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SIZING UP THE REGIONS OF UNIQUE MINIMA IN

THE LEAST SQUARES NONLINEAR REGRESSION

LEONID KHINKIS, MILBURN CROTZER and ADINA OPRISAN

Abstract. In nonlinear regression analysis, the residual sum of squares may possess

multiple local minima. This complicates finding the global minimum and adversely
affects reliability of the relevant statistical methods. Identifying and sizing up the

regions of a readily identifiable global minimum (RIGM) is therefore of both theo-

retical and practical interest. This paper addresses the issue by using equidistant
function previously introduced by the first two co-authors of this paper.

1. Introduction

Nonlinear regression analysis is a powerful predictive tool used in many scien-
tific and business fields. Similar to linear regression, the estimated parameters of
a nonlinear model are those for which the residual sum of squares attains a min-
imum. Unlike linear regression however, analysis of nonlinear models can lead to
multiple minima depending on the distribution of the predictors and the data un-
certainties. The analysis is further complicated by the linearized iterative method
of analysis and the choice of starting values. These problems are illustrated in
Figures 1 and 2. Geometrically, for a given predictor design, a nonlinear model
will have a curved expectation surface. Each figure shows the expectation surface
for a 2-parameter Hill model, discussed later, with 3 design points. In Figure 1,
starting from a global minimum on the surface and proceeding outward in a nor-
mal direction (asterisks), a point is reached where the minimum sum of squares
leads to a different position on the surface (squares), i.e., a local minimum with
a different solution. Moreover, the position of the local minimum can change, de-
pending on the starting point for the analysis, as shown in Figure 2. In practical
terms, a highly variable response, i.e., large residuals, can lead to an inaccurate
estimate of the model parameters and the associated confidence intervals. Haines
illustrated the multiple local minima phenomenon in nonlinear models in [5], in
connection with some concepts from differential geometry. The problem was ex-
tensively studied by Demidenko in [3] and [4] where the levels of local convexity
and local unimodality of the sum of squares were introduced and a relationship
between these concepts and the curvature measures of the model were established.
Specifically, it was shown in [4] that the level of the local unimodality of the sum
of squares equals to the minimum squared radius of the intrinsic curvature of the
nonlinear regression model. Demidenko’s contributions ([3] and [4]) have further
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advanced the utility of the curvature measures in nonlinear regression. These
measures were originally introduced by Beale ([2]) and Bates and Watts ([1]).

In a series of papers summarized in [7], Pazman developed “an almost exact”
theory of nonlinear regression inference. Under some essential assumptions, it
is shown that there exists a region of a sufficiently large size (as measured by
its probability being close to one) such that any data point belonging to that
region results in a global minimum of the sum of squares function. The goal
of this paper is to develop a computational method for finding such a region,
that we call a readily identifiable global minimum (RIGM) region. We obtain
a formula for computing the maximum radius of any RIGM region based on the
properties of an equidistant function that the first two authors introduced in [6].
This function also plays a prominent role in the definition of extended intrinsic
curvature of a nonlinear model presented in [8]. While closely related to the
intrinsic curvature locally, the equidistant function reflects global rather than local
properties of a nonlinear model.
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Figure 1. Expectation surface and normal responses.

2. The equidistant function and the radius of intrinsic curvature

Let’s consider a nonlinear regression model given by

y = η(θ) + ε, θ ∈ Θ, E(ε) = 0, var(ε) = σ2W, (2.1)

where θ = (θ1, . . . , θm)t is a vector of unknown parameters. Assume that θ ∈ Θ,
and that the (known) parameter space Θ is a subset of Rm such that Θ ⊆ int Θ.
Thus y ∈ RN is the vector of observed data, ε ∈ RN is the error vector, σ is the
parameter of the variance component which may, but needs not be known, W is
a known positive semi-definite matrix. The parameter σ equals to the standard
deviation of the error of an individual observation under the assumption of a
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Figure 2. Expectation surface and normal responses.

constant variance in which case W = I, the identity matrix. We assume that
the errors are normally distributed. The mapping η : Θ → RN is a known, twice
continuously differentiable mapping on int Θ.

The expectation surface is E = {η(θ) : θ ∈ Θ}. The least squares estimate
(LSE) of θ is

θ̂ = θ̂(y) = arg min
θ∈Θ

‖y − η(θ)‖2W ,

where the definition of the squared norm ‖a‖2W = atW−1a is used. This norm
corresponds to the inner product 〈a, b〉W = atW−1b.

