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We study the effect of a power law drift on the Brownian motion in the positive half-line, where the order of
the drift at 0 and ∞ is different. The first hitting time of 0 is finite almost surely, even when the drift near 0 is
positive and unbounded. We obtain subexponential estimates for the tail distribution of the hitting time of 0, that
are independent of the singular behavior of the drift near the origin.
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1. Introduction

For a real-valued process Xt , let τR(X) = inf{t > 0 : Xt = R} denote the first time the process hits the
level R. The first hitting time of a stochastic process has been widely studied due to its significant ap-
plications in both theoretical and applied probability. These applications span various fields, including
finance and chemical physics, where models are often driven by physical or economic considerations.

In finance, a common example involves analyzing interest rate fluctuations to make decisions for op-
tions based on when rates reach certain thresholds. The Cox-Ingersoll-Ross (CIR) family of diffusions
in interest theory, solve dXt = (a + bXt )dt + c

√
|Xt |dBt . They are shown in [14] to be a transformation

of a Bessel process, so that the threshold for the CIR process is reduced to the more tractable Bessel
diffusion.

In chemical physics, the dissociation of a molecule might occur when a system reaches a critical
level. These phenomena are mathematically described by various stochastic differential equations, such
as those of perturbed Brownian motion or Bessel processes and their generalizations.

Key questions naturally arise, such as under what conditions a critical point is reached, when it will
occur, and how the process behaves once the threshold is attained. Some probabilistic answers to these
questions are provided by the probability density of the first hitting time, which can sometimes be
explicitly calculated. Notable examples include the classical Brownian motion with drift as discussed
in [18] and [4], the Ornstein-Uhlenbeck process ([1]), and certain Bessel bridges ([15]). Additionally,
an integral formula for the hitting time density of a geometric Brownian motion is presented in [8],
which also facilitates sharp estimates for the hitting times of Bessel processes ([7]). These results
are often derived using transformations, such as the Lamperti transformation ([20]), that relate Bessel
processes to geometric Brownian motion. Series expansions for hitting time densities of some diffusion
processes, including the first two moments for Bessel processes, are given in [19] and are linked to
the eigenvalues of the associated infinitesimal generator. Further discussions on exponential integral
functionals for Brownian motion with drift and Bessel processes are found in [6].

Despite the variety of techniques developed in these studies, exact expressions for the first hitting
time densities remain unknown in general. To address this, various numerical methods have been ex-
plored, including Monte Carlo simulations for general one-dimensional diffusions ([16]) and weak
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approximations using Euler schemes for multidimensional diffusions ([13]), among others. The study
of large values of the first passage time also has a long history, with significant contributions such
as those by [21] and [3] for random walks, [2] for non-stationary Ornstein-Uhlenbeck processes with
statistical applications, [11] for Bessel and squared radial Ornstein-Uhlenbeck processes, [24] for the
occupation time of Brownian motion integrals, and [10] for Brownian motion with a power law drift.

Specialize Xt to be a Brownian motion with a power law drift: the process satisfying the stochastic
differential equation

dXt = dBt − βX−pt dt, X0 = x > 0,

where β , 0 and p > 0.
Note that when p = 0, Xt is a Brownian motion with drift −β, for which is known that the hitting

time of a certain level is a.s. finite if and only if the drift and the level have the same sign ([18]).
When β = 0, Xt is merely Brownian motion, for which it is well-known (Feller [12]) that

Px(τ0(X) > t) =
2
√

2π

∫ x/
√
t

0
e−u

2/2 dt .

When p = 1, Xt is a Bessel process with dimension δ = 1 − 2β, and it is known that for β > − 1
2 ,

Px(τ0(X) > t) =
21/2−β

Γ(1/2 + β)

∫ x/
√
t

0
u2βe−u

2/2 dt,

and for β ≤ − 1
2 , Px(τ0(X) =∞) = 1 (Göing-Jaeschke and Yor [14]).

Using standard results from diffusion theory (Theorem 1.1 of Chapter 5 in Pinsky [23]), it is not hard
to show that if β < 0, then {

Px(τ0(X) =∞) = 1, for p > 1
0 < Px(τ0(X) =∞) < 1, for p < 1.

DeBlassie and Smits [10] proved the following results for β > 0.

• For p > 1, {
Ex[τ0(X)q] <∞, if q < 1/2,
Ex[τ0(X)q] =∞, if q > 1/2.

• For p < 1, limt→∞ t−(1−p)/(1+p) log Px(τ0(X) > t) = −γ(p, β),where

γ(p, β) = 1
2 p−2p/(1+p)β2/(1+p)

[
B

(
1
2 ,

1−p
2p

)
+ B

(
3
2 ,

1−p
2p

)]
B

(
1
2 ,

1−p
2p

)−(1−p)/(1+p)
,

with B denoting the Beta function, B(a,b) =
∫ 1

0 ta−1(1 − t)b−1 dt.

In particular, there is a phase transition of sorts as the power p passes through the value 1: roughly
power law behavior (with the same power) of the tail versus subexponential behavior (with a different
power).

For the remaining case of β > 0 and 0 < p < 1, it is not hard to show (we do so in the next section)
that as long as the form of the drift is βx−p for large values of x, one can change the drift to be of the
form αx−q , 0 < q < 1, for small values of x, keeping it bounded in between, and still have the process
hit 0 almost surely. This holds even if the multiplier α is negative. A natural question suggested by this
is to determine how much effect this change has on the asymptotic behavior of the time to hit 0.
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We now state our results precisely. Consider the diffusion Xt given by

dXt = dBt + b(Xt ) dt, X0 = x > 0, (1.1)

where Bt is one-dimensional Brownian motion and for some 0 < M1 < M2, and 0 < p,q < 1,

b(x) =

−αx−q, 0 < x ≤ M1
bounded measurable, M1 < x < M2,
−βx−p, M2 ≤ x

α ∈ R, β > 0. (1.2)

By standard facts, the law of Xt on the space of continuous paths in (0,∞) exists uniquely up to an
explosion time. Below, we will show the explosion time is the first hitting time at 0 and is a.s. finite:

Px(τ0(X) <∞) = 1. (1.3)

Here is our main theorem.

Theorem 1.1. Under the condition (1.2), the solution Xt of (1.1) satisfies

lim
t→∞

t−(1−p)/(1+p) log Px(τ0(X) > t) = −γ(p, β),

where

γ(p, β) = 1
2 p−2p/(1+p)β2/(1+p)

[
B

(
1
2 ,

1−p
2p

)
+ B

(
3
2 ,

1−p
2p

)]
B

(
1
2 ,

1−p
2p

)−(1−p)/(1+p)
. (1.4)

It is surprising that the rate function γ is independent of α and q. This says the behavior of the
process near the origin does not influence the time to hit 0 over very long time periods, at least at the
logarithmic level. This is surprising because a negative α would push the process away from 0, hence
delaying the time to exit, while a positive α would push the process towards zero, hence decreasing the
time to exit.

Our result extends to drifts of the form α(x)xq`1(x) near 0 and β(x)xp`2(x) near ∞, where `1 and
`2 are slowly varying at 0 and ∞, respectively, and the coefficients α(x) and β(x) have limiting values
α0 and β0 > 0. In the context of regular variation, one would say xq`1(x) is regularly varying at 0 from
the right, with index q, and xp`2(x) is regularly varying at infinity, with index p.

To be precise, a measurable function ` > 0 is slowly varying at infinity if for each λ > 0,
`(λx)/`(x) → 1, as x→∞. Similarly, a measurable function ` > 0 is slowly varying at zero from the
right if for each λ > 0, `(λx)/`(x) → 1, as x→ 0+.

Theorem 1.2. Suppose α : (0,∞)→ R and β : (0,∞)→ (0,∞) are continuous and p,q ∈ (0,1).
Assume:

• α(x) is bounded in a neighborhood of 0 and limx→∞ β(x) = β0 > 0 exists;
• `1 is continuous and slowly varying at zero from the right;
• `2 is continuous and slowly varying at infinity.

Suppose, for some 0 < M1 < M2,

b(x) =

−α(x)xq`1(x), 0 < x ≤ M1
bounded measurable, M1 < x < M2
−β(x)xp`2(x), M2 ≤ x.

(1.5)
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Then the solution Xt of (1.1) satisfies

lim
t→∞

t−(1−p)/(1+p) log Px(τ0(X) > t) = −γ(p, β0),

where γ(p, β0) is from (1.4), and is independent of the function α and the power q.

