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Abstract

A large deviation principle for a normalized time-changed Brownian motion
is obtained using a weak convergence approach. The time-change stems
from the study of parabolic Cauchy problems with state-dependent intensity
coefficients. Using the duality weak convergence - large deviations, we prove
a large deviation principle for the superposition between the time-changed
Brownian motion and the inverse process of the additive functional that
determines the time change.
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1. Introduction

Let’s consider the following parabolic Cauchy problem,
∂

∂t
u(t, x) = λ(x)∆u(t, x), t ≥ 0, x ∈ IRd,

u(0, x) = f(x), t = 0, x ∈ IRd,
(1)

with ∆ being the standard Laplace operator, and λ(x) the intensity coeffi-
cient.

Assume that one can construct a Markov process X = {Xt, t ≥ 0} defined
on some probability space (Ω,F , IP), starting from the point x ∈ IRd, with
respect to the natural filtration {FXt , t ≥ 0}, FXt = σ(Xs, s ≤ t), that has
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the infinitesimal generator λ(x)∆. Then, the solution of the Cauchy problem
(1) is represented as

u(t, x) = IE[f(Xt) |X0 = x] = Ptf(x),

where {Pt}t≥0 is the Markov semigroup associated to the infinitesimal gen-
erator λ(x)∆.

There are situations when directly constructing a Markov semigroup that
corresponds to an infinitesimal generator L is not feasible, thus new ap-
proaches need to be investigated. There are few known methods of construct-
ing Markov semigroups ([1]), one of them being the time change method.
The time change from t to c t, for some constant c > 0, of a Markov semi-
group, corresponds to a change of the infinitesimal generator from L to c L.
This transformation is very convenient for normalizing the infinitesimal gen-
erators, while a change of the infinitesimal generator L into λ(x)L would
require a random rate function that depends on the position of the pro-
cess. Note that the carré du champ operator, defined as the bilinear map
Γ(f, g) = 1

2
[L(fg)−fL(g)−gL(f)], has the property that Γ(f) = Γ(f, f) ≥ 0

on the domain of L. Since the transformed carré du champ operator is λ(x)Γ,
the coefficient λ(x) should be positive. Moreover, to ensure the continuity of
the associated Markov process, we will restrict to the case of strictly positive
bounded measurable functions, 0 < a ≤ λ(x) ≤ b < ∞. The time-change
method is described next.

Let {Xt, t ≥ 0} be a Markov process starting from a fixed point x ∈ IRd,
with infinitesimal generator L. Define the additive functional,

SX(t, ω) =

∫ t

0

ds

λ(Xs(ω))
,

and its generalized right-continuous inverse process {τt, t ≥ 0},

τt(ω) = inf{u > 0 : SX(u, ω) > t}, inf ∅ = +∞.

Since λ(x) is assumed uniformly bounded, the additive functional SX(t) (ω
fixed) and the time change τt are continuous and increasing functions ([7],
section 3.4), such that SX(τt) = t. Additionally, SX is a bijective map from
IR+ to IR+, with derivative S ′X(t) = 1

λ(Xt)
, and for any t ≥ 0, τ ′t = 1

S′(τt)
=

λ(Xτt). Since the process SX is adapted to the natural filtration FX , the
time change τt is a stopping time with respect to this filtration. Due to the
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strong Markov property applied to the stopping times τt, the time-changed
process X̂t := Xτt becomes a Markov process. We show that its infinitesimal
generator is λ(x)L.

Indeed, using Itô’s formula, one derives df(Xt) = dM f
t +Lf(Xt)dt, where

{M f
t , t ≥ 0} is a local martingale with respect to the filtration {FXt , t ≥ 0}.

By composition rule, df(Xτt) = τ ′t [dM
f
τt + Lf(τt)dt], and thus df(X̂t) =

dM̂ f
t + λ(X̂t)Lf(X̂t), where M̂ f

t is a local martingale with respect to the
filtration FXτt := {A ∈ F : A ∩ {τt ≤ u} ∈ Fu}.

Specialize Xt to be the standard Brownian motion Bt with infinitesimal
generator ∆ = 1

2
d2

dx2
. The time-changed process X̂t = Bτt becomes a diffusion

process and a martingale with respect to the filtration Fτt , represented as

X̂t = X̂0 +

∫ t

0

√
λ(X̂s) dB̃s, (2)

for some Wiener process B̃. Thus, starting with the infinitesimal generator
∆ = 1

2
d2

dx2
, and performing the random time change, one gets an infinitesimal

generator of the form L = λ(x)∆, with λ(x) a uniformly bounded coefficient.
Moreover, if a further Girsanov transformation is performed, the infinitesimal
generator changes into L = 1

2
λ(x) d2

dx2
+ b(x) d

dx
, with bounded measurable

coefficients b(x) and λ(x), thus representing a larger class of diffusions that
do not require Lipschitz coefficients.