Any LSE θ̂(y) ∈ int Θ satisfies the system of m normal equations (the stationary
conditions)

∂

∂θ
‖y − η(θ)‖2W = 0. (2.2)

The linear span of the vectors ∂η(θ)
∂θi

, (i = 1, . . . ,m), forms a plane, T (θ), known
as the tangent to the expectation surface E at θ ∈ Θ. Define the normal plane
NO(θ) as the hyperplane orthogonal to the expectation surface at the point η(θ),

NO(θ) :=

{
n ∈ RN :

〈
n,
∂η(θ)

∂θi

〉
W

= 0, (i = 1, . . . ,m)

}
.

Let P (θ) be an orthogonal projector onto the tangent plane T (θ). Then any vector
h ∈ RN can be represented as a sum of its mutually orthogonal components

h = P (θ)h+ (I − P (θ))h, (2.3)

so that P (θ)h ∈ T (θ) while (I − P (θ))h ∈ NO(θ). Let NO1(θ) be the set of all
unit vectors in NO(θ), NO1(θ) := {n ∈ NO(θ) : ‖n‖W = 1} and R+ be the set of
all positive real numbers.
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A directional equidistant function, t(ϑ1, ϑ2, n) was defined in [6, Eq. 3] as

t(ϑ1, ϑ2, n) =
‖η(ϑ2)− η(ϑ1)‖2W

2〈n, η(ϑ2)− η(ϑ1)〉W
. (2.4)

Here ϑ1 ∈ int Θ, ϑ2 ∈ Θ and n ∈ NO1(ϑ1). Clearly, t(ϑ1, ϑ2, n) is defined by
(2.4) only if 〈n, η(ϑ2) − η(ϑ1)〉W 6= 0. As pointed out in [6], y = η(ϑ1) + tn is
equidistant from two different points, η(ϑ1) and η(ϑ2) if and only if 〈n, η(ϑ2) −
η(ϑ1)〉W > 0 and t = t(ϑ1, ϑ2, n). Here t ∈ R+, ϑ1 ∈ int Θ, ϑ2 ∈ Θ and n ∈
NO1(ϑ1).

The equidistance property is

‖y − η(ϑ1)‖W = ‖y − η(ϑ2)‖W .
This property will not hold for any y ∈ RN , ϑ1 ∈ int Θ, ϑ2 ∈ Θ, n ∈ NO1(ϑ1) and
t ∈ R+, such that y = η(ϑ1) + tn and 〈n, η(ϑ2) − η(ϑ1)〉W ≤ 0. By Theorem 1
from [6], for a fixed ϑ2 ∈ int Θ, t(ϑ1, ϑ2, n) is the supremum of the values d ∈ R+

such that y = η(ϑ1) + dn results in the unique least square estimate θ̂(y) = ϑ1.
Let’s define N1(ϑ1, ϑ2) as N1(ϑ1, ϑ2) = {n ∈ NO1(ϑ1) : 〈n, η(ϑ2)− η(ϑ1)〉W > 0}.

Proposition 2.1. Let t(ϑ1, ϑ2) be the equidistant function defined as

t(ϑ1, ϑ2) = min
n∈N1(ϑ1,ϑ2)

t(ϑ1, ϑ2, n).

Then

t(ϑ1, ϑ2) =
‖η(ϑ2)− η(ϑ1)‖2W

2‖(I − P (ϑ1))(η(ϑ2)− η(ϑ1))‖W
, ϑ1 ∈ int Θ, θ2 ∈ Θ. (2.5)

Proof. Due to orthogonal decomposition (2.3),

〈n, η(ϑ2)− η(ϑ1)〉W = 〈n, (I − P (θ1))(η(ϑ2)− η(ϑ1))〉W .
On the other hand, by Cauchy inequality we get:

〈n, (I − P (θ1))(η(ϑ2)− η(ϑ1))〉W ≤ ‖n‖W ‖(I − P (ϑ1))(η(ϑ2)− η(ϑ1))‖W
= ‖(I − P (ϑ1))(η(ϑ2)− η(ϑ1))‖W .