Here is a roadmap to our proof of Theorem 1.1. The basic idea is to “bootstrap” from carefully
chosen special cases to the general case. In Section 2, we prove almost sure finiteness of the explosion
time τ0(X) and we set the stage for the case b ∈ C3 by deriving a Feynman-Kac representation of
Px(τ0(X) > t) solely in terms of Brownian motion. It requires the use of the h−transform. For the
convenience of the reader, we provide a synopsis of the relevant facts about the h−transform in §1 of
the supplement paper [9]. There, in §2, we also list some variational formulas from [10].

In Section 3, we first obtain the lim inf behavior for the special case b ∈ C3. For that, we use the
Feynman-Kac representation of Px(τ0(X) > t) in terms of Brownian motion Bt from Section 2. By
scaling the representation, we reduce consideration to the scaled process

√
tBu, u ∈ [0,1]. The lim inf

behavior is derived by analyzing small, intermediate and large values of the scaled process. The ar-
gument is technical and nontrivial. The lim inf behavior in the general case follows using a simple
comparison argument with a C3 function below b.

The lim sup behavior is much harder to obtain. Even in the C3 case, analysis of the small and inter-
mediate values of the scaled process in the Feynman-Kac representation of Px(τ0(X) > t) in terms of
Brownian motion Bt seems impossible. The way around this is to impose the simple extra condition
b′ ≥ 0 to eliminate the issue. This reduces the analysis to only large values of the scaled process. To-
gether with some scaling tricks, this allows us to convert the estimation to a standard large deviations
setup. This is the content of Section 4.

For the lim sup behavior in the general case, it is natural to try to mimic what was done for the lim inf
behavior and compare a general b with a nondecreasing C3 function satisfying (1.2) lying above b. In
general, this is impossible because past a certain point, b is negative and there can be places before
that point where b is positive. In that case, it will be impossible to find a nondecreasing C3 function
satisfying (1.2) (with the corresponding M1 and M2 not necessarily matching those for b) that lies
above b. The remedy is to extend the Feynman-Kac representation of Px(τ0(X) > t) to drifts b that
are not necessarily C3 or nondecreasing. As is standard in deriving Feynman-Kac representations, the
Girsanov Theorem is used to change drifts appropriately. We do this for different b’s that match near 0
and∞, but not in between, and that are not necessarily C3. This is the content of Lemma 5.2 in Section
5. Lemma 5.4 is a variant of this for drifts that match at∞, but not necessarily near 0.

In Section 6, we choose appropriate “comparison drifts” to render a useful form of the Feynman-
Kac representation from Section 5. This will give the lim sup behavior for the case when b from (1.2) is
positive and constant on [M1,M2]. A simple comparison argument yields the desired lim sup behavior
for the general case.

In the sequel, for a stochastic process Zt in (0,∞), write τε,M (Z) = τε(Z) ∧ τM (Z), 0 < ε < M . Bt

will denote a generic Brownian motion and B0 will be clear from context.

2. Preliminaries

First we prove zero is hit almost surely.

Lemma 2.1. For Xt as in (1.1) with b as in (1.2), Px(τ0(X) <∞) = 1 for all x > 0.

This will be a consequence of the following special case.
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Lemma 2.2. For Xt from (1.1), where b from (1.2) is continuous, Px(τ0(X) <∞) = 1 for all x > 0.

Proof. Let c ∈ (0,M1) and for x ∈ (0,∞) set

p(x) =
∫ x

c
exp

(
−2

∫ ξ

c
b(ζ)dζ

)
dξ (scale function), and

v(x) =
∫ x

c
exp

(
−2

∫ y

c
b(ζ)dζ

) [∫ y

c
exp

(
2
∫ z

c
b(ξ)dξ

)
dz

]
dy.

Routine computations show p(∞) = limx→∞ p(x) =∞ (since β > 0), p (0+) = limx→0+ p(x) < ∞ and

v (0+) < ∞. Then by Feller’s test for explosions, Proposition 5.32 (iii) in Karatzas and Shreve ([18]),
the explosion time S = inf {t ≥ 0 : Xt < (0,∞)} of Xt is a.s finite. By Proposition 5.22(b) in ([18]),
limt↑s Xt = 0 a.s. It follows that S = τ0(X) a.s. and so Px (τ0(X) <∞) = 1.

Proof of Lemma 2.1. Given b as in (1.2), since b is bounded on [M1,M2], we can choose M̃1 < M1
and M̃2 > M2, along with a corresponding continuous b̃ satisfying (1.2) for M̃1, M̃2, such that b ≤ b̃
on (0,∞). Then for dX̃t = dBt + b̃(X̃t ) dt, X̃0 = x, by the Comparison Theorem for SDEs (Ikeda and
Watanabe [17], Theorem 1.1 in Chapter VI), Xt ≤ X̃t almost surely and so

1 = Px(τ0(X̃) <∞) ≤ Px(τ0(X) <∞),

and so Px(τ0(X) <∞) = 1, as claimed.

The next results pertain to the case when b ∈ C3(0,∞).

Lemma 2.3. Suppose b from (1.2) is in C1. Then for

h(x) = exp
(∫ x

0
b(y) dy

)
, x > 0, (2.1)

h(x) is bounded on [M1,M2]; (2.2)

h(x) is bounded below away from 0 on [M1,M2]; (2.3)

h(x) = exp
(
− α

1−q x1−q
)

on (0,M1]; (2.4)

h(x) =C exp
(
−

β
1−p x1−p

)
, x > M2, for some positive constant C. (2.5)

Proof. For some constants C1 and C2,∫ x

0
b(y) dy = − α

1−q x1−q I(0,M1](x) +
[
C1 +

∫ x

M1

b(y) dy
]

I(M1 ,M2)(x)

+
[
C2 −

β
1−p x1−p

]
I[M2 ,∞)(x). (2.6)

The assertions of the Lemma follow immediately from this.
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Lemma 2.4. Suppose b from (1.2) is in C1 and α ≥ 0. Then for

V = − 1
2 (b

2 + b′), (2.7)

we have V ≤ V I(M1 ,∞).

Proof. Since α ≥ 0 and 0 < q < 1, on the interval (0,M1] we have V(x) = − α2

2x2q −
αq

2xq+1 ≤ 0. The
conclusion is immediate.

The next result is a Feynman-Kac representation of Px(τ0(X) > t) solely in terms of Brownian mo-
tion.

Lemma 2.5. Suppose Xt is from (1.1) in the Introduction, where X0 = x > 0 and b given by (1.2) is in
C3. Then for h from (2.1) and V from (2.7),

Px(τ0(X) > t) = Ex

[
exp

(∫ t

0
V(Bs) ds

)
h(Bt )Iτ0(B)>t

]
.

Proof. Let L = 1
2

d2

dx2 + V . Note h is positive and L-harmonic on (0,∞). The h-transform Lh of L is

defined by Lh f = 1
h L(h f ). It is easy to show that Lh = 1

2
d2

dx2 + b d
dx . Next, we will use the following

identity from §4 of Pinsky [23], which is stated as Theorem 1.1 in our Supplement [9], and we apply it
here for a domain D ⊆ Rd and f ∈ C0(D), to get

1
h(x)

EQx

[
exp

(∫ t

0
V(Ys) ds

)
(h f )(Yt )IτD (Y)>t

]
= EQh

x

[
exp

(∫ t

0

Lh
h
(Ys) ds

)
f (Yt )IτD (Y)>t

]
.

Let 0 < ε < M <∞ be such that x ∈ (ε,M) and in the above identity take d = 1, D = (ε,M). Then, under
the measure Qx on C([0,∞),(ε,M)), the coordinate process Yt satisfies dYt = dBt, Y0 = x, and under
the measure Qh

x , the coordinate process satisfies dYt = dBt +
h′

h (Yt )dt, Y0 = x. Thus, for our process
dXt = dBt + b(Xt )dt, X0 = x, under the underlying Px , the above identity yields for f ∈ C0(ε,M),

1
h(x)

Ex

[
exp

(∫ t

0
V(Bs) ds

)
(h f )(Bt )Iτε,M (B)>t

]
=

1
h(x)

EQx

[
exp

(∫ t

0
V(Bs) ds

)
(h f )(Yt )IτD (Y)>t

]
= EQh

x

[
exp

(∫ t

0

Lh
h
(Ys) ds

)
f (Yt )IτD (Y)>t

]
= EQh

x
[

f (Yt )IτD (Y)>t
]
(since Lh = 0) = Ex

[
f (Xt )Iτε,M (X)>t

]
.

