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Abstract: We study the effect of small perturbations on large
time intervals for a family of stochastic additive functionals of
Markov processes switched by jump Markov processes. The aver-
aged limit process evolves deterministically on random time inter-
vals according to the transition times of a stationary jump Markov
process. Small perturbations essentially influence the behavior of
the system and asymptotics of large deviations play an important
role in analyzing it.
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1. Introduction

The purpose of this paper is to develop a variant of the classical
Freidlin-Wentzell theory for a class of stochastic additive function-
als switched by jump Markov processes in averaging approximation.
Large deviation principle (LDP), exit time problem, stochastic sta-
bility for randomly perturbed dynamical systems and the averaging
principle have been thoroughly studied by Freidlin and Wentzell in
[2]. The stochastic stability and optimal control for evolutionary
systems in averaging scheme for Markov and semi-Markov random
evolutions, including Dirichlet problems for multiplicative opera-
tor functionals of Markov processes, were developed in [7]. For



estimates of probabilities of hitting a boundary point for Poisson
processes and jump Markov processes we refer the reader to [6].

The paper is organized as follows: in section 2 we introduce the
stochastic additive functionals, averaging principle and large de-
viation principle. In section 3 we apply a useful quasi-potential
method alternative to LDP, which plays an important role in the
asymptotics of exit times. We first consider the jump Markov pro-
cess which is uniformly ergodic on E, followed by generalization to
uniform ergodicity for each partition Ek of the split space in section
4.

2. Preliminary results

2.1. Average approximation theorem. Let (E, E) be a com-
plete, separable metric space and (Ω,F , (Ft)t≥0, IP) be a stochastic
space with the filtration (Ft)t≥0 right-continuous and complete. Let
η(t;x), t ≥ 0, x ∈ E be a process with locally independent incre-
ments and {x(t), t ≥ 0; q(x), x ∈ E} be a switching jump Markov
process in E with jump intensity rates q(x). The switching pro-
cesses that describe the random changes in the evolution of the
system, are considered in a split space E = ∪Nk=1Ek, Ek ∩ Ek′ = ∅,
k 6= k′ with non-communicating components, and having the er-
godic property on each class Ek. By introducing the parameter
ε > 0 one defines a jump Markov process on the split phase space
with small transition probabilities between the states of the system
and further merges the classes Ek, k = 1, 2, · · · , N into distinct
states k, 1 ≤ k ≤ N .

Consider the family of stochastic additive functionals ξε(t), t ≥
0, ε > 0,

(2.1) ξε(t) = ξε(0) +

∫ t

0

ηε
(
ds;xε(

s

ε
)
)
, t ≥ 0, ε > 0

The infinitesimal generator of ηε(t;x) is

IΓε(x)ϕ(u)=aε(u;x)ϕ′(u)+ε−1

∫
[ϕ(u+εv)−ϕ(u)−εvϕ′(u)]Γε(u,dv;x)

with the drift velocity a(u;x) in the Banach spaceB1(IRd) of bounded
and continuous functions subject to

aε(u;x) = a(u;x) + θε(u;x)



where θε(u;x) → 0 as ε → 0 uniformly on (u;x), Γε(u, dv;x) ≡
Γ(u, dv;x) is independent of ε and the operator

γε(x)ϕ(u) = ε−1

∫
IRd

[ϕ(u+ εv)− ϕ(u)− εvϕ′(u)]Γ(u, dv;x)

is negligible on B1(IRd).
The switching Markov process xε(t), t ≥ 0 is defined by the gener-
ator

Qεϕ(x) = q(x)

∫
E

P ε(x, dy)[ϕ(y)− ϕ(x)]

and satisfies the Phase Merging Principle (PMP) assumptions:

(PMP1) The stochastic kernel P ε(x,B) is represented by

P ε(x,B) = P (x,B) + εP1(x,B)

where the stochastic kernel P (x,B) of the embedded Markov
chain corresponding to x(t) is coupled with the splitting ac-
cording to

P (x,Ek) = 1Ik(x) :=

{
1, x ∈ Ek,
0, x 6∈ Ek

and the perturbing operator P1(x,B) is a signed kernel
which satisfies the conservative condition P1(x,E) = 0.

(PMP2) The Markov supporting process x(t), t ≥ 0 on the state
space (E, E) is supposed to be uniformly ergodic in ev-
ery class Ek, 1 ≤ k ≤ N , with the stationary distribution
πk(dx), 1 ≤ k ≤ N , satisfying the following relations

πk(dx)q(x) = qkρk(dx), qk =

∫
Ek

πk(dx)q(x),

ρk(B) =

∫
Ek

ρk(dx)P (x,B), ρk(Ek) = 1.