Therefore

nmax :=
(I − P (ϑ1))(η(ϑ2)− η(ϑ1))

‖(I − P (ϑ1))(η(ϑ2)− η(ϑ1))‖W
gives the largest value of 〈n, η(ϑ2)− η(ϑ1)〉W over N1(ϑ1, ϑ2), thus

max
n∈N1(ϑ1,ϑ2)

〈n, η(ϑ2)− η(ϑ1)〉W = ‖(I − P (ϑ1))(η(ϑ2)− η(ϑ1))‖W .

A simple calculation shows that nmax ∈ N1(ϑ1, ϑ2) when (I − P (ϑ1))(η(ϑ2) −
η(ϑ1)) 6= 0.

Thus, the equidistant function (2.5) follows:

t(ϑ1, ϑ2) = min
n∈N1(ϑ1,ϑ2)

t(ϑ1, ϑ2, n) =
‖η(ϑ2)− η(ϑ1)‖2W

2〈nmax, η(ϑ2)− η(ϑ1)〉W

=
‖η(ϑ2)− η(ϑ1)‖2W

2‖(I − P (ϑ1))(η(ϑ2)− η(ϑ1))‖W
.

�
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In [7], the intrinsic curvature of a nonlinear regression model was defined as

Kint(ϑ) = sup
v∈Rm\{0}

‖(I − P (ϑ))vtH(ϑ)v‖
vtMW (ϑ)v

,

where

P (ϑ) = J(ϑ)M−1
W (ϑ)J t(ϑ)W−1,

MW (ϑ) = J t(ϑ)W−1J(ϑ),

J(ϑ) =
∂η(ϑ)

∂ϑt
, H(ϑ) =

∂2η(ϑ)

∂ϑ∂ϑt
.

Remark 2.2. Geometrically, Kint(ϑ) equals to the maximal curvature of the
geodesic curves on E passing through ϑ ∈ int Θ. The radius of intrinsic curvature
Rint(ϑ) := 1

Kint(ϑ) represents the infimum of t(ϑ, ϑ2) when ϑ2 approaches ϑ along

all possible directions.
Also, in [4], Demidenko defined the upper local unimodality level for the sum

of squares of a nonlinear regression model as

S̄LU = min
θ∈Θ

R2
int(θ)

and a local unimodality level, SLU , as any number less or equal to S̄LU .

3. The region of a readily identifiable global minimum

Definition 3.1. A region D ⊆ RN is called RIGM (readily identifiable global
minimum) region if for any y ∈ D there exists at most one ϑ ∈ int Θ satisfying
both the stationary conditions (2.2) and

‖y − η(ϑ)‖ < h(ϑ)

for some function h(ϑ).

Consequently, ϑ = θ̂(y).
Define a tube T1(r) about expectation surface E as

T1(r) := {y = η(ϑ) + sn, n ∈ NO1(ϑ), ϑ ∈ int Θ, |s| < r}.
As follows from Theorem 1 in [6], the maximal radius of a RIGM tube T1(r) equals
to

r = inf
ϑ∈int Θ, ϑa∈Θ, ϑ6=ϑa

t(ϑ, ϑa). (3.1)

Let r0 > 0 and a parameter value ϑ̄ ∈ Θ. Define a subset of the parameter
space, Θ(2r0) , called the restricted parameter space, as

Θ(2r0) :=
{
ϑ ∈ int Θ : ‖P (ϑ)(η(ϑ)− η(ϑ̄))‖W ≤ r0 and ‖η(ϑ)− η(ϑ̄)‖W ≤ 2r0

}
.

Additionally, define a subset of the sample space, T ∗(2r0), called the restricted
sample space, as

T ∗(2r0) := ∪ϑ∈Θ(2r0)L (ϑ, r0) ,

where

L(ϑ, r0) = {y : 〈y − η(ϑ), J(ϑ)〉W = 0 and ‖y −Ψϑ̄(ϑ)‖W ≤ r0}
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and

Ψϑ̄(ϑ) := P (ϑ)(η(ϑ)− η(ϑ̄)) + η(ϑ̄).

The set T ∗(2r0) constructed this way is a tube of the radius r0 around the
surface {Ψϑ̄(ϑ) : ϑ ∈ Θ(2r0)}. A ball of the radius r centered at η(ϑ̄) will be
denoted by G(r):

G(r) := {y ∈ RN : ‖y − η(ϑ̄)‖W < r}.
In [7] it is proved that there exists a radius r0 such that

G(r0) ⊆ T ∗(2r0) ⊆ G(2r0), (3.2)

under two assumptions:

A1: The assumption of the bounded curvature: The inequality

[Kint(ϑ)]−1 > 2r0,

holds for every ϑ ∈ Θ(2r0).
A2: The assumption of non-overlapping : There is no y ∈ T ∗(2r0) such that

the normal equation(s) (2.2) have two solutions ϑ1, ϑ2 ∈ int Θ, and

‖y − η(ϑi)‖W < 2r0, (i = 1, 2).