By Monotone Convergence and Lemma 2.1, we can let ε ↓ 0 and M ↑∞ to get

1
h(x)

Ex

[
exp

(∫ t

0
V(Bs) ds

)
h(Bt )Iτ0(B)>t

]
= Px(τ0(X) > t),

as claimed.
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3. Lower bound

The main result of this section is the following lower bound.

Theorem 3.1. Let Xt be as in (1.1), where b is from (1.2). Then

lim inf
t→∞

t−(1−p)/(1+p) log Px(τ0(X) > t) ≥ −γ(p, β),

where γ(p, β) is from (1.4).

We first prove a special case.

Theorem 3.2. Let Xt be as in (1.1), where b from (1.2) satisfies α ≥ 0 and b ∈ C3. Then

lim inf
t→∞

t−(1−p)/(1+p) log Px(τ0(X) > t) ≥ −γ(p, β),

where γ(p, β) is from (1.4).

The proof of the theorem is long, so we break it up into pieces. By Lemma 2.5

Px(τ0(X) > t) = Ex

[
exp

(∫ t

0
V(Bs) ds

)
h(Bt )Iτ0(B)>t

]
. (3.1)

Define

K0 = {ω ∈ C0 :
∫ 1

0
|ω′u |

2 du <∞},

where C0 = {ω : [0,1] → R, ω is continuous,ω(0) = 0}, and

F(ω) =
β2

2

∫ 1

0
|ωu |

−2p du +
β

1 − p
|ω1 |

1−p +
1
2

∫ 1

0
(ω′u)

2 du, ω ∈ K0. (3.2)

Let g ∈ K0 with g ≥ 0. Let δ > 0 be given and set g̃ = g + δ,

ε = t−(1−p)/(1+p), (3.3)

and

Zu = Bu − g̃(u)/
√
ε. (3.4)

For Z0 > 0, we have

τ0(Z) > 1 =⇒ τ0(B) > 1 (3.5)

τ0(Z) > 1 =⇒ Bu ≥ g̃(u)/
√
ε, u ∈ [0,1]. (3.6)

Now scale and use (3.5):

Px(τ0(X) > t) = Ex

[
exp

( ∫ t

0
V(Bs) ds

)
h(Bt )Iτ0(B)>t

]
= Ex/

√
t

[
exp

(
t
∫ 1

0
V(
√

tBu) du
)

h(
√

tB1)Iτ0(B)>1

]
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≥Ex/
√
t

[
exp

(
t
∫ 1

0
V(
√

tBu)du
)

h(
√

tB1)Iτ0(Z)>1

]
. (3.7)

Lemma 3.3. For τ0(Z) > 1 and ε from (3.3),

t
∫ 1

0
V(
√

tBu)

[
I√tBu<M1

+ IM2<
√
tBu

]
du ≥ G1(g̃,ε), where lim

ε→0
εG1(g̃,ε) = −

β2

2

∫ 1

0
g̃(u)−2p du.

Proof. By (2.7),

V(x)
[
I0<x<M1 + IM2<x

]
= −

(
α2

2x2q +
qα

2xq+1

)
I0<x<M1 −

(
β2

2x2p +
pβ

2xp+1

)
IM2<x .

This is nonpositive and increasing, since α ≥ 0 and β > 0. By (3.6), for u ∈ [0,1], Bu ≥
g̃(u)
√
ε

, and so

V
(√

tBu

)
≥ V

(√
t
ε g̃(u)

)
. Thus for τ0(Z) > 1,

t
∫ 1

0
V(
√

tBu)

[
I√tBu<M1

+ IM2<
√
tBu

]
du ≥ t

∫ 1

0
V

(√
t
ε g̃(u)

) [
I√tBu<M1

+ IM2<
√
tBu

]
du

= −t
∫ 1

0

[
α2

2

(√
t
ε g̃(u)

)−2q

+
qα
2

(√
t
ε g̃(u)

)−q−1
]

I√tBu<M1
du

− t
∫ 1

0

[
β2

2

(√
t
ε g̃(u)

)−2p

+
pβ
2

(√
t
ε g̃(u)

)−p−1
]

IM2<
√
tBu

du

≥ −t
∫ 1

0

[
α2

2

(√
t
ε g̃(u)

)−2q

+
qα
2

(√
t
ε g̃(u)

)−q−1
]

I√
t/εg̃(u)<M1

du

− t
∫ 1

0

[
β2

2

(√
t
ε g̃(u)

)−2p

+
pβ
2

(√
t
ε g̃(u)

)−p−1
]

du

(since IM2<
√
tBu
≤ 1 and since τ0(Z) > 1 implies I√tBu<M1

= I√t(Zu+g̃(u)/
√
ε)<M1

≤ I√
t/εg̃(u)<M1

for

u ∈ [0,1])

= −
1
2

∫ 1

0

[
α2ε(2q−p−1)/(1−p)g̃(u)−2q + qαε(q−p)/(1−p)g̃(u)−q−1

]
Ig̃(u)<M1ε1/(1−p) du

−
1
2

∫ 1

0

[
β2ε−1g̃(u)−2p + pβg̃(u)−p−1

]
du, (3.8)

where we have used (3.3) to replace the variable t in terms of the variable ε.
Define G1(g̃,ε) = RHS(3.8). Then

εG1(g̃,ε) = −
1
2

∫ 1

0

[
α2ε2(q−p)/(1−p)g̃(u)−2q + qαε(1+q−2p)/(1−p)g̃(u)−q−1

]
Ig̃(u)<M1ε1/(1−p) du

−
1
2

∫ 1

0

[
β2g̃(u)−2p + pβεg̃(u)−p−1

]
du. (3.9)
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Now if ε < (δ/M1)
1−p , then for any u ∈ [0,1], g̃(u) ≥ δ > M1ε

1/(1−p). Thus the first integral in (3.9)
is 0. The integrand in the second integral is bounded because g̃ ≥ δ and p > 0. It follows that

lim
ε→0

εG1(g̃,ε) = −
1
2

∫ 1

0
β2g̃(u)−2p du,

as claimed.

Lemma 3.4. For any positive C1 and γ, as ε→ 0 (where ε is from (3.3)),

Px/
√
t

(
C1t

∫ 1

0
I√

tBu+
√
t/ε g̃(u)<M2

du +
β

1 − p

(√
tB1

)1−p
+

1
√
ε

∫ 1

0
g̃′(u) dBu >

γ

ε
, τ0(B) > 1

)
= o

(
Px/
√
t (τ0(B) > 1)

)
.

Proof. Since τ0(B) > 1 implies Bu > 0 for u ∈ [0,1],

Px/
√
t

(
C1t

∫ 1

0
I√

tBu+
√
t/ε g̃(u)<M2

du >
γ

3ε
, τ0(B) > 1

)
≤ e−γ/3εEx/

√
t

[
exp

(
C1t

∫ 1

0
I√

tBu+
√
t/ε g̃(u)<M2

du
)

Iτ0(B)>1

]
≤ e−γ/3εEx/

√
t

[
exp

(
C1t

∫ 1

0
I√

t/ε g̃(u)<M2
du

)
Iτ0(B)>1

]
≤ e−γ/3ε exp

(
C1t

∫ 1

0
I√

t/ε δ<M2
du

)
Px/
√
t (τ0(B) > 1), (3.10)

(since g̃ ≥ δ). But by (3.3),
t
ε
= ε−(1+p)/(1−p)−1→∞ as ε→ 0, so for small ε, I√

t/ε δ<M2
= 0 and we

get

Px/
√
t

(
C1t

∫ 1

0
I√

tBu+
√
t/ε g̃(u)<M2

du >
γ

3ε
, τ0(B) > 1

)
≤ e−γ/3ε . (3.11)

Next, for some constant C (whose exact value might change from line to line), independent of ε,