(PMP3) The average exit probabilities satisfy the following condition

p̂k :=

∫
Ek

ρk(dx)P1(x,E\Ek) > 0, 1 ≤ k ≤ N.

The infinitesimal generator of the stochastic additive functional
ξε(t) is

(2.2) ILε = Qε + IΓε.



Theorem 2.1. (Average approximation) [3] The stochastic
evolutionary system ξε(t), t ≥ 0 defined by (2.1) converges weakly

to the averaged stochastic system ξ̂(t),

ξε(t)⇒ ξ̂(t) as ε→ 0.

The limit process ξ̂(t), t ≥ 0 is defined by a solution of the evolu-
tionary equation

(2.3)
d

dt
ξ̂(t) = â(ξ̂(t); x̂(t)), ξ̂(0) = ξ(0)

where the averaged velocity is determined by

â(u; k) =

∫
Ek

πk(dx)a(u;x) 1 ≤ k ≤ N.

The limit process ξ̂(t) is a random dynamical system evolving de-

terministically on random time intervals [Ti, Ti+1), where {Ti}N(T )
i=1

are the transition times of the stationary merged process x̂(t) and
N(T ) the number of transitions on [0, T ].

2.2. Dirichlet problem.

Definition 2.2. ϑ ∈ IRd is an asymptotically stable position of the
averaged system (2.3) if for every neighborhood E1 of ϑ there exists
a smaller neighborhood E2 ⊂ E1 of ϑ such that the trajectories of
ξ̂t(u) starting in E2 converge to ϑ without leaving E1 as t→∞.

Definition 2.3. Let D ∈ IRd be a bounded domain and ∂D be its
smooth boundary. The domainD is attracted to ϑ if the trajectories
ξ̂t(u), u ∈ D converge to the equilibrium position ϑ without leaving
D as t→∞.

Consider the Dirichlet Problem associated to the generator ILε

defined in (2.2) :

(2.4)

{
ILεϕε(u;x) = 0 foru ∈ D ⊂ IRd

ϕε(u;x) = f(u;x) foru ∈ ∂D, x ∈ E
where D is a bounded open set and f is continuous.

The solution depends on the exit time of the stochastic additive
functional from the bounded domain D, see [4] (more general, for
multiplicative functionals analogue of Dynkin formula and solutions



of Dirichlet problems in evolutionary systems with Markov or semi-
Markov switching are given in [7])

(2.5) ϕε(u;x) = IEu,x[f(ξε(τ ε);xε(τ ε))]

where τ ε := inf{t : ξε(t) ∈ ∂D} and the expected value is taken
under IPε

u,x, the measure on the path space corresponding to the
generator ILε that starts at u ∈ D, x ∈ E at time 0.

As ε→ 0, IPε
u,x ⇒ IPu,x the degenerate measure at the solution of

the averaged system. We are interested in the behavior of ξε(τ ε) as
ε→ 0. To study this exit time we make use of the large deviation
principle for the family of stochastic additive functionals.

2.3. Large deviations for additive functionals. Based on the
average approximation theorem, we proved using a weak conver-
gence approach [1], the following large deviation result [5].

Theorem 2.4. (Large deviation principle) For absolutely con-
tinuous functions ϕ from D([0, T ], IRd), with T > 0 arbitrary fixed,

satisfying ϕ(0) = u, and for each fixed k ∈ Ê, define

(2.6) Iu,k[0,T ](ϕ) :=

∫ T

0

L(ϕ(t), ϕ̇(t); k)dt,

where L is subsequently defined. For all other functions in
D([0, T ], IRd), Iu,k[0,T ](ϕ) := ∞. Then the family ξε(t), ε > 0 satisfies

the large deviation principle with rate function

(2.7) Iu[0,T ](ϕ) = min{Iu,k[0,T ](ϕ) : 1 ≤ k ≤ N}

Let ILε be the infinitesimal generator of the family of coupled
Markov processes (ξε(t), xε( t

ε
)), t ≥ 0, ε > 0 on IRd × E defined in

(2.2).
Consider the martingale problem for the generator ILε and its

relationship with the exponential martingale problem by taking the
transformation Hε defined as