Probabilistic approaches to Cauchy problems with sufficiently smooth co-
efficients (such as Lipschitz conditions) have long been studied, and Freidlin-
Wentzell theory ([6]) covers an extensive analysis of large deviations for ran-
dom perturbations of such systems. Physical examples that exhibits non-
Lipschitz singularities motivated the study of Cauchy problems with irregu-
larities and singularities. Viscosity solutions methods are often used to over-
come such issues, but not easily manageable. As an alternative approach,
the time change method was used by Kondratiev et all in [8] to study the
asymptotic behavior of the stochastic processes associated with such systems.
The setup is the following.

Let C[0, T ] be the space of continuous functions and C↑[0, T ] the space
of continuous and increasing functions. Consider the sequence of stochastic
processes {(νn, ζn)}n≥1, defined on the product space C↑[0, T ] × C[0, T ], en-
dowed with the corresponding σ-fields generated by the uniform topology, as
follows:

νn(t) =
1

n
τnt, Zn(t) =

1√
n
Bnt, ζn(t) = Zn(νn(t)) =

1√
n
Bτnt . (3)
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The functional limit theorems for the normalized time-changed Brownian
motion have been studied in [8] under different scenarios regarding the inten-
sity coefficient λ, including the case in which the limits, limx→±∞ λ(x) = a±,
with a± > 0, exist. In this case, it has been proved (Theorem 3.2.1 in [8])
that for t ∈ [0, T ],

Bτnt√
n
⇒ W (η−1(t)), as n→∞, (4)

where W is a Wiener process and

η(t) =

∫ t

0

γ(W (s)) ds, γ(x) =
1

a+
1I(0,∞)(x) +

1

a−
1I(−∞,0)(x). (5)

In this paper we study a large deviation principle (LDP) for the normal-
ized time-changed Brownian motion under the conditions described above.
Using the duality between the large deviation theory and the weak conver-
gence theory ([4], [5]), we develop a similar argument, based on superposition,
as in [8].

2. Large deviation principle

The theory of large deviations is devoted to estimating normalizations of
log IP(An) for sequences of events with asymptotically vanishing probability.
The standard formulation, due to S.R.S. Varadhan ([14], 1966), is that the
sequence of random variables {Xn}n≥1 with values in a complete separable
metric space (E,BE) satisfies the large deviation principle if there exists a
lower semicontinuous function I : E → [0,∞] such that:

(i) for each open set G ∈ E,

lim inf
n→∞

1

n
log IP{Xn ∈ G} ≥ − inf

x∈G
I(x);

(ii) for each closed set C ∈ E,

lim sup
n→∞

1

n
log IP{Xn ∈ C} ≤ − inf

x∈C
I(x);

(iii) for each a ∈ [0,∞), {x : I(x) ≤ a} is a compact set in E.

4



The function I satisfying (i) and (ii) is called the rate function, and if in
addition (iii) holds, it is called a good rate function for the large deviation
principle. Therefore, in the literature, it is said that a sequence of random
variables satisfies a LDP with rate function I, if (i) and (ii) hold, and it
satisfies a full LDP if the rate function is good. Also, it is said that the
sequence of random variables satisfies a weak LDP with rate function I if
(ii) holds for compact sets. In the sequel, by LDP we mean a full LDP.

Let E = C[0, T ]) be the space of continuous functions on [0, T ], endowed
with the uniform norm, and C0[0, T ] the space of continuous functions ϕ, sat-
isfying ϕ(0) = 0. Denote by H2

0 [0, T ] the space of absolutely continuous func-
tions ϕ ∈ C0[0, T ] with derivatives ϕ̇ ∈ L2[0, T ]. The celebrated functional
large deviation principle for the Brownian motion, known as Schilder’s The-
orem ([14]), states that the sequence of stochastic processes {Xn}n≥1, with
Xn(t) = 1√

n
Bt, satisfies the LDP with the rate function I : C[0, T ]→ [0,∞],

I(ϕ) =

{
1
2

∫ T
0
ϕ̇(t)2 dt, if ϕ ∈ H2

0 [0, T ]

∞, otherwise.
(6)

A large deviation principle for time-changed Gaussian processes has been
obtained in [11], with the time-change derived from a subordination. Sub-
ordination is a method of producing new Markov semigroups through time
averaging, and in this case the process and the time change are independent.
For large deviations of tempered subordinators and their inverses we refer
to [9]. Another example, a large deviation principle for renewal processes
and superpositions of independent renewal processes is given in [13], where a
LDP for a sequence of stochastic processes leads to an LDP for the associated
first-passage-time and inverse processes.