Px/
√
t

(
β

1 − p

(√
tB1

)1−p
>
γ

3ε

)
= Px/

√
t

(
B1 > C

(γ
ε

)1/(1−p)
t−1/2

)
≤ exp

(
−Cε−1/(1−p)t−1/2

)
Ex/
√
t

[
eB1

]
= exp

(
−Cε−1/2 + xε(1+p)/2(1−p) + 1/2

)
, (3.12)

using (3.3) to write t in terms of ε. Finally,

Px/
√
t

(
1
√
ε

∫ 1

0
g̃′(u) dBu >

γ

3ε

)
≤ e−γ/3

√
ε Ex/

√
t

[
exp

(∫ 1

0
g̃′(u) dBu

)]
= e−γ/3

√
ε exp

(
1
2

∫ 1

0
g̃′(u)2 du

)
, (3.13)

since under Px/
√
t ,

∫ 1
0 g̃′(u) dBu is normal with mean 0 and variance

∫ 1
0 g̃′(u)2 du.
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Combining (3.11)–(3.13), we get

Px/
√
t

(
C1t

∫ 1

0
I√

tBu+
√
t/ε g̃(u)<M2

du +
β

1 − p

(√
tB1

)1−p
+

1
√
ε

∫ 1

0
g̃′(u) dBu >

γ

ε
, τ0(B) > 1

)
≤ Px/

√
t

(
C1t

∫ 1

0
I√

tBu+
√
t/ε g̃(u)<M2

du >
γ

3ε
, τ0(B) > 1

)
+ Px/

√
t

(
β

1 − p

(√
tB1

)1−p
>
γ

3ε
, τ0(B) > 1

)
+ Px/

√
t

(
1
√
ε

∫ 1

0
g̃′(u) dBu >

γ

3ε
, τ0(B) > 1

)
≤ e−γ/3ε +C2 exp

(
−Cε−1/2 + xε(1+p)/2(1−p)

)
+C3e−γ/3

√
ε, (3.14)

where the constants are independent of ε. From Feller [12], as t→∞ (or equivalently, as ε→ 0)

Px/
√
t (τ0(B) > 1) =

2
√

2π

∫ x/
√
t

0
e−u

2/2 du ∼
2
√

2π

x
√

t
=C4 ε

(1+p)/2(1−p), (3.15)

where C4 is independent of ε and we have used (3.3) to write t in terms of ε.
Combining (3.14)–(3.15) yields the conclusion of the Lemma.

Lemma 3.5. For any C1 > 0 and γ > 0, with ε > 0 from (3.3),

lim
ε→0

εlogPx/√t

(
C1t

∫ 1

0
I√
tBu+
√
t/εg̃(u)<M2

du+
β

1 − p

(√
tB1

)1−p
+

1
√
ε

∫ 1

0
g̃′(u)dBu ≤

γ

ε
,τ0(B) > 1

)
= 0.

Proof. Write

M =C1t
∫ 1

0
I√

tBu+
√
t/εg̃(u)<M2

du +
β

1 − p

(√
tB1

)1−p
+

1
√
ε

∫ 1

0
g̃′(u) dBu .

Then we want to show

lim
ε→0

ε log Px/
√
t

(
M ≤

γ

ε
, τ0(B) > 1

)
= 0. (3.16)

Notice

Px/
√
t

(
M ≤

γ

ε
, τ0(B) > 1

)
= Px/

√
t (τ0(B) > 1) − Px/

√
t

(
M >

γ

ε
, τ0(B) > 1

)
= Px/

√
t (τ0(B) > 1)

[
1 − Px/

√
t

(
M >

γ

ε
, τ0(B) > 1

) /
Px/
√
t (τ0(B) > 1)

]
.

It follows that

ε log Px/
√
t

(
M ≤

γ

ε
, τ0(B) > 1

)
= ε log Px/

√
t (τ0(B) > 1)

+ ε log
[
1 − Px/

√
t

(
M >

γ

ε
, τ0(B) > 1

) /
Px/
√
t (τ0(B) > 1)

]
.

Equation (3.16) follows from this, using Lemma 3.4 and (3.15).
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Lemma 3.6. For any C1 > 0, with ε > 0 from (3.3),

lim inf
ε→0

ε log Ex/
√
t

[
exp

(
−C1t

∫ 1

0
I√

tBu+
√
t/εg̃(u)<M2

du −
β

1 − p

(√
tB1

)1−p

−
1
√
ε

∫ 1

0
g̃′(u) dBu

)
Iτ0(B)>1

]
≥ 0.

Proof. For any γ > 0,

lim inf
ε→0

ε log Ex/
√
t

[
exp

(
−C1t

∫ 1

0
I√

tBu+
√
t/εg̃(u)<M2

du −
β

1 − p

(√
tB1

)1−p

−
1
√
ε

∫ 1

0
g̃′(u) dBu

)
Iτ0(B)>1

]
≥ lim inf

ε→0
ε log Ex/

√
t

[
e−γ/ε I

(
C1t

∫ 1

0
I√

tBu+
√
t/εg̃(u)<M2

du +
β

1 − p

(√
tB1

)1−p

+
1
√
ε

∫ 1

0
g̃′(u) dBu ≤

γ

ε

)
Iτ0(B)>1

]
= lim inf

ε→0

[
−γ + ε log Px/

√
t

(
C1t

∫ 1

0
I√

tBu+
√
t/εg̃(u)<M2

du +
β

1 − p

(√
tB1

)1−p

+
1
√
ε

∫ 1

0
g̃′(u) dBu ≤

γ

ε
,τ0(B) > 1

)]
≥ −γ + 0,

by Lemma 3.5. Let γ→ 0 to finish.

Lemma 3.7. We have for ε > 0 from (3.3),

lim inf
ε→0

ε logEx/
√
t

[
exp

(
t
∫ 1

0
V(
√

tBu)IM1<
√
tBu<M2

du
)
h(
√

tB1)Iτ0(Z)>1

]
≥−

β

1 − p
g̃(1)1−p−

1
2

∫ 1

0
g̃′(u)2du.

Proof. Since V is bounded on [M1,M2], there is C1 > 0 such that |V | ≤ C1 on that interval. Then

Ex/
√
t

[
exp

(
t
∫ 1

0
V(
√

tBu)IM1<
√
tBu<M2

du
)

h(
√

tB1)Iτ0(Z)>1

]
≥ Ex/

√
t

[
exp

(
t
∫ 1

0
V(
√

tBu)IM1<
√
tBu<M2

du
)

h(
√

tB1)IM2<
√
tB1

Iτ0(Z)>1

]
≥ CEx/

√
t

[
exp

(
−C1t

∫ 1

0
I√tBu<M2

du −
β

1 − p
(
√

tB1)
1−p

)
IM2<

√
tB1

Iτ0(Z)>1

]
(where C is from (2.5) and using that IM1<

√
tBu<M2

≤ I√tBu<M2
)

≥ CEx/
√
t

[
exp

(
−C1t

∫ 1

0
I√

tZu+
√
t/εg̃(u)<M2

du −
β

1 − p

(√
tZ1 +

√
t/εg̃(1)

)1−p
)
·
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· I
M2<
√
t/εg̃(1)Iτ0(Z)>1

]
(
using (3.4) and that IM2<

√
tB1
= I

M2<
√
tZ1+
√
t/εg̃(1) ≥ I

M2<
√
t/εg̃(1) for τ0(Z) > 1

)
≥ CEx/

√
t

[
exp

(
−C1t

∫ 1

0
I√

tZu+
√
t/εg̃(u)<M2

du −
β

1 − p

(√
tZ1

)1−p

−
β

1 − p

(√
t/ε g̃(1)

)1−p
)

I
M2<
√
t/εg̃(1)Iτ0(Z)>1

]
(using that (a + b)1−p ≤ a1−p + b1−p since 0 < p < 1)

=C exp
(
−

β

1 − p

(√
t/ε g̃(1)

)1−p
)

I
M2<
√
t/εg̃(1)·

· Ex/
√
t

[
exp

(
−C1t

∫ 1

0
I√

tBu+
√
t/εg̃(u)<M2

du −
β

1 − p

(√
tB1

)1−p

−
1
√
ε

∫ 1

0
g̃′(u) dBu −

1
2ε

∫ 1

0
g̃′(u)2 du

)
Iτ0(B)>1

]
(by the Cameron-Martin-Girsanov Theorem)

=C exp
(
−

β

1 − p

(√
t/ε g̃(1)

