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1. Introduction

Let (Ω,F , {Ft}, IP) be a complete probability space equipped with the right-continuous filtration {Ft}t≥0

and (E, E) be a complete separable metric space. Let {X(t) : t ≥ 0} be an (E, E)-valued progressively
measurable, time-homogeneous semi-Markov process with semi-Markov kernel Q(x,A×Γ), x ∈ E, A ∈ E ,
Γ ∈ B+ on (E × IR+, E × B+) (B+ is the Borel σ-algebra of IR+). Specifically, on the probability space
(Ω,F , IP), let us consider a jump type Markov process, with values in (E, E). If 0 = τ0 < τ1 < .... are the
jump times, one can define a discrete-time process {Xn, n = 0, 1, ...} by Xn := X(τn). This is a Markov
chain with the state space E and the transition probability kernel p(x, dy) := Q(x, dy× [0,∞)). Given a
probability measure µ on (E, E), one can define the probability measures IPµ as:

IPµ(A) = µIP(A) =

∫
E
µ(dx) p(x,A), x ∈ E, A ∈ F .

Let P be the transition probability operator corresponding to the transition probability p(x,A),

Pϕ(x) := IE[ϕ(Xn+1) |Xn = x] =

∫
E
p(x, dy)ϕ(y),
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and Pn the n-step transition operator corresponding to the n-step transition probability pn(x,A).

The stochastic process {(Xn, τn), n ≥ 0} is called the embedded Markov renewal process with renewal
times τn and

IP(Xn+1 ∈ A, τn+1 − τn ∈ Γ |Xn = x) = Q(x,A× Γ)

for any n ≥ 0, A ∈ E , and Γ ∈ B+.

Let N(t) = max{n : τn ≤ t} be the point process that counts the jumps of X in the time interval (0, t],
and the semi-Markov process {X(t) : t ≥ 0} defined by X(t) := XN(t). For n ≥ 1, define the inter-jumps
times θn = τn− τn−1, n ≥ 1. The random variable θn is also called the sojourn time in the state Xn, and
for any given {Xn, n ≥ 0} the random variables {θn, n ≥ 0} are mutually independent. Denote by θx,
x ∈ E, the sojourn time in the state x, and let Fx(t) = IP{θn+1 ≤ t |Xn = x} = Q(x,E × [0, t]) be the
sojourn distribution in the state x. The mean sojourn time in the state x, m(x), is

m(x) :=

∫ ∞
0

IP(θn+1 > t |Xn = x) dt =

∫ ∞
0

F̄x(t) dt, F̄x(t) = 1− Fx(t).

Assume that the stochastic kernel p(x,A) induces an ergodic Markov chain with stationary distribution
ν, such that the mean sojourn time is

m :=

∫
E
ν(dx)m(x) <∞.

The two-component process {(Xn, θn+1), n ≥ 0} taking values in E× [0,∞) is a Markov process, and
in the literature it is also called Markov renewal process. Its transition probabilities are given in terms
of the semi-Markov kernel

Q(x,A× Γ) = IP(Xn+1 ∈ A, θn+2 ∈ Γ |Xn = x). (1.1)

The transition operator of the Markov renewal process will be then defined as:

Qf(x) :=

∫
E×IR+

Q(x, dy × ds)f(y, s), (1.2)

for f : E× IR+ → IR+ measurable. Any measure µ on (E, E) induces a measure µQ on (E× IR+, E ×B+)
by

µQ(A× Γ) =

∫
E
µ(dx)Q(x,A× Γ).

The nth convolution of the semi-Markov kernel Q defined as,

Q(n)(x,A× Γ) =

∫
E×IR+

Q(x, dy × ds)Q(n−1)(y,A× (Γ− s)), n ≥ 2, (1.3)

gives the n-step transition probability of the Markov renewal process,

Q(n)(x,A,Γ) = IP(Xn ∈ A, θn+1 ∈ Γ |X0 = x).

2



Thus Q(n)(x,A, t) = Pn(x,A)Fx(t).

Also, the n-step transition operator of the Markov renewal process is defined as

Qnf(x) :=

∫
E×IR+

Q(n)(x, dy × ds)f(y, s), (1.4)

for f : E × IR+ → IR+ measurable. Let µg :=
∫
E µ(dx)g(x) for any g real-valued measurable function on

E and define the functionals

µQf :=

∫
E×E×IR+

µ(dx)Q(x, dy × ds)f(y, s)

and

µQnf :=

∫
E×E×IR+

µ(dx)Q(n)(x, dy × ds)f(y, s).

Throughout the paper, derivations are made under the following assumptions, unless otherwise spec-
ified.

A1. The semi-Markov process X is regular:

(∀)x ∈ E, (∀) t ≥ 0, IPx(N(t) <∞) = 1;

A2. The Markov chain {Xn, n ≥ 0} is ergodic and Harris recurrent, with stationary distribution ν.
Recall that a Markov chain is Harris recurrent if it is irreducible and for any set A ∈ E such that
ν(A) > 0, and for any intial distribution µ, we have IPµ(xn ∈ A i.o.) = 1;

A3. The mean sojourn time in a state x ∈ E is uniformly bounded: a ≤ supx∈Em(x) ≤ b, a, b > 0;

A4. The family of sojourn times {θx, x ∈ E} is uniformly integrable, i.e. as N →∞,

sup
x∈E

∫ ∞
N

IP(θn+1 > t |Xn = x) dt→ 0.

