ is a linear map which preserves the coalgebraic
structure. We take field K as a coalgebra while the comultiplication is taken as
∆k (1) = 1 ⊗ 1. Since K ⊗ K ≃ K, character φ satisfies (φ ⊗ φ)∆ = ∆kφ = φ.
In fact, the character can be viewed as a representation of C with dimension one.

Remark 6. Since a coalgebra need not to have counit in genetic case, no coalgebra
admits a nonzero character. For instance, coalgebra A with comultiplication
∆(x) = 0 has no character. For any character φ, the kernal of φ, kerφ, is a
coideal with codimension one as a vector subspace of C, and C⊗C is not contained
in ∆(kerφ); that is, C ⊗ C is not contained inkerφ ⊗ C + C⊗kerφ.

Proposition 4.1. Suppose that C is a coalgebra over a field K and C has a char-
acter φ, then kerφ is a (n − 1)−dimensional coideal of C and the factor coalgebra
C/kerφ is isomorphic to the field K.

Proof. Since (φ ⊗ φ)∆ = φ, so (φ ⊗ φ)∆ (kerφ) = φ (kerφ) = 0, then

∆ (kerφ) ⊆ ker (φ ⊗ φ) = C ⊗ kerφ + kerφ ⊗ C

so kerφ is a coideal. By coalgebraic fundamental isomorphism theorem, the factor
C/kerφ has a unique coalgebra structure such that the induced map is a coalgebra
isomorphism φ∗ : C/kerφ −→ K. It is clear that the dimension of the kerφ is
(n − 1) . We complete the proof.

Theorem 4.1. Let C be a coalgebra over K with characters, then the correspon-
dence from character φ to its kerφ is a bijection between the set of characters of C
and the set of coideals Π of codimension one such that C ⊗ C is not contained in
Π ⊗ C + C ⊗ Π.

Proof. First, we prove the onto-ness:
Let Π be a coideal with codimensional one, then we have C = C0 ⊕ Π as a

decomposition of vector space, where dim(C0) = 1. We define a map φ : C −→ K
which satisfys φ (Π) = 0 and φ (C0) 6= 0 as follows. Take any element e0 ∈ C0

as its basis, for any x ∈ C0, there is x = kxe0, for some kx ∈ K. Then, let
φ (x) = kxφ (e0) . Now, linearly extend φ onto C. Thus, it is clear that φ is unique
up to a scalar coefficient. Let us explain φ is a character for C.

Since C ⊗ C is not contained in Π ⊗ C + C ⊗ Π, we surely have ∆ (e0) =
βe0 ⊗ e0 for some nonzero constants β ∈ K. If we set (φ ⊗ φ) ∆ (e0) = φ (e0),
then, βφ (e0)φ (e0) = φ (e0). We have φ (e0) = 1

β
. Since this β is determined by

comultiplication ∆, so φ is determined uniquely.
Now,

∀y ∈ Π, φ (y) = 0

since

∆ (y) ∈ ∆(Π) ⊆ Π ⊗ C + C ⊗ Π, (φ ⊗ φ) ∆ (y) = 0,
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so,

(φ ⊗ φ) ∆ (y) = φ (y) .

And ∀x ∈ C0, we have

(φ ⊗ φ) ∆ (x) = (φ ⊗ φ) ∆ (kxe0)

= kx (φ ⊗ φ) ∆ (e0) = kxφ (e0)

= φ (kxe0) = φ (x) .

Thus, for any z ∈ C = C0 ⊕ Π, write z = z0 + z1, z0 ∈ C0, and z1 ∈ Π, then

(φ ⊗ φ)∆ (z) = (φ ⊗ φ) (∆ (z0) + ∆ (z1))

= (φ ⊗ φ) ∆ (z0) + (φ ⊗ φ) ∆ (z1)

= φ (z0) = φ(z).

So, φ : C −→ K is a nonzero coalgebraic map. It is a character.
Now, we prove the into-ness:
If characters φ1 6= φ2, we need show that kerφ1 6=kerφ2. But, if kerφ1 =kerφ2,

according to what have been done above, C = C1
0⊕ kerφ1 = C2

0⊕ kerφ2, and we
get that C1

0 and C2
0 are the same. Then,

φ1 (e0) =
1

β
= φ2 (e0) , β =

∆(e0)

e0 ⊗ e0
,

Thus, φ1 = φ2. We complete the proof.

4.2. The baric coalgebras.

Definition 4.2. Let (C,∆) be a coalgebra over a field K, if C has a nontrivial
character φ, we say that C is a baric coalgebra. Sometimes, we call the character
φ a weight function. We use the notation (C,∆, φ) to denote a baric coalgebra.