Thus, G(r0) is a region of unique minima of the residual sum of squares function,
meaning that for every y ∈ G(r0), the function ‖y − η(ϑ)‖2W cannot have more

than one local minimum attainable at θ̂ = θ̂(y), where a global minimum is also
reached.

Given that ‖y − η(ϑ̄)‖2W /σ2 follows the χ2 distribution with N − 1 degrees of
freedom under assumptions made in (2.1), the probability statement consistent
with (3.2) is

P
{
χ2
N−1 ≤

(r0

σ

)2
}
≤ Pϑ̄{y ∈ T ∗(2r0)} ≤ P

{
χ2
N−1 ≤

(
2r0

σ

)2
}
.

Remark 3.2. If r0 is too large, then the two assumptions could be violated,
while if it is too small, then the accuracy of the approximations will be unsatisfac-

tory. Therefore, r0 need to be large enough so that pr
{
χ2
N−1 ≤

(
r0
σ

)2}
= 1 − α,

or equivalently, σ(r0, α) = r0√
χ2
N−1,α

.

In what follows we assume the following condition that ensures that T ∗(2r0) is
a RIGM region:

(H): Let r0 > 0 and ϑ ∈ Θ(2r0). If y ∈ T ∗(2r0) satisfies the stationary condi-

tions (2.2) then ϑ = ϑ̂(y).

Theorem 3.3. A necessary and sufficient condition for a radius r0 to satisfy
condition (H) is

r0 ≤ inf
ϑ∈Θ(2r0),ϑa∈Θ,ϑa 6=ϑ

r(ϑ, ϑa) (3.3)

where

r(ϑ, ϑa) =
‖η(ϑa)− η(ϑ)‖2W + 2〈(I − P (ϑ))(η(ϑ)− η(ϑ̄)), η(ϑa)− η(ϑ)〉W

2‖(I − P (ϑ))(η(ϑa)− η(ϑ))‖W
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Proof. In order to simplify the expressions, the following abbreviations are used
below:

c = c(ϑa, ϑ) = η(ϑa)− η(ϑ),

f = f(ϑ, ϑ̄) = η(ϑ̄)− η(ϑ),

k = k(ϑ, ϑ̄) = ‖η(ϑ)− η(ϑ̄)‖2W , e = e(ϑa, ϑ) = ‖η(ϑa)− η(ϑ)‖2W ,
l = l(y, ϑ, ϑ̄) = y − ψϑ̄(ϑ), g = g(y, ϑ) = y − η(ϑ),

q = (I − P (ϑ))f(ϑ, ϑ̄), u = (I − P (ϑ))c(ϑa, ϑ), t = t(ϑ, ϑa, n).

Let y ∈ T ∗(2r0). The assumption (H) will be met if and only if

‖l + q‖W ≤ t(ϑ, ϑa, n) (3.4)

for any ϑ ∈ Θ(2r0), ϑa ∈ Θ, n = l+q
‖l+q‖W ∈ NO1(ϑ) such that 〈n, c〉W > 0. Note

that both l, q ∈ NO(ϑ).
Given (2.4), the inequality (3.4) is equivalent to

2〈l + q, c〉W ≤ e.
This inequality is satisfied automatically if 〈n, c〉W ≤ 0, therefore one can ne-

glect the sign of 〈n, c〉W in connection with (3.4) and rearrange it as

2〈l, c〉W ≤ e− 2〈q, c〉W . (3.5)

The maximum of the left-hand side of (3.5) over all l ∈ NO(ϑ) with a fixed ‖l‖W
equals 2‖l‖W ‖u‖W and is attained at l = u ‖l‖W‖u‖W . Combined with the inequality

‖l‖W ≤ r0, this leads to the inequality

2r0‖u‖W ≤ e− 2‖q, c‖W .
Thus, the assumption (H) holds true if and only if

2r0‖(I − P (ϑ))(η(ϑa)− η(ϑ))‖W ≤ ‖η(ϑa)− η(ϑ)‖2W −
2〈(I − P (ϑ))(η(ϑ)− η(ϑ̄)), η(ϑa)− η(ϑ)〉W .