Below we state two important results regarding Markov renewal processes. For more explanations we
refer to [8, 16] and references therein.

Lemma 1.1 The Markov renewal processes {(Xn, τn), n ≥ 0} and {(Xn, θn+1), n ≥ 0} have the same
stationary measure that is induced by the stationary measure of the embedded Markov chain: if ν is the
stationary measure of the embedded Markov chain {Xn, n ≥ 0}, then ν̃ := νF defined by ν̃(dy × ds) =
ν(dy)Fy(ds) is the stationary measure for the Markov renewal processes.

For fixed t ∈ IR+, define Y (t) := t − τN(t) as the amount of time the process X(t) is at the current
state after the last jump.
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Lemma 1.2 The process {(X(t), Y (t)), t ≥ 0} defined on (Ω,F , IP) is a jointly Markov process with
stationary distribution on (E × IR+, E × B+),

π̃(A× Γ) =
1

m

∫
A
ν(dx)

∫
Γ
(1− Fx(u)) du.

The marginal law π(A) = π̃(A × IR+) on (E, E), is the stationary probability measure for the semi-
Markov process {X(t), t ≥ 0} and

π(A) =
1

m

∫
ν(dx)m(x) = lim

t→∞
IP(X(t) ∈ A|X(0) = x) for (∀)x ∈ E. (1.5)

2. Additive functionals of semi-Markov processes

Functional limit theorems for additive functionals of Markov and semi-Markov processes have been ex-
tensively studied in the literature. We refer to [9] for a functional central limit theorem for semi-Markov
processes in a discrete state space and [15] for one in a more general context. An invariance principle
for additive functionals of Markov processes is due to R.N. Bhattacharya [2]. Functional central limit
theorems, almost sure central limit theorems and large deviations for additive functionals of Markov
processes have been discussed in [12, 18]. In this section we will extend our previous results on additive
functionals of Markov processes to the semi-Markov setup. We will consider a class of additive function-
als of ergodic semi-Markov processes and prove that their associated Markov renewal processes satisfy a
martingale decomposition, which is a key result that leads us to a functional central limit theorem, an
almost sure central limit theorem and ultimately, to a large deviation principle for additive functionals
of semi-Markov processes.

Let {Xt, t ≥ 0} be a semi-Markov process with stationary probability measure π and f : E → IR+ a
Borel measurable function. Consider the additive functional

Wt :=

∫ t

0
f(X(s)) ds, (2.1)

that can be viewed as the reward earned over the interval [0, t] in a game where the reward at time s is
f(x), if X(s) = x. This is equivalent to,

Wt =

N(t)∑
k=1

f(Xk−1)θk + (t− τN(t))f(XN(t)).

Lemma 2.1 Let {Xt, t ≥ 0} be an ergodic semi-Markov with ergodic distribution π and {Xn, n ≥ 0} its
embedding Markov chain with stationary distribution ν. Assume that the function f ∈ L2(π) satisfies the
following conditions:

(i)
∫
E f dπ = 0,

(ii) there exists 0 < c < ∞ such that dµP k ≤ c dν for any k ∈ IN and
∫
{x:f2(x)>n} f

2(x)ν(dx) ≤ φ(n)
where

φ : IR+ → IR+, such that lim
x→∞

φ(x) = 0.
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Then, the random processes

Wn
t =

1

σ
√
n

∫ nt

0
f(Xu) du and W̃n

t =
1

σ
√
n

N(nt)∑
k=1

f(Xk−1)θk,

have the same limiting distribution.

Proof: We will show that for any T > 0, sup0≤t<T |Wn
t − W̃n

t |, converges in probability to zero. We
have:

IP(sup0≤t≤T |Wn
t − W̃n

t | > ε) ≤
IP(sup0≤t≤T |(nt− τN(nt))f(XN(nt))| > εσ

√
n) ≤

IP(sup0≤t≤T θN(nt)+1|f(XN(nt))| > εσ
√
n) ≤

IP( sup
0≤t≤T

θN(nt)+1 > εσ 4
√
n) + IP( sup

0≤t≤T
|f(XN(nt))| > 4

√
n). (2.2)

The first term in (2.2) can be upper bounded successively:

IP(sup0≤t≤T θN(nt)+1 > εσ 4
√
n) ≤

IP(sup0≤t≤T θN(nt)+1 > εσ 4
√
n, N(nT ) ≤ N) + IP(N(nT ) > N) ≤

P (sup0≤k≤N θk+1 > εσ 4
√
n) + IP(N(nT ) > N) ≤∑N

k=0 IP(θk+1 > εσ 4
√
n) + IP(N(nT ) > N) ≤

(N + 1)supx∈E
∫∞
εσ 4√n F̄x(t) dt+ IP(N(nT ) > N), for anyN > 0.

As n →∞, the first term goes to zero due to the uniform integrability condition while the second term
goes to zero as N →∞, due to the regularity condition [A1].