Hεf := εe−
1
ε
f ILεe

1
ε
f

An important step is to prove the convergence of Hε for an appro-
priate collection of sequences f ε to an operator H in the sense that



if f ε converges to f as ε→ 0 the Hεf ε converges to Hf . The limit
operator is

Ĥf(u; k) = â(u; k)f ′(u) +

∫
IRd

(evf
′(u) − 1− vf ′(u))Γ̂(u, dv; k)

We further associate to it the function in u and p in IRd defined by

H(u, p; k) := â(u; k)p+

∫
IRd

(evp − 1− vp)Γ̂(u, dv; k)

As shown in [5] the Legendre-Fenchel transform of H defined as

L(u, q; k) := sup
p∈IRd
{pq −H(u, p; k)}

leads to the rate function

Iu,k[0,T ](ϕ) :=

∫ T

0

L(ϕ(t), ϕ̇(t); k)dt.

The stochastic additive functional ξε(t) satisfies LDP i.e.: for any
set A ∈ D([0, T ], IRd) and any function ϕ such that ϕ(0) = u,
and for every point u ∈ IRd and ε > 0 there will correspond the
probability measure IPε

u such that

− inf
ϕ∈A◦

Iu[0,T ](ϕ) ≤ lim inf
ε→0

ε log IPε
u{ξεu ∈ A}

≤ lim sup ε log IPε
u{ξεu ∈ A} ≤ − inf

ϕ∈Ā
Iu[0,T ](ϕ)

where A◦ and Ā represent the interior respectively the closure of
the set Γ.

Let ρ be Skorohod metric in D([0, T ], IRd), and let A = {ϕ ∈
D([0, T ], IRd) : ρ(ϕ, ξ̂u) > δ } for any δ > 0. Then

− inf
ϕ∈A◦

Iu[0,T ](ϕ) ≤ lim inf
ε→0

ε log IPε
u{ρ(ξεu, ξ̂u) > δ}

≤ lim sup ε log IPε
u{ρ(ξεu, ξ̂u) > δ} ≤ − inf

ϕ∈Ā
Iu[0,T ](ϕ)

Corollary 2.5. IPε
u{ρ(ξεu, ξ̂u) > δ} ≤ exp(−c1

ε
), where c ≤

infϕ∈Ā I
u
[0,T ](ϕ).

Let Φu(b) = {ϕ ∈ C([0, T ], IRd) : Iu[0,T ](ϕ) ≤ b} be a compact set

in C([0, T ], IRd).



Corollary 2.6. For any function ϕ such that ϕ(0) = u and for
any b, δ, β positive,

IPε
u{ρ(ξε, ϕ) < δ} ≥ exp{−1

ε
(Iu[0,T ](ϕ) + β)}

IPε
u{ρ(ξε,Φu(b)) > δ} ≤ exp{−1

ε
(b− β)}

3. Exit-time problem for ergodic switching Markov
process

Assume that the jump Markov process is ergodic on E and the
average system defined by

(3.1)
d

dt
ξ̂(t) = â(ξ̂(t); x̂(t)), ξ̂(0) = ξ(0)

where the averaged velocity is determined by

â(u) =

∫
E

π(dx)a(u;x)

has an asymptotically stable position ϑ. Let D ∈ IRd be a bounded
domain attracted to the asymptotically stable position ϑ, i.e. â(u) =
0. The stochastic additive functional switched by the ergodic jump
Markov process satisfies large deviation principle with the rate func-
tion given in (2.6) with k = 1, that is

(3.2) Iu[0,T ] =

∫ T

0

L(ϕ(t), ϕ̇(t))dt.

Define by Eα(u) the α-neighborhood of a point u ∈ IRd, for any
α > 0.

Proposition 3.1. Assume that D is attracted to the equilib-
rium position ϑ and for u ∈ ∂D, (â(u), n(u)) < 0 where n(u) is the
interior normal. Then for any α > 0 we have:

(i) there exist positive constants c1 and T0 such that for any
function ϕt assuming its values in the set D ∪ ∂D − Eα(ϑ)
for t ∈ [0, T ], we have Iu(ϕ) > c1(T − T0), T > T0.

(ii) there exist positive constants c2 and T0 such that for all
sufficiently small ε > 0 and any u ∈ D ∪ ∂D − Eα(ϑ) we
have

(3.3) IPu{ζα > T} ≤ exp{−1

ε
c2(T − T0)}

where ζα := inf{t > 0 : ξεt /∈ D − Eα(ϑ))}.