)1−p
−

1
2ε

∫ 1

0
g̃′(u)2 du

)
I
M2<
√
t/εg̃(1)·

· Ex/
√
t

[
exp

(
−C1t

∫ 1

0
I√

tBu+
√
t/εg̃(u)<M2

du −
β

1 − p

(√
tB1

)1−p

−
1
√
ε

∫ 1

0
g̃′(u) dBu

)
Iτ0(B)>1

]
. (3.17)

From this and Lemma 3.6, we get

lim inf
ε→0

ε log Ex/
√
t

[
exp

(
t
∫ 1

0
V(
√

tBu)IM1<
√
tBu<M2

du
)

h(
√

tB1)Iτ0(Z)>1

]
≥ lim inf

ε→0
ε

(
logC −

β

1 − p

(√
t/ε g̃(1)

)1−p
−

1
2ε

∫ 1

0
g̃′(u)2 du + log I

M2<
√
t/εg̃(1)

)
+ 0

= lim inf
ε→0

(
ε logC −

β

1 − p
g̃(1)1−p −

1
2

∫ 1

0
g̃′(u)2 du + ε log IM2<ε−1/(1+p)g̃(1)

)
(using (3.3) to substitute for t in terms of ε)

= −
β

1 − p
g̃(1)1−p −

1
2

∫ 1

0
g̃′(u)2 du,
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since limε→0 IM2<ε−1/(1+p)g̃(1) = 1, as g̃(1) = g(1) + δ > 0.

Proof of Theorem 3.2. By Theorem 2.1 in §2 of Supplement [9], γ(p, β) = infω∈K0 , ω≥0 F(ω), where
F is from (3.2), so it suffices to show

lim inf
t→∞

t−(1−p)/(1+p) log Px(τ0(X) > t) ≥ − inf
g∈K0
g≥0

F(g). (3.18)

To see why, let g ∈ K0 with g ≥ 0. By (3.3) and (3.7), (recalling g ≥ 0 and g ∈ C0),

lim inf
t→∞

t−(1−p)/(1+p) log Px(τ0(X) > t)

≥ lim inf
ε→0

ε log Ex/
√
t

[
exp

(
t
∫ 1

0
V(
√

tBu) du
)

h(
√

tB1)Iτ0(Z)>1

]
, and by using Lemma 3.3,

≥ lim inf
ε→0

ε log Ex/
√
t

[
exp

(
G1(g̃,ε) + t

∫ 1

0
V(
√

tBu)IM1<
√
tBu<M2

du
)

h(
√

tB1)Iτ0(Z)>1

]
,

= lim inf
ε→0

[
εG1(g̃,ε) + ε log Ex/

√
t [exp

(
t
∫ 1

0
V(
√

tBu)IM1<
√
tBu<M2

du
)

h(
√

tB1)Iτ0(Z)>1

]
≥ −

β2

2

∫ 1

0
g̃(u)−2p du −

β

1 − p
g̃(1)1−p −

1
2

∫ 1

0
g̃′(u)2 du, (by Lemmas 3.2 and 3.7).

Recalling g̃ = g + δ, where δ > 0 was arbitrary, we can let δ→ 0 to end up with

lim inf
t→∞

t−(1−p)/(1+p)logPx(τ0(X) > t)≥−
β2

2

∫ 1

0
g(u)−2pdu −

β

1 − p
g(1)1−p−

1
2

∫ 1

0
g′(u)2du = −F(g).

Since g ≥ 0 in K0 was arbitrary, (3.18) holds.

Proof of Theorem 3.1. Since b is bounded below on [M1,M2], we can choose C < 0 such that C ≤ b
on [M1,M2]. Then for some x1 < M1 and x2 > M2, we can choose b̃ ∈ C3(0,∞) such that

b̃(x) =
{
−|α |x−q, x ∈ (0, x1]

−βx−p, x ∈ [x2,∞),

and b ≥ b̃ on (0,∞). By the Comparison Theorem, if dYt = dBt + b̃(Yt ), Y0 = x, then

Px(τ0(X) > t) ≥ Px(τ0(Y ) > t).

The desired lower bound follows from Theorem 3.2 applied to Y .

4. Upper bound: a special C3 case

The main theorem of this section is the following special case. It will be crucial in proving the general
case.
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Theorem 4.1. Let Xt be from (1.1) where b from (1.2) satisfies α ≥ 0, b ∈ C3 and b′ ≥ 0 on (0,∞).
Then, with γ(p, β) from (1.4), we have

lim sup
t→∞

log Px(τ0(X) > t) ≤ −γ(p, β).

Proof. Let h be from (2.1) and V from (2.7). By Lemma 2.4 and our hypotheses that b′ ≥ 0 and α ≥ 0,

V(x) ≤ V(x)I(M1 ,∞)(x) =V(x)I[M2 ,∞)(x) −
1
2

(
b2(x) + b′(x)

)
I(M1 ,M2)(x) ≤ V(x)I[M2 ,∞)(x). (4.1)

By Lemma 2.3, since β > 0,

h(x) ≤ C exp
(
−

β
1−p x1−p

)
, x > 0. (4.2)

By Lemma 2.5, (4.1), scaling and translation,

Px(τ0(X)> t)=Ex

[
exp

(∫ t

0
V(Bs) ds

)
h(Bt )Iτ0(B)>t

]
≤Ex

[
exp

(∫ t

0
(V I[M2 ,∞)(Bs)) ds

)
h(Bt )Iτ0(B)>t

]
= E0

[
exp

(
t
∫ 1

0
(V I[M2 ,∞)(

√
t(Bu + x/

√
t)) du

)
· h(
√

t(B1 + x/
√

t))Iτ0(B+x/
√
t)>1

]
. (4.3)

Writing ε = t−(1−p)/(1+p) and xε = xε1/(1−p), we have
√

t(Bu + x/
√

t) =
√

tBu + x = ε−1/(1−p)(ε1/2Bu + xε).

By (2.7) and (1.2),

V I[M2 ,∞)(ax) = − 1
2

(
β2a−2px−2p + pβa−p−1x−p−1

)
I[a−1M2 ,∞)

(x) ≤ − 1
2 β

2a−2px−2p I[a−1M2 ,∞)
(x).

Thus

(V I[M2 ,∞))(
√

tBu + x) = (V I[M2 ,∞))(ε
−1/(1−p)(ε1/2Bu + xε))

≤ − 1
2 β

2ε2p/(1−p)(ε1/2Bu + xε)−2p I[ε1/(1−p)M2 ,∞)
(ε1/2Bu + xε). (4.4)

By (4.2),

h(
√

tB1 + x) ≤ C exp
(
−

β
1−p (
√

tB1 + x)1−p
)
=C exp

(
−

β
1−p ε

−1(ε1/2B1 + xε)1−p
)
. (4.5)

Substituting t = ε−(1+p)/(1−p) into (4.3) and using (4.4)–(3.5) gives

Px(τ0(X) > t) ≤ CE0

[
exp

(
−
β2

2 ε
−1

∫ 1
0

(
ε1/2Bu + xε

)−2p
I[ε1/(1−p)M2 ,∞)

(ε1/2Bu + xε) du

−
β

1−p ε
−1

(
ε1/2B1 + xε

)1−p
)

Iτ0(ε1/2B+xε )>1

]
≤ CE0

[
exp

(
−
β2

2 ε
−1

∫ 1
0

(
ε1/2Bu + xε

)−2p
I[ε1/(1−p)M2 ,∞)

(ε1/2Bu + xε) du

−
β

1−p ε
−1

��ε1/2B1 + xε
��1−p)] .
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Writing Qε for the law on C([0,∞),R) of
√
εB under P0, this becomes

Px(τ0(X) > t) ≤ CEQε

[
exp

(
−
β2

2 ε
−1

∫ 1
0 (ωu + xε)−2p I[ε1/(1−p)M2 ,∞)

(ωu + xε) du

−
β

1−p ε
−1 |ω1 + xε |1−p

)]
=CEQε

[
exp

(
− 1
ε Jε(ω)

)]
, where

Jε(ω) =
β2

2

∫ 1

0
(ωu + xε)−2p I[ε1/(1−p)M2 ,∞)

(ωu + xε) du + β
1−p |ω1 + xε |1−p .