Definition 4.3. Let (C,∆, φ) be a baric coalgebra over a field K and C1 be a subset
of C, then C1 is called a baric subcoalgebra if C1 is a subcoalgebra of C and C1 is
not contained in kerφ, or, equivalently, φ1 =: φ |C1

is not zero.

Definition 4.4. Let (C,∆, φ) be a baric coalgebra over a field K and Π be a subset
of C, then Π is called a baric coideal if Π is a coideal of C and Π ⊆ kerφ. In a
natural way, the quotient coalgebra C/Π will be a baric quotient coalgebra.

Theorem 4.2. If (C,∆) is a coalgebra over R, which has a genetic realization
with respect to a natural basis e1, e2, · · ·, en, then (C,∆) is a baric coalgebra.

Proof. We define a character φ : C −→ K by φ (ek) = 1 and linearly extend it
onto C. Therefore,

(φ ⊗ φ)∆ (ek) = (φ ⊗ φ)





n
∑

i,j=1

βk
ijei ⊗ ej





=

n
∑

i,j=1

βk
ijφ (ei) ⊗ φ (ej)

=
n
∑

i,j=1

βk
ij = 1 = φ(ek)
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and for every x ∈ C, x =
∑n

k=1 αkek, we have

(φ ⊗ φ) ∆ (x) = (φ ⊗ φ)

(

n
∑

k=1

αk∆(ek)

)

=

n
∑

k=1

αk (φ ⊗ φ) ∆ (ek)

=

n
∑

k=1

αk = φ (x)

so φ is indeed a character. We finish the proof.

Theorem 4.3. Let (C,∆) be a n-dimensional coalgebra over R; the following
conditions are equivalent:

〈1〉 (C,∆) is baric.
〈2〉 (C,∆) has a basis e1, e2, · · ·, en, such that the comultiplication constant can

be defined by

∆ (ek) =

n
∑

i,j=1

βk
ijei ⊗ ej

and satisfies
n
∑

i,j=1

βk
ij = 1, k = 1, 2, · · ·, n.

〈3〉 (C,∆) has a (n − 1)−dimensional coideal Π and C ⊗ C is not contained in
∆ (Π).

Proof. 〈1〉 =⇒ 〈2〉 Let φ : C −→ K be a character, then kerφ = Π is a
(n − 1)−dimensional coideal of C. Let d2, d3, · · ·, dn be a basis of Π. Since φ is
nontrivial, there is an element a ∈ C such that φ (a) 6= 0. Then, set e1 = 1

φ(a)a,

e2 = e1 − d2, e3 = e1 − d3, · · ·, en = e1 − dn. e1, e2, e3, · · · , en forms a basis for
C, and φ (ek) = 1, k = 1, 2, · · ·, n. Denote ∆ (ek) =

∑n
i,j=1 βk

ijei ⊗ ej . Since

(φ ⊗ φ)∆ (ek) = φ (ek) , we have

(φ ⊗ φ)∆ (ek) = (φ ⊗ φ)





n
∑

i,j=1

βk
ijei ⊗ ej





=

n
∑

i,j=1

βk
ij (φ ⊗ φ) (ei ⊗ ej) =

n
∑

i,j=1

βk
ij

= φ(ek) = 1

Thus, we get
∑n

i,j=1 βk
ij = 1, k = 1, 2, · · ·, n.

〈2〉 ⇒ 〈3〉
We define dk = e1 − ek, k = 2, 3, · · ·, n. C0 = 〈d2, d3, · · ·, dn〉 is a subspace

spaned by those elements. We will check that C0 is a (n − 1)−dimensional coideal
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of C as follows:

∆ (dk) = ∆ (e1 − ek) =

n
∑

i,j=1

(

β1
ij − βk

ij

)

(ei ⊗ ej)

= −
n
∑

i,j=1

(

β1
ij − βk

ij

)

[(e1 − ei) ⊗ ej − e1 ⊗ ej ]

=

n
∑

i,j=1

(

βk
ij − β1

ij

)

[(e1 − ei) ⊗ ej + e1 ⊗ (e1 − ej) − e1 ⊗ e1]

=

n
∑

i,j=1

(

βk
ij − β1

ij

)

(di ⊗ ej) +

n
∑

i,j=1

(

βk
ij − β1

ij

)

e1 ⊗ dj

∈ C0 ⊗ C + C ⊗ C0

and

∆ (e1) = −

n
∑

ij

β1
ijdi ⊗ ej −

n
∑

ij

e1 ⊗ dj + e1 ⊗ e1

/∈ C0 ⊗ C + C ⊗ C0.

It is done.
〈3〉 ⇒ 〈1〉
We define φ : C −→ C/Π by x 7−→ x + Π and linearly extend it onto C.