Here, the time change τ is not independent of the Brownian motion B,
and moreover, the time-changed Bτt is not a square-integrable martingale.
Therefore, a superposition argument as in [8] is natural. We will study the
large deviation principle for the couple processes {(νn, ζn)}n≥1 defined on the
product space C↑[0, T ] × C[0, T ] and then derive the LDP for the marginal
processes {ζn}n≥1 using the contraction principle. This principle states that
the LDP is preserved under continuous mapping transformations. That is,
if the sequence of stochastic processes {Xn}n≥1 obeys an LDP with rate
function I and if f is a continuous function, then {f(Xn)}n≥1 obeys an LDP
with rate function I ′(y) = inf{x:f(x)=y} I(x). A slight generalization ([15],
[12]), which is called extended contraction principle, is stated as follows:
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Theorem 2.1. If the sequence of stochastic processes {Xn}n≥1 obeys the
LDP with rate function I and if {fn}n≥1 is a sequence of measurable functions
and f is a continuous function on the restriction sets {x : I(x) ≤ a}, a ≥ 0,
and if fn(xn) → f(x) as n → ∞ for all sequences xn such that xn → x as
n→∞, for all x for which I(x) <∞, then the sequence {fn(Xn)}n≥1 obeys
the LDP with rate function,

I ′(y) = inf
{x: f(x)=y}

I(x). (7)

The duality between the weak convergence and the large deviation theory
has been extensively employed (see e.g. [4], [5]). For example, an analogue of
Prohorov’s theorem where the tightness condition and the finite dimensional
convergence lead to the weak convergence of stochastic processes ([2]), is
that the exponential tightness and a weak large deviation principle determine
a large deviation principle with a good rate function (see e.g. Puhalskii
([10, 12]).

Definition 2.2. A sequence of random variables {Xn}n≥1 on a metric space
E is said to be exponentially tight with speed {rn}n≥1 if for any N <∞, there
exists a compact set KN ⊂ E, such that

lim sup
n→∞

1

rn
log IP(Xn /∈ KN) ≤ −N.

Next we state a criteria for exponential tightness that was derived by
A.A. Puhalskii ([12]) for stochastic processes on metric spaces.

Theorem 2.3. A sequence of stochastic processes {Xn}n≥1 is exponentially
tight in C[0, T ] with speed function {rn} if and only if the following conditions
hold:

(i) limA→∞ lim supn→∞
1
rn

log IP{|Xn(0)| > A} = −∞;

(ii) limδ→0 lim supn→∞ supt∈[0,T ]
1
rn

log IP{sups∈[t,t+δ] |Xn(s)−Xn(t)| > ε} =
−∞ for any T > 0, and ε > 0.

For a more general characterization of the exponential tightness, we refer to
[5], Theorem 4.1.

Let us consider the following assumptions:
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A1. λ is measurable such that 1/λ is locally integrable;

A2. there exists two positive numbers a± such that limx→±∞ λ(x) = a±;

A3. λ is uniformly bounded, 0 < c ≤ λ(x) ≤ d.

Proposition 2.4. Under the assumptions A1−A3, the sequence of processes
{ζn}n≥1 defined as ζn(t) = 1√

n
Bτnt for t ∈ [0, T ], is exponentially tight on

C[0, T ], for any T > 0.