Similarly, the second term in (2.2) can be estimated as follows:

IP(sup0≤t≤T |f(XN(nt))| > 4
√
n) ≤

IP(sup0≤t≤T |f(XN(nt))| > 4
√
n, N(nT ) ≤ N) + IP(N(nT ) > N) ≤

IP(sup0≤k≤N |f(Xk)| > 4
√
n) + IP(N(nT ) > N) ≤∑N

k=0 IE|f(Xk)|1I{|f(Xk)|> 4√n} + IP(N(nT ) > N) ≤∑N
k=0

∫
{f2(x)>

√
n} |f(x)|dµPk(dx) + IP(N(nT ) > N) ≤

c
∑N

k=0

∫
{f2(x)>

√
n} |f(x)|dν + IP(N(nT ) > N) ≤

cNφ(n) + IP(N(nT ) > N).

As n→∞ and N →∞,the above term goes to zero because of condition (ii) and [A1].

Since AT = {sup0≤t≤T |Wn
t − W̃n

t | > ε} is increasing, by taking the limit as t → ∞, we get that

sup0≤t<∞ |Wn
t − W̃n

t | converges in probability to zero.

Martingale decompositions for additive functionals of discrete and continuous Markov processes have
been established in [12, 18]. The next result shows that a similar martingale decomposition can be
obtained for Markov renewal processes.
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Theorem 2.2 Let {X(t), t ≥ 0} be an ergodic semi-Markov process with initial distribution µ and unique
invariant measureπ defined in (1.5). Let {Xn, n ≥ 0} be its embedding Markov chain with stationary
distribution ν and f ∈ L2(E, π) satisfying the following conditions:

(i)
∫
E f(x)π(dx) = 0;

(ii) ‖P kf‖L2(ν) ≤ ρk‖f‖L2(ν), for some 0 < ρ < 1, k ∈ IN;

(iii) there exists 0 < c < ∞ such that dµP k ≤ c dν for any k ∈ IN and
∫
{x:f2(x)>n} f

2(x)ν(dx) ≤
exp(−ϕ(n)) for n large, with ϕ : IR+ → IR+ is such that limx→∞

ϕ(x)
log x =∞.

(iv) |P kf(x)| ≤ dn, whenever |f(x)| ≤ n for some 0 < d <∞ and n sufficiently large.

Then, the additive functional of the Markov renewal process satisfies the martingale decomposition:

Sn(f) :=

n∑
k=1

f(Xk−1)θk = Mn +Rn (2.3)

where Mn is a mean zero martingale with respect to the filtration Fn = σ{Xk, 0 ≤ k ≤ n}, and the
remainder Rn converges to zero in probability. Moreover,

lim
n→∞

1

log n
log IP

{
sup1≤k≤nR

2
k

n
> ε

}
= −∞. (2.4)

Proof: Since {(Xn−1, θn), n ≥ 1} is the corresponding renewal Markov process associated to the
semi-Markov process, according to Lemma 1.1, it is stationary with probability invariant measure ν̃ =
ν ·F , ν̃(dy×ds) = ν(dy)Fy(ds). The transition probabilities and transition operators are defined in (1.1)
and (1.2) respectively.

Define the measurable function g : E×IR+ → IR+ as g(y, s) = f(y)s, and let Sn(g) =
∑n

k=1 g(Xk−1, θk).
Since f ∈ L2

0(π), we get that g ∈ L2
0(ν̃):∫

E×IR+

g(y, s)dν̃(dy × ds) =

∫
E
f(y)ν(dy)

∫
IR+

sFy(ds)

=

∫
E
f(y)m(y)ν(dy) = m

∫
E
f(y)π(dy) = 0.

Following the pattern of Theorem 3.1 in [12], we find the unique solution of the Poisson equation
(I −Q)u = g. Since I −Q is not invertible, consider the Poisson equation ((1 + ε)I −Q)uε = g, ε > 0,
with unique solution uε,

uε = ((1 + ε)I −Q)−1g =
1

1 + ε

∞∑
k=1

Qk−1g

(1 + ε)k−1
,
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where Qng is the n-step transition operator of the Markov renewal process defined in (1.4). The series is
convergent in L2(ν), since

‖Qng‖2L2(ν) = IEν(Qng(x, s))2 = IEν

(∫
E×IR+

Q(n)(x, dy × ds)f(y)s

)2

= IEν

(∫
E
Pn(x, dy)f(y)m(y)

)2

≤ b‖Pnf‖L2(ν) ≤ bρk‖f‖L2(ν),

due to the assumption [A3] and condition (ii). Thus, for x ∈ E,

u(x) := lim
ε→0

uε(x) =
∞∑
n=0

Png(x),

and the martingale decomposition follows:

Sn(g) =

n∑
k=1

g(Xk−1, θk) = Mn +Rn,

where {Mn, n ≥ 0} is a mean zero martingale with respect to the filtration Fn, defined as

Mn =
n∑
k=1

(u(Xk)−Qu(Xk−1)), (2.5)

and the remainder term is defined as

Rn = u(X0)− u(Xn), u(Xn) =

∞∑
n=0

Qng(Xn).