The vector space C/Π is isomorphic to the underlying field K. Since Π is a coideal
of C, the map φ is coalgebraic, so C/Π is either isomorphic to K or to zero. The
latter possibility can be excluded by the dimension one of C/Π. So φ is a character
function. Thus, we complete the proof.

Theorem 4.4. Let (C,∆) be a n−dimensional coalgebra over R, then the following
conditions are equivalent:

〈1〉 C has a genetic realization;
〈2〉 C is baric and the linear manifold of all elements of weight (the value of the

character function) 1 contain a (n − 1)-dimensional simplex L with ∆ (L) ⊆ L⊗L.

Proof. 〈1〉 =⇒ 〈2〉 Let e1, e2, · · · · ··, en be a natural basis of C. We define a map
φ : C −→ R by φ (ek) = 1 and linearly extend it. Then it is easy to see φ is a
coalgebraic map. So C is baric. Let L be the convex hull of e1, e2, · · · · ··, en, then
∆ (ek) =

∑n
ij βk

ijei ⊗ ej ∈ L ⊗ L, so ∆ (L) ⊆ L ⊗ L.

〈2〉 =⇒ 〈1〉 Let φ : C −→ R be any character function. By assumption, this
simplex L is the convex hull of n linearly independent elements e1, e2, ······, en with
φ (ek) = 1, k = 1, 2, · · ·, n. These elements form a basis of C. Since ∆ (L) ⊆ L⊗L,
if we write ∆ (ek) =

∑n
i,j=1 βk

ijei ⊗ ej , these coefficients satisfy 0 ≤ βk
ij ≤ 1,

i, j, k = 1, 2, · · ·, n. Moreover, since

(φ ⊗ φ) ∆ (ek) = φ (ek) = 1,
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(φ ⊗ φ) ∆ (ek) = (φ ⊗ φ)





n
∑

i,j=1

βk
ijei ⊗ ej





=

n
∑

i,j=1

βk
ijφ (ei)φ (ej) = φ (ek) ,

it is
∑n

i,j=1 βk
ij = 1. We complete the proof.

5. Construction of new genetic coalgebras. To understand the complicated
genetic situation in term of coalgebras, we need some approaches to construct a
new coalgebra from old ones. For example, there are several coalgebras with each
one describing a particular trait in a biological population, so we can combine these
coalgebras to make a new one in order to describe and model the population. We
will deal with polyploid individual populations as an example. In this section, we
will discuss the linear combinations of coalgebras, the tensor product of coalgebras
and skew coalgebra by linear maps. In the algebra case, these constructions are
well known. Here we just give some ofthe counterparts in coalgebra motivated by
applications in genetics and skip their detailed proofs.

5.1. Linear combinations. Let V be an n-dimensional vector space over a field
K, if C is a coalgebra over V , which need not be cocommutative or coassociative,
we denote the comultiplication by ∆ (x) = ∆C (x).

Proposition 5.1. Let Co (V ) be the family of all coalgebras over V , for C1, C2 ∈
Co (V ); and α ∈ K, the sum C1 + C2, and the scalar product αC1 are defined as
coalgebras over V with comultiplications given by

∆C1+C2
(x) = ∆C1

(x) + ∆C2
(x)

∆αC1
(x) = α∆C1

(x) .

Then, we have
(1) Co (V ) is a vector space over K, which is called the vector space of all

coalgebras over V . The zero element of this vector space is the zero coalgebra 0
over V .

(2) The family Coc (V ) of all cocommutative coalgeras over V forms a subspace
of Co (V ).

Proof. The proof is skiped here.

Remark 7. (1) This proposition is obvious; we do not need to give a proof here.

(2) It is clear that a linear combination of the coalgebras C1, C2, ··· Cl is
∑l

i=1 αiCi,
its comultiplication is given by

∆∑

l
i=1

αiCi
(x) =

l
∑

i=1

αi∆Ci
(x).

(3) If the combination coefficients above are non-negative and sum to one, we call
it a convex combination of coalgebras.
(4) Coalgebras C1, C2, · · ·, Cr ∈ Co (V ) are called linearly independent if and only
if the trivial linear combination of these coalgebras is the zero coalgebra.



256 J. TIAN, B. LI

Proposition 5.2. Let e1, e2, ···, en be a basis of V . Then the coalgebras C1, C2, ··
·, Cr are linearly independent if and only if ∆∑

r
i=1

αiCi
(ek) =

∑r
i=1 αi∆Ci

(ek) =
0, k = 1, 2, · · ·, n, which implies that α1 = α2 = · · · = αr = 0.

Proof. We skip it here..

Theorem 5.1. Let C1, C2, · · ·, Cr be baric coalgebras with the same character
function φ, then every linear combination

∑r
i=1 αiCi with

∑r
i=1 αi = 1 is a

baric coalgebra with the character φ.