Proof: We need to check the conditions (i) and (ii) of Theorem 2.3.
Condition (i) is obviously true since ζn(0) = 0. To prove (ii), let T > 0 and
ε > 0 be fixed. For µ > 0 be arbitrarily chosen, we have:

IP{ sup
s∈[t,t+δ]

|ζn(s)− ζn(t)| > ε} = IP{ sup
s∈[t,t+δ]

1√
n
|X̂ns − X̂nt| > ε}

= IP{ sup
s∈[t,t+δ]

exp(µ
√
n|X̂ns − X̂nt|) > exp(nµε)}

≤ exp(−nµε)IE[exp(µ
√
n|X̂n(t+δ) − X̂nt|)],

by Doob’s martingale inequality.
Using the martingale decomposition (2) for the time-changed process, we

write for some Wiener process B̃s,

IP{sups∈[t,t+δ]|ζn(s)− ζn(t)|>ε}≤exp(−nµε)IE

[
exp

(
µ
√
n

∫ n(t+δ)

nt

√
λ(X̂s)dB̃s

)]

= exp(−nµε)IE

[
exp

(
µ2n

2

∫ n(t+δ)

nt

λ(X̂s)) ds

)]

= exp(−nµε)IE
[
exp

(
µ2n2

2

∫ t+δ

t

λ(X̂ns)) ds

)]
.

Since λ(x) is bounded, by the dominated convergence theorem, when δ → 0,

lim sup
n→∞

lim sup
δ→0

sup
t∈[0,T ]

1

n
log IP{ sup

s∈[t,t+δ]
|ζn(s)− ζn(t)| > ε} ≤ −µε,

for any µ > 0 arbitrarily chosen, which proves condition (ii) of the exponen-
tial tightness.
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Proposition 2.5. Under the assumptions A1−A3, the sequence of processes
{S(n)

B }n≥1, where S
(n)
B (t) = 1

n
SB(nt) for t ∈ [0, T ], satisfies the LDP on

C↑[0, T ] with rate function,

I ′(ψ) =

{
1
2

∫ T
0
ϕ̇(t)2 dt, if ϕ ∈ H2

0 [0, T ] such that
∫ t
0
γ(ϕ(u))du = ψ(t)

∞, otherwise,

(8)
where γ is defined in (5).

Proof: We first show the exponential tightness. As the condition (i) of
Theorem 2.3 is obviously true, we will prove (ii). Let T > 0 and ε > 0 be
fixed. For some Wiener process B̃ and µ > 0 arbitrarily chosen, using the
fact that λ(x) ≥ c we will get,

IP{ sup
s∈[t,t+δ]

|SB(ns)− SB(nt)| > nε} = IP{ sup
s∈[t,t+δ]

|
∫ ns

nt

ds

λ(Bs)
| > nε} ≤

IP

{∫ n(t+δ)

nt

ds

λ(Bs)
> nε

}
= IP

{∫ t+δ

t

ds

λ(
√
nB̃s)

> ε

}
≤ exp(−nµε)IE

[
exp

(
nµ

∫ t+δ

t

ds

λ(
√
nB̃s)

)]
≤ exp(−nµε) exp

(
nµδ

c

)
.

By taking δ → 0, and then n→∞, it follows that

lim sup
δ→0

lim sup
n→∞

sup
t∈[0,T ]

1

n
log IP{ sup

s∈[t,t+δ]
|S(n)
B (s)− S(n)

B (t)| > ε} ≤ −µε,

which proves the exponential tightness of the process.
Note that

SnB(t) =
1

n

∫ nt

0

ds

λ(Bs)
=

1

n

∫ t

0

ndu

λ(Bnu)
=

∫ t

0

du

λ(
√
nWu)

=

∫ t

0

du

λ(nBn
u)
,

where Bn
u = 1√

n
Wu satisfies the LDP with rate function (6).

Let {ϕn}n≥1 be a sequence in C[0, T ] such that ϕn → ϕ with respect to

the uniform topology. For any t ∈ [0, T ], let fn(ϕn)(t) =
∫ t
0

du
λ(
√
nϕn(u))

. Since

λ(x) ≥ c > 0 and limx→±∞ λ(x) = a±, we apply the Lebesgue’s dominated
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convergence theorem and get

lim
n→∞

fn(ϕ)(t) =

∫ t

0

lim
n→∞

du

λ(
√
nϕn(u))

=

∫ t

0

[
1

a+
1I(0,∞)(ϕ(u)) +

1

a−
1I(−∞,a)(ϕ(u))

]
du := f(ϕ)(t).

Due to the extended contraction principle (Theorem 2.1), the sequence of
stochastic processes {SnB := fn(Bn), n ≥ 1} obeys the large deviation prin-
ciple on C↑[0, T ] with rate function

I ′(ψ) = inf
{ϕ:

∫ t
0 γ(ϕ(u)du=ψ(t)}

I(ϕ).