We obtained that a necessary and sufficient condition in order for r0 to satisfy
assumption (H) that ensures T ∗(2r0) a RIGM region is

r0 ≤
‖η(ϑa)− η(ϑ)‖2W + 2〈(I − P (ϑ))(η(ϑ)− η(ϑ̄)), η(ϑa)− η(ϑ)〉W

2‖(I − P (ϑ))(η(ϑa)− η(ϑ))‖W
, (3.6)

for any ϑ ∈ Θ(2r0) and ϑa ∈ Θ such that ϑa 6= ϑ. Denote the right-hand side of
equation (3.6) with r(ϑ, ϑa). The largest value of r0 that makes the tube T ∗(2r0)
a RIGM region is

r0 = inf
ϑ∈Θ(2r0), ϑa∈Θ, ϑa 6=ϑ

r(ϑ, ϑa), (3.7)

which represents a global infimum of

‖η(ϑa)− η(ϑ)‖2W + 2〈(I − P (ϑ))(η(ϑ)− η(ϑ̄)), η(ϑa)− η(ϑ)〉W
2‖(I − P (ϑ))(η(ϑa)− η(ϑ))‖W

over ϑ ∈ int Θ, ϑa ∈ Θ, ϑa 6= ϑ, subject to the constraints:

‖P (ϑ)(η(ϑ)− η(ϑ̄)‖W ≤ r0, and ‖η(ϑ)− η(ϑ̄‖W ≤ 2r0.
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�

Next, let’s consider the tube around the expectation surface defined in [8]. Let
G(r) denotes a ball of the radius r centered at η(ϑ̄).

Definition 3.4. A parameter value, ϑ, is called an r-projection of y if

‖y − η(ϑ)‖W < r

and either one of the following holds:

(i) stationary conditions (2.2) are satisfied;

(ii) ϑ = ϑ̂(y) lies on the boundary of Θ.

The set of all r-projections of the points belonging to G(r) is denoted as B(r).
The tube T (r) around the expectation surface E is

T (r) = {y ∈ RN : ∃ϑ ∈ B(r) such that ϑ is an r-projection of y}.

In [8], Pronzato and Pazman made the following assumption:
(HS): there exists r > 0 such that:

(a) the probability Pϑ̄[G(r)] = P(‖y − η(ϑ̄)‖W < r) is close to one;
(b) every y ∈ T (r) has one r-projection only.

Our assumption (HSM) is a variant of (HS) which replaces (b) with

(bm) If y ∈ T (r) satisfies the stationary conditions (2.2) with some ϑ ∈ int Θ

then ϑ = ϑ̂(y).

The next theorem provides a computational method for obtaining a maximal ra-
dius for the tube T (r) be a RIGM region.

Theorem 3.5. The maximal value of the radius r satisfying the assumption
(HSM) is obtained as the solution to a constrained optimization problem:

rmax = inf
ϑ∈int Θ,ϑa∈Θ,ϑ6=ϑa

t(ϑ, ϑa),

subject to the constraint ‖P (ϑ)f‖W < rmax.

Proof. Let r be the maximal radius of the ball G(r) described in Theorem 3.3.
Using the abbreviations introduced in the proof of Theorem 3.3, we write the Law
of Cosines for a triangle formed by y − η(ϑ̄), f , and g as:

‖y − η(ϑ̄)‖2 = k + s2 − 2s〈f, n〉 < r2.

The expression k + s2 − 2s〈f, n〉 is a quadratic function of s that reaches its
minimum of k − 〈f, n〉2 at s = 〈f, n〉. Thus, the inequality k − 〈f, n〉2 < r2 is
a necessary and sufficient condition that there exists s ∈ R such that y = η(ϑ)+sn
belongs to the ball G(r). Additionally,

min
n∈NO1(ϑ)

(k − 〈f, n〉2) = k − ‖(I − P (ϑ))f‖2W = ‖P (ϑ)f‖2W ,

meaning that for a given ϑ ∈ int Θ, there exists s ∈ R and n ∈ NO1(ϑ) such
that y = η(ϑ) + sn belongs to G(r) if and only if ‖P (ϑ)f‖W < r. In terms
of r-projections, this means that every ϑ ∈ int Θ ∩ B(r) satisfies the inequality
‖P (ϑ)f‖W < r, and vice versa. Since a continuous function ‖y − η(ϑ)‖2W reaches



UNIQUE MINIMA IN NONLINEAR REGRESSION 49

its absolute (global) minimum on a compact set Θ, such minimum will be reached
either at ϑ ∈ int Θ or at ϑ ∈ ∂Θ. The condition (b) of (HS) requires that

inf
ϑ∈int Θ∩B(r),ϑa∈θ,ϑa 6=ϑ

t(ϑ, ϑa) ≥ r.