Proof. For every x ∈ V ,

(φ ⊗ φ) ∆∑

r
i=1

αiCi
(x) = (φ ⊗ φ)

(

r
∑

i=1

αi∆Ci
(x)

)

=

r
∑

i=1

αi (φ ⊗ φ) ∆Ci
(x)

=

r
∑

i=1

αiφ (x) = φ (x)

Note K ⊗ K ⊗ · · · ⊗ K ∼= K. So, φ is a character for the coalgebra linear
combination

∑r
i=1 αiCi. We prove it.

Theorem 5.2. Let V be a vector space over a field K and C1, C2, · · ·, Cr be
coalgebras over V , which have a genetic realization with respect to the same basis
e1, e2, · · ·, en of V . Then every convex combination of these coalgebras has a
genetic realization with respect to e1, e2, · · ·, en.

Proof. We denote the comultiplication constants of coalgebra Ci by βi,k
pq , that is to

say

∆Ci
(ek) =

n
∑

p,q=1

βi,k
pq ep ⊗ eq,

then
n
∑

p,q=1

βi,k
pq = 1 for i = 1, 2, · · ·, r, k = 1, 2, · · ·, n,

and

0 ≤ βi,k
pq ≤ 1, for i = 1, 2, · · ·, r, k, p, q = 1, 2, · · ·, n.

Now, for every convex combination
∑r

i=1 αiCi, where
∑r

i=1 αi = 1 and each αi is
non-negative number, if we write ∆∑

r
i=1

αiCi
(ek) =

∑n
p,q=1 λk

pqep ⊗ eq, we need

check that
∑n

p,q=1 λk
pq = 1 for each k and 0 ≤ λk

pq ≤ 1 for every k, p, q. Let us
compute

∆∑

r
i=1

αiCi
(ek) =

r
∑

i=1

αi∆Ci
(ek)

=

r
∑

i=1

αi

n
∑

p,q=1

βi,k
pq ep ⊗ eq

=

n
∑

p,q=1

(

r
∑

i=1

αiβ
i,k
pq

)

ep ⊗ eq
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so

λk
pq =

r
∑

i=1

αiβ
i,k
pq .

By Cauchy-Schwarz inequality,

0 ≤ λk
pq =

r
∑

i=1

αiβ
i,k
pq .

≤

(

r
∑

i=1

α2
i

)
1

2

(

r
∑

i=1

(

βi,k
pq

)2

)
1

2

≤ 1,

and
n
∑

p,q=1

λk
pq =

n
∑

p,q=1

r
∑

i=1

αiβ
i,k
pq

=
r
∑

i=1

n
∑

p,q=1

αiβ
i,k
pq = 1

We complete the proof.

Theorem 5.3. Let V be an n-dimensional vector space over a field K, n ≥ 2,
and CoP (V ) be the family of coalgebras over V with property P . Let MP be the
smallest linear manifold Co (V ), which contains CoP (V ) . Then the dimension of
MP is given as follows:

property dim (MP )
- n3

cocommutative 1
2n2 (n + 1)

baric with the same character n
(

n2 − 1
)

cocommutive, baric with the same character 1
2 (n + 2)n (n − 1)

genetic realization with the same natural basis n
(

n2 − 1
)

cocommutative, with realization under the same natural basis 1
2 (n + 2)n (n − 1)

Table 1. Dimensions of manifolds.

Proof. We skip the proof.

5.2. Tensor products. Let C1, C2, · · · · · · , Cr be coalgebras over a field K with
dimensions n1, n2, · · · · · · , nr, which need not be cocommutative or coassociative,
and C1 ⊗C2 ⊗ · · · · · · ⊗Cr be the tensor product of the underlying vector spaces.
Then it is an (n1n2 · · ·nr)−dimensional vector space over K. We can define a
linear map as follows:

∆ = P (∆C1
⊗ ∆C2

⊗ · · · · · · ⊗ ∆Cr
) :

C1 ⊗ C2 ⊗ · · · ⊗ Cr −→ (C1 ⊗ C2 ⊗ · · · ⊗ Cr) ⊗ (C1 ⊗ C2 ⊗ · · · ⊗ Cr)

where P is an appropriate permutation. Then we have two propositions as
follows.