Note that for any t, s > 0, ψ(t + s)− ψ(t) > 0, so ψ(t) =
∫ t
0
γ(ϕ(u)du is

a continuous and strictly increasing function, therefore its inverse exists and
is continuous, and thus the sequence {SnB}n≥1 satisfies the LDP on C↑[0, T ]
with rate function given in (8).

Proposition 2.6. Under the assumptions A1−A3, the sequence of processes
{νn}n≥1, with νn(t) = 1

n
τnt, satisfies the LDP on C↑[0, T ] with rate function

I1(φ) =

{
1
2

∫ T
0
ϕ̇(t)2 dt, if ϕ ∈ H2

0 [0, T ] such that
∫ t
0
γ(ϕ(u)) du = φ−1(t)

∞, otherwise.

(9)
with γ defined in (5).

Proof:
According to Theorem 3.1 in [13], a large deviation principle for an inverse

process with linear scalings is obtained from the LDP of the given process.
Therefore the sequence {νn}n≥1, where νn(t) = 1

n
τ(nt), obeys an LDP on

C↑[0, T ] with rate function I1(φ) = I ′(φ−1). Since I ′ is a good rate function,
such is I1, making the sequence {νn}n≥1 exponentially tight.

Proposition 2.7. Let Zn(t) = 1√
n
Bnt and {xn}n≥0 be a sequence in C↑[0, T ]

such that xn → x in C[0, T ]. Then the sequence of stochastic processes
{Zn(xn)}n≥1 satisfies a large deviation principle with rate function

I2(Φ |x) =

{
1
2

∫ T
0

(ϕ̇(t))2dt, if ϕ ∈ H2
0 [0, T ] such that ϕ ◦ x = Φ

∞, otherwise.
(10)
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Proof:
We show that the sequences of stochastic processes {Zn(xn)}n≥1 and {Zn(x)}n≥1
are LDP equivalent (which means that if one obeys an LDP with rate func-
tion I, the same is true for the other). By Lemma 3.13 in [5], it suffices to
prove that for any ε > 0,

lim
n→∞

1

n
log IP{ sup

t∈[0,T ]
|Zn(xn(t))− Zn(x(t))| > ε} = −∞.

Indeed, let ε > 0 be fixed. For some µ > 0 arbitrarily chosen we have:

IP{ sup
t∈[0,T ]

|Zn(xn(t))− Zn(x(t))| > ε} = IP{ sup
t∈[0,T ]

|B(nxn(t))−B(nx(t))| >
√
nε}

= IP{µ
√
n sup
t∈[0,T ]

|B(nxn(t))−B(nx(t))| > µnε}

= IP{µn sup
t∈[0,T ]

|B(xn(t))−B(x(t))| > µnε}

≤ exp(−nµε)IE

[
exp(µn sup

t∈[0,T ]
|B(xn(t))−B(x(t))|)

]

≤ exp(−nµε) exp

(
µn sup

t∈[0,T ]
c|xn(t)− x(t)|α

)
,

where c > 0 and 0 < α < 1
2
, due to the α-Holder continuity of the Brownian

motion.
As xn → x in C↑[0, T ], limn→∞ supt∈[0,T ] |xn(t) − x(t)| = 0. Therefore,

there exists n ≥ n0(δ) such that supt∈[0,T ] |xn(t) − x(t)| < δ and such that

δ <
(
ε
c

)1/α
. Thus,

1

n
log IP{ sup

t∈[0,T ]
|Zn(xn(t))− Zn(x(t))| > ε} ≤ −µ(ε− cδα),

for any µ > 0 and n ≥ n0, so

lim
n→∞

1

n
log IP{ sup

t∈[0,T ]
|Zn(xn(t))− Zn(x(t))| > ε} = −∞.

For fixed x(t) ∈ C↑[0, T ], supt∈[0,T ] x(t) = x(T ) and

F : C[0, x(T )]→ C[0, T ], F (Φ) = Φ ◦ x,

is continuous. Therefore, by the contraction principle, the sequence {Zn(x)}n≥1
satisfies the LDP with rate function I2(Φ |x) on C[0, x(T )] given in (10).
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Next, we consider the construction of a rate function on the product space.
If (E1, E1) and (E2, E2) are two Polish spaces with their associated Borel
σ-fields, and {µ1n}n≥1 a sequence of probability measures on (E1, E1), let
{νn(x1, B2)}n≥1 be a sequence of probability transition functions defined on
E1 × E2. Then, a sequence a probability measure {µn}n≥1 on the product
space E1 × E2 is represented as,

µn(B1 ×B2) =

∫
B1

νn(x1, B2)dµ1n(x1), (11)

for any Bi ∈ Ei, i = 1, 2.
The following definition was introduced by Chaganty in [3] to provide a

large deviation criteria on a product space.