In order to prove (2.4), note that for each k ∈ IN, and for C > 1,

IP(u2(Xk) > Cn) ≤ IP

∣∣∣∣∣∣
4√n∑
i=0

Qig(Xk)

∣∣∣∣∣∣ >
√
Cn

2


+ IP

∣∣∣∣∣∣
∞∑

i= 4√n+1

Qig(Xk)

∣∣∣∣∣∣ >
√
Cn

2


The second term with n ≥ 4 satisfies:

IP

∣∣∣∣∣∣
∞∑

i= 4√n+1

Qig(Xk)

∣∣∣∣∣∣ >
√
Cn

2

 ≤ IE

∣∣∣∣∣∣
∞∑

i= 4√n+1

Qig(Xk)

∣∣∣∣∣∣ =

∥∥∥∥∥∥
∞∑

i= 4√n+1

Qig(Xk)

∥∥∥∥∥∥
L1(Ω)

≤

∥∥∥∥∥∥
∞∑

i= 4√n+1

Qig(Xk)

∥∥∥∥∥∥
L2(Ω)

≤

∞∑
i= 4√n+1

‖Qig(Xk)‖L2(Ω)

7



Based on the assumption [A3] and conditions (ii) and (iii) we have:

‖Qig(Xk)‖2L2(Ω) = IE(Qig(Xk))
2 = IE

(∫
E×IR+ g(y, s)Q(i)(Xk, dy × ds)

)2
=

IE
(∫

E×IR+ f(y)sP i(Xk, dy)Fy(ds)
)2
≤
(
supy∈IR+m(y)

)
IE
(∫
E f(y)P i(Xk, dy)

)2
≤ b

∫ (∫
f(y)P i(x, dy)

)2
µP k(dx) ≤ b · c‖P if(x)‖2L2(ν)≤ C1ρ

2i‖f(x)‖2L2(ν).

Therefore, for n sufficiently large,

IP

∣∣∣∣∣∣
∞∑

i= 4√n+1

Qig(Xk)

∣∣∣∣∣∣ >
√
Cn

2

 ≤√C1
ρ

4√n+1

1− ρ
‖f‖L2(ν)≤A exp(−B 4

√
n),

for some positive constants A and B.

On the other hand, note that Qig(Xk) =
∫
P i(Xk, dy)f(y)m(y), therefore we get the following esti-

mation:

IP

∣∣∣∣∣∣
4√n∑
i=0

Qig(Xk)

∣∣∣∣∣∣ >
√
Cn

2

 ≤
4√n∑
i=0

IP

(
|Qig(Xk)|2 >

Cn

4

)

≤
4√n∑
i=0

IP

(
|P if(Xk)|2 >

C

a

n

4

)
.

Take Ω = {f2(Xk) >
n
4 } ∪ {f

2(Xk) ≤ n
4 } , and get

IP

(
|P if(Xk)|2 >

Cn

4a

)
≤ IP(f2(Xk) >

n

4
)

+ IP

(
{f2(Xk) ≤

n

4
} ∩ {|P if(Xk)|2 >

Cn

4a
}
)
.

The second term cancels out because of (iv), while the first term

IP
(
f2(Xk) >

n

4

)
= µIPk

(
f2 >

n

4

)
≤ exp

(
−ϕ

(n
4

))
,

due to (iii). Combining the above estimates,

IP( max
1≤k≤n

|Rk| >
√
εCn) ≤ nIP(|Rk| >

√
εCn) ≤ 2nIP(|u(Xk)| >

√
εCn

2
)

≤ 2n
[
A exp

(
−B 4
√
n) + 4

√
n exp(−ϕ

(n
4

))]
,

and (2.4) follows.
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Remark 2.3 In [12] we found that the conditions of the martingale decomposition are satisfied for the
following classes of processes: finite state irreducible, aperiodic Markov chains; uniformly ergodic Markov
chains in the case of bounded functionals; Markov chains obtained by quantization of continuous Markov
processes that are symmetric in L2, including the Ornstein-Uhlenbeck process.

The Anscombe-Donsker invariance principle for Markov chains is stated next and will be used for
proving the functional central limit theorem of the semi-Markov processes.

Theorem 2.4 (Anscombe-Donsker Invariance principle for Markov chains) Let {Xn, n ≥ 1} be an er-
godic Markov chain with stationary distribution π such that IEπ(X1) = 0 and V arπ(X1) = σ2 <∞, and
Sn =

∑n
k=1Xk, n ≥ 0, S0 = 0. Define

Xn(t, ω) =
1

σ
√
n
S[nt](ω) (t ≥ 0).

Suppose that {N(t), t ≥ 0}is a nondecreasing, right continuous family of positive, integer valued random
variables such

N(t)

t

a.s.−−→ θ (0 < θ <∞) as t→∞.

Define Yn(t, ω) = 1
σ
√
n
SN(nt,ω)(ω). Then, if Xn ⇒W then θ−1/2Yn ⇒W .

Theorem 2.5 Let {X(t), t ≥ 0} be a stationary ergodic semi-Markov process with invariant distribution
π and f ∈ L2(E, π) satisfying the assumptions of Theorem 2.2, and {Xn, n ≥ 1} be the embedded Markov
chain. Then, the process W (n) defined by

W
(n)
t :=

1

σ
√
nm

∫ nt

0
f(Xs) ds, (2.6)

converges weakly to the standard Wiener process W on D([0,∞), E), the space of càdlàg functions.