Proposition 5.3. The pair (C1 ⊗ C2 ⊗ · · · ⊗ Cr,∆) is a coalgebra.
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Proposition 5.4. If the comultiplication table of factor Ck is given by

∆Ck
(ekjk

) =

nk
∑

pk,qk=1

βkjk
pkqk

ekpk
⊗ ekqk

where {ek1, ek2, · · · · · · eknk
} is a basis for Ck, k = 1, 2, · · · r. Then the comulti-

plication table of C1 ⊗ C2 ⊗ · · · ⊗ Cr is given by

n1,n2··· ,nr
∑

p1,q1,··· ,pr,qr

β1ji
p1q1

β2j2
p2q2

· · ·βrjr
prqr

(e1p1
⊗ e2p2

⊗ · · · ⊗ erpr
) ⊗ (e1q1

⊗ e2q2
⊗ · · · ⊗ erqr

) ,

which is equal to ∆(e1j1 ⊗ e2j2 ⊗ · · · ⊗ erjr
)

Proof. We skip the proof.

Now we give two statements that have evident significance for genetics. Because
complex traits are affected by multiple factors, we can “tensor” these multiple
genetic factors up as one coalgebra; such a tensor product of coalgebras will appear
very useful to describe polygenetic traits.

Theorem 5.4. Let Ck be a baric coalgebra with character φk, k = 1, 2, · · · · · · r, then
the tensor product C1⊗C2⊗· · ·⊗Cr is baric with character φ = φ1⊗φ2⊗· · ·⊗φr.

Proof. For any x = x1 ⊗ x2 ⊗ · · · ⊗ xr ∈ C1 ⊗ C2 ⊗ · · · ⊗ Cr, let us verify

(φ ⊗ φ) ∆ (x) = φ (x) .

By (φk ⊗ φk) ∆Ck

(

xk
)

= φk

(

xk
)

(that is,
∑

(xk) φk

(

xk
(1)

)

φk

(

xk
(2)

)

= φk

(

xk
)

),

we have

[(φ1 ⊗ φ2 ⊗ · · · ⊗ φr) ⊗ (φ1 ⊗ φ2 ⊗ · · · ⊗ φr)] ·

[P (∆C1
⊗ ∆C2

⊗ · · · · · · ⊗ ∆Cr
)]
(

x1 ⊗ x2 ⊗ · · · ⊗ xr
)

=
r
∑

k=1

∑

(xk)

φk

(

xk
(1)

)

φk

(

xk
(2)

)

=
r
∑

k=1

φk

(

xk
)

.

We get the proof.

Theorem 5.5. Suppose that each coalgebra Ck has a genetic realization with re-
spect to the natural basis {ek1, ek2, · · · · · · eknk

}, k = 1, 2, · · · , r, then the tensor
product C1 ⊗ C2 ⊗ · · · ⊗ Cr also has a genetic realization with respect to the basis
{e1j1 ⊗ e2j2 ⊗ · · · ⊗ erjr

| 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, · · · , 1 ≤ jr ≤ nr} .

Proof. Note ∆Ck
(ekjk

) =
∑nk

pk,qk=1 βkjk
pkqk

ekpk
⊗ ekqk

and the comultiplication table
in above proposition, it is easy to see

0 ≤ β1ji
p1q1

β2j2
p2q2

· · ·βrjr
prqr

≤ 1,

and
n1,n2··· ,nr
∑

p1,q1,··· ,pr,qr

β1ji
p1q1

β2j2
p2q2

· · ·βrjr
prqr

= 1,

since
∑nk

pk,qk=1 βkjk
pkqk

ekpk
= 1, for each k and jk. Thus, we complete the proof.
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5.3. Construction of new genetic coalgebras by linear maps. When we
consider genetic situation of sex-linked inheritance and mutation in a population of
autopolyploid individuals in term of coalgebras, it seems reasonable to introduce a
skew or new comultiplication by applying a linear map to one factor of the given
comultiplication. We will give some genetic applications later on.

Definition 5.1. Let V be an n-dimensional vector space over a field K, L0, L1,
L2 be linear maps from V to V, and C be a coalgebra over V with comultiplication
∆. We define a map ∆ to be a composite

∆ = (L1 ⊗ L2) ∆L0 : C −→ C ⊗ C.

Then, the pair
(

C,∆
)

is a coalgebra over V .

Theorem 5.6. Let V be a vector space over K and C a baric coalgebra over V with
character φ. If the linear maps L0, L1,and L2 : V −→ V preserve character;
that is, φLi = φ, i = 1, 2, 3, then the coalgebra

(

C,∆
)

is baric with character φ.

Proof. By definitions,

(φ ⊗ φ)∆ = (φ ⊗ φ) (L1 ⊗ L2) ∆L0

= (φL1 ⊗ φL2) ∆L0 = (φ ⊗ φ) ∆L0

= φL0 = φ.

we get the proof.