Definition 2.8. The sequence of probability transition functions {νn(x1, ·)},
x1 ∈ E1, satisfies the (LDP) continuity condition in x1 with rate function
J(x1, x2) if

(i) for each x1 ∈ E1, J(x1, ·) is a rate function on E2;

(ii) for any sequence {x1n} in E1 such that x1n → x1, the sequence of
measures {νn(x1n, ·)} on E2 obeys the LDP with rate function J(x1, ·);

(iii) J(x1, x2) is lower semi-continuous as a function of (x1, x2).

To prove the large deviation principle on the product space we use The-
orem 2.3 from [3], which states:

Theorem 2.9. Let (E1, E1) and (E2, E2) be two Polish spaces with their as-
sociated Borel σ-fields. Suppose that the sequence of probability measures
{µn} defined in (11) is exponentially tight on the product space E1×E2, and
that the sequence of probability transition functions {νn(x1, B2)} satisfies the
(LDP) continuity condition with rate function J(x1, x2). If {µ1n} obeys LDP
with rate function I1(x1), then the sequence {µn} satisfies a large deviation
principle with rate function

I(x1, x2) = I1(x1) + J(x1, x2).

Consequently, the marginal sequence of measures {µ2n} on E2 also obeys the
LDP with rate function

I2(x2) = inf
x1∈E1

[I1(x1) + J(x1, x2)].
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We can now state the main result.

Theorem 2.10. Let Bτt be the time-changed Brownian motion associated
to the infinitesimal generator λ(x)∆, where ∆ is the Laplace operator and
λ : IR→ (0,∞) is a measurable function satisfying the following assumptions:

(A1) λ is measurable such that 1/λ is locally integrable;

(A2) there exists two positive numbers a± such that limx→±∞ λ(x) = a±;

(A3) λ is uniformly bounded, 0 < c ≤ λ(x) ≤ d.

Then the sequence of normalized time-changed processes {ζn}n≥1, where ζn(t) =
1√
n
Bτnt for t ∈ [0, T ], satisfies the large deviation principle with rate function

I : C[0, T ]→ [0,∞],

I2(Φ) = inf
φ∈C↑[0,T ]

[I1(φ) + I2(Φ |φ)],

with I1(φ) and I2(Φ |φ) given in equations (9) and (10), respectively.

Proof:
We apply Theorem 2.9 to the sequence of processes {(νn, ζn)}n≥1. The

exponential tightness follows from [5] (Lemma 3.6), stating that a sequence
of probability measures on the product space is exponentially tight if and
only if the marginal distributions are exponential tight, provided that each
individual probability measure is tight. We know that any probability mea-
sure defined on a Polish space is tight (Theorem 1.3 in [2]). Accordingly,
since C[0, T ] equipped with the supremum norm topology is a Polish space,
the exponential tightness of the couple processes follows from the exponential
tightness of the marginal processes. Since {ζn}n≥1 is exponentially tight on
C[0, T ] (Proposition 2.4), and {νn}n≥1 is exponentially tight on C↑[0, T ] (from
the proof of Proposition 2.6), then the sequence {(νn, ζn)}n≥1 is exponentially
tight on C↑[0, T ]× C[0, T ].

Next, we prove the (LDP) continuity conditions for the transition mea-
sures. That is, show that the rate function J(φ,Φ) := I2(Φ |φ) satisfies the
conditions (i)-(iii) in Definition 2.8. In Proposition 2.7 we proved that the
conditions (i) and (ii) hold true. It only remains to verify condition (iii),
which is the lower semicontinuity property of J(φ,Φ).
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Indeed, if we assume that (φn,Φn)→ (φ,Φ), then, when J(φn,Φn) <∞,
using Fatou’s lemma, we get

lim inf
n→∞

J(φn,Φn) = lim inf
n→∞

1

2

∫ T

0

d

dt
[Φn((φn)−1)]dt

≥ 1

2

∫ T

0

lim
n→∞

d

dt
[Φn((φn)−1)dt = J(Φ, φ).

Thus, the sequence of couple processes {(νn, ζn)}n≥1 obeys the LDP with
rate function I(φ,Φ) = I1(φ)+J(φ,Φ). Consequently, due to the contraction
principle, the sequence of process {ζn}n≥1 obeys the LDP with rate function
(10).
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