Proof: According to the martingale decomposition from Theorem 2.2,

Snt =
1

σ
√
n

[nt]∑
k=1

f(Xk−1)θk =
1

σ
√
n
M

(n)
t +

1

σ
√
n
Rnt = Mn(t) +

1

σ
√
n
Rnt , (2.7)

where M
(n)
t is a mean zero martingale and Rnt converges in probability to zero. Let An = {ω :

supt∈[0,∞)
|Rnt (ω)|
σ
√
n
≥ ε}. From the relation (2.4) we get that IP(An) ≤ n−an , where an is a sequence

converging to infinity. Borel-Cantelli lemma implies that An converges to zero IP-a.s., and based on
the martingale invariance principle ([3]), we get the weak convergence of Snt to the Wiener measure on
D([0,∞), E).

Since sup0≤t<∞

∣∣∣N(nt)
n − t

m

∣∣∣ → 0 as n → ∞, Anscombe invariance principle implies that W̃n
t =

1
σ
√
nm

∑N(nt)
k=1 f(Xk−1)θk converges weakly to the Wiener process W . The conclusion follows according

to Lemma 2.1.
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Remark 2.6 If f : E → IR is bounded and the underlying Markov process is uniformly ergodic, then
the conditions of Theorem 2.2 are clearly satisfied and the result obtained is the same as in [15]. In that
paper, σ is calculated explicitly in terms of the potential operator:

σ2 =
1

m

∫
E
ν(dx)[2m2(x)f2(x)−m2(x)f2(x)− 2m(x)f(x)R00f(x)m(x)],

with R00 = (I − P + P∞)−1 − P∞ the potential operator of the Markov chain {Xn}.

Next, we consider empirical distributions associated with the additive functionals and prove an almost
sure functional central limit theorem. The empirical measures associated with a sequence of random
variables Xn, n ≥ 0 are defined as

Qn =
1

L(n)

n∑
k=1

1

k
δXk , where L(n) =

n∑
k=1

1

k

One may replace L(n) by log n. Statements regarding the convergence of the empirical distributions to
a limit distribution with probability one are referred to as almost sure limit theorems. Whenever the
limit distribution is Gaussian, the convergence is referred to as an almost sure central limit theorem
(ASCLT). Almost sure central limit theorems for sequences of independent and identically distributed
random variables were established by Brosamler [4], Shatte [19], and Lacey and Phillip [13] . Various
versions of almost sure central limits theorems for martingales can be found in [17, 6, 5, 14, 1].

Theorem 2.7 Under the conditions of Theorem 2.5, the sequence of empirical measures with logarithmic

averaging associated to the additive functional W
(n)
t ,

µWn (ω) :=
1

log n

n∑
k=1

1

k
δW (k)(ω), (2.8)

satisfies the following almost sure convergence:

limn→∞µ
W
n = W, a.s., (2.9)

where W is the Wiener measure on D[0,∞).

Proof: The equation (2.9) is equivalent to

limn→∞
1

log n

n∑
k=1

1

k
f(W (n)) =

∫
fdW

for any bounded Lipschitz function h defined on D[0,∞). According to Lemma 2.1, the processes Wn
t

and W̃n
t have the same limiting distribution and, due to Theorem 2.4, it remains to prove that

limn→∞
1

log n

n∑
k=1

1

k
f(Sn) =

∫
fdW

10



where Sn(f) = 1
σ
√
n

∑n
k=1 f(Xk−1)θk. The simplified version of the invariance principle with logarithmic

averaging for martingales proved by F. Maaouia in [17], is

limn→∞
1

log n

n∑
k=1

1

k
f(Mn) =

∫
fdW.

Thus, it suffices to prove that
lim
n→∞

‖Sn −Mn‖ρ = 0, IP− a.e.

where ρ is the Skorokhod metric on D[0,∞]. The uniform metric on D[0,∞],

‖x− y‖ = sup
t∈[0,∞)

|x(t)− y(t)|

is finer than ρ, therefore it is enough to see that limn→∞ ‖Sn−Mn‖ = 0, IP-a.s.. This follows from same

argument used in the proof of Theorem 2.5. That is, if we take An = {ω : supt∈[0,∞)
|R(n)
t (ω)|
σ
√
n
≥ ε}, then

An converges to 0 IP-a.s.. Finally, we conclude that almost surely, µWn converges to the Wiener measure
W on D[0,∞).

3. Large deviation principle

In this section our goal is to study the large deviation principle for the sequence of random measures
µWn on D([0,∞), E) defined in (2.8) and satisfying the almost sure central limit theorem (Theorem 2.7).
This is a level 3 LDP with a rate function similar to the Donsker-Varadhan rate function for Brownian
motion, obtained by the contraction principle from the Ornstein-Uhlenbeck process ([7]).

We studied large deviations for additive functionals of Markov processes in [18, 12]. Starting with
the Donsker-Varadhan rate function for Brownian motion given in terms of the relative entropy on the
underlying space C[0,∞), M.K. Heck introduced a finer topology ([10]) under which the rate function
was extended to some subspaces of C[0,∞) with respect to a weighted uniform topology. On D[0,∞),
endowed with the uniform topology, we consider similar subspaces, on which we prove the large deviation
principle.