Indeed, assume there are ϑ ∈ int Θ ∩ B(r), ϑa ∈ θ, ϑa 6= ϑ such that t(ϑ, ϑa) < r.
Then y = η(ϑ) + t(ϑ, ϑa)(I − P (ϑ))c is equidistant from η(ϑ) and η(ϑa):

‖y − η(ϑ)‖W = ‖y − η(ϑa)‖W = t(ϑ, ϑa).

As shown in [6], y1 = η(ϑ) + (t(ϑ, ϑa) + ε)(I − P (ϑ))c will satisfy an inequality

‖y1 − η(ϑa)‖W < ‖y1 − η(ϑ)‖W
meaning that ϑ is not a global minimum of ‖y1 − η(ϑ)‖2W on Θ. This gives the
maximal value of r as the solution to a constrained optimization problem:

rmax = inf
ϑ∈int Θ∩B(rmax),ϑa∈Θ,ϑ6=ϑa

t(ϑ, ϑa) = inf
ϑ∈int Θ,ϑa∈Θ,ϑ6=ϑa

t(ϑ, ϑa), (3.8)

subject to the constraint ‖P (ϑ)f‖W < rmax. �

It should be noted that, the importance of constructing the regions of unique
minima and then estimating their size is not limited to applications to flat models
as in Pazman’s work.

Application of the formula (3.1) developed in this paper requires global opti-
mization while equations (3.7) and (3.8) require constrained global optimization
along with numerically solving these equations. The left-hand sides of these equa-
tions are monotonically increasing functions of r while the right-hand sides are
monotonically non-increasing functions of r. Hence, each of these equations has
a single solution which can be found numerically by zeroing in on it in a systematic

fashion using a variable increment. One can use
√
S̄LU as the appropriate initial

value for this purpose. Until more advanced methods for solving unconstrained
and constrained optimization problems are developed, it is advisable to try and
mitigate potential non-optimal solutions by using a number of different initial val-
ues when computing right-hand sides of equations (3.1), (3.7) and (3.8). This
is precisely how the numerical calculations were performed in the two examples
presented below.

Note also that in the presence of a linear parameter (partially linear models),
such as Michaelis–Menten model illustrated below, the calculations are much sim-
plified. When η(ϑ) = aϕ(θ) (here ϑ = (a, θ)), the expression (2.5) for the function
t(ϑ, ϑa) becomes

t(a, θ, aa, θa) =
a2
a‖ϕ(θa)‖2W − 2aaa〈ϕ(θa), ϕ(θ)〉W + a2‖ϕ(θ)‖2W

2aa‖(I − P (ϑ))ϕ(θa)‖W
.

Here aa > 0 and also assume a > 0. A simple calculation of the first and second
derivatives of t(a, θ, aa, θa) with respect to aa shows that the absolute minimum

of t(a, θ, aa, θa) over aa is reached at aa = a‖ϕ(θ)‖W
‖ϕ(θa)‖W and equals to

a(‖ϕ(θ)‖W ‖ϕ(θa)‖W − 〈ϕ(θa), ϕ(θ)〉W )

‖(I − P (ϑ))ϕ(θa)‖W
.
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4. Application to two popular models

The following models were used for an illustration purpose in this paper:

(1) Michaelis–Menten model

η(θ) = (f(x1, θ), . . . , f(xN , θ)); θ = (θ1, θ2);

f(x, θ) =
θ1 x

θ2 + x
; xi = 0.2, 0.222, 0.286, 0.4, 0.667, 2; (i = 1, . . . , 6); W = I.

The model was used with three different parameter spaces:
(A) Θ = [0, 50]× [0, 20];
(B) Θ = [2, 50]× [0, 20];
(C) Θ = [2, 50]× [0.2, 2].