Theorem 5.7. Let (C,∆) be a coalgebra over a vector space V and C have a
genetic realization with respect to a natural basis e1, e2, · · ·, en. If the linear map
L0, L1,L2 : V −→ V leaves the simplex

M =

{

n
∑

i=1

αiei | 0 ≤ αi ≤ 1, i = 1, 2, · · · , n,

n
∑

i=1

αi = 1

}

invariant; then the coalgebra
(

C,∆
)

also has a genetic realization.
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Proof. Write Lt (ek) =
∑n

i=1 αt,k
i ei, t = 1, 2, 3, k = 1, 2, · · · , n, then

∑n
i=1 αt,k

i =
1, since Lt leaves M invariant. We see

∆ (ek)

= (L1 ⊗ L2) ∆L0 (ek)

= (L1 ⊗ L2) ∆

(

n
∑

i=1

α0,k
i ei

)

=

n
∑

i=1

α0,k
i (L1 ⊗ L2) ∆ (ei)

=
n
∑

i=1

α0,k (L1 ⊗ L2)

(

n
∑

p,q=1

βi
pqep ⊗ eq

)

=

n
∑

i=1

α0,k
i

n
∑

p,q=1

βi
pqL1 (ep)L2 (eq)

=

n
∑

i=1

α0,k
i

n
∑

p,q=1

βi
pq

n
∑

j=1

α1,p
j

n
∑

s=1

α2,q
s ej ⊗ es

=
n
∑

j,s=1





n
∑

i,p,q=1

α0,k
i βi

pqα
1,p
j α2,q

s



 ej ⊗ es

By Cauchy-Schwarz inequality, we have

0 ≤

n
∑

i,p,q=1

α0,k
i βi

pqα
1,p
j α2,q

s ≤ 1

and

n
∑

j,s=1





n
∑

i,p,q=1

α0,k
i βi

pqα
1,p
j α2,q

s



 = 1

Thus, we complete the proof.

6. Conilpotent coalgebras. In this section, we will define several concepts that
capture certain interesting genetic features. Since we are considering non-coassociative
coalgebras (which may be or may be not be cocommutative) without counit, we
need to give a kind of order to take comultiplication. The order may give us a
way to specify the path that traces back over the past generations (phylogenetic
genealogical trees). We first define various copowers, then define conilpotent coal-
gebras, which is an analogy of nilpotentness in coalgebraic structure and their
possible genetic implications. We also give simple propositions and applications as
examples.
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Definition 6.1. Let ∆ be the comultiplication of a coalgebra (C,∆) . We define
a copower to be a special order that the comultiplication can be performed consecu-
tively. The left principal copower of an element or a subcoalgebra is defined as

1

∆ = ∆
2

∆ = (∆ ⊗ id) ∆
3

∆ = (∆ ⊗ id ⊗ id) (∆ ⊗ id) ∆

· · · · · · · · · · · · · · · · · · · · ·
m

∆ =
(

∆ ⊗ id⊗(m−1)
)m−1

∆ .

Figure 1. Fourth left principle copower of x.

The right principal copower of an element or a subcoalgebra is defined as

∆1 = ∆

∆2 = (id ⊗ ∆) ∆

∆3 = (id ⊗ id ⊗ ∆) (id ⊗ ∆) ∆

· · · · · · · · · · · · · · · · · · · · ·

∆m =
(

id⊗(m−1) ⊗ ∆
)

∆(m−1).

The principle copower of an element or a coalgebra is defined as

(1)

∆ = ∆
(2)

∆ = (∆ ⊗ ∆)∆

(3)

∆ = (∆ ⊗ id ⊗ id ⊗ ∆)
(2)

∆

· · · · · · · · · · · ·
(m)

∆ = (∆ ⊗ id⊗2(m−2) ⊗ ∆)
(m−1)

∆ .
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Figure 2. Fourth right principle copower of x.

Figure 3. Fourth principle copower of x.

The plenary copower of an element or a coalgebra is defined as

[1]

∆ = ∆
[2]

∆ = (∆ ⊗ ∆) ∆

[3]

∆ = (∆ ⊗ ∆ ⊗ ∆ ⊗ ∆)
[2]

∆

· · · · · · · · · · · · · · · · · · · · ·
[m]

∆ =
(

∆⊗2m−1
) [m−1]

∆ .

Figure 4. Fourth right principle copower of x.
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Definition 6.2. An element x ∈ (C,∆) is called copower coassociative if the
relation holds for any integer k ≥ 2 and any non-negative partition k = l + p + 1,

∆k (x) =
(

id⊗l ⊗ ∆ ⊗ id⊗p
)

∆k−1 (x)

Definition 6.3. 1. An element x ∈ C is called left (right) conilpotent of index
k, if

k

∆ (x) = 0, but
k−1

∆ (x) 6= 0,
(

∆k (x) = 0, but ∆k−1 (x) 6= 0
)

.

2. A subcoalgebra C1 of C is called left conil (right conil ) if all elements of
C1 are left conilpotent (right conilpotent).