By considering φ : IR+ → IR+ a continuous function such that

lim
t→0

φ(t)√
t| log t|

= lim
t→∞

φ(t)√
t log t

=∞, (3.1)

the set Dφ is defined as

Dφ := {ω ∈ D[0,∞) : ‖w‖φ = sup
t∈IR+

|ω(t)|
φ(t)

<∞} (3.2)

and M1(Dφ) := {Q ∈M1(D[0,∞)) : Q(Dφ) = 1}.
On M1(Dφ) define the distance

dφ(µ, ν) := sup

{∣∣∣∣∫ f dµ−
∫
f dν

∣∣∣∣ , f ∈ C(Dφ, IR), ‖f‖L ≤ 1

}
, (3.3)

11



with the Lipschitz norm ‖f‖L := supω∈Dφ |f(ω)| + supω,ω′∈Dφ,ω 6=ω′
|f(ω)−f(ω′)|
‖ω−ω′‖φ . Thus (M1(Dφ), dφ) be-

comes a metric space.

Lemma 3.1 Let Xn and Yn be random variables with values in a metric space (E, d) such that for all
ε > 0,

lim
n→∞

1

log n
log IP{d(Xn, Yn) > ε} = −∞. (3.4)

Then Xn and Yn are LDP equivalent (super-exponentially close), which means that if the sequence {Xn}n
satisfies LDP with constants log n and rate function I, then {Yn}n also satisfies LDP with the same
constants and rate function.

Lemma 3.2 Let Xn and Y n be two random elements on D[0,∞) such that

lim
n→∞

1

log n
log IP{‖Xn − Y n‖φ > ε} = −∞. (3.5)

Then, the random measures

µn =
1

log n

n∑
k=1

1

k
δXk and νn =

1

log n

n∑
k=1

1

k
δY k

are LDP equivalent.

Proof: We need to verify that

lim
n→∞

1

log n
log IP{dφ(µn, νn) > ε} = −∞. (3.6)

Let h ∈ C(Dφ) such that ‖h‖L ≤ 1 and denote L(n) =
∑n

k=1
1
k . Then,∣∣∫ h dµn − ∫ h dνn∣∣ ≤ 1

logn

∑n
k=1

1
k |h(Xk)− h(Y k)| =

1
logn

∑[nε/8]
k=1

1
k |h(Xk)− h(Y k)|+

1
logn

∑n
k=[nε/8]+1

|h(Xk)−f(Y k)|
‖Xk−Y k‖φ

‖Xk − Y k‖φ ≤
2

lognL([nε/8]) + 1
logn(L(n)− L([nε/8]) sup[nε/8]+1≤k≤n ‖Xk − Y k‖φ ≤

2
logn(1 + log nε/8) + 1

logn(1 + log n) sup[nε/8]+1≤k≤n ‖Xk − Y k‖φ ≤

2( ε8 + ε
8) + 2 sup[nε/8]+1≤k≤n ‖Xk − Y k‖φ ≤ ε

2 + 2 ε4 = ε,

if sup[nε/8]+1≤k≤n ‖Xk − Y k‖φ ≤ ε
2 and n ≥ n0 for some n0 > 0. Therefore,

IP{dφ(µn, νn) > ε} ≤ IP

{
sup

[nε/8]+1≤k≤n
‖Xk − Y k‖φ >

ε

2

}

≤
n∑

k=[nε/8]+1

IP{‖Xk − Y k‖φ >
ε

2
}

≤
n∑

k=[nε/8]+1

k−
8N
ε k−2 (due to (3.5)) ≤ cn−N ,

12



for some positive constant c and N sufficiently large.

In the following we prove a sequence of LDP equivalences under the following additional conditions:

C1. the continuous function φ defined in (3.1) is increasing such that φ(0) > γ, for some γ > 0;

C2. the family of sojourn times {θx, x ∈ E} is uniformly integrable (condition A4) and∫ ∞
n

F̄x(t)dt ≤ e−ψ(n), such that lim
n→∞

ψ(n)

log n
→∞.

Proposition 3.3 Assume that {X(t), t ≥ 0} is an ergodic semi-Markov process with ergodic distribution
π and {Xn, n ≥ 0} is its embedding Markov chain with stationary distribution ν. Let f ∈ L2(π) satisfying
the conditions of the martingale decomposition theorem (Theorem 2.2).

Define the empirical measures

µWn =
1

log n

n∑
k=1

1

k
δW (k) and µ̃Wn =

1

log n

n∑
k=1

1

k
δW̃ (k)

where

W
(n)
t =

1

σ
√
nm

∫ nt

0
f(X(u)), W̃

(n)
t =

1

σ
√
nm

N(nt)∑
k=1

f(Xk−1)θk.

Then the random measures µWn and µ̃Wn are LDP equivalent.

Proof: According to Lemma 3.2, it is enough to check that

limn→∞
1

log n
log IP{‖W (n) − W̃ (n)‖φ > ε} = −∞. (3.7)

For any T > 0, we have:

IP{sup0≤t≤T
|W (n)

t −W̃ (n)
t |

φ(t) > ε} ≤

IP{sup0≤t≤T
|
∫ nt
0 f(X(u)) du−

∑N(nt)
k=1 f(Xk−1)θk|

φ(t) > εσ
√
nm} ≤

IP{sup0≤t≤T
|(nt−τN(nt))f(XN(nt))|

φ(t) > εσ
√
nm} ≤

IP{sup0≤t≤T
θN(nt)+1|f(XN(nt))|

φ(t) > εσ
√
nm} ≤

IP{sup0≤t≤T θN(nt)+1 > εσ 4
√
nm}+ IP{sup0≤t≤T

|f(XN(nt))|
φ(t) > 4

√
nm}.