The design used in this model originally appeared in Watts [10] where
it was duplicated. It has been widely referenced in the literature [9]. The
design points are not replicated in this paper.

(2) Two-parameter Hill model

η(θ) = (f(x1, θ), . . . , f(xN , θ)); θ = (θ1, θ2);

f(x, θ) =

(
x
θ1

)θ2
1 +

(
x
θ1

)θ2 ; xi = 0.316, 1, 3.16, 10, 31.6, 100; (i = 1, . . . , 6); W = I.

The model was used with two different parameter spaces:
(A) Θ = [0.316, 30]× [−20, 0];
(B) Θ = [0.316, 30]× [−6, 0].

The design used here is a geometric design with a dilution factor of
√

10. Such
design is evenly spaced on a logarithmic scale and is often used in biopharma-
ceutical applications of this model. Although a heterogeneous power model is
commonly used in these applications, a simpler homogeneous model is used in this
paper.

Both models are widely applied in the fields such as pharmacokinetics and
biochemistry.

The numerical results illustrating the methodology developed in this paper are
presented in Tables 1 and 2. For each of the two models, the minimal radius of the
intrinsic curvature, r1 = minθ∈ΘRint(θ), its global analogue r2 given by formula
(3.1), the maximal r0 given by (3.7), and rmax, the solution to the constrained
optimization problem (3.8), were calculated. In Table 2 it is assumed that the true
parameter vector of Michaelis–Menten model, θ̄ = (θ̄1, θ̄2), has θ̄1 = 1 and that
θ̄2 equals to one of the values, 0.5, 1, 10. In Table 1 it is assumed that the true
parameter vector of the Hill model, θ̄ = (θ̄1, θ̄2), has θ̄1 = 1 and that θ̄2 equals to
one of the values, −0.5, −1.5, −3. The scenarios (A)–(C) and (A)–(B) considering
different parameter spaces are described above. Notably, in the Michaelis–Menten
model both r0 and rmax decrease monotonically when θ̄2 increases from 0.5 to 10.
Since θ2 is the x-value resulting in θ1/2, one would expect that r0 and rmax become
small when θ̄2 lies outside [0.2, 2], the interval containing all design points. This
is apparent from Table 1, also showing that r0 and rmax are close to one another.
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Table 1 also illustrates that, for a fixed design, the minimum of the local curvature
radius is highly dependent on the assumed parameter space. Interestingly, under
each of three scenarios, (A)–(C), the global measure, r2, coincided with the local
one given by r1. Evidently, this is not true in the case (A) of Table 2, which
illustrates the value of global measures related to the nonlinearity of the model.

The values of σ(rmax, α) for which P (G(rmax)) = 1−α are given in both tables.
Similarly, one can find σ0 such that P (G(rr0)) = 1− α.

Table 1. 2-parameter Hill model.

Scenario min Rint(θ) r (formula (3.1))

(A) 0.235 0.046
(B) 0.232 0.006

θ̄2 rmax (formula (3.8)) r0 (formula (3.7)) σ(rmax, 0.01)

−0.5 0.312 0.268 0.080
−1.5 0.250 0.204 0.064
−3 0.243 0.235 0.063

Table 2. Michaelis–Menten model.

Scenario min Rint(θ) r (formula (3.1))

(A) 0 0
(B) 0.263 0.263
(C) 1.24 1.24

θ̄2 rmax (formula (3.8)) r0 (formula (3.7)) σ(rmax, 0.01)

0.5 0.483 0.683 0.124
1 0.365 0.516 0.094
10 0.083 0.110 0.021

5. Conclusion

The residual sum of squares attains a single local minimum in linear regression that
is also a global minimum. While this generally is not true in nonlinear regression
problems, there exists regions possessing similar property. Tubes around either
the expectation surface or another closely related surface represent an important
class of such regions and were studied in [7] and [8]. However, a maximal radius
of any RIGM region (and, specifically, a tube), although highly desirable, is not
currently available in statistical literature. This paper shows how such measures
can be computed as solutions of global optimization problems or as solutions to
related equations. The method relies heavily on properties of equidistant function
originally introduced in [6]. This function plays a prominent role in the definition
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of extended intrinsic curvature of a nonlinear model presented in [8]. The measures
introduced in this paper are illustrated using two models, Michaelis–Menten and
Hill. We anticipate that as computational experience using these measures with
different models is accumulated, a relationship between them and different global
aspects of nonlinear models will become apparent.
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