Set

J(ω) = β2

2

∫ 1

0
ω
−2p
u Iωu ≥0 du + β

1−pω
1−p
1 Iω1≥0,

if the integral is finite, otherwise set J(ω) =∞. Then J is lower semicontinuous on C0, and if ωn→ ω

in C0 as n→∞, then lim infn→∞,ε→0+ Jε(ωn) ≥ J(ω). If ω ∈ K0 = {ω ∈ C0 :
∫ 1

0 |ω
′
u |

2 du < ∞}, by
Varadhan’s Theorem ([27], Theorem 2.3),

lim sup
ε→0+

ε log EQε

[
exp

(
− 1
ε Jε(ω)

)]
≤ − infω∈C0

[
J(ω) + 1

2

∫ 1
0 (ω

′
u)

2 du
]

= − infω∈K0

[
J(ω) + 1

2

∫ 1
0 |ω

′
u |

2 du
]
.

By Theorem 2.1 in Supplement [9], the infimum is γ(p, β). This completes the proof.

5. Transformation of drift

In this section we set the stage to extend Theorem 4.1 to a drift with nonnegative α and b that can take
on positive values on [M1,M2]. There will be no increasing or C3 conditions imposed. We will also set
things up for the case of negative α.

First we prove a variant of the formula in Lemma 2.5 that is applicable to discontinuous drifts.

Lemma 5.1. Suppose bX and bY satisfy (1.2) with the same M1 and M2. If bX and bY are continuous
on (0,∞)\{M2} and each restricted to (M1,M2) has a C1 extension to [M1,M2], then the function

g(y) =

∫ y

0
(bX − bY ) (z) dz (5.1)

is a linear combination of convex functions with generalized second derivative µ given by

µ(A) = (bX − bY )(M2−) δM2 (A) −
∫
A

( (
b′X − b′Y

)
I(M1 ,M2)

)
(a) da (5.2)

for any Borel set A ⊆ (0,∞). Here δM2 is the unit point mass at M2.

Proof. By our assumptions on bX and bY , bX −bY is of bounded variation on any bounded open subset
U of (0,∞), hence g is a linear combination of convex functions on U (Roberts and Varberg [26], page
23). We now show its generalized second derivative is given by (5.2).
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Since g′ = bX − bY a.e., it suffices to show for each H ∈ C∞0 (0,∞),∫
(H ′(bX − bY )) (a) da =

∫
H(a) dµ(a). (5.3)

To this end, let H be so given. Then denoting the C1 extensions of bX , bY on (M1,M2) to [M1,M2]

by b̃X , b̃Y , respectively,∫
H ′(bX − bY ) =

∫
H ′(b̃X − b̃Y )I(M1 ,M2)

(since bX = bY on (0,M1] ∪ [M2,∞))

= lim
ε→0+

∫
H ′(b̃X − b̃Y )I(M1+ε,M2−ε)

= lim
ε→0+

[
(H(b̃X − b̃Y ))(M2 − ε) − (H(b̃X − b̃Y ))(M1 + ε) −

∫ M2−ε

M1+ε
H(b̃′X − b̃′Y )

]
= lim
ε→0+

[
(H(bX − bY ))(M2 − ε) − (H(bX − bY )) (M1 + ε) −

∫ M2−ε

M1+ε
H(b′X − b′Y )

]
= (H(bX − bY )) (M2−) −

∫ M2

M1

H(b′X − b′Y )

(since bX ,bY are continuous at M1 and coincide there, and b̃′X − b̃′Y=b′X − b′Y is bounded on(M1,M2))

= H(M2)(bX − bY )(M2−) −

∫ M2

M1

H(b′X − b′Y ),

(since H is continuous). This gives (5.2).

Lemma 5.2. Let x > 0 and let 
dXt = dBt + bX (Xt ) dt, X0 = x

dYt = dBt + bY (Yt ) dt, Y0 = x
(5.4)

be such that bX and bY satisfy (1.2) with the same M1 and M2. If bX and bY are continuous on
(0,∞)\{M2} and each restricted to (M1,M2) has a C1 extension to [M1,M2], then for g as in (5.1) and
H =

(
b2
X − b2

Y

)
−

(
b′X − b′Y

)
I(M1 ,M2), we have

Px(τ0(X)> t)=Ex

[
exp

(
g(Yt )−g(x)− 1

2

∫ t

0
H(Ys) ds− 1

2 (bX − bY )(M2−) `
M2
t (Y )

)
Iτ0(Y)>t

]
, (5.5)

where `M2
t (Y ) is the local time of Y at M2.

Proof. The idea is similar to the one used by Pinsky [23] to get the formula cited in Lemma 2.5: use
the Girsanov Theorem and eliminate the stochastic integral in the martingale measure. Our reference
for the particular form of the Girsanov Theorem that we use is Theorem 8.6.6 in Oksendal [22].
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Let 0 < ε < M1 ≤ M2 < M such that x ∈ (ε,M). Then since bX − bY is bounded on (ε,M), the “Local
Novikov Condition” holds:

Ex

[
exp

(
1
2

∫ t∧τε,M (Y)

0
(bX − bY )2(Ys) ds

)]
<∞.

It follows that

Mt = exp

(∫ t∧τε,M (Y)

0
(bX − bY )(Ys) dBs −

1
2

∫ t∧τε,M (Y)

0
(bX − bY )2(Ys) ds

)
is a martingale. By Girsanov’s Theorem,

Px(τε,M (X) > t) = Ex

[
Mt Iτε,M (Y)>t

]
= Ex

[
exp

(∫ t

0
(bX − bY )(Ys) dBs −

1
2

∫ t

0
(bX − bY )2(Ys) ds

)
Iτε,M (Y)>t

]
. (5.6)

Now we eliminate the stochastic integral in (5.6). By Lemma 5.1, we can apply the Itô-Tanaka for-
mula (Revuz and Yor [25]) to get for τε,M (Y ) > t,

g(Yt ) = g(x) +
∫ t

0
g′−(Ys) [dBs + bY (Ys) ds] + 1

2

∫
`at (Y )µ(da),

where g′− is the left derivative and µ(da) is the generalized second derivative of g from (5.2) in Lemma
5.1. By our hypotheses on bX and bY , g′− = bX − bY a.e. on (0,∞). Using this, the occupation times
formula (Revuz and Yor [25]) and Lemma 5.1 gives, for τε,M (Y ) > t,

g(Yt ) = g(x) +
∫ t

0
(bX − bY )(Ys) [dBs + bY (Ys) ds]

+ 1
2

[
(bX − bY )(M2−) `

M2
t (Y ) −

∫ t

0
((b′X − b′Y )I(M1 ,M2))(Ys) ds

]
.

Solving for the stochastic integral, we get, for τε,M (Y ) > t,∫ t

0
(bX − bY )(Ys) dBs = g(Yt ) − g(x) −

∫ t

0
((bX − bY )bY )(Ys) ds

+ 1
2

∫ t

0

(
(b′X − b′Y )I(M1 ,M2)

)
(Ys) ds − 1

2 (bX − bY )(M2−) `
M2
t (Y ).

Substituting this into the exponential in (5.6) gives

Px(τε,M(X) > t) = Ex

[
exp

(
g(Yt ) − g(x) −

∫ t

0
((bX − bY )bY )(Ys) ds

+ 1
2

∫ t

0

(
(b′X − b′Y )I(M1 ,M2)

)
(Ys) ds − 1

2 (bX − bY )(M2−) `
M2
t (Y )

− 1
2

∫ t

0
(bX − bY )2(Ys) ds

)
Iτε,M (Y)>t

]
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= Ex

[
exp

(
g(Yt ) − g(x) − 1

2

∫ t

0
H(Ys) ds

− 1
2 (bX − bY )(M2−) `

M2
t (Y )

)
Iτε,M (Y)>t

]
.

By Monotone Convergence and Lemma 2.1, upon letting ε ↓ 0 and M ↑ ∞, we get the desired con-
clusion.

Next, we prove a variant of the previous results applicable to the case α < 0.

Lemma 5.3. Let b1 and b2 satisfy (1.2) with the same β > 0, M1 and M2, but the corresponding
α’s—call them α1 and α2, respectively—are different. Suppose b1 and b2 are continuous on (0,∞) and
for some M ∈ (M1,M2), b1 − b2 restricted to (M1,M) and (M,M2) has C1 extensions to [M1,M] and
[M,M2], respectively. Then the function

g(y) =

∫ y

0
(b1 − b2) (z) dz (5.7)

is a linear combination of convex functions with generalized second derivative µ given by

µ(A) = −
∫
A

( (
b′1 − b′2

)
I(M1 ,M2)

)
(a) da, (5.8)

for any Borel set A ⊆ (0,∞).