Proof. The proof follows along the lines of Freidlin-Wentzell [2].
Part (i) is similar to Lemma 2.2 in [2] and for the sake of complete-
ness we provide the details adapted to our situation. In part (ii) we
have to take into the account that ξεt is not a Markov process as in
Lemma 2.2 cited above. We use the fact that the coupled process
(ξεt , x̂( t

ε
)) is a Markov process to obtain similar property.

(i) Since the domain D is attracted to ϑ there exists Eα′(ϑ) ⊂
Eα(ϑ) such that the trajectories of ξεt (u) starting in Eα′(ϑ) never

leave Eα(ϑ). Let T (α′, u) be the time spent by ξ̂t(u) until reaching
Eα′(ϑ). It follows that T (α′, u) <∞ for any u ∈ D∪∂D and T (α′, u)
is upper semicontinuous in u, therefore it attains its largest value
T0 = maxu∈D∪∂D T (α′, u) <∞.

The set of functions from C([0, T0], D ∪ ∂D − Eα(ϑ)) is closed in
C([0, T ]), so Iu[0,T0](ϕ) attains its infimum on this set. This infimum
is different from zero since otherwise some trajectory of the dynam-
ical system would belong to this set. Therefore Iu[0,T0] ≥ A > 0 and

for any T > T0, Iu[0,T ] ≥ A for any ϕ ∈ C([0, T ], D ∪ ∂D − Eα(ϑ)).
Using the subadditivity of the rate function we get for T > 2T0

that Iu[0,T ](ϕ) ≥ 2A and so on. We get

Iu[0,T ](ϕ) ≥ A[
T

T0

] > A(
T

T0 − 1
) = a(T − T0)

(ii) Since D is attracted to ϑ and (â(u), n(u)) < 0 on the bound-
ary of D it follows that the same properties will be enjoyed by the
δ-neighborhoods of D for sufficiently small δ > 0. Assume that
δ < α

2
. From (i) we get Iu[0,T0](ϕ) > 0 for functions ϕ that do not

leave the closed δ-neighborhood of D and do not get into Eα
2
(ϑ).

For u ∈ D the functions in φu(A) = {ϕ : ϕ(0) = u, Iu[0,T0](ϕ) ≤ A}
reach Eα

2
(ϑ) or leave the δ-neighborhood of D during the time from

0 to T0. The trajectories of ξεt (u) for which ζα(u) > T0 are at a dis-
tance not smaller than δ from this set, hence Corollary 2.6 yields

IPu{ζα > T0} ≤ exp{−1

ε
(A− β)}.

Let us denote by Xε
t := (ξεt , x

ε( t
ε
)) the coupled Markov process. Let

Ft be the σ-algebra generated by the trajectories Ft = σ(Xε
s ; s ≤ t).



Then using the Markov property we have

IPu(ζ
α > (n+ 1)T0) = IPu(ζ

α ◦ θnT0 > T0; ζα > nT0)

= IEu(1Iζα◦θnT0
> T0; ζα > nT0)

= IEu(IEu(1Iζα◦θnT0
> T0)|FnT0); ζ

α > nT0)

= IEu(IPXε
nT0

(ζα > T0); ζα > nT0)

= IEu(IPξεnT0
(ζα > T0); ζα > nT0)

≤ IPu(ζ
α > nT0) sup

y∈D
IPy(ζ

α > T0).

We get

IPu(ζ
α > T ) ≤ IPu(ζ

α > [
T

T0

]T0) ≤ [sup
y∈D

IPy(ζ
α > T0)]

[ T
T0

]

≤ exp{−1

ε
(A− β)(

T

T0

− 1)} = exp{−1

ε
c(T − T0)}.

�

Let us define the quasipotential with respect to u ∈ IRd

(3.4)
V (u, v)=inf{Iu[0,T ](ϕ) :ϕ(0)=u, ϕ(T )=v, ϕ(t)∈D∪∂D,∀t ∈ [0, T ]}

This describe the difficulty of passage from the initial state u
to a small neighborhood of v, without leaving D ∪ ∂D within a
“reasonable” time, since

(3.5) V (u, v) = lim
T→∞

lim
δ→0

lim
ε→0

[−ε log IPu(τδ ≤ T )]

where τδ be the first entrance time in the δ-neighborhood of v for
the process ξεt , see for details [2].

In what follows we assume: V (ϑ, ∂D) < ∞. Let v0 ∈ ∂D such
that V (ϑ, v0) = minv∈∂D V (ϑ, v).

Proposition 3.2. The following properties hold:

(i) V (ϑ, v) ≥ 0
(ii) V (ϑ, ϑ) = 0

(iii) V (ϑ, v) is continuous in v.