Since
∣∣∣N(nt)

n − t
m

∣∣∣ converges to zero almost surely, then for any M > 0, there exists some δ > 0 such

that

IP{N(nt) >
nt

m
+ nδ} ≤ n−M .

For the sake of simplicity in notation, let us assume nt
m +nδ is its integer part in the following estimates.

IP{sup0≤t≤T θN(nt)+1 > εσ 4
√
nm} ≤ IP{sup0≤t≤T θN(nt)+1 > εσ 4

√
nm, N(nt) ≤ nt

m + nδ}+ IP{N(nt) > nt
m + nδ}

13



On the one hand,

IP{sup0≤t≤T θN(nt)+1 > εσ 4
√
nm, N(nt) ≤ nt

m + nδ} ≤ IP{sup1≤k≤nT
m

+nδ θk > εσ 4
√
nm} ≤∑nT

m
+nδ

k=1 IP{θk > εσ 4
√
nm} ≤

(
nT
m + nδ

)
supx∈E

∫∞
εσ 4√nm F̄x(t) dt ≤(

nT
m + nδ

)
e−ψ(εσ 4√nm) ≤

(
nT
m + nδ

)
e−N log(εσ 4√nm) =(

nT
m + nδ

)
(εσ 4
√
m)−Nn−4N ,

for any N > 0 and n sufficiently large.

On the other hand, the second probability can be estimated as follows:

IP{sup0≤t≤T
|f(XN(nt))|

φ(t) > 4
√
nm} ≤ IP{sup0≤t≤T |f(XN(nt))| > γ 4

√
nm} ≤

IP{sup0≤t≤T |f(XN(nt))| > γ 4
√
nm,N(nt) ≤ nt

m + nδ}+ IP{N(nt) > nt
m + nδ}.

IP{sup0≤t≤T |f(XN(nt))| > γ 4
√
nm,N(nt) ≤ nt

m + nδ} ≤

IP{sup0≤k≤nT
m

+nδ |f(Xk)| > γ 4
√
nm} ≤

∑nT
m

+nδ

k=0 IP{|f(Xk)| > γ 4
√
nm} =∑nT

m
+nδ

k=0 IP{f2(Xk)| > γ2√nm} =
∑nT

m
+nδ

k=0 IE[f2(Xk)1I{f2(Xk)>γ2
√
nm}] =(

nT
m + nδ

) ∫
{f2(x)>γ2

√
nm} f

2(x)µPk(dx) ≤

c
(
nT
m + nδ

) ∫
{f2(x)>γ2

√
nm} f

2(x)ν(dx) ≤ c
(
nT
m + nδ

)
e−ϕ(γ2

√
nm) ≤

under the assumption (iii) of Theorem 2.2

c
(
nT
m + nδ

)
e−N

′ log(γ2
√
nm) = c

(
nT
m + nδ

)
(γ2√nm)−N

′
,

for some N ′ > 0 and n large. Combining the above two estimates, and choosing N ′ = 8N and M = N−1,
we get:

IP

{
sup

0≤t≤T

|W (n)
t − W̃ (n)

t |
φ(t)

> ε

}
≤ Cm,N,T,δn1−N .

Therefore,

lim
n→∞

log

(
IP{sup0≤t≤T

|W (n)
t −W̃ (n)

t |
φ(t) > ε}

)
log n

≤ 1−N.

A new LDP equivalence can be derived as:

Proposition 3.4 Define the empirical measures

µ̃Wn =
1

log n

n∑
k=1

1

k
δW̃ (k) and µ̃Sn =

1

log n

n∑
k=1

1

k
δS̃(k)
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where

W̃
(n)
t =

1

σ
√
nm

N(nt)∑
k=1

f(Xk−1)θk, S̃
(n)
t =

1

σ
√
nm

[nt/m]∑
k=1

f(Xk−1)θk.

Then the random measures µ̃Wn and µ̃Sn are LDP equivalent.

Proof: For any T > 0, we have:

IP{sup0≤t≤T
|W̃ (n)

t −S̃(n)
t |

φ(t) > ε} ≤

IP{sup0≤t≤T |
∑N(nt)

k=1 f(Xk−1)θk −
∑[nt/m]

k=1 f(Xk−1)θk| > εγσ
√
nm.}

As previously done, we use the notations nt
m and nt

m + nδ in lieu of their integer parts. Thus,

IP{sup0≤t≤T
|W̃ (n)

t −S̃(n)
t |

φ(t) > ε} ≤

IP{sup0≤t≤T |
∑nt

m
+nδ

k=1 f(Xk−1)θk −
∑nt/m

k=1 f(Xk−1)θk| > εγσ
√
nm}+ IP{N(nt) > nt

m + nδ}.