Proof. This is similar to the proof of Lemma 5.1, except because of the continuity of b1 and b2 on
(0,∞), there will be no point mass term in the generalized second derivative.

Lemma 5.4. Let x > 0 and let 
dXt = dBt + bX (Xt ) dt, X0 = x

dYt = dBt + bY (Yt ) dt, Y0 = x
(5.9)

be such that b1 and b2 satisfy (1.2) with the same β > 0, M1 and M2, but the corresponding α’s—call
them α1 and α2, respectively—are different. Suppose b1 and b2 are continuous on (0,∞) and for some
M ∈ (M1,M2), b1 − b2 restricted to (M1,M) and (M,M2) has C1 extensions to [M1,M] and [M,M2].
Then for g as in (5.7) and

H =
(
b2

1 − b2
2

)
−

(
b′1 − b′2

)
I(M1 ,M2)\{M },

we have

Px(τ0(X) > t) = Ex

[
exp

(
g(Yt ) − g(x) − 1

2

∫ t

0
H(Ys) ds

)
Iτ0(Y)>t

]
. (5.10)

Proof. This is a simple modification of the proof of Lemma 5.1, where again, because of the continuity
of b1 and b2 on (0,∞), there will be no local time term.
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6. Upper bound
The main result of this section is the following theorem, which combined with Theorem 3.1 will prove
Theorem 1.1.

Theorem 6.1. Let Xt be as in (1.1), where b is from (1.2). Then

lim sup
t→∞

t−(1−p)/(1+p) log Px(τ0(X) > t) ≤ −γ(p, β),

where γ(p, β) is from (1.4).

We break up the proof into the cases when α > 0, α < 0 and α = 0, in that order.

Let α > 0. We will remove the assumptions that b ∈ C3 and b′ ≥ 0 in Theorem 4.1.

Lemma 6.2. Under the condition (1.2), if α > 0, then the solution Xt of (1.1) satisfies

lim sup
t→∞

log Px(τ0(X) > t) ≤ −γ(p, β),

where γ(p, β) is from (1.4).

The proof uses several arguments that we consider next. The basic setup is as follows.
Let 0 < x1 < x2, y1 < y2 < 0 and γ > 0 be given. Consider the lines

b̃X (x) =
γ − y1

x2 − x1
(x − x1) + y1, x > 0 (6.1)

and

b̃Y (x) =
y2 − y1

x2 − x1
(x − x1) + y1, x > 0. (6.2)

Then b̃X passes through the points (x1, y1) and (x2,γ) and b̃Y passes through (x1, y1) and (x2, y2).

Lemma 6.3. For γ sufficiently large,

b̃2
X − b̃2

Y − (b̃
′
X − b̃′Y ) ≥ 0 on [x1, x2].

Proof. We have

b̃2
X − b̃2

Y =

(
x − x1

x2 − x1

)2 [
(γ − y1)

2 − (y2 − y1)
2
]
+

2y1(γ − y2)

x2 − x1
(x − x1)

and b̃2
X − b̃2

Y takes on its minimum value −
y2

1 (γ−y2)
2

(γ−y1)2−(y2−y1)2
at the point x = x1 −

y1(γ−y2)(x2−x1)

(γ−y1)2−(y2−y1)2
(note

that γ − y1 > y2 − y1 > 0). In particular, on [x1, x2],

(b̃2
X−b̃2

Y )(x) + (b̃
′
X − b̃′Y )(x) ≥ −

y2
1(γ − y2)

2

(γ − y1)2 − (y2 − y1)2
+
γ − y1

x2 − x1
−

y2 − y1

x2 − x1

= −
y2

1(γ − y2)
2

(γ − y1)2 − (y2 − y1)2
+
γ − y2

x2 − x1
= (γ − y2)

[
−

y2
1(γ − y2)

(γ − y1)2 − (y2 − y1)2
+

1
x2 − x1

]
≥ 0,



20

for large γ.

Lemma 6.4. Let dZt = dBt + bZ (Zt ) dt, where bZ satisfies (1.2) with bZ =C > 0 on (M1,M2). Then

lim sup
t→∞

log Px(τ0(Z) > t) ≤ −γ(p, β),

where γ(p, β) is from (1.4).

Proof. By our hypotheses,

bZ (x) =

−αx−q, x ∈ (0,M1]

C, x ∈ (M1,M2)

−βx−p, x ∈ [M2,∞).
(6.3)

In Lemma 5.2, choose (x2, y2) = (M2,−βM−p2 ) and (x1, y1) =
(
M1
K ,−α

(
M1
K

)−q)
where K > 1 is so

large that y1 < y2. Notice this tells us y1 < −αM−q1 . Then we can choose γ > 0 so large that the
conclusion of Lemma 5.2 holds for b̃X and b̃Y given by (6.1) and (6.2):

b̃2
X − b̃2

Y − (b̃
′
X − b̃′Y ) ≥ 0 on [x1, x2]. (6.4)

Define

bX (x) =

−αx−q, x ∈ (0, x1]

b̃X (x), x ∈ (x1, x2) = (x1,M2)

−βx−p, x ∈ [x2,∞) = [M2,∞)
(6.5)

and

bY (x) =

−αx−q, x ∈ (0, x1]

b̃Y (x), x ∈ (x1, x2) = (x1,M2)

−βx−p, x ∈ [x2,∞) = [M2,∞).
(6.6)

Then by definition of bX , bY and (6.4),

b2
X − b2

Y − (b
′
X − b′Y )I(x1 ,x2) ≥ 0 on (0,∞). (6.7)

Notice this continues to hold if γ is made larger. Since x1 =
M1
K < M1, we can make γ larger, if

necessary, so that the line segment {(x,C) : M1 < z < M2} (recall C is from (6.3)) lies to the right
of the line through the points (x1, y1) and (x2,γ). Since x1 < M1, we have bZ ≤ bX on (0,∞). By the
Comparison Theorem,

Px(τ0(Z) > t) ≤ Px(τ0(X) > t). (6.8)

We now apply Lemma 5.2 to bX , bY given by (6.5) and (6.6) respectively, but with M1,M2 in the
lemma taken to be x1, x2. First check the hypotheses of the Lemma:

• bX and bY are continuous on (0,∞)\{x2} since

lim
x→x−1

bX (x) = y1 = lim
x→x+1

bX (x) and lim
x→x−1

bY (x) = y1 = lim
x→x+1

bY (x).

• Since each is linear on (x1, x2), each restricted to (x1, x2) has a C1 extension to [x1, x2].
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Thus Lemma 5.2 applies and so for

g(z) =
∫ x

0
(bX − bY )(y) dy and H = (b2

X − b2
Y ) − (b

′
X − b′Y )I(x1 ,x2),

we have

Px(τ0(X) > t)=Ex

[
exp

(
g(Yt )−g(x)− 1

2

∫ t

0
H(Ys) ds− 1

2 (bX−bY ) (M2−) `
M2
t (Y )

)
Iτ0(Y)>t

]
. (6.9)

Now by (6.7), H ≥ 0, and by definition of bX and bY ,

(bX − bY )(M2−) = lim
x→x−2

(
b̃X (x) − b̃Y (x)

)
(by (6.5)–(6.6))

= b̃X (x2) − b̃Y (x2) (since b̃X and b̃Y are continuous)

= γ − y2 (by (6.1)–(6.2)) > 0.

Then (6.9) becomes

Px(τ0(X) > t) ≤ Ex

[
exp (g(Yt ) − g(x)) Iτ0(Y)>t

]
. (6.10)

Since bX = bY on (x1, x2)
c and since bX − bY = b̃X − b̃Y is bounded on (x1, x2), we see

g(z) =
∫ z

0
(bX − bY )(y) dy ≤ sup

(x1 ,x2)

(b̃X − b̃Y )(x2 − x1), z > 0.

Hence for some positive constant C1 independent of t, (6.10) becomes

Px(τ0(X) > t) ≤ C1Px(τ0(Y ) > t). (6.11)

The crucial point is that sup(0,∞) bY < 0. This holds because:

• on (0, x1], bY (x) = −αx−q ≤ −αx−p1 ;
• on (x1, x2), by (6.2) and that y1 < y2 < 0, bY = b̃Y ≤ y2 < 0;
• on (x2,∞), bY (x) = −βx−p ≤ −βx−p2 .