Theorem 3.3. Let D be a bounded domain attracted to the
equilibrium position ϑ. Suppose that there exists a unique point



v0 ∈ ∂D such that V (ϑ, v0) = minv∈∂D V (ϑ, v). Then for every
δ > 0 and u ∈ D,

lim
ε→0

IPu{ρ(ξετε , v0) < δ} = 1

where τ ε := inf{t > 0 : ξεt ∈ ∂D}.

Proof. We study the trajectories of ξεt starting from a small neigh-
borhood of the equilibrium position ϑ. Let Γ and γ be small spheres
of radii µ and µ/2 with center in ϑ.

The process starting at u ∈ γ will follow the trajectories given
by the differential equation inside γ and stay inside Γ for a long
time. The process may return to γ many times and with a very
small probability the process may not return and exits from D. If
the process exits from D then this happen with probability one
around the point of minimum potential. To prove this we need to
look at the returning times in γ ∪ ∂D. Let’s define the increasing
sequence of returning times τ0, σ0, τ1, σ1, ... such that: τ0 = 0,
σn = inf{t > τn : ξεt ∈ ∂Γ}, τn = inf{t > σn−1 : ξεt ∈ γ ∪ ∂D}, with
inf ∅ =∞. Let’s define a new process on the set γ ∪ ∂D, ηεn := ξετn
and on E, yεn := xε( τ

ε
n

ε
). The couple Xn = (ηεn, y

ε
n) is a Markov

chain.
First, let’s suppose that u ∈ γ and let N be the time of exit from

D. Let IPn,ε be the probability of exiting from ∂D − Eδ(v0) during
the n’th trip from Γ to γ ∪ ∂D, where Eδ(v0) is the sphere with
radius δ and center v0.

IPu{|ξετε − v0| ≥ δ} =
∞∑
n=1

IPn,ε =
∞∑
n=1

IPu{ηεn ∈ ∂D − Eδ(v0)}

=
∞∑
n=1

IEu{1I{ηε1◦θn−1∈∂D−Eδ(v0)}; η
ε
1 ∈ γ, ..., ηεn−1 ∈ γ}

∞∑
n=1

IEu{IEu{1I{ηε1◦θn−1∈∂D−Eδ(v0)}|Fn−1}}ηε1 ∈ γ, ..., ηεn−1 ∈ γ}

∞∑
n=1

IEu{IEXn−1{ηε1 ∈ ∂D − Eδ(v0)}; ηε1 ∈ γ, ..., ηεn−1 ∈ γ}

∞∑
n=1

IEu{IEηn−1{ηε1 ∈ ∂D − Eδ(v0)}; ηε1 ∈ γ, ..., ηεn−1 ∈ γ}



≤
∞∑
n=1

IEu{ηε1 ∈ γ, ..., ηεn−1 ∈ γ}IPηn−1{ηε1 ∈ ∂D − Eδ(v0)}

≤
∞∑
n=1

IPu(N = n)IPηn−1{ηε1 ∈ ∂D − Eδ(v0)}

Let’s assume that we have proved for u ∈ γ, IPu{ηε1 ∈ ∂D −
Eδ(v0)} → 0. Then the above sum converges to zero and so the
theorem is proved for u ∈ γ.
Let’s consider the general case that u ∈ D. We write

IPu(|ξετε − v0|≥δ)≤ IPu(ξ
ε
τ(γ∪∂D)∈∂D)+IPu(ξ

ε
τ(γ∪∂D)∈γ, |ξετε − v0|≥δ)

= IPu(ξ
ε
τ(γ∪∂D) ∈ ∂D) + IEu(IPξε

τ(γ∪∂D)
(|ξετε − v0| ≥ δ); ξετ(γ∪∂D) ∈ γ).

and both terms converge to zero.
It only remains to prove that for u ∈ γ, IPu{ηε1 ∈ ∂D−Eδ(v0)} → 0.