IP{sup0≤t≤T |
∑nt

m
+nδ

k=1 f(Xk−1)θk −
∑nt/m

k=1 f(Xk−1)θk| > εγσ
√
nm} ≤

IP{sup0≤t≤T |
∑nt

m
+nδ

k=nt
m

+1
f(Xk−1)θk| > εγσ

√
nm} ≤

IP{sup0≤t≤T
∑nt

m
+nδ

k=nt
m

+1
|f(Xk−1)|θk > εγσ

√
nm} ≤

IP{sup0≤t≤T supk∈[nt
m

+1,nt
m

+nδ] |f(Xk−1)|θk > εγσ
√
nm

nδ−1} ≤

IP{sup0≤k≤nT
m

+nδ |f(Xk−1)|θk > εγσ
√
nm

nδ−1} ≤

IP{sup1≤k≤nT
m

+nδ θk > εσ 4
√
nm}+ IP{sup0≤k≤nT

m
+nδ |f(Xk)| > γ

4√nm
nδ−1 }.

The first term is estimated in the proof of Proposition 3.3 as

IP

 sup
1≤k≤nT

m
+nδ

θk > εσ 4
√
nm

 ≤
(
nT

m
+ nδ

)
(εσ 4
√
m)−Nn−4N ,

for N sufficiently large. By the same argument as in the proof of Proposition 3.3, we get:

IP
{

sup0≤k≤nT
m

+nδ |f(Xk)| > γ
4√nm
nδ−1

}
≤ c

(
nT
m + nδ

)
e
−ϕ
(

γ2

n2δ2

√
nm

)
≤

c
(
nT
m + nδ

) (γ2√nm
n2δ2

)−N ′
.

Combining all the estimates in the case N ′ = 8N and M = 4N − 1 we get:

IP

{
sup

0≤t≤T

|W̃ (n)
t − S̃(n)

t |
φ(t)

> ε

}
≤ Cm,N,T,δn−4N

(
1 +

γ

nδ

1−4N
)
.
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Therefore,

lim
n→∞

log

(
IP{sup0≤t≤T

|W̃ (n)
t −S̃(n)

t |
φ(t) > ε}

)
log n

≤ 1− 4N.

For a > 0, define ϑa : D[0,∞) → D[0,∞) by ϑaω(t) = 1√
a
ω(at), and we say that a measure Q is

ϑ-invariant if Q = Q ◦ ϑ−1
a .

For Q ∈M1(Dφ), define

I(Q) :=

 lima→∞
1

2 log ah

(
Q ◦ |−1

[ 1
a
,a]
||W ◦ |−1

[ 1
a
,a]

)
, if Q is ϑ-invariant,

∞ , otherwise.
(3.8)

where W is the Wiener measure on D[0,∞), |[ 1
a
,a] is the restriction operator, and for any two probability

measures µ and ν, denote by h(µ || ν) the relative entropy of µ with respect to ν,

h(µ || ν) =

{ ∫
log(dµdν ) , if µ� ν,
∞ , otherwise.

Theorem 3.5 Let {X(t), t ≥ 0} be an ergodic semi-Markov process with invariant measure π, and
f ∈ L2(E, π) satisfying the conditions of Theorem 2.5. Define the additive functional,

W
(n)
t :=

1

σ
√
nm

∫ nt

0
f(Xs) ds.

The sequence of random measures,

µWn =
1

log n

n∑
k=1

1

k
δW (k) ,

satisfies the large deviation principle with constants log n and rate function I|M1(Dφ) defined in (3.8) .
That is, for any Borel set A ⊆M1(Dφ),

− inf
A◦
I ≤ lim inf

n→∞

1

log n
log IP{µn ∈ A}

≤ lim sup
n→∞

1

log n
log IP{µn ∈ A} ≤ − inf

Ā
I

Proof: Based on the sequence of LDP equivalences established in Propositions 3.3 and 3.4, it suffices
to prove the LDP for µ̃Sn , the empirical measure associated to the Markov renewal process. Using the
martingale decomposition theorem associated with the Markov renewal process (Theorem 2.2), we get

S
(n)
t =

∑[nt/m]
k=1 f(Xk−1)θk = M

(n)
t + R

(n)
t , with the remainder converging to zero in probability at the

rate given in the equation (2.4).
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Let µ̃Sn and µ̃Mn be the empirical measures associated with S̃
(n)
t = 1

σ
√
nm
S

(n)
t and, respectively, M̃

(n)
t =

1
σ
√
nm
M

(n)
t . These sequences are LDP equivalent because

IP{ sup
0≤t≤T

|S̃(n)
t − M̃ (n)

t |
φ(t)

> ε} ≤ IP{ sup
0≤t≤T

|R(n)
t | > Cεσ

√
nm} ≤ n−γ ,

for some γ > 0 and n sufficiently large, according to (2.4). The martingale defined in (2.5) is a martingale
additive functional, therefore using the large deviation result for martingale additive functionals estab-
lished by M. Heck and F. Maaouia in [11], we get that the sequence of random measures µWn satisfies the
LDP with rate function given in (3.8) .

4. Conclusion

Motivated by previous results on large deviations for additive functionals of Markov processes ([18, 12]),
we investigate the case of semi-Markov processes. The large deviation principle for the sequence of
empirical processes defined as logarithmic averaging of some additive functionals of semi-Markov processes
is derived from the LDP of martingales additive functionals, through a sequence of transformations that
preserve the large deviation principle. This is a level 3 LDP, obtained from the almost sure central limit
theorem, and the rate function is given as a specific relative entropy of the Wiener measure on a subspace
of D[0,∞).
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