3. A subcoalgebra C0 of C if called left conilpotent (right conilpotent, conilpotent)
of index k, if

k

∆ (C0) = 0, but
k−1

∆ (x) 6= 0.
(

∆k (C0) = 0, but ∆k−1 (C0) 6= 0;
(k)

∆ (C0) = 0, but
(k−1)

∆ (C0) 6= 0

)

4. A subcoalgera C2 of C is called cosolvable if there is a positive integer k, such
that

[k]

∆ (C2) = 0.

Remark 8. The biological significance of left conilpotent of element x is that if we
trace back by the left path, the information of ancestors will be lost. This is a kind
of evolution path. The other conilpotent concepts have the similar significance.

Lemma 6.1. Let (C,∆) be a baric coalgebra with character φ. If kerφ is right
conilpotent, then φ is uniquely determined.

Proof. Assume that ω : C −→ K is any nontrivial coalgebraic map. Let y ∈kerφ.
Since kerφ is right conilpotent, there is a positive integer l, such that ∆l (y) = 0.
Then ω⊗(k+1)∆k (y) = ω (y) , so ω (y) = 0. Thus, for any y ∈kerφ, we have
ω (y) = φ (y) . Let x ∈ C−kerφ, φ (x) 6= 0, but

(φ ⊗ φ)

(

x ⊗ x

φ (x)
− ∆(x)

)

=
φ (x)φ (x)

φ (x)
− φ (x) = 0

This means x⊗x
φ(x) − ∆(x) ∈ker(φ ⊗ φ) . Now we claim that

∀p ∈ ker (φ ⊗ φ) , (ω ⊗ ω) (p) = 0.

Then,

(ω ⊗ ω)

(

x ⊗ x

φ (x)
− ∆(x)

)

=
ω (x)ω (x)

φ (x)
− ω (x) = 0

So we have that ω (x) = φ (x) , or, ω (x) = 0. But, since ω is nontrivial, we get
ω = φ.

The proof of our claim: since ker(φ ⊗ φ) =kerφ⊗C + C⊗kerφ, p ∈ker(φ ⊗ φ)
can be written as p =

∑

i ai ⊗ bi. For simplicity, we take two terms as p =
a1 ⊗ b1 + a2 ⊗ b2 to check.
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Now suppose a1 ∈kerφ and b2 ∈kerφ, then ∆k1 (a1) = 0 and ∆k2 (b2) = 0
for some integers k1 and k2. Thus

(

id⊗(k1+1) ⊗ ∆k2

)

(

∆k1 ⊗ id
)

(p)

=
(

id⊗(k1+1) ⊗ ∆k2

)

(

∆k1 ⊗ id
)

(a1 ⊗ b1 + a2 ⊗ b2)

= ∆k1 (a1) ⊗ ∆k2 (b1) + ∆k1 (a2) ⊗ ∆k2 (b2)

= 0

The proof is done.

For example, if in some population the genetic inheritance can be described by
an algebra A, this is a basic genetic algebra. Then the generation sequence arising
from random mating with the initial population or from random mating within
a generation is represented by the sequence of principle powers x(r) or by the
sequence of plenary powers x[r], respectively, where x ∈ A is the initial population.
Now, supposing that the present population or gene y is known, what about the
ancestral or ancestral gene distribution of n generation before? To answer this
question, we have to give a coalgebraic structure of A, as we have defined basic

genetic coalgebra by tracing back in backward dynamic process. Then
(n)

∆ (y) or
[n]

∆ (y) or other order of comultiplications can give us some ancestral or ancestral
gene distribution information. In this sense, we can solve the equations x(n) = y
and x[n] = y. For example, in simple Mendelian inheritance, let y = αA + βa.
Then

∆ (y) =
α

2
A ⊗ A +

α + β

4
A ⊗ a +

α + β

4
a ⊗ A +

β

2
a ⊗ a.

This tells us that y comes from A⊗A with probability α
2 , from A⊗a with probability

α+β
2 , from a ⊗ A with probability α+β

2 and from a ⊗ a with probability β
2 .