As in [2], lemma 2.4, it can be shown that for u ∈ γ,

(3.6) IPu{ηε1 ∈ ∂D} ≥ exp{−1

ε
(V (ϑ, v0) + 0.45d)}

where d = min{V (ϑ, u) : v ∈ ∂D, |v − v0| ≥ δ} − V (ϑ, v0). We will
prove now that for u ∈ γ,

(3.7) IPu{ηε1 ∈ ∂D − Eδ(v0)} ≤ exp{−1

ε
(V (ϑ, v0) + 0.55d)}

Let τ(γ ∪ ∂D) := inf{t > 0 : ξεt ∈ γ ∪ ∂D}. So ηε1 is ξετ(γ∪∂D)

shifted by σ0. Using Markov property we get

IPu{ηε1 ∈ ∂D − Eδ(v0)} = IPu{ξετ(γ∪∂D) ◦ θσ0 ∈ ∂D − Eδ(v0)}
= IEu(IEu(1I{ξε

τ(γ∪∂D)
◦θσ0∈∂D−Eδ(v0)}|Fσ0)

= IEu(IPXε
σ0

(ξετ(γ∪∂D) ◦ θσ0 ∈ ∂D − Eδ(v0))

= IEu(IPξεσ0
(ξετ(γ∪∂D) ◦ θσ0 ∈ ∂D − Eδ(v0)))

≤ sup
v∈Γ

IPv(ξ
ε
τ(γ∪∂D) ◦ θσ0 ∈ ∂D − Eδ(v0)).

From Proposition 3.1 (ii), there exists T > 0 such that

(3.8) IPu(τ(γ ∪ ∂D) > T ) ≤ exp{−1

ε
(V (ϑ, v0) + d)}.

Let K be the closure of the µ
2
-neighborhood of ∂D−Eδ(v0). Since no

function ϕt, 0 ≤ t ≤ T , ϕ0 ∈ Γ such that Iu[0,T ](ϕ) ≤ V (ϑ, v0)+0.65d



hits K, ∪u∈Γφu(V (ϑ, v0)+0.65d) pass at a distance not smaller than
µ
2

from ∂D − Eδ(v0). Using Corollary 2.6 we get

IPu{τ(γ ∪ ∂D) ≤ T, ξετ(γ∪∂D) ∈ ∂D − Eδ(v0)}

≤ IPu{ρ0T (ξε, φu(V (ϑ, v0) + 0.65d) ≥ µ

2
}

≤ exp{−1

ε
(V (ϑ, v0) + 0.65d− 0.05d) = exp{−1

ε
(V (ϑ, v0) + 0.60d).

Also

IPu{ξετ(γ∪∂D) ∈ ∂D − Eδ(v0)} ≤ IPu{τ(γ ∪ ∂D) > T}+

IPu{τ(γ ∪ ∂D) ≤ T, ξετ(γ∪∂D) ∈ ∂D − Eδ(v0)}

≤ exp{−1

ε
(V (ϑ, v0) + d)}+ exp{−1

ε
(V (ϑ, v0) + 0.60d)}

= exp{−1

ε
(V (ϑ, v0) + 0.55d)}.

�

Theorem 3.4. Let v0 ∈ ∂D for which V (ϑ, v0) = minv∈∂DV (ϑ, v).
Then the solution of the Dirichlet problem (2.4) has the property

lim
ε→0

ϕε(u;x) = f(v0;x), u ∈ D, x ∈ E

Proof.

lim
ε→0

ϕε(u;x) = lim
ε→0

IEIPεu;x
(f(ξε(τ ε;x)

= IEIPu;x [lim
ε→0

f(ξε(τ ε;x)]

= lim
ε→0

f(ξε(τ ε;x) = f(v0, x).

�

4. Exit time problem for additive functionals in split
spaces

Assume that the limit process ξ̂(t), t ≥ 0 defined in (2.3) has a
unique asymptotically stable position. For a fixed k suppose that
ϑk is the asymptotically stable position of the deterministic system

d

dt
ξ̂(t) = â(ξ̂(t); k)

where

â(u; k) =

∫
Ek

πk(dx)a(u, x).



The stochastic additive functional switched by the jump Markov
process in split space satisfies LDP with rate function

(4.1) Iu[0,T ](ϕ) = min{Iu,k[0,T ](ϕ) : 1 ≤ k ≤ N}

where Iu,k[0,T ](ϕ) is defined in (2.6). We associate to it the corre-

sponding quasipotential as in (3.4).
Following the same procedure as in Theorem 3.3 with the rate func-
tion replaced by 4.1, we get the following result.

Theorem 4.1. Let D ∈ IRd be a bounded domain attracted
to the equilibrium position ϑk. Suppose that there exists a unique
point vk ∈ ∂D such that V (ϑk, vk) = minv∈∂D V (ϑ, v). Then for
every δ > 0 and u ∈ D,

lim
ε→0

IPu{ρ(ξετε , vk) < δ} = 1

where τ ε := inf{t > 0 : ξεt ∈ ∂D}.
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