Thus Theorem 4.1 applies to the process Y , and we conclude

lim sup
t→∞

log Px(τ0(Y ) > t) ≤ −γ(p, β),

where γ(p, β) is from (1.4). Combined with (6.8) and (6.11), this gives us

lim sup
t→∞

log Px(τ0(Z) > t) ≤ −γ(p, β),

as desired.

Proof of Lemma 6.2. Let Xt be from (1.1), where b satisfies (1.2) and α ≥ 0. Let C = sup[M1 ,M2]
|b|.

Suppose dZt = dBt + bZ (Zt ) dt, where bZ satisfies (1.2) with bZ =C on (M1,M2). Then bX ≤ bZ and
so by the Comparison Theorem, Px(τ0(X) > t) ≤ Px(τ0(Z) > t). The desired upper bound follows upon
applying Lemma 6.4 to Z .
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Now let α < 0.

Lemma 6.5. Under the condition (1.2), if α < 0, then the solution Xt of (1.1) satisfies

lim sup
t→∞

log Px(τ0(X) > t) ≤ −γ(p, β),

where γ(p, β) is from (1.4).

For the proof, we need the following special case.

Lemma 6.6. Let α < 0. Assume b ∈ C3 satisfies condition (1.2). Suppose that for some x1 ∈ (0,M2),
b(x1) = 0 and b is strictly decreasing on (0, x1). Then the solution Xt of (1.1) satisfies

lim sup
t→∞

log Px(τ0(X) > t) ≤ −γ(p, β),

where γ(p, β) is from (1.4).

Proof. Define

bY (x) =
{
−b(x), x ∈ (0, x1]

b(x), x ∈ (x1,∞),
(6.12)

and let Yt solve dYt = dBt + bY (Yt ) dt, Y0 = x.
Now b and bY are continuous on (0,∞) and b − bY restricted to (M1, x1) and (x1,M2) has C1 exten-

sions to [M1, x1] and [x1,M2], respectively. Then by Lemma 5.4, taking M there to be x1, for

g(z) =
∫ z

0
(b− bY ) (y) dy and H =

(
b2 − b2

Y

)
−

(
b′ − b′Y

)
I(M1 ,M2)\{x1 },

we have

Px(τ0(X) > t) = Ex

[
exp

(
g(Yt ) − g(x) − 1

2

∫ t

0
H(Ys) ds

)
Iτ0(Y)>t

]
. (6.13)

On the other hand, b2 = b2
Y on (0,∞) and (b′ − b′Y )(x) =

{
2b′(x), x ∈ (M1, x1)

0, x ∈ (x1,∞)
≤ 0.

In particular, H ≥ 0 and (6.13) becomes

Px(τ0(X) > t) ≤ Ex

[
exp (g(Yt ) − g(x)) Iτ0(Y)>t

]
. (6.14)

Since b = bY on (x1,∞) and b−bY = 2b is nonnegative and integrable on (0, x1), we see g is bounded.
Hence for some positive constant C1 independent of t, (6.14) becomes

Px(τ0(X) > t) ≤ C1Px(τ0(Y ) > t). (6.15)

By Lemma 6.2 applied to Y ,

lim sup
t→∞

log Px(τ0(X) > t) ≤ lim sup
t→∞

log Px(τ0(Y ) > t) ≤ −γ(p, β),

where γ(p, β) is from (1.4).
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Proof of Lemma 6.5. Let Xt be from (1.1), where b satisfies (1.2) and α < 0. Let C > sup[M1 ,M2]
|b|

and choose α1 < α such that −α1 > CMq
2 . Then choose bY ∈ C3 having the following properties: for

some M3,M4 ∈ (M2,∞) with M3 < M4,

• bY (x) = −α1x−q on (0,M2];
• bY is strictly decreasing on [M2,M3];
• bY (M3) = 0;
• bY = b on [M4,∞).

Suppose dYt = dBt + bY (Yt ) dt. Then b ≤ bY and so by the Comparison Theorem, Px(τ0(X) > t) ≤
Px(τ0(Y ) > t). The process Y satisfies the conditions of Lemma 6.6 and the desired upper bound follows
by applying that lemma to Y .

Now let α = 0 and let Yt solve dYt = dBt + bY (Yt ) dt, Y0 = x,where

bY (x) =
{

x−q, x ∈ (0,M1]

b(x), x ∈ (M1,∞).

Then by the Comparison Theorem, Px(τ0(X) > t) ≤ Px(τ0(Y ) > t). Since the situation of α < 0 holds
for bY , that case implies

lim sup
t→∞

log Px(τ0(X) > t) ≤ lim sup
t→∞

log Px(τ0(Y ) > t) ≤ −γ(p, β),

once again. �

7. Proof of Theorem 1.2
Lemma 7.1. Let δ > 0 be so small that 0 < p− δ < p+ δ < 1 and 0 < q − δ < q + δ < 1. By decreasing
M1 and increasing M2 if necessary, we have

x−δ ≤ `2(x) ≤ xδ, for x ≥ M2, and xδ ≤ `1(x) ≤ x−δ, for x ≤ M1.

Proof. By making M2 bigger if necessary, by Theorem 3.2 (a) in Supplement [9], we get

M−δ2 `2(M2) ≤ 1/2 < 2 ≤ Mδ
2 `2(M2). (7.1)

Then by Theorem 3.1 (a) in Supplement [9], again by making M2 bigger if necessary, we have for
x ≥ M2,

`2(x)≤2 max
(
(x/M2)

δ,(x/M2)
−δ

)
`2(M2) = 2(x/M2)

δ`2(M2) = 2xδM−δ2 `2(M2) ≤ 2xδ(1/2) = xδ,

and

`2(M2) ≤ 2 max
(
(M2/x)δ,(M2/x)−δ

)
`2(x) = 2(x/M2)

δ`2(x) ≤ (Mδ
2 `2(M2))(x/M2)

δ`2(x)

= xδ`2(M2)`2(x).

Rearranging the latter, we have x−δ ≤ `2(x), so combined we get that if x ≥ M2 then
x−δ ≤ `2(x) ≤ xδ .

Similarly, by making M1 smaller if necessary, by Theorem 3.2 (b) and Theorem 3.1 (b) of Suplement
[9], we have that if x ≤ M1, then xδ ≤ `1(x) ≤ x−δ .
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Proof of Theorem 1.2. Let ε > 0 be small so that 0 < β0 − ε < β0 + ε < 1, and if necessary, decrease
M1 and increase M2 so that Lemma 7.1 continues to apply. We have α0 = sup(0,M1]

|α | < ∞, and if
x ≥ M2 then 0 < β0 − ε < β(x) < β0 + ε < 1.

Define

b̃(x) =

α0xq−δ, 0 < x ≤ M1
b(x), M1 < x < M2
−(β0 + ε)xp+δ, M2 ≤ x,

and b(x) =

−α0xq−δ, 0 < x ≤ M1
b(x), M1 < x < M2
−(β0 − ε)xp−δ, M2 ≤ x.

Let X̃t and X t be the solutions of the equations

dX̃t = dBt + b̃(X̃t ) dt, X̃0 = x, and dX t = dBt + b(X t ) dt, X0 = x.

Since b ≤ b ≤ b̃, by the Comparison Theorem we have

Px(τ0(X) > t) ≤ Px(τ0(X) > t) ≤ Px(τ0(X̃) > t).

But Theorem 1.1 applies to X̃t and X t and so we get

−γ(p − δ, β0 − ε) ≤ lim inf
t→∞

t−(1−p)/(1+p) log Px(τ0(X) > t)

≤ lim sup
t→∞

t−(1−p)/(1+p) log Px(τ0(X) > t) ≤ −γ(p + δ, β0 + ε).

Let ε and δ go to 0 to get the desired conclusion.
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Supplementary Material

Supplement to “Subexponential estimates for the first hitting time of a Brownian motion with
singular drift”
The supplementary material [9] contains auxiliary results that help the reader with some technical
details. In Section 1, a summary of h-transform results from Pinsky [23] leads to an important identity
that is used in Lemma 2.5. In Section 2, we summarize the main variational results from DeBlassie and
Smits [10] needed in the proof of Theorems 3.2 and 4.1. In the proof of Theorem 1.2 we used some
bounds and representations of slowly varying functions from Bingham, Goldie and Teugels [5], which
are summarized for convenience in Section 3.
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