[2]

∆ (y) =
α

8
A ⊗ A ⊗ A ⊗ A +

(

3α + β

32

)(

a ⊗ A ⊗ A ⊗ A + A ⊗ a ⊗ A ⊗ A+
+A ⊗ A ⊗ a ⊗ A + A ⊗ A ⊗ A ⊗ a

)

+
α + β

16
(A ⊗ A ⊗ a ⊗ a + a ⊗ a ⊗ A ⊗ A) +

+

(

3α + 3β

32

)(

A ⊗ a ⊗ A ⊗ a + a ⊗ A ⊗ a ⊗ A+
+A ⊗ a ⊗ a ⊗ A + a ⊗ A ⊗ A ⊗ a

)

+

(

α + 3β

32

)(

A ⊗ a ⊗ a ⊗ a + a ⊗ A ⊗ a ⊗ a+
+a ⊗ a ⊗ A ⊗ a + a ⊗ a ⊗ a ⊗ A

)

+
β

8
a ⊗ a ⊗ a ⊗ a

This tells us two generation before the possible distribution of all ancestral genes.
Generally, we can obtain n generations before ancestral distributions by taking
plenary copowers. Of course, we also can take other types of copowers. Then
after from that distribution by random mating, we will have the present generation
y. In this sense, we can solve the power equations like x(n) = y or x[n] = y to get
satisfying biological information.

7. The in-evolution operator. In this section, we will discuss a kind of special
map in a population space. We call it in-evolution operator. We also define the
equilibrium state which captures the biological essence in the coalgebraic structure
of inheritance. We apply the Brower’s fixed point theorem in topology to prove
that there exists a equilibrium state.
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Let Ω be a population space and V be a subspace of Ω, which is isomorphic to
S0 in section 2. Suppose there is a genetic coalgebra (V,∆), which has a character
φ. We give the following definitions:

• The linear map Sl: V −→ V , as defined by Sl = (φ ⊗ id) ∆, is called left in-
evolution operator. Similarly, we call Sr = (id ⊗ φ) ∆ the right in-evolution
operator. If S is both left and right in-evolution operator, we call it the
in-evolutionary operator.

• For any state x ∈ V , if it satisfies Sl (x) = x, we say x is a left equilibrium
state. Similarly, we can define a right equilibrium state. If a state is both
left and right equilibrium state, we call it an equilibrium.

Theorem 7.1. Let (C,∆) be a cocommutative coalgebra which has a genetic real-
ization, then there is an equilibrium state.

Proof. Since C has a genetic realization, we can choose a natural basis for it, for in-
stance, {e1, e2, · · · · · · , en} . Let C0 be the convex combination of e1, e2, · · · · · · , en,
then we define a character φ by φ (ek) = 1 and linearly extend it onto C0. Since
a character exists by our theorem above, it is easy to check this φ is a character.
Since C is cocommutative, we have

Sl = (φ ⊗ id) ∆ = (φ ⊗ id) τ∆ = (id ⊗ φ)∆ = Sr.

Then, S (= Sl = Sr) is the in-evolution operator.
It is clear that S is a linear map from C0 to C0. By the Brower’s fixed point

theorem, there is a point x ∈ C0 such that S (x) = x. Up to now, we complete the
proof.

Remark 9. The significance of left in-evolution operators is that they enable us to
trace from the present generation back to their parental generation by the left path
(for example, a father’s genealogical trees). Similarly, we have the significance
of right in-evolution operators and in-evolution operators. The interpretation of
equilibrium states is that if we trace back one generation before, the population is
still in equilibrium.

8. Conclusion. As we have demonstrated, coalgebraic structures of genetic inher-
itance come into existence naturally, and they are new mathematical structures for
genetics. In algebraic structure of genetic inheritance, the multiplication represents
a forward dynamic system over generations. That is, once we take a product of
two populations or genes of the reproduction process, we moves to the next genera-
tion. So it is logical to look at the reproduction process backward. Once we trace
back from the present generation to previous generations, we get the coalgebraic
structure of the reproduction process. These coalgebras are not the dual coalge-
bras of general genetic algebras. They are new coalgebraic structures involved in
genetics. The evolution of a population in terms of algebras requires the study of
all kinds of powers of the population x. Although it is tough to study power x(n)

or x[n], it is generally impossible to solve power equations x(n) = a or x[n] = b in an
algebraic system. Resolving these power equations x(n) = a or x[n] = b means to
get a population x that is a population of n generations before of population a or
b. We call this backward evolution. In coalgebraic structures of genetics, we can
solve them in a sense that we can get genetic information of previous generations.
To construct a phylogenetic tree from the present gene or population, all kinds of
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copowers provide tools; and in-evolution operators can specify a path. Mathemat-
ically, to establish coalgebraic structures for genetic inheritance, we have to define
many basic and fundamental concepts as we have already done in this paper. As a
new theoretical framework, it is obvious that there are lots of theoretical issues and
applied questions that need to be addressed properly and resolved. For example:

1. How to establish general in-evolution equation in genetic coalgebra setting?
2. How to characterize all stationary in-evolution operators?
3. How to develop a theory about coalgebraic dynamics under selection and

migration?
4. How to apply genetic coalgebra to DNA sequence evolution?

It is also obvious that we need detailed coalgebraic models for many different
and specific situations. We post them as our open